EP1432897A1 - Method for protecting exhaust gas purification systems of internal combustion engines against thermal overload - Google Patents

Method for protecting exhaust gas purification systems of internal combustion engines against thermal overload

Info

Publication number
EP1432897A1
EP1432897A1 EP02782788A EP02782788A EP1432897A1 EP 1432897 A1 EP1432897 A1 EP 1432897A1 EP 02782788 A EP02782788 A EP 02782788A EP 02782788 A EP02782788 A EP 02782788A EP 1432897 A1 EP1432897 A1 EP 1432897A1
Authority
EP
European Patent Office
Prior art keywords
temperature
value
exhaust gas
engine
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02782788A
Other languages
German (de)
French (fr)
Other versions
EP1432897B1 (en
Inventor
Ekkehard Pott
Michael Zillmer
Michael Lindlau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP1432897A1 publication Critical patent/EP1432897A1/en
Application granted granted Critical
Publication of EP1432897B1 publication Critical patent/EP1432897B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1475Regulating the air fuel ratio at a value other than stoichiometry

Definitions

  • the invention relates to a method for operating an internal combustion engine, in particular a motor vehicle, with an exhaust gas system with an exhaust gas purification system, wherein an engine lambda value depending on a modeled or measured temperature at at least one critical point of the exhaust gas system is set to a temperature-dependent engine lambda value so that it deviates from normal operation an exhaust gas temperature is lowered when the determined temperature at the at least one point of the exhaust system exceeds a predetermined first temperature value, according to the preamble of claim 1.
  • Catalysts of internal combustion engines age when exposed to high temperatures, with the starting behavior deteriorating, i.e. the same conversion rate is only reached at a higher catalyst temperature and / or the peak conversion rate, which is usually> 99% for HC, CO and NOx in the case of 3-way catalysts, decreases. This process increases disproportionately as the aging rate increases.
  • the invention has for its object to improve a method of the type mentioned in such a way that a reduction in the additional consumption by an exhaust gas and exhaust gas cleaning system temperature-related engine lambda setting is achieved without overloading the exhaust gas cleaning.
  • the engine lambda value is only changed from the value for normal operation to a temperature-dependent engine lambda value in order to lower the exhaust gas temperature when the determined temperature has exceeded the predetermined first temperature value for a predetermined period of time.
  • the predetermined period of time is selected differently for different critical points in the exhaust system. For example, the predetermined period of time is selected the longer the closer the critical point of the exhaust system is to an engine block of the internal combustion engine.
  • the temperature is preferably determined at at least one critical point upstream, downstream and / or on a main catalytic converter and / or pre-catalytic converter.
  • the engine lambda value is converted from the value for normal operation to the temperature-dependent engine lambda value before the end of the predetermined time period if the determined temperature exceeds a second predetermined temperature value within the predetermined time period, which is greater than the predetermined first temperature value ,
  • the predetermined second temperature value is selected differently for different critical points in the exhaust system. For example, the predetermined second temperature value is selected the higher the closer the critical point of the exhaust system to an engine block of the internal combustion engine.
  • the engine lambda value is expediently converted immediately or filtered from the value of normal operation into the temperature-dependent engine lambda value.
  • FIG. 1 is a graphical representation of a first temperature profile of the exhaust gas temperature upstream of a pre-catalytic converter and an engine lambda value over time with and without intervention in the engine lambda value according to the inventive method
  • FIG. 2 shows a graphical representation of a second temperature profile of the exhaust gas temperature upstream of a pre-catalytic converter and of an engine lambda value over time with and without intervention in the engine lambda value according to the inventive method
  • FIG 3 shows a graphical representation of the temperature profile of the exhaust gas temperature upstream of a pre-catalytic converter and upstream of a main catalytic converter over time with and without intervention in the engine lambda value according to the method according to the invention.
  • an exposure time of the temperature or the exceeding of a predetermined first temperature is used as a criterion for the setting of a motor lambda value.
  • a continuous load temperature limit can be exceeded by a predetermined temperature difference without specifying a temperature-dependent engine lambda value that deviates from normal operation. If the temperature overload lasts longer, the motor lambda value is immediately or filtered transferred to the temperature-dependent motor lambda value in order to avoid or reduce damage caused by permanent thermal stress.
  • the location of the occurrence of the temperature overshoot in the exhaust system is taken into account when determining the temperature-dependent engine lambda value.
  • Close to the cylinder head due to the low thermal inertia of the exhaust system up to this running distance, there is a temperature dynamic which follows the load very quickly and which further decreases downstream and in particular significantly behind the catalytic converter (s). This means that heating and cooling processes take place faster in front of a pre-catalytic converter close to the engine than in the middle of a large-volume main catalytic converter located away from the engine.
  • a temperature overload in the exhaust gas upstream of a first catalytic converter near the engine can be permitted for a longer period of time than a temperature overload at subsequent critical points in the exhaust system, since in the event of negative changes in load or speed or when one is set temperature-dependent engine lambda values at a location close to the engine with faster cooling and thus elimination of the critical situation can be expected.
  • the measuring temperature already exceeds a predetermined second temperature value within the predetermined time period, which is higher than the predetermined first temperature value for this measuring point, i.e. in other words, if the temperature difference between the measuring temperature and the predetermined first temperature value becomes greater than a predetermined value, it makes sense to set the temperature-dependent engine lambda value before the expiry of the predetermined period in order to rule out irreversible catalyst damage.
  • FIG. 1 and 2 graphically illustrate a dynamic component protection according to the invention.
  • the time is plotted on a horizontal axis 10, an exhaust gas temperature upstream of a pre-catalytic converter on a first vertical axis 12 and an engine lambda value on a second vertical axis 14.
  • Value 16 on axis 14 corresponds to an engine lambda value of 1
  • line 18 corresponds to the predetermined first temperature value (in this example 900 ° C.)
  • line 20 corresponds to the predetermined second temperature value (in this example 940 ° C.).
  • Graph 22 shows the temperature profile of the exhaust gas temperature over time without component protection intervention
  • Graph 24 shows the temperature profile of the exhaust gas temperature over time with component protection intervention according to the prior art
  • Graph 26 shows the temperature profile of the exhaust gas temperature over time with component protection intervention according to the inventive method.
  • Graph 28 shows the course of the engine lambda value over time without component protection intervention
  • graph 30 shows the course of the engine lambda value over time with component protection intervention according to the prior art
  • graph 30 shows the course of the engine lambda value over time with component protection intervention according to the inventive method.
  • Reference numeral 34 denotes a first time TO
  • reference numeral 36 denotes a second time T1
  • reference numeral 38 denotes a third time T2
  • reference numeral 40 denotes a fourth time T3
  • reference numeral 42 denotes a fifth time T4.
  • reference numeral 44 denotes a sixth time TKR. The time difference between the third and fourth times 38 and 40 corresponds to the predetermined time period 46.
  • Fig. 1 graphically illustrates a load jump partial load full load at time TO 34, for example when entering a longer, steep incline.
  • the Exhaust gas purification system includes, for example, a pre-catalytic converter near the engine and a main catalytic converter arranged further downstream, FIG. 1 illustrating the course of the exhaust gas temperature (axis 12) upstream of the pre-catalytic converter.
  • the exhaust gas temperature rises upstream of the pre-catalytic converter after time TO 34 as a result of the jump in load at time TO 34 and approaches time T1 36 a critical temperature threshold in the form of the predetermined first temperature value 18 at 900 ° C.
  • the engine lambda (graph 30) is set to values ⁇ 1 from time T1 36 (graph 24) in order to reliably rule out exhaust gas temperatures> 900 ° C.
  • it is first checked between T2 T3 38 to 40, whether the temperature difference threshold of 40K and the predetermined second temperature value of 940 Q C is exceeded within a time interval 46th In the example according to FIG. 1, this is not the case, so that after the time interval 46 of, for example, 5 seconds has elapsed, by gradually (or immediately) setting a corresponding engine lambda value (graph 32) after the time T3 40, the exhaust gas temperature (graph 26) falls below the permanent load threshold 18 is lowered. This means that the additional consumption resulting from the change in the engine lambda value only begins at a later point in time. Overall, the exhaust gas temperature (graph 26) for the interval T2 38 to T4 42 is above the continuous load limit 18.
  • the temperature difference threshold (hard threshold) or the predetermined second temperature value 20 of 940 ° C. is exceeded within the time interval 46 at the time TKR 44 and the engine lambda value (graph 32) is reduced to the temperature gradient The value below the permanent exposure limit 18 is set.
  • the interval T238 to T442 is thus shorter than in the example according to FIG. 1.
  • Fig. 3 illustrates the importance of different time intervals (predetermined period) for the approval of thermal overload for two different positions or measuring points in the exhaust system.
  • the temperature is plotted on a vertical axis 48 and the time is plotted on a horizontal axis 40.
  • Line 52 denotes a maximum permissible temperature for the pre-catalytic converter and line 54 denotes a maximum permissible temperature for the main catalytic converter.
  • Graph 56 shows the course of the exhaust gas temperature upstream of the pre-catalyst without component protection intervention and Graph 60 shows the course of the exhaust gas temperature upstream of the pre-catalyst with component protection intervention according to the invention.
  • Graph 62 shows the course of the exhaust gas temperature upstream of the main catalytic converter without component protection intervention
  • Graph 64 shows the course of the Exhaust gas temperature in front of the main catalytic converter with component protection intervention according to the prior art
  • graph 66 shows the course of the exhaust gas temperature in front of the main catalytic converter with component protection intervention according to the invention.
  • the continuous load threshold 52 is exceeded after a jump in load at time TA 68 and component protection is initiated at time TB 70. At time TC 72, the exhaust gas temperature is again below the continuous load threshold 52.
  • temperature-sensitive NOx storage catalysts are caused by the long exposure time is severely damaged, even if the temperature peak exceeds the continuous load value 54 less than the exhaust gas temperature (graph 60) upstream of the pre-catalytic converter.
  • the temperature peak and the duration of the temperature overshoot are significantly lower.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

The invention relates to a method for operating an internal combustion engine, in particular of a motor vehicle, comprising an exhaust gas installation containing an exhaust gas purification system. According to said method, a motor lambda value is set, based on a modelled temperature or a temperature measured at at least one critical point in the exhaust gas installation, to a temperature-dependent motor lambda value, in a manner that differs from a normal operation to such an extent that an exhaust gas temperature is reduced, if the temperature that has been determined at the one or more points in the exhaust gas installation exceeds a predefined first temperature value. The motor lambda value is only modified to reduce the exhaust gas temperature from a value for a normal operation to a temperature-dependent motor lambda value, if the measured temperature has exceeded the predefined first temperature value for a predetermined period.

Description

Verfahren zum Schutz von Abgasreinigungssystemen von Brennkraftmaschinen vor thermischer Überbelastung Process for protecting exhaust gas purification systems of internal combustion engines against thermal overload
Die Erfindung betrifft ein Verfahren zum Betreiben einer Brennkraftmaschine, insbesondere eines Kraftfahrzeuges, mit einer Abgasanlage mit Abgasreinigungssystem, wobei ein Motorlambdawert in Abhängigkeit von einer modellierten oder gemessenen Temperatur an wenigstens einer kritischen Stelle der Abgasanlage derart vom Normalbetrieb abweichend auf einen temperaturabhängigen Motorlambdawert eingestellt wird, daß eine Abgastemperatur abgesenkt wird, wenn die ermittelte Temperatur an der wenigstens einen Stelle der Abgasanlage einen vorbestimmten ersten Temperaturwert überschreitet, gemäß dem Oberbegriff des Anspruchs 1.The invention relates to a method for operating an internal combustion engine, in particular a motor vehicle, with an exhaust gas system with an exhaust gas purification system, wherein an engine lambda value depending on a modeled or measured temperature at at least one critical point of the exhaust gas system is set to a temperature-dependent engine lambda value so that it deviates from normal operation an exhaust gas temperature is lowered when the determined temperature at the at least one point of the exhaust system exceeds a predetermined first temperature value, according to the preamble of claim 1.
Katalysatoren von Brennkraftmaschinen, beispielsweise in Kraftfahrzeugen, altern bei Beaufschlagung mit hohen Temperaturen, wobei sich das Anspringverhalten verschlechtert, d.h. eine gleiche Konvertierungsrate wird erst bei höherer Katalysatortemperatur erreicht, und/oder die Spitzenkonvertierungsrate, die bei 3-Wege- Katalysatoren üblicherweise >99% für HC, CO und NOx beträgt, nimmt ab. Dieser Prozeß nimmt mit steigender Alterungsrate überproportional zu.Catalysts of internal combustion engines, for example in motor vehicles, age when exposed to high temperatures, with the starting behavior deteriorating, i.e. the same conversion rate is only reached at a higher catalyst temperature and / or the peak conversion rate, which is usually> 99% for HC, CO and NOx in the case of 3-way catalysts, decreases. This process increases disproportionately as the aging rate increases.
Im Abgasstrang einer Brennkraftmaschine können sehr hohe Abgas- und Katalysatortemperaturen von ggf. über 1.000QC auftreten, die ggf. binnen kurzer Einwirkdauer einen Abgaskatalysator in unzulässiger Weise schädigen, so daß Emissionsgrenzwerte nicht mehr eingehalten werden. Dies ist insbesondere bei Abgasreinigungssystemen mit zumindest einem motornahen Katalysator (Vorkatalysator oder Hauptkatalysator) der Fall, da über die kurze nicht-adiabate Abgasleitung auch nur wenig Wärme abgeführt wird.In the exhaust line of an internal combustion engine, very high exhaust gas and catalyst temperatures of possibly more than 1,000 ° C. can occur, which may damage an exhaust gas catalyst in an inadmissible manner within a short exposure time, so that emission limit values are no longer maintained. This is particularly the case with exhaust gas purification systems with at least one catalytic converter close to the engine (pre-catalytic converter or main catalytic converter), since only a little heat is dissipated via the short non-adiabatic exhaust pipe.
Es ist bekannt, die Abgastemperatur bei zumindest nahezu Motorvollast durch unterstöchiometrischen Motorbetrieb zu begrenzen. Der in den Brennraum eingebrachte Kraftstoff wird wegen des Sauerstoffmangels nicht vollständig verbrannt. Dadurch erreichen die Brennraumgase bei gleicher zugeführter Energie eine geringere Temperatur. Zusätzlich kühlt die Verdampfungsenthalpie des Kraftstoffes die Brennraumgase. Ferner wird in diesem Betriebsmodus der Restsauerstoff im Abgas abgesenkt, so daß weniger Exothermie in dem bzw. den Katalysatoren erzeugt wird. Üblicherweise wird eine maximal zulässige Abgaskatalysatortemperatur vorgegeben und das Motorlambda in Abhängigkeit von der Abweichung der ermittelten Abgaskatalysatortemperatur von der maximal zulässigen Abgaskatalysatortemperatur eingestellt. Ebenso ist es bekannt, zusätzlich eine oder mehrere Abgas- bzw. Katalysatortemperaturen an verschiedenen Stellen des Abgasreinigungssystems auf Abweichungen von vorbestimmten Maximaltemperaturen zu überwachen und das Motorlambda in Abhängigkeit von der kritischsten Stelle einzustellen.It is known to limit the exhaust gas temperature at least almost full engine load by means of sub-stoichiometric engine operation. The fuel brought into the combustion chamber is not completely burned due to the lack of oxygen. As a result, the combustion chamber gases reach a lower temperature with the same supplied energy. In addition, the enthalpy of vaporization of the fuel cools the combustion chamber gases. Furthermore, the residual oxygen in the exhaust gas is lowered in this operating mode, so that less exothermic energy is generated in the catalyst or catalysts. A maximum permissible exhaust gas catalytic converter temperature is usually specified and the engine lambda is set as a function of the deviation of the determined exhaust gas catalytic converter temperature from the maximum permissible exhaust gas catalytic converter temperature. It is also known to additionally monitor one or more exhaust gas or catalyst temperatures at different points in the exhaust gas cleaning system for deviations from predetermined maximum temperatures and to adjust the engine lambda as a function of the most critical point.
Nachteilig ist, daß mit diesen Maßnahmen eine unerwünschte Verbrauchserhöhung verbunden ist. Daher werden Bestrebungen unternommen, den Mehrverbrauch dieser Bauteilschutzmaßnahmen so weit wie möglich zu begrenzen. So wird beispielsweise in der DE 19609 923 ein gestuftes Phase-In von Überhitzungsschutzmaßnahmen beschrieben. Es wird zunächst eine erste, schwächer ausgeprägte Maßnahme ergriffen, deren Erfolg hinsichtlich einer Temperaturabsenkung geprüft wird, wobei im Falle nicht ausreichender Temperaturabsenkung eine zweite, stärker wirksame Maßnahme ergriffen wird. Nachteilig bei diesem Verfahren ist, daß eine gewisse Überlastung der Abgasreinigung in Kauf genommen wird, um eine Verbrauchsminderung zu erreichen.The disadvantage is that these measures involve an undesirable increase in consumption. Efforts are therefore being made to limit the additional consumption of these component protection measures as far as possible. For example, a graded phase-in of overheating protection measures is described in DE 19609 923. First of all, a first, less pronounced measure is taken, the success of which is checked with regard to a temperature reduction, a second, more effective measure being taken in the event of insufficient temperature reduction. A disadvantage of this method is that a certain overload of the exhaust gas cleaning system is accepted in order to reduce consumption.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der obengenannten Art dahingehend zu verbessern, daß eine Minderung des Mehrverbrauchs durch eine Abgas- und Abgasreinigungsanlagentemperatur bedingte Motorlambdaeinstellung ohne Überlastung der Abgasreinigung erzielt wird.The invention has for its object to improve a method of the type mentioned in such a way that a reduction in the additional consumption by an exhaust gas and exhaust gas cleaning system temperature-related engine lambda setting is achieved without overloading the exhaust gas cleaning.
Diese Aufgabe wird erfindungsgemäß durch ein Verfahren der o.g. Art mit den in Anspruch 1 gekennzeichneten Merkmalen gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angegeben.This object is achieved by a method of the above. Kind with the features characterized in claim 1 solved. Advantageous embodiments of the invention are specified in the dependent claims.
Dazu ist es erfindungsgemäß vorgesehen, daß der Motorlambdawert erst dann zur Absenkung der Abgastemperatur vom Wert für den Normalbetrieb in einen temperaturabhängigen Motorlambdawert verändert wird, wenn die ermittelte Temperatur den vorbestimmten ersten Temperaturwert für einen vorbestimmten Zeitraum überschritten hat.For this purpose, it is provided according to the invention that the engine lambda value is only changed from the value for normal operation to a temperature-dependent engine lambda value in order to lower the exhaust gas temperature when the determined temperature has exceeded the predetermined first temperature value for a predetermined period of time.
Dies hat den Vorteil, daß kurzfristige Überschreitungen der Grenztemperatur für das Abgasreinigungssystem, welche durch anschließende Abkühlphasen zeitnah wieder ausgeglichen werden, erkannt werden können, so daß dort keine Abweichung vom Wert des Motorlambdawertes vom Normalbetrieb durchgeführt wird, so daß sich im Gesamtbetrieb ein reduzierter Kraftstoffverbrauch durch weniger aggressiv greifende Bauteilschutzmaßnahmen mittels Veränderung des Motorlambdawertes ergeben. Ferner wird eine unterschiedliche Wichtung der verschiedenen temperaturkritischen Stellen bei der bauteilschutzbedingten Einstellung des Motorlambdawertes erzielt und es wird zwischen kurzzeitigen Belastungen, beispielsweise bei Beschleuningungsvorgängen, und länger andauernder Belastung, beispielsweise bei Vollgasfahrt bergauf, unterschieden.This has the advantage that short-term violations of the limit temperature for the exhaust gas purification system, which can be compensated promptly by subsequent cooling phases, can be detected, so that there is no deviation from the value of the engine lambda value from normal operation, so that in Overall operation results in reduced fuel consumption through less aggressive component protection measures by changing the engine lambda value. Furthermore, a different weighting of the various temperature-critical points is achieved in the setting of the engine lambda value due to component protection, and a distinction is made between short-term loads, for example during acceleration processes, and longer-lasting loads, for example when driving full throttle uphill.
Zum Berücksichtigen von unterschiedlichen Dynamiken der Temperaturveränderung an verschiedenen Stellen in der Abgasanlage wird der vorbestimmte Zeitraum für unterschiedliche kritische Stellen der Abgasanlage unterschiedlich gewählt. Beispielsweise wird der vorbestimmte Zeitraum um so länger gewählt, je näher die kritische Stelle der Abgasanlage an einem Motorblock der Brennkraftmaschine liegt.In order to take into account different dynamics of the temperature change at different points in the exhaust system, the predetermined period of time is selected differently for different critical points in the exhaust system. For example, the predetermined period of time is selected the longer the closer the critical point of the exhaust system is to an engine block of the internal combustion engine.
, », »
Bevorzugt wird die Temperatur an wenigstens einer kritischen Stelle stromauf, stromab und/oder an einem Hauptkatalysator und/oder Vorkatalysator bestimmt.The temperature is preferably determined at at least one critical point upstream, downstream and / or on a main catalytic converter and / or pre-catalytic converter.
Um eine irreversible Schädigung des Abgasreinigungssystems zu verhindern, wird der Motorlambdawert vor Ablauf des vorbestimmten Zeitraumes vom Wert für den Normalbetrieb in den temperaturabhängigen Motorlambdawert überführt, wenn die ermittelte Temperatur innerhalb des vorbestimmten Zeitraumes einen zweiten vorbestimmten Temperaturwert überschreitet, welcher größer ist als der vorbestimmte erste Temperaturwert.In order to prevent irreversible damage to the exhaust gas purification system, the engine lambda value is converted from the value for normal operation to the temperature-dependent engine lambda value before the end of the predetermined time period if the determined temperature exceeds a second predetermined temperature value within the predetermined time period, which is greater than the predetermined first temperature value ,
Zum Berücksichtigen von unterschiedlichen Dynamiken der Temperaturveränderung an verschiedenen Stellen in der Abgasanlage wird der vorbestimmte zweite Temperaturwert für unterschiedliche kritischen Stellen der Abgasanlage unterschiedlich gewählt. Beispielsweise wird der vorbestimmte zweite Temperaturwert um so höher gewählt, je näher die kritische Stelle der Abgasanlage an einem Motorblock der Brennkraftmaschine liegt.In order to take into account different dynamics of the temperature change at different points in the exhaust system, the predetermined second temperature value is selected differently for different critical points in the exhaust system. For example, the predetermined second temperature value is selected the higher the closer the critical point of the exhaust system to an engine block of the internal combustion engine.
Zweckmäßigerweise wird der Motorlambdawert sofort oder gefiltert vom Wert des Normalbetriebs in den temperaturabhängigen Motorlambdawert überführt wird.The engine lambda value is expediently converted immediately or filtered from the value of normal operation into the temperature-dependent engine lambda value.
Weitere Merkmale, Vorteile und vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den abhängigen Ansprüchen, sowie aus der nachstehenden Beschreibung der Erfindung anhand der beigefügten Zeichnung. Diese zeigt in Fig. 1 eine graphische Darstellung eines ersten Temperaturverlaufes der Abgastemperatur vor einem Vorkatalysator sowie eines Motorlambdawertes über die Zeit mit und ohne Eingriff in den Motorlambdawert gemäß dem erfindungsgemäßen Verfahren,Further features, advantages and advantageous embodiments of the invention result from the dependent claims and from the following description of the invention with reference to the accompanying drawing. This shows in 1 is a graphical representation of a first temperature profile of the exhaust gas temperature upstream of a pre-catalytic converter and an engine lambda value over time with and without intervention in the engine lambda value according to the inventive method,
Fig. 2 eine graphische Darstellung eines zweiten Temperaturverlaufes der Abgastemperatur vor einem Vorkatalysator sowie eines Motorlambdawertes über die Zeit mit und ohne Eingriff in den Motorlambdawert gemäß dem erfindungsgemäßen Verfahren und2 shows a graphical representation of a second temperature profile of the exhaust gas temperature upstream of a pre-catalytic converter and of an engine lambda value over time with and without intervention in the engine lambda value according to the inventive method and
Fig. 3 eine graphische Darstellung des Temperaturverlaufes der Abgastemperatur vor einem Vorkatalysator und vor einem Hauptkatalysator über die Zeit mit und ohne Eingriff in den Motorlambdawert gemäß dem erfindungsgemäßen Verfahren.3 shows a graphical representation of the temperature profile of the exhaust gas temperature upstream of a pre-catalytic converter and upstream of a main catalytic converter over time with and without intervention in the engine lambda value according to the method according to the invention.
Erfindungsgemäß wird eine Einwirkdauer der Temperatur bzw. der Überschreitung einer vorbestimmten ersten Temperatur als Kriterium für die Einstellung eines Motorlambdawertes herangezogen. Für einen vorbestimmten Zeitraum kann eine Dauerbelastungs-Temperaturgrenze um eine vorgegebene Temperaturdiffe/enz ohne Vorgabe eines vom Normalbetrieb abweichend, temperaturabhängigen Motorlambdawertes überschritten werden. Hält die Temperaturüberlastung länger an, so wird der Motorlambdawert sofort oder gefiltert auf den temperaturabhängigen Motorlambdawert überführt, um Schäden durch eine thermische Dauerbelastung zu vermeiden bzw. zu mindern.According to the invention, an exposure time of the temperature or the exceeding of a predetermined first temperature is used as a criterion for the setting of a motor lambda value. For a predetermined period of time, a continuous load temperature limit can be exceeded by a predetermined temperature difference without specifying a temperature-dependent engine lambda value that deviates from normal operation. If the temperature overload lasts longer, the motor lambda value is immediately or filtered transferred to the temperature-dependent motor lambda value in order to avoid or reduce damage caused by permanent thermal stress.
Ferner wird der Ort des Auftretens der Temperaturüberschreitung im Abgassystem bei der Ermittlung des temperaturabhängigen Motorlambdawertes berücksichtigt. Nahe am Zylinderkopf herrscht wegen der bis zu dieser Laufstrecke noch geringen thermischen Trägheit der Abgasanlage eine sehr schnell der Last folgende Temperaturdynamik, die weiter stromab und insbesondere hinter dem bzw. den Katalysatoren deutlich nachläßt. Somit laufen Erhitzungs- und Abkühlvorgänge vor einem motornahen Vorkatalysator schneller ab als in der Mitte eines motorferner angeordneten großvolumigen Hauptkatalysators. Daher kann eine Temperaturüberlastung im Abgas stromauf eines motornahen ersten Katalysators für einen längeren Zeitraum zugelassen werden als eine Temperaturüberlastung an nachfolgenden kritischen Stellen der Abgasanlage, da bei negativen Last- oder Drehzahländerungen oder bei Einstellung eines temperaturabhängigen Motorlambdawertes an einer motornahen Stelle mit einer schnelleren Auskühlung und somit Behebung der kritischen Situation gerechnet werden kann.Furthermore, the location of the occurrence of the temperature overshoot in the exhaust system is taken into account when determining the temperature-dependent engine lambda value. Close to the cylinder head, due to the low thermal inertia of the exhaust system up to this running distance, there is a temperature dynamic which follows the load very quickly and which further decreases downstream and in particular significantly behind the catalytic converter (s). This means that heating and cooling processes take place faster in front of a pre-catalytic converter close to the engine than in the middle of a large-volume main catalytic converter located away from the engine. Therefore, a temperature overload in the exhaust gas upstream of a first catalytic converter near the engine can be permitted for a longer period of time than a temperature overload at subsequent critical points in the exhaust system, since in the event of negative changes in load or speed or when one is set temperature-dependent engine lambda values at a location close to the engine with faster cooling and thus elimination of the critical situation can be expected.
Überschreitet jedoch die Meßtemperatur bereits innerhalb des vorbestimmten Zeitraums einen vorbestimmten zweiten Temperaturwert, welcher höher ist als der vorbestimmte erste Temperaturwert für diese Meßstelle, d.h. mit anderen Worten, wenn die Temperaturdifferenz zwischen Meßtemperatur und vorbestimmten ersten Temperaturwert größer als ein vorbestimmter Wert wird, so ist es sinnvoll, den temperaturabhängigen Motorlambdawert bereits vor Ablauf des vorgegebenen Zeitraumes einzustellen, um irreversible Katalysatorschädigungen auszuschließen.However, if the measuring temperature already exceeds a predetermined second temperature value within the predetermined time period, which is higher than the predetermined first temperature value for this measuring point, i.e. in other words, if the temperature difference between the measuring temperature and the predetermined first temperature value becomes greater than a predetermined value, it makes sense to set the temperature-dependent engine lambda value before the expiry of the predetermined period in order to rule out irreversible catalyst damage.
Fig. 1 und 2 veranschaulichen graphisch einen erfindungsgemäßen, dynamischen Bauteilschutz. Hierbei ist auf einer horizontalen Achse 10 die Zeit, auf einer ersten vertikalen Achse 12 eine Abgastemperatur vor einem Vorkatalysator und auf einer zweiten vertikalen Achse 14 ein Motorlambdawert aufgetragen. Wert 16 auf der Achse 14 entspricht einem Motorlambdawert von 1 , Linie 18 entspricht dem vorbestimmten ersten Temperaturwert (in diesem Beispiel 900QC) und Linie 20 entspricht dem vorbestimmten zweiten Temperaturwert (in diesem Beispiel 940QC). Graph 22 zeigt den Temperaturverlauf der Abgastemperatur über die Zeit ohne Bauteilschutzeingriff, Graph 24 zeigt den Temperaturverlauf der Abgastemperatur über die Zeit mit Bauteilschutzeingriff gemäß Stand der Technik und Graph 26 zeigt den Temperaturverlauf der Abgastemperatur über die Zeit mit Bauteilschutzeingriff gemäß dem erfindungsgemäßen Verfahren. Graph 28 zeigt den Verlauf des Motorlambdawertes über die Zeit ohne Bauteilschutzeingriff, Graph 30 zeigt den Verlauf des Motorlambdawertes über die Zeit mit Bauteilschutzeingriff gemäß Stand der Technik und Graph 30 zeigt den Verlauf des Motorlambdawertes über die Zeit mit Bauteilschutzeingriff gemäß dem erfindungsgemäßen Verfahren. Bezugsziffer 34 bezeichnet einen ersten Zeitpunkt TO, Bezugsziffer 36 bezeichnet einen zweiten Zeitpunkt T1 , Bezugsziffer 38 bezeichnet einen dritten Zeitpunkt T2, Bezugsziffer 40 bezeichnet einen vierten Zeitpunkt T3 und Bezugsziffer 42 bezeichnet einen fünften Zeitpunkt T4. In Fig. 2 bezeichnet Bezugsziffer 44 einen sechsten Zeitpunkt TKR. Die Zeitdifferenz zwischen dem dritten und vierten Zeitpunkt 38 und 40 entspricht dem vorbestimmten Zeitraum 46.1 and 2 graphically illustrate a dynamic component protection according to the invention. The time is plotted on a horizontal axis 10, an exhaust gas temperature upstream of a pre-catalytic converter on a first vertical axis 12 and an engine lambda value on a second vertical axis 14. Value 16 on axis 14 corresponds to an engine lambda value of 1, line 18 corresponds to the predetermined first temperature value (in this example 900 ° C.) and line 20 corresponds to the predetermined second temperature value (in this example 940 ° C.). Graph 22 shows the temperature profile of the exhaust gas temperature over time without component protection intervention, Graph 24 shows the temperature profile of the exhaust gas temperature over time with component protection intervention according to the prior art, and Graph 26 shows the temperature profile of the exhaust gas temperature over time with component protection intervention according to the inventive method. Graph 28 shows the course of the engine lambda value over time without component protection intervention, graph 30 shows the course of the engine lambda value over time with component protection intervention according to the prior art, and graph 30 shows the course of the engine lambda value over time with component protection intervention according to the inventive method. Reference numeral 34 denotes a first time TO, reference numeral 36 denotes a second time T1, reference numeral 38 denotes a third time T2, reference numeral 40 denotes a fourth time T3 and reference numeral 42 denotes a fifth time T4. In Fig. 2, reference numeral 44 denotes a sixth time TKR. The time difference between the third and fourth times 38 and 40 corresponds to the predetermined time period 46.
Fig. 1 veranschaulicht graphisch einen Lastsprung Teillast-Vollast zum Zeitpunkt TO 34, beispielsweise bei Einfahrt in eine längere, starke Steigung. Das Abgasreinigungssystem umfaßt beispielhaft einen motornahen Vorkatalysator und einen weiter stromab angeordneten Hauptkatalysator, wobei in Fig. 1 der zeitliche Verlauf der Abgastemperatur (Achse 12) vor dem Vorkatalysator veranschaulicht ist. Die Abgastemperatur steigt vor dem Vorkatalysator nach dem Zeitpunkt TO 34 infolge des Lastsprunges zum Zeitpunkt TO 34 schnell an und nähert sich zum Zeitpunkt T1 36 einer kritischen Temperaturschwelle in Form der vorbestimmten ersten Temperaturwertes 18 bei 900°C. Im Stand der Technik (Graphen 24, 30) wird das Motorlambda (Graph 30) bereits ab dem Zeitpunkt T1 36 auf Werte <1 eingestellt (Graph 24), um Abgastemperaturen >900QC sicher auszuschließen. Nach dem erfindungsgemäßen Verfahren wird zunächst in einem Zeitintervall 46 zwischen T2 38 bis T3 40 geprüft, ob die Temperaturdifferenzschwelle von 40K bzw. der vorbestimmte zweite Temperaturwert von 940QC überschritten wird. In dem Beispiel gemäß Fig. 1 ist dies nicht der Fall, so daß nach Verstreichen des Zeitintervalls 46 von beispielsweise 5 Sekunden durch allmähliches (oder sofortiges) Einstellen eines entsprechenden Motorlambdawertes (Graph 32) nach dem Zeitpunkt T3 40 die Abgastemperatur (Graph 26) unter die Dauerbelastungsschwelle 18 absenkt wird. Damit setzt der aus der Veränderung des Motorlambdawertes resultierende Mehrverbrauch erst zu einem späteren Zeitpunkt ein. Insgesamt liegt die Abgastemperatur (Graph 26) für das Intervall T2 38 bis T4 42 oberhalb der Dauerbelastungsgrenze 18.Fig. 1 graphically illustrates a load jump partial load full load at time TO 34, for example when entering a longer, steep incline. The Exhaust gas purification system includes, for example, a pre-catalytic converter near the engine and a main catalytic converter arranged further downstream, FIG. 1 illustrating the course of the exhaust gas temperature (axis 12) upstream of the pre-catalytic converter. The exhaust gas temperature rises upstream of the pre-catalytic converter after time TO 34 as a result of the jump in load at time TO 34 and approaches time T1 36 a critical temperature threshold in the form of the predetermined first temperature value 18 at 900 ° C. In the prior art (graphs 24, 30), the engine lambda (graph 30) is set to values <1 from time T1 36 (graph 24) in order to reliably rule out exhaust gas temperatures> 900 ° C. In the novel process it is first checked between T2 T3 38 to 40, whether the temperature difference threshold of 40K and the predetermined second temperature value of 940 Q C is exceeded within a time interval 46th In the example according to FIG. 1, this is not the case, so that after the time interval 46 of, for example, 5 seconds has elapsed, by gradually (or immediately) setting a corresponding engine lambda value (graph 32) after the time T3 40, the exhaust gas temperature (graph 26) falls below the permanent load threshold 18 is lowered. This means that the additional consumption resulting from the change in the engine lambda value only begins at a later point in time. Overall, the exhaust gas temperature (graph 26) for the interval T2 38 to T4 42 is above the continuous load limit 18.
In dem alternativen Beispiel gemäß Fig. 2 wird noch innerhalb des Zeitintervalls 46 zum Zeitpunkt TKR 44 die Temperaturdifferenzschwelle (harte Schwelle) bzw. der vorbestimmte zweite Temperaturwert 20 von 940°C überschritten und der Motorlambdawert (Graph 32) wird mit steilem Gradienten auf den zur Unterschreitung der Dauerbelastungsgrenze 18 erforderlichen Wert gesetzt. Damit fällt das Intervall T238 bis T442 kürzer aus als im Beispiel gemäß Fig. 1.In the alternative example according to FIG. 2, the temperature difference threshold (hard threshold) or the predetermined second temperature value 20 of 940 ° C. is exceeded within the time interval 46 at the time TKR 44 and the engine lambda value (graph 32) is reduced to the temperature gradient The value below the permanent exposure limit 18 is set. The interval T238 to T442 is thus shorter than in the example according to FIG. 1.
Fig. 3 veranschaulicht die Bedeutung unterschiedlicher Zeitintervalle (vorbestimmter Zeitraum) für die Zulassung thermischer Überlastung für zwei verschiedene Positionen bzw. Meßstellen in der Abgasanlage. Auf einer vertikalen Achse 48 ist die Temperatur und auf einer horizontalen Achse 40 ist die Zeit aufgetragen. Linie 52 bezeichnet eine maximal zulässige Temperatur für den Vorkatalysator und Linie 54 bezeichnet eine maximal zulässige Temperatur für den Hauptkatalysator. Graph 56 zeigt den Verlauf der Abgastemperatur vor dem Vorkatalysator ohne Bauteilschutzeingriff und Graph 60 zeigt den Verlauf der Abgastemperatur vor dem Vorkatalysator mit Bauteilschutzeingriff gemäß der Erfindung. Graph 62 zeigt den Verlauf der Abgastemperatur vor dem Hauptkatalysator ohne Bauteilschutzeingriff, Graph 64 zeigt den Verlauf der Abgastemperatur vor dem Hauptkatalysator mit Bauteilschutzeingriff gemäß Stand der Technik und Graph 66 zeigt den Verlauf der Abgastemperatur vor dem Hauptkatalysator mit Bauteilschutzeingriff gemäß der Erfindung.Fig. 3 illustrates the importance of different time intervals (predetermined period) for the approval of thermal overload for two different positions or measuring points in the exhaust system. The temperature is plotted on a vertical axis 48 and the time is plotted on a horizontal axis 40. Line 52 denotes a maximum permissible temperature for the pre-catalytic converter and line 54 denotes a maximum permissible temperature for the main catalytic converter. Graph 56 shows the course of the exhaust gas temperature upstream of the pre-catalyst without component protection intervention and Graph 60 shows the course of the exhaust gas temperature upstream of the pre-catalyst with component protection intervention according to the invention. Graph 62 shows the course of the exhaust gas temperature upstream of the main catalytic converter without component protection intervention, Graph 64 shows the course of the Exhaust gas temperature in front of the main catalytic converter with component protection intervention according to the prior art and graph 66 shows the course of the exhaust gas temperature in front of the main catalytic converter with component protection intervention according to the invention.
Während vor dem Vorkatalysator (Graph 60) aufgrund der niedrigen thermischen Trägheit der Abgasanlage eine Änderung der Einstellung des Motorlambdawertes (Graph 64) sehr schnell eine Absenkung der Temperatur bewirkt, ist bei einer Meßstelle mitten im Hauptkatalysator auch bei sofortigem Einstellen eines temperaturbedingt niedrigen Motorlambdawertes nach Überschreiten einer kritischen Temperaturschwelle 54 nur mit einem langsamen Abnehmen der Bauteiltemperatur zu rechnen. Lange Zeitintervalle würden hier das Risiko einer thermischen Überlastung ansteigen lassen.While a change in the setting of the engine lambda value (graph 64) very quickly leads to a lowering of the temperature in front of the pre-catalytic converter (graph 60) due to the low thermal inertia of the exhaust system, there is a measuring point in the middle of the main catalytic converter even when a temperature-related low engine lambda value is set after exceeding a critical temperature threshold 54 can only be expected with a slow decrease in the component temperature. Long time intervals would increase the risk of thermal overload.
Bei der Abgastemperatur vor dem Vorkatalysator (Graph 60) wird nach einem Lastsprung zum Zeitpunkt TA 68 die Dauerbelastungsschwelle 52 überschritten und zum Zeitpunkt TB 70 der Bauteilschutz eingeleitet. Zum Zeitpunkt TC 72 ist die Abgastemperatur wieder unter der Dauerbelastungsschwelle 52.At the exhaust gas temperature upstream of the pre-catalytic converter (graph 60), the continuous load threshold 52 is exceeded after a jump in load at time TA 68 and component protection is initiated at time TB 70. At time TC 72, the exhaust gas temperature is again below the continuous load threshold 52.
Bei der Temperatur im Hauptkatalysator (Graph 64) nach einem gleichartigen Lastsprung wird zum Zeitpunkt TA' 74 der Bauteilschutz eingeleitet. Das Zeitintervall vom Zeitpunkt TA' 74 bis zum Zeitpunkt TB1 76 entspricht dem Zeitintervall vom Zeitpunkt TA 68 bis zum Zeitpunkt TB 70. Die Temperatur steigt wegen der höheren thermischen Trägheit der vorgeschalteten Abgasanlage langsamer an als die Abgastemperatur vor dem Vorkatalysator. Aus diesem Grunde dauert aber auch die Auskühlung länger und insgesamt ist das bauteilkritische Intervall vom Zeitpunkt TA1 74 bis zum Zeitpunkt TC 78 (Graph 64) länger als das Intervall vom Zeitpunkt TA 68 bis zum Zeitpunkt TC 72. Insbesondere temperaturempfindliche NOx-Speicherkatalysatoren werden durch die lange Einwirkdauer sehr stark geschädigt, auch wenn die Temperaturspitze den Dauerbelastungswert 54 weniger stark übersteigt als die Abgastemperatur (Graph 60) vor dem Vorkatalysator. Bei dem erfindungsgemäßen verfahren gemäß Graph 66 fällt die Temperaturspitze und die Dauer der Temperaturüberschreitung (Intervall vom Zeitpunkt TA' 74 bis zum Zeitpunkt TC" 80) wesentlich geringer aus. At the temperature in the main catalytic converter (graph 64) after a similar load step, component protection is initiated at time TA '74. The time interval from time TA '74 to time TB 1 76 corresponds to the time interval from time TA 68 to time TB 70. Because of the higher thermal inertia of the upstream exhaust system, the temperature rises more slowly than the exhaust gas temperature upstream of the pre-catalyst. For this reason, however, the cooling takes longer and overall, the component-critical interval from time TA 1 74 to time TC 78 (graph 64) is longer than the interval from time TA 68 to time TC 72. In particular, temperature-sensitive NOx storage catalysts are caused by the long exposure time is severely damaged, even if the temperature peak exceeds the continuous load value 54 less than the exhaust gas temperature (graph 60) upstream of the pre-catalytic converter. In the method according to the invention according to graph 66, the temperature peak and the duration of the temperature overshoot (interval from the time TA '74 to the time TC "80") are significantly lower.

Claims

PATE NTANS P RÜCH E PATE NTANS P RÜCH E
1. Verfahren zum Betreiben einer Brennkraftmaschine, insbesondere eines Kraftfahrzeuges, mit einer Abgasanlage mit Abgasreinigungssystem, wobei ein Motorlambdawert in Abhängigkeit von einer modellierten oder gemessenen Temperatur an wenigstens einer kritischen Stelle der Abgasanlage derart vom Normalbetrieb abweichend auf einen temperaturabhängigen Motorlambdawert eingestellt wird, daß eine Abgastemperatur abgesenkt wird, wenn die ermittelte Temperatur an der wenigstens einen Stelle der Abgasanlage einen vorbestimmten ersten Temperaturwert überschreitet, dadurch gekennzeichnet, daß der1.Method for operating an internal combustion engine, in particular a motor vehicle, with an exhaust gas system with an exhaust gas purification system, wherein an engine lambda value depending on a modeled or measured temperature at at least one critical point in the exhaust gas system is set to a temperature-dependent engine lambda value in such a way that normal exhaust gas temperature is adjusted is lowered when the determined temperature at the at least one point of the exhaust system exceeds a predetermined first temperature value, characterized in that the
, Motorlambdawert erst dann zur Absenkung der Abgastemperatur vom Wert für den Normalbetrieb in einen temperaturabhängigen Motorlambdawert verändert wird, wenn die Meßtemperatur den vorbestimmten ersten Temperaturwert für einen vorbestimmten Zeitraum überschritten hat.The engine lambda value is only changed to lower the exhaust gas temperature from the value for normal operation into a temperature-dependent engine lambda value when the measurement temperature has exceeded the predetermined first temperature value for a predetermined period of time.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der vorbestimmte Zeitraum für unterschiedliche kritische Stellen der Abgasanlage unterschiedlich gewählt wird.2. The method according to claim 1, characterized in that the predetermined period is selected differently for different critical points of the exhaust system.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der vorbestimmte Zeitraum um so länger gewählt wird, je näher die kritische Stelle der Abgasanlage an einem Motorblock der Brennkraftmaschine liegt.3. The method according to claim 1 or 2, characterized in that the predetermined period is chosen the longer, the closer the critical point of the exhaust system to an engine block of the internal combustion engine.
4. Verfahren nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die ermittelte Temperatur an wenigstens einer kritischen Stelle stromauf, stromab und/oder an einem Hauptkatalysator bestimmt wird.4. The method according to at least one of the preceding claims, characterized in that the determined temperature is determined at least at a critical point upstream, downstream and / or on a main catalyst.
5. Verfahren nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die ermittelte Temperatur an wenigstens einer kritischen Stelle stromauf, stromab und/oder an einem Vorkatalysator bestimmt wird. 5. The method according to at least one of the preceding claims, characterized in that the determined temperature is determined at least one critical point upstream, downstream and / or on a pre-catalyst.
6. Verfahren nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Motorlambdawert vor Ablauf des vorbestimmten Zeitraumes vom Wert für den Normalbetrieb in den temperaturabhängigen Motorlambdawert überführt wird, wenn die ermittelte Temperatur innerhalb des vorbestimmten Zeitraumes einen zweiten vorbestimmten Temperaturwert überschreitet, welcher größer ist als der erste vorbestimmte Temperaturwert.6. The method according to at least one of the preceding claims, characterized in that the engine lambda value is converted from the value for normal operation into the temperature-dependent engine lambda value before the expiry of the predetermined period if the determined temperature exceeds a second predetermined temperature value within the predetermined period, which is greater than the first predetermined temperature value.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß der vorbestimmte zweite Temperaturwert für unterschiedliche kritischen Stellen der Abgasanlage unterschiedlich gewählt wird.7. The method according to claim 6, characterized in that the predetermined second temperature value is selected differently for different critical points of the exhaust system.
8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß der vorbestimmte zweite Temperaturwert um so höher gewählt wird, je näher die kritische Stelle der Abgasanlage an einem Motorblock der Brennkraftmaschine liegt.8. The method according to claim 6 or 7, characterized in that the predetermined second temperature value is chosen the higher, the closer the critical point of the exhaust system to an engine block of the internal combustion engine.
9. Verfahren nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Motorlambdawert sofort oder gefiltert vom Wert des Normalbetriebs in den temperaturabhängigen Motorlambdawert überführt wird. 9. The method according to at least one of the preceding claims, characterized in that the engine lambda value is converted immediately or filtered from the value of normal operation into the temperature-dependent engine lambda value.
EP02782788A 2001-09-27 2002-09-06 Method for protecting exhaust gas purification systems of internal combustion engines against thermal overload Expired - Fee Related EP1432897B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE2001147619 DE10147619A1 (en) 2001-09-27 2001-09-27 Process for protecting exhaust gas cleaning systems of internal combustion engines against thermal overload
DE10147619 2001-09-27
PCT/EP2002/009986 WO2003029634A1 (en) 2001-09-27 2002-09-06 Method for protecting exhaust gas purification systems of internal combustion engines against thermal overload

Publications (2)

Publication Number Publication Date
EP1432897A1 true EP1432897A1 (en) 2004-06-30
EP1432897B1 EP1432897B1 (en) 2007-05-02

Family

ID=7700458

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02782788A Expired - Fee Related EP1432897B1 (en) 2001-09-27 2002-09-06 Method for protecting exhaust gas purification systems of internal combustion engines against thermal overload

Country Status (5)

Country Link
EP (1) EP1432897B1 (en)
JP (1) JP2005504224A (en)
CN (1) CN1327117C (en)
DE (2) DE10147619A1 (en)
WO (1) WO2003029634A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2881476A1 (en) * 2005-02-03 2006-08-04 Bosch Gmbh Robert Exhaust gas temperature controlling method for internal combustion engine such as high charge engine, involves reducing charge of cylinders when reduced combustion air ratio attains lower limit value
WO2020193594A1 (en) * 2019-03-25 2020-10-01 Volkswagen Ag Method for operating an internal combustion engine and an internal combustion engine

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10357887A1 (en) * 2003-11-14 2005-06-16 Volkswagen Ag Internal combustion engine for motor vehicle, is connected to exhaust gas purification device comprising precatalyst that is not made up of precious metal and disposed directly in downstream of exhaust gas collector
DE102004033394B3 (en) 2004-07-09 2005-12-22 Siemens Ag Method for controlling an internal combustion engine
FR2906570B1 (en) * 2006-09-28 2008-12-19 Peugeot Citroen Automobiles Sa METHOD OF OPTIMIZING THE PERFORMANCE OF AN INTERNAL COMBUSTION ENGINE OF A VEHICLE, SUCH AS A MOTOR VEHICLE
DE102008028354A1 (en) * 2008-06-13 2009-12-17 GM Global Technology Operations, Inc., Detroit Device for reducing exhaust gas temperature of motor vehicle engine, has temperature sensor arranged in exhaust gas system, where temperature sensor is connected with engine control unit
FR2986264B1 (en) * 2012-01-26 2014-01-10 Peugeot Citroen Automobiles Sa METHOD OF THERMALLY PROTECTING COMPONENTS OF THE EXHAUST LINE OF A HEAT ENGINE
JP6142468B2 (en) 2012-06-01 2017-06-07 トヨタ自動車株式会社 Catalyst protection device for internal combustion engine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345445A (en) * 1986-08-13 1988-02-26 Toyota Motor Corp Air-fuel ratio controller for internal combustion engine
JPH06146949A (en) * 1992-11-09 1994-05-27 Toyota Motor Corp Fuel injection control device of internal combustion engine
DE4344137B4 (en) * 1993-12-23 2006-03-09 Robert Bosch Gmbh System for protecting a catalyst in the exhaust system of an internal combustion engine from overheating
JPH08246932A (en) * 1995-03-09 1996-09-24 Sanshin Ind Co Ltd Operation control device of engine
DE19609923B4 (en) * 1996-03-14 2007-06-14 Robert Bosch Gmbh Method for monitoring an overheat protection measure in full load operation of an internal combustion engine
US6272850B1 (en) * 1998-12-08 2001-08-14 Ford Global Technologies, Inc. Catalytic converter temperature control system and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03029634A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2881476A1 (en) * 2005-02-03 2006-08-04 Bosch Gmbh Robert Exhaust gas temperature controlling method for internal combustion engine such as high charge engine, involves reducing charge of cylinders when reduced combustion air ratio attains lower limit value
WO2020193594A1 (en) * 2019-03-25 2020-10-01 Volkswagen Ag Method for operating an internal combustion engine and an internal combustion engine

Also Published As

Publication number Publication date
CN1561434A (en) 2005-01-05
DE50210083D1 (en) 2007-06-14
JP2005504224A (en) 2005-02-10
EP1432897B1 (en) 2007-05-02
WO2003029634A1 (en) 2003-04-10
DE10147619A1 (en) 2003-07-10
CN1327117C (en) 2007-07-18

Similar Documents

Publication Publication Date Title
EP1516108B1 (en) Method for monitoring an exhaust gas system of a motor vehicle
DE102012021882B4 (en) Method for operating a gasoline engine, control device and motor vehicle with such
EP1121513B1 (en) Method for reducing nitrogen oxide in the exhaust gases of an internal combustion engine operated with a lean mixture
DE19711295B4 (en) Device for determining a deterioration of a catalyst for exhaust gas purification
EP1108866B1 (en) Method to determine the loading state of a particulate filter of an internal combustion engine
DE102013200487B4 (en) Exhaust gas flow system for detecting a thermal event in an exhaust system based on temperature gradients
EP1366278B1 (en) METHOD FOR catalyst temperature control
EP1121519A1 (en) METHOD AND DEVICE FOR DESULFURIZING A NO x? ACCUMULATING CATALYST SYSTEM
EP0991853B1 (en) Method for monitoring the conversion rate of an exhaust gas catalytic converter for an internal combustion engine
EP1761693A1 (en) Estimation of the temperature of a catalytic converter and corresponding applications
DE4440276C2 (en) Process for monitoring the degree of conversion of an exhaust gas catalytic converter
EP1432897B1 (en) Method for protecting exhaust gas purification systems of internal combustion engines against thermal overload
WO2019011545A1 (en) Method for operating an internal combustion engine of a motor vehicle and arrangement of a particle filter in an exhaust system of a motor vehicle
DE102013001043B3 (en) Method for operating combustion engine of motor car, involves determining target compression ratio by expected size estimation operating variable estimated based on current gradient of operating parameter over time, in prediction mode
EP1203144B1 (en) Method of regulating the operational mode of an internal combustion engine
EP1533500B1 (en) Method and apparatus for regeneration of an exhaust gas after-treatment device
WO2007077061A1 (en) Method for the operation of a control and/or regulation device, preferably for a driving machine of a motor vehicle
EP1209332B1 (en) Method and device for regenerating a NOx catalytic converter
DE19909796A1 (en) Method and device for increasing the exhaust gas temperature
DE102005035707A1 (en) Diagnosing catalyst arranged in exhaust path of internal combustion (IC) engine of motor vehicle, involves determining time-dependent oxygen storage capacity of catalyst when engine load fluctuation is occurred
DE102007044863B4 (en) Method and apparatus for modeling the temperature of a catalyst
DE102005032457A1 (en) Method and device for controlling or controlling the Rußabbrandgeschwindigkeit
DE10057938A1 (en) Regenerating nitrogen oxides storage catalyst in I.C. engine involves extrapolating oxygen-dependent signal from oxygen-sensitive measuring device
DE10257172B4 (en) Method for operating an internal combustion engine with a flexible adaptation of the component protection design
DE102018220615A1 (en) Method and control unit for monitoring the regeneration of a particle filter through which an exhaust gas flows, computer program product and computer-readable data carrier

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040427

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CZ DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50210083

Country of ref document: DE

Date of ref document: 20070614

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070813

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070502

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071228

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070502

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 50210083

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180928

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180930

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50210083

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50210083

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190906