EP1431722B1 - Differenzdrucksensor zur Messung der Höhe der Flüssigkeit in einem Tank - Google Patents

Differenzdrucksensor zur Messung der Höhe der Flüssigkeit in einem Tank Download PDF

Info

Publication number
EP1431722B1
EP1431722B1 EP20030019059 EP03019059A EP1431722B1 EP 1431722 B1 EP1431722 B1 EP 1431722B1 EP 20030019059 EP20030019059 EP 20030019059 EP 03019059 A EP03019059 A EP 03019059A EP 1431722 B1 EP1431722 B1 EP 1431722B1
Authority
EP
European Patent Office
Prior art keywords
pressure
pressure sensor
differential pressure
liquid
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20030019059
Other languages
English (en)
French (fr)
Other versions
EP1431722A2 (de
EP1431722A3 (de
Inventor
Hans-Harald Stoehr
Wolfgang Ripper
Rainer Strohmaier
Stefan Wickert
Guenter Driedger
Michael Gerlach
Klaus Marx
Matthias Pfaff-Rollwagen
Wolfgang Schauer
Bernhard Kamp
Michael Reichelt
Johannes Dehn
Cornelia Goldmann
Achim Oberascher
Michael Offenhuber
Siegfried Zerbin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10324009A external-priority patent/DE10324009A1/de
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1431722A2 publication Critical patent/EP1431722A2/de
Publication of EP1431722A3 publication Critical patent/EP1431722A3/de
Application granted granted Critical
Publication of EP1431722B1 publication Critical patent/EP1431722B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/14Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measurement of pressure
    • G01F23/18Indicating, recording or alarm devices actuated electrically

Definitions

  • the invention relates to a differential pressure sensor for measuring the height of the liquid in a tank of a metering system, wherein in the tank a liquid, in particular urea-water solution is filled, and a use of this differential pressure sensor for determining the density of a liquid.
  • the DE 3929344 describes a level indicator for fuel tanks with a differential pressure measuring probe.
  • the DE 4112559 shows a liquid container in which a level measurement using a working according to the Venturi principle jet pump takes place.
  • the subject-matter of the independent claim has the advantage of a simple and robust construction, which is particularly important with regard to the solidification of a liquid urea-water solution at -11 degrees Celsius.
  • the differential pressure sensor according to the invention can be used in particular for the continuous measurement of the height of the liquid in a tank for a dosing system for aggressive liquids and can be used in different tank shapes.
  • the measure to provide a differential pressure sensor with at least a first, non-deformable, liquid-resistant pressure transmitter in particular for measuring the pressure at the bottom of the tank, it is possible in a simple and cost-effective manner, the amount of aggressive liquids in a tank for a dosing to determine, wherein the shape of the tank can be arbitrary.
  • the differential pressure sensor has at least a first, as easily deformable by the hydrostatic pressure of the liquid pressure transducer, in particular a membrane.
  • the differential pressure sensor advantageously has at least one liquid-resistant, second pressure transmitter that is not deformable by the hydrostatic pressure of the fluid.
  • This second pressure transmitter is completed in the same way as the first pressure transmitter with a pressure transducer.
  • the measuring unit of the differential pressure sensor can be positioned at any height. If two pressure transducers are used, this has the advantage that the measuring unit of the differential pressure sensor used does not have to be resistant to the liquid present in the tank, but only to the medium present in the pressure transducers. This can be particularly advantageous if the liquid present in the tank can freeze.
  • the pressure transmitter is particularly resistant to urea-water solution or liquids, which are used as a reducing agent for the reduction of NO x in exhaust gases of internal combustion engines.
  • the pressure transmitter runs over the entire height of the tank to the floor.
  • Pressure transmitters associated lines can be located inside or outside the tank.
  • the shape of the pressure transmitter can be arbitrary depending on the design of the tank.
  • the pressure transmitter has a material which is not deformable by the hydrostatic pressure of the liquid.
  • the pressure-tight pressure transmitter can be divided into two chambers by an easily deformable pressure transducer, in particular a flexible membrane, which may consist of rubber, plastic or metal.
  • a chamber is connected to the measuring unit of the differential pressure sensor. If the pressure in the chambers differs, the diaphragm bulges in the direction of the lower pressure.
  • a pressure sensor can be designed as a bellows with a low spring constant.
  • a training as a balloon filled with liquid or a bag made of a tear-resistant film or a tear-resistant fabric would be conceivable.
  • both the first pressure transmitter, and the second pressure transducer in the form of an elongated hollow profile.
  • a pressure-transmitting medium This can be, for example, air or oil.
  • a pressure transducer the so-called measuring pressure transducer, arranged at the bottom of the container.
  • a second pressure transducer the so-called reference pressure transducer, is located in the upper part of the tank near the upper side of the tank.
  • the reference pressure transducer is used to measure the gas pressure above the liquid level in order to ensure a temperature-independent and thus reliable determination of the filling level in the tank.
  • the pressure-transmitting medium Due to the expansion of the measuring pressure sensor at the bottom of the tank, a signal is transmitted to the measuring unit of the differential pressure sensor via the pressure-transmitting medium.
  • the pressure-transmitting medium should be able to expand or contract without the pressure within the pressure transmitter or the pressure transducer deviating from the ambient pressure.
  • the pressure-transmitting medium is designed so that pressure fluctuations in the environment do not cause the pressure within the pressure transmitter or the pressure sensor is different from the ambient pressure.
  • the pressure transducers ideally have the lowest possible spring constant. Furthermore, the pressure-transmitting medium has the lowest possible compressibility and the lowest possible coefficient of thermal expansion.
  • the material of a pressure transmitter and a pressure transducer against the liquid in the tank, in particular against urea, resistant is a urea-resistant thermoplastic or urea-resistant elastomer or metal.
  • Thermoplastics such as IXEF, PA66, PTFE, PPS compositions, PEEK or PVDF prove to be particularly suitable materials which are particularly resistant to urea.
  • elastomers such as BR, CR, HNBR, NR, FPM, EPDM or NBR, as well as metals, such as V4A steel, are suitable materials.
  • An adjustment of the characteristic curve of the differential pressure sensor is possible if both the measuring pressure transducer and the reference pressure transducer are arranged in the tank so that the liquid in the tank can enclose both pressure transducer when the tank is completely filled.
  • the characteristic curve is adjusted when the tank level rises higher than the reference pressure transducer. Then the signal at the measuring unit of the differential pressure sensor is independent of the filling level of the tank.
  • the adjustment is also possible if, as described above, is dispensed with a second pressure transducer or pressure transducer. In this case, the tank must be filled with liquid so far that the liquid level both the Pressure sensor and the measuring unit of the reference pressure sensor exceeds.
  • the differential pressure sensor can be used in a metering system which is connected to an exhaust gas tract of an internal combustion engine, in particular a vehicle engine.
  • differential pressure sensor can be used in liquids which serve as reducing agents for reducing the NO x emissions of the exhaust gas of an internal combustion engine.
  • the pressure transducer and mounted in the tank pressure transmitter are protected by a mechanical protection, in particular by a sheath. This ensures that the pressure transducer and pressure transmitter is protected against any hurdles of frozen blocks of urea-water solution.
  • the differential pressure sensor according to the invention can be used to determine the density of a liquid.
  • the urea dosing system can be easily identified with such use, whether the tank with a liquid other than urea-water solution, for. B. with water or diesel fuel was filled.
  • the density of the pressure-transmitting medium is as equal as possible to that of the vehicle user in the tank to be filled liquid medium.
  • the two pressure transmitter is not perpendicular to each other but to arrange offset in two spatial directions.
  • a tilted vehicle would result in such an arrangement of the pressure transducer no systematic measurement error (due to low effective measurement height is not systematically too low density or level displayed).
  • the effective measurement height is increased and decreased randomly in a random manner.
  • the evaluation of the signal is carried out by averaging over several measured values, thus resulting in a correct signal.
  • FIG. 1 shows a metering system 4 with a metering device 9 and a tank 3 for aggressive liquids 2.
  • the liquid 2 passes from the tank 3 via a line 10 to the metering device 9.
  • the metering system 4 is used to liquid, in particular reducing agent, in the exhaust gas of a To convey internal combustion engine, thereby the NO x emission of the exhaust gas can be reduced.
  • the differential pressure sensor 1 indicates the level of the liquid 2 in the tank 3 of the dosing system 4.
  • the differential pressure sensor 1 has a first pressure transmitter 5, which runs from the above the tank 3 measuring unit 11 of the differential pressure sensor 1 over the entire height of the tank 3 to the bottom of the tank 3.
  • a first pressure transducer 7 is arranged.
  • the first pressure transducer 7 has an easily deformable material.
  • This pressure sensor 7 represents the measuring pressure transducer.
  • the second pressure transducer 12 is located in the upper region of the tank 3 and represents the reference pressure transducer.
  • the differential pressure sensor 1 forms a closed system.
  • Pressure transmitter 5, 6 and pressure transducer 7, 12 surround a pressure-transmitting medium 8 tight.
  • the pressure-transmitting medium 8 transmits pressure changes to the first pressure transducer 7 to the measuring unit 11 on.
  • the fill level of the liquid 2 in the tank 3 can be determined as follows.
  • the measured differential pressure ⁇ p is consequently linearly dependent on the filling level h fl of the liquid 2 in the tank 3. Since the other variables are known in the above equation, this results in the respective filling level height of the liquid.
  • An adjustment of the characteristic curve of the differential pressure sensor 1 can take place when the tank level rises higher than the reference pressure transducer. The signal then becomes independent of the filling level.
  • a full tank can be detected by a control unit when, on the one hand, a sudden increase in the tank level is detected and, on the other hand, an amount of fluid is withdrawn from the tank without a change in the differential pressure signal being observed.
  • the removal of the liquid can be followed by monitoring the amount of fuel supplied to the engine in the control unit.
  • the in FIG. 2 shown differential pressure sensor l 'of the dosing system 4 has largely the same components as the differential pressure sensor 1 FIG. 1 on.
  • a branch 20 is additionally provided, which connects the first pressure transducer 5 and the first pressure transducer 7 with a measuring unit for density measurement 21.
  • the measuring unit for density measurement 21 has a third pressure transmitter 25.
  • a third pressure transducer 27 is arranged.
  • the third pressure transducer 27, which for measuring the density of the Liquid 2 is formed, via the measuring unit for density measurement 21 with the first pressure transducer 7, which is arranged in the lower region of the tank 3, united.
  • the in FIG. 2 shown embodiment are used to provide evidence that the tank 3 has been filled with a liquid other than urea-water solution. It is conceivable, for example, that water or diesel fuel could get into the tank 3.
  • the density of the pressure-transmitting medium 8 is as equal as possible to the density of the liquid 2 to be filled into the tank 3.
  • FIG. 3 shows a connected to a tank and a metering differential pressure sensor assembly.
  • a first pressure receiving member 77 At the bottom of the tank is located, for example, centrally disposed, a first pressure receiving member 77, and at a height H above the bottom of the tank, a second pressure receiving member 78 is arranged.
  • the tank is dimensioned so that its maximum filling height, at which the tank is defined as "voli", is smaller than the height H, so that the second pressure-receiving element is above the liquid level even when the tank is full.
  • the second pressure receiving element 78 is connected via a signal line 79 with an evaluation circuit 80, as well as the first pressure receiving element 77 is connected to the circuit 80.
  • a pressure signal line is connected, which is connected to a signal input of a control device, not shown.
  • the tank 3 has a filler neck 82 in the upper area. Near the bottom, a line 88 is connected, which leads via a feed pump 84 to an electrically controllable via the control unit metering valve 87. About the metering valve, the liquid contained in the tank can be introduced, for example in the exhaust system of a motor vehicle. Between the metering pump and metering valve branches off a return line 83 from the line 88, which returns via a line pressure sensor 85 and a pressure regulator 86 to the upper portion of the tank.
  • the control unit not shown controls the function of the electrically controllable feed pump, the electrically controllable metering valve and the electrically controllable pressure regulator in response to the signal of the line pressure sensor 85 and other data not shown here such as the speed, the load of the motor vehicle engine and possibly other signals from In the exhaust system arranged exhaust gas sensors.
  • the signal applied to the pressure signal line 81 serves the control unit for detecting the fill level in the tank, so that a fuel gauge can be controlled or that a warning in the dashboard of a truck can be issued in good time before reaching a certain lower level that, for example, a 32, 5% urea-water solution must be topped up to continue to ensure exhaust gas after-treatment that complies with legal standards.
  • the level height and the pressure signal of the pressure-receiving element 77 are stored here depending on the tank design specific and in a characteristic curve in the control unit.
  • the detection of the level is preferably carried out when the vehicle is stationary when refueling or idling to exclude errors by sloshing reducing agent while driving.
  • the increased vapor pressure of the reducing agent can set an increased pressure in the tank, which would falsify the fill level signal in the line 81 if it were based solely on a signal of the first pressure receiving element 77.
  • the gas pressure in the upper region of the tank is measured by the second pressure receiving element 78 and forwarded via the line 79 to the evaluation circuit 80, so that with appropriate design of the evaluation circuit 80, a gas pressure compensated signal is applied to the line 81, which according to the above mentioned in the control unit stored map is a clear and temperature-independent measure of the filling level.
  • the difference between the signal of the first pressure-receiving element and the signal of the second pressure-receiving element is formed in the evaluation circuit 80.
  • the fill level of the tank is updated while the vehicle is driving using an in-house calculation of the reducing agent consumption.
  • the consumption is determined here from the control data of the metering or of the metering valve (metering pressure, temperature, activation duration, drive frequency, etc.) and actually or at certain intervals from the last actual subtracted measured level. The difference then gives the new current level.
  • a further adjustment with regard to the fill level can additionally be carried out via a pressure measurement in the tank. This increases the safety in determining the level of reducing agent to meet the statutory on-board diagnostic guidelines.
  • the evaluation circuit 80 can be replaced by a special embodiment of the pressure-receiving element 77, in which the signal line 79 is replaced by an air-tight pipeline, which leads the pressure prevailing in the upper region of the tank gas pressure to the pressure receiving element 77.
  • the second pressure-receiving element 78 is replaced in this case by a pressure-receiving means, which is formed by the projecting into the upper part of the tank open end of the pipeline.
  • the pressure-receiving element 77 then generates, with a corresponding mechanical construction, an electrical signal which corresponds to the pressure difference between the liquid pressure at the bottom of the tank and the gas pressure in the upper region of the tank.
  • pressure-absorbing means may for example be understood to mean an open end of a pressure transmitter, a deformable part (pressure sensor) for closing the open end of a pressure transmitter or a pressure-receiving element which supplies an electrical signal which correlates with the applied pressure or differential pressure.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Measuring Fluid Pressure (AREA)

Description

  • Die Erfindung betrifft einen Differenzdrucksensor zur Messung der Höhe der Flüssigkeit in einem Tank eines Dosiersystems, wobei in dem Tank eine Flüssigkeit, insbesondere Harnstoff-Wasser-Lösung, eingefüllt ist, und eine Verwendung dieses Differenzdrucksensors zur Bestimmung der Dichte einer Flüssigkeit.
  • Stand der Technik
  • Es ist aus dem Stand der Technik bekannt, den Füllstand einer Flüssigkeit in einem Tank mit Hilfe von Drucksensoren zu ermitteln. Insbesondere durch Ermittlung der Druckdifferenz zwischen zwei Messpunkten kann die Höhe einer Wassersäule gemessen werden.
  • Auch in mit Harnstoff-Wasser-Lösungen gefüllten Tanks ist es bekannt, den Füllstand der Tanks zu ermitteln. So wird der Füllstand eines Tanks, gefüllt mit Harnstoff-Wasser-Lösung, mit Hilfe der sogenannten Echolot-Methode ermittelt. Ein vom Echolot ausgehender Ultraschall-Impuls wird vom Boden des Tanks ausgesandt und an der Flüssigkeitsoberfläche reflektiert. Aus der bekannten Laufzeit der Schallwellen in der Flüssigkeit wird der Füllstand ermittelt. Diese Methode weist mehrere Nachteile auf. Zum einen ist diese Methode kostenintensiv. Ein Echolot, welches Materialien aufweist, die gegenüber einer Harnstofflösung resistent sind, ist teuer herzustellen. Zum anderen kann das Echolot insbesondere bei großen Füllhöhen wegen des daraus resultierenden hohen Stromverbrauchs nicht mit Batterien betrieben werden. Dies verursacht erhöhten Energieaufwand und beeinflusst somit beispielsweise den Energieverbrauch einer Brennkraftmaschine. Außerdem ist diese Methode nur bei Tanks einsetzbar, bei denen die Ultraschall-Wellen nicht durch Hindernisse an ihrer Ausbreitung gehindert bzw. reflektiert werden. Dies reduziert die möglichen Bauformen des Tanks erheblich.
  • Eine weitere Methode der Füllstandsmessung in Flüssigkeitstanks stellt die Druckmessung mit kapazitiven Sensoren dar. Bei der Druckmessung mit kapazitiven Sensoren macht man sich die Abstandsänderung der beiden Kondensatorplatten in Abhängigkeit vom Druck zu Nutze. Problematisch sind auch hier die relativ hohen Kosten. Der Einsatz von kapazitiven Sensoren in einer Harnstofflösung verursacht hohe Kosten, da spezielle harnstoffresistente Kondensatorplatten benötigt werden. Desweiteren muss der Sensor gegen das Gefrieren der Harnstoff-Wasser-Lösung resistent sein.
  • Aus der DE 197 55 056 A1 ist bekannt, einen Referenzdruck durch Auffüllen eines Messrohrs bis zu einer bestimmten Höhe bereitzustellen.
  • Nachteilig bei diesem bekannten Stand der Technik ist; dass eine zuverlässige Messung des Füllstands nur bei zusätzlicher Bereitstellung einer Flüssigkeitssäule von bekannter Höhe möglich ist.
  • Die DE 3929344 beschreibt eine Füllstandsanzeige für Brennstoffbehälter mit einer Differenzdruckmesssonde.
  • Die DE 4112559 zeigt einen Flüssigkeitsbehälter, bei dem eine Füllstandsmessung unter Verwendung einer nach dem Venturiprinzip arbeitenden Strahlpumpe erfolgt.
  • Vorteile der Erfindung
  • Der Gegenstand des unabhängigen Anspruchs hat demgegenüber den Vorteileines einfachen und robusten Aufbaus, der insbesondere hinsichtlich der Erstarrung einer als Flüssigkeit verwendeten Harnstoff-Wasser-Lösung bei -11 Grad Celsius von Bedeutung ist. Der erfindungsgemäße Differenzdrucksensor kann insbesondere zur kontinuierlichen Messung der Höhe der Flüssigkeit in einem Tank für ein Dosiersystem für aggressive Flüssigkeiten verwendet werden und ist bei unterschiedlichen Tankformen einsetzbar. Durch die Maßnahme, einen Differenzdrucksensor mit zumindest einem ersten, nicht verformbaren, flüssigkeitsresistenten Drucküberträger insbesondere zur Messung des Drucks am Boden des Tanks zu schaffen, ist es auf einfache und kostengünstige Art und Weise möglich, die Höhe auch aggressiver Flüssigkeiten in einem Tank für ein Dosiersystem zu bestimmen, wobei die Form des Tanks beliebig sein kann. Vorteilhaft ist, dass der Differenzdrucksensor zumindest einen ersten, durch den hydrostatischen Druck der Flüssigkeit möglichst leicht verformbaren Druckaufnehmer, insbesondere eine Membran, aufweist. Durch das Abschließen des die Höhendifferenz des Tanks überwindendenden Drucküberträgers mit einem Druckaufnehmer wird das Problem einer zufälligen Signaländerung, das sich bei einer offenen Leitung ergibt, vermieden. Der Differenzdrucksensor bildet ein geschlossenes System, wobei sich in dem System das druckübertragende Medium befindet. Eine offene Leitung hätte zum Nachteil, dass sie eine Flüssigkeitsfalle darstellen würde. In diese kann durch Schwappen des Tankinhalts oder Kondensation aus der Gasphase Flüssigkeit hineinbefördert werden. Umgekehrt kann in der Leitung befindliche Flüssigkeit durch Stöße aus der Leitung heraus befördert werden. Hierdurch ergeben sich zufällige Signaländerungen, die eine Füllstandsmessung stören.
  • Der Differenzdrucksensor weist vorteilhafterweise zumindest einen durch den hydrostatischen Druck der Flüssigkeit nicht verformbaren, flüssigkeitsresistenten, zweiten Drucküberträger auf. Dieser zweite Drucküberträger ist in gleicher Weise wie der erste Drucküberträger mit einem Druckaufnehmer abgeschlossen. Bei zwei Druckaufnehmern kann die Messeinheit des Differenzdrucksensors in beliebiger Höhe positioniert sein. Werden zwei Druckaufnehmer verwendet, so hat dies den Vorteil, dass die verwendete Messeinheit des Differenzdrucksensors nicht gegen die in dem Tank vorhandene Flüssigkeit, sondern lediglich gegen das in den Drucküberträgern vorhandene Medium resistent sein muss. Dies kann insbesondere dann von Vorteil sein, wenn die im Tank vorhandene Flüssigkeit gefrieren kann.
  • Weitere Vorteile ergeben sich durch die weiteren in den abhängigen Ansprüchen und in der Beschreibung genannten Merkmale.
  • Der Drucküberträger ist insbesondere gegenüber Harnstoff-Wasser-Lösung bzw. gegen Flüssigkeiten resistent, die als Reduktionsmittel zur Reduktion von NOx in Abgasen von Brennkraftmaschinen eingesetzt werden. Der Drucküberträger verläuft über die gesamte Höhe des Tanks bis hin zum Boden. Drucküberträgern zugehörige Leitungen können innerhalb oder außerhalb des Tanks angeordnet sein. Die Form des Drucküberträgers kann je nach Ausgestaltung des Tanks beliebig sein. Der Drucküberträger weist ein Material auf, welches durch den hydrostatischen Druck der Flüssigkeit nicht verformbar ist.
  • Die druckdichten Drucküberträger können durch einen leicht verformbaren Druckaufnehmer, insbesondere eine flexible Membran, die aus Gummi, Kunststoff oder Metall bestehen kann, in zwei Kammern unterteilt werden. Eine Kammer ist mit der Messeinheit des Differenzdrucksensors verbunden. Unterscheidet sich der Druck in den Kammern, so wölbt sich die Membran in Richtung des geringeren Drucks. In weiterer Ausgestaltung der Erfindung kann ein Druckaufnehmer als Faltenbalg mit geringer Federkonstante ausgebildet sein. Alternativ wäre eine Ausbildung als ein mit Flüssigkeit gefüllter Ballon bzw. ein Säckchen aus einer reißfesten Folie oder einem reißfesten Gewebe denkbar.
  • Zweckmäßigerweise weisen sowohl der erste Drucküberträger, als auch der zweite Drucküberträger die Form eines länglichen Hohlprofils auf. In diesem Hohlprofil befindet sich ein druckübertragendes Medium. Dies kann beispielsweise Luft oder Öl sein.
  • Idealerweise ist ein Druckaufnehmer, der sogenannte Mess-Druckaufnehmer, am Boden des Behälters angeordnet. Ein zweiter Druckaufnehmer, der sogenannte Referenz-Druckaufnehmer, befindet sich im oberen Bereich des Tanks, nahe der Tankoberseite. Der Referenz-Druckaufnehmer dient der Messung des Gasdrucks oberhalb des Flüssigkeitspegels, um eine temperaturunabhängige und damit sichere Bestimmung der Füllhöhe im Tank zu gewährleisten.
  • Durch die Ausdehnung des Mess-Druckaufnehmers am Boden des Tanks wird der Messeinheit des Differenzdrucksensors über das druckübertragende Medium ein Signal übermittelt. Um ein von Temperaturschwankungen unabhängiges Signal zu erhalten, sollte sich das druckübertragende Medium ausdehnen oder zusammenziehen können, ohne dass der Druck innerhalb des Drucküberträgers bzw. des Druckaufnehmer vom Umgebungsdruck abweicht. Das druckübertragende Medium ist so beschaffen, dass Druckschwankungen in der Umgebung nicht dazu führen, dass der Druck innerhalb des Drucküberträgers bzw. des Druckaufnehmers sich vom Umgebungsdruck unterscheidet. Die Druckaufnehmer weisen idealerweise eine möglichst geringe Federkonstante auf. Weiterhin hat das druckübertragende Medium eine möglichst geringe Kompressibilität und einen möglichst geringen thermischen Ausdehnungskoeffizienten.
  • Zweckmäßigerweise ist das Material eines Drucküberträgers und eines Druckaufnehmers gegen die Flüssigkeit im Tank, insbesondere gegen Harnstoff, resistent. Von Vorteil ist es, wenn das Material eines Drucküberträgers und eines Druckaufnehmers ein harnstoffresistenter Thermoplast bzw. harnstoffresistentes Elastomer oder Metall ist. Thermoplaste, wie beispielsweise IXEF, PA66, PTFE, PPS-Zusammensetzungen, PEEK oder PVDF, erweisen sich als besonders geeignete Materialien, die insbesondere gegenüber Harnstoff resistent sind. Aber auch Elastomere, wie BR, CR, HNBR, NR, FPM, EPDM oder NBR, sowie Metalle, wie V4A-Stahl, sind geeignete Materialien.
  • Ein Abgleich der Kennlinie des Differenzdrucksensor ist möglich, wenn sowohl der Mess-Druckaufnehmer als auch der Referenz-Druckaufnehmer so in dem Tank angeordnet sind, dass die Flüssigkeit im Tank beide Druckaufnehmer umschließen kann, wenn der Tank vollständig gefüllt ist. Der Abgleich der Kennlinie erfolgt, wenn der Tankstand höher steigt als der Referenz-Druckaufnehmer. Dann ist das Signal an der Messeinheit des Differenzdrucksensors unabhängig von der Füllhöhe des Tanks. Der Abgleich ist auch dann möglich, wenn wie oben geschildert, auf einen zweiten Druckaufnehmer bzw. Drucküberträger verzichtet wird. In diesem Falle muß der Tank soweit mit Flüssigkeit gefüllt sein, daß der Flüssigkeitspegel sowohl den Druckaufnehmer als auch die Meßeinheit des Referenzdrucksensors übersteigt.
  • Von großem Vorteil ist es, dass der Differenzdrucksensor in einem Dosiersystem einsetzbar ist, welches an einen Abgastrakt einer Brennkraftmaschine, insbesondere eines Fahrzeugmotors, angeschlossen ist.
  • Weiterhin vorteilhaft ist es, dass der Differenzdrucksensor in Flüssigkeiten, die als Reduktionsmittel zur Verringerung der NOx-Emissionen des Abgases einer Brennkraftmaschine dienen, einsetzbar ist.
  • In einer vorteilhaften Ausführung der Erfindung sind die Druckaufnehmer und im Tank angebrachte Drucküberträger durch einen mechanischen Schutz, insbesondere durch eine Ummantelung geschützt. Dadurch ist gewährleistet, dass die Druckaufnehmer und Drucküberträger gegen ein etwaiges Umherschlagen von gefrorenen Blöcken aus Harnstoff-Wasser-Lösung geschützt ist.
  • Des weiteren kann der erfindungsgemäße Differenzdrucksensor zur Bestimmung der Dichte einer Flüssigkeit verwendet werden. Im Falle des Harnstoff-Dosiersystems lässt sich mit einer derartigen Verwendung in einfacher Weise erkennen, ob der Tank mit einer anderen Flüssigkeit als Harnstoff-Wasser-Lösung, z. B. mit Wasser- oder Dieselkraftstoff, gefüllt wurde. Die Dichte des druckübertragenden Mediums ist möglichst gleich der des vom Fahrzeugnutzer in den Tank zu füllenden flüssigen Mediums. Durch diese Maßnahme werden mögliche, durch Schrägstellen oder Beschleunigen des Fahrzeugs hervorgerufene Messfehler minimiert.
  • In besonders vorteilhafter Ausgestaltung des Differenzdrucksensors kann vorgesehen sein, die beiden Drucküberträger nicht senkrecht übereinander sondern in zwei Raumrichtungen versetzt anzuordnen. Bei einem schrägstehenden Fahrzeug würde sich bei einer derartigen Anordnung der Drucküberträger kein systematischer Messfehler ergeben (aufgrund zu geringer effektiver Messhöhe wird keine systematisch zu geringe Dichte oder Füllhöhe angezeigt). Die effektive Messhöhe wird in zufälliger Weise wechselnd erhöht und erniedrigt. Die Auswertung des Signals erfolgt durch Mittelung über mehrere Messwerte, somit ergibt sich ein korrektes Signal.
  • Zeichnung
  • Weitere Einzelheiten und Vorteile des Differenzdrucksensors ergeben sich aus der nachfolgenden Beschreibung und der zugehörigen Zeichnung, in der bevorzugte Differenzdrucksensoren mit den dazu notwendigen Einzelheiten dargestellt sind. Es zeigen
  • Figur 1
    einen Differenzdrucksensor in einem Tank für aggressive Flüssigkeiten eines Dosiersystems,
    Figur 2
    einen Differenzdrucksensor in einem Tank für aggressive Flüssigkeiten eines Dosiersystems, in einem alternativen Ausführungsbeispiel, und
    Figur 3
    einen Differenzdrucksensor in einem Flüssigkeitstank, bei dem der zweite Druckaufnehmer zur Messung eines Gasdruckes eingesetzt wird.
    Vorteilhafte Ausführungsformen
  • Figur 1 zeigt ein Dosiersystem 4 mit einer Dosiervorrichtung 9 und einem Tank 3 für aggressive Flüssigkeiten 2. Die Flüssigkeit 2 gelangt von dem Tank 3 über eine Leitung 10 zu der Dosiervorrichtung 9. Das Dosiersystem 4 ist einsetzbar, um Flüssigkeit, insbesondere Reduktionsmittel, in den Abgastrakt einer Brennkraftmaschine zu befördern, damit dadurch die NOx-Emission des Abgases verringert werden kann.
  • Der Differenzdrucksensor 1 zeigt den Füllstand der Flüssigkeit 2 im Tank 3 des Dosiersystems 4 an. Der Differenzdrucksensor 1 weist einen ersten Drucküberträger 5 auf, welcher von der oberhalb des Tanks 3 liegenden Messeinheit 11 des Differenzdrucksensor 1 über die gesamte Höhe des Tanks 3 bis zum Boden des Tanks 3 verläuft. Am Ende des ersten Drucküberträgers 5 ist ein erster Druckaufnehmer 7 angeordnet. Der erste Druckaufnehmer 7 weist ein leicht verformbares Material auf. Dieser Druckaufnehmer 7 stellt den Mess- Druckaufnehmer dar. Der zweite Druckaufnehmer 12 befindet sich im oberen Bereich des Tanks 3 und stellt den Referenz- Druckaufnehmer dar. Der Differenzdrucksensor 1 bildet ein geschlossenes System. Drucküberträger 5, 6 und Druckaufnehmer 7, 12 umschließen ein druckübertragendes Medium 8 dicht. Das druckübertragende Medium 8 überträgt Druckänderungen am ersten Druckaufnehmer 7 an die Messeinheit 11 weiter. In Abhängigkeit vom hydrostatischen Druck am Druckaufnehmer 7 kann die Füllstandshöhe der Flüssigkeit 2 in dem Tank 3 wie folgt ermittelt werden.
  • Der von der Messeinheit 11 gemessene Differenzdruck Δp errechnet sich wie folgt: Δp = p meß - p ref
    Figure imgb0001
    mit p meß = ρ f 1 g h f 1 - ρ Üb gh ref + p Umgebung
    Figure imgb0002
    und p ref = - ρ Üb gh ref + p Umgebung falls h f 1 < h ges - h ref
    Figure imgb0003
    p ref = ρ f 1 g h f 1 - h ges + h ref - ρ Üb gh ref + p Umgebung falls h f 1 < h ges - h ref
    Figure imgb0004
    wobei:
    • h = Höhe,
    • g = Erdbeschleunigung,
    • ρ = Dichte
    mit den Indizes:
    • meß: Messseite,
    • ref: Referenzseite,
    • ges: Gesamthöhe des Tanks
    • Üb: Druckübertragendes Medium
    • fl: Flüssigkeit im Tank
  • Fällt der Flüssigkeitspegel unter den zweiten (Referenz-) Druckaufnehmer 12, also hfl<hges - href, so ergibt sich für den gemessenen Differenzdruck Δp: Δp = ρ f 1 gh f 1 - ρ Üb g h ges - h ref
    Figure imgb0005
  • Der gemessenen Differenzdruck Δp ist folglich linear von der Füllstandshöhe hfl der Flüssigkeit 2 im Tank 3 abhängig. Da die übrigen Größen in obiger Gleichung bekannt sind, ergibt sich hieraus die jeweilige Füllstandshöhe der Flüssigkeit.
  • Für den Fall, dass die Füllstandshöhe der Flüssigkeit über den zweiten (Referenz-) Druckaufnehmer 12 liegt, ergibt sich für den gemessenen Differenzdruck Δp: Δp = ρ Üb h ges - h ref + ρ f 1 h ges - h ref
    Figure imgb0006
  • Es ist ersichtlich, dass der gemessene Differenzdruck von der tatsächlichen Füllstandshöhe hfl der Flüssigkeit 2 in diesem Fall nicht mehr abhängt.
  • Ein Abgleich der Kennlinie des Differenzdrucksensors 1 kann erfolgen, wenn der Tankstand höher steigt als der Referenzdruck-Druckaufnehmer. Das Signal wird dann von der Füllhöhe unabhängig.
  • Ein voller Tank läßt sich von einem Steuergerät erkennen, wenn zum einen eine plötzliche Zunahme des Tankstands erkannt wird und zum anderen eine Flüssigkeitsmenge dem Tank entnommen wird, ohne dass eine Änderung im Differenzdrucksignal beobachtet wird. Die Entnahme der Flüssigkeit lässt sich zum Beispiel im Fall eines Dieselkraftstofftanks verfolgen, indem die dem Motor zugeführte Kraftstoffmenge im Steuergerät verfolgt wird.
  • Als weiteres Kriterium für einen vollen Tank kann herangezogen werden, dass bei Fahrbetrieb keine oder nur geringe Schwankungen des von der Messeinheit 11 gemessenen Differenzdrucksignals beobachtet werden.
  • Der in Figur 2 gezeigte Differenzdrucksensor l' des Dosiersystems 4 weist weitgehend dieselben Komponenten wie der Differenzdrucksensor 1 aus Figur 1 auf. An dem ersten Ducküberträger 5 ist zusätzlich eine Abzweigung 20 vorgesehen, welche den ersten Drucküberträger 5 und den ersten Druckaufnehmer 7 mit einer Messeinheit zur Dichtemessung 21 verbindet. Die Messeinheit zur Dichtemessung 21 weist einen dritten Drucküberträger 25 auf. Am Ende des dritten Drucküberträgers 25 ist ein dritter Druckaufnehmer 27 angeordnet. Der dritte Druckaufnehmer 27, welcher zur Messung der Dichte der Flüssigkeit 2 ausgebildet ist, ist über die Messeinheit zur Dichtemessung 21 mit dem ersten Druckaufnehmer 7, welcher im unteren Bereich des Tanks 3 angeordnet ist, vereinigt. Bei einer hinreichend genauen driftfreien Messeinheit zur Dichtemessung 21 kann, ohne dass ein Abgleich erforderlich ist, die Dichtemessung bei vollem Tank 3 geschehen.
  • Die mathematische Beschreibung erfolgt gemäß der oben angegebenen Formeln für den Fall hfl > hges - href. Auf den zweiten Drucküberträger 6 und die Messeinheit des Differenzdrucksensors 11 kann verzichtet werden, wenn die dargestellte Einrichtung ausschließlich zur Dichtemessung verwendet werden soll. Im Falle des erfindungsgemäßen Harnstoff-Dosiersystems 4 kann das in Figur 2 gezeigte Ausführungsbeispiel dazu verwendet werden, einen Nachweis dafür zu liefern, dass der Tank 3 mit einer anderen Flüssigkeit als Harnstoff-Wasser-Lösung befüllt worden ist. Es ist beispielsweise denkbar, dass Wasser oder Dieselkraftstoff in den Tank 3 geraten könnte. In vorteilhafter Variante ist die Dichte des druckübertragenden Mediums 8 möglichst gleich der Dichte der in den Tank 3 zu füllenden Flüssigkeit 2. Somit werden durch Schrägstehen oder Beschleunigung des Fahrzeugs während des Fahrbetriebes hervorgerufene Messfehler minimiert.
  • Figur 3 zeigt eine mit einem Tank und einem Dosiersystem verbundene Differenzdrucksensoranordnung. Am Boden des Tanks befindet sich, beispielsweise zentral angeordnet, ein erstes Druckaufnahmeelement 77, und in einer Höhe H über dem Boden des Tanks ist ein zweites Druckaufnahmeelement 78 angeordnet. Der Tank ist hierbei so bemessen, dass seine maximale Füllhöhe, bei der der Tank als "voli" definiert ist, kleiner ist als die Höhe H, so dass das zweite Druckaufnahmeelement auch bei vollem Tank sich oberhalb des Flüssigkeitspegels befindet. Das zweite Druckaufnahmeelement 78 ist über eine Signalleitung 79 mit einer Auswerteschaltung 80 verbunden, ebenso ist das erste Druckaufnahmeelement 77 mit der Schaltung 80 verschaltet. Am Ausgang der Schaltung 81 ist eine Drucksignalleitung angeschlossen, die mit einem Signaleingang eines nicht näher dargestellten Steuergeräts verbunden ist. Der Tank 3 weist im oberen Bereich einen Einfüllstutzen 82 auf. In Bodennähe ist eine Leitung 88 angeschlossen, die über eine Förderpumpe 84 zu einem elektrisch über das Steuergerät ansteuerbaren Dosierventil 87 führt. Über das Dosierventil kann die im Tank enthaltene Flüssigkeit beispielsweise in den Abgastrakt eines Kraftfahrzeugs eingeführt werden. Zwischen Dosierpumpe und Dosierventil zweigt eine Rücklaufleitung 83 von der Leitung 88 ab, die über einen Leitungsdrucksensor 85 und einen Druckregler 86 zum oberen Bereich des Tanks zurückführt.
  • Das nicht näher dargestellte Steuergerät steuert die Funktion der elektrisch ansteuerbaren Förderpumpe, des elektrisch ansteuerbaren Dosierventils und des elektrisch ansteuerbaren Druckreglers in Abhängigkeit vom Signal des Leitungsdrucksensors 85 und weiterer hier nicht näher dargestellter Daten wie beispielsweise der Drehzahl, der Last des Kraftfahrzeugmotors und gegebenenfalls weiterer Signale von im Abgastrakt angeordneten Abgassensoren. Das an der Drucksignalleitung 81 anliegende Signal dient dem Steuergerät zur Erkennung des Füllstands im Tank, so dass eine Tankstandsanzeige damit gesteuert werden kann oder dass rechtzeitig vor dem Erreichen eines gewissen unteren Pegels eine Warnung im Armaturenbrett eines Lastkraftwagens ausgegeben werden kann, dass beispielsweise eine 32,5%-ige Harnstoff-Wasser-Lösung nachgefüllt werden muss, um weiterhin eine den gesetzlichen Normen genügende Abgasnachbehandlung zu gewährleisten.
  • Die Füllstandshöhe und das Drucksignal des Druckaufnahmeelements 77 sind hierbei je nach Tankausführung spezifisch und in einer Kennlinie im Steuergerät hinterlegt. Die Erfassung des Füllstands erfolgt vorzugsweise bei stehendem Fahrzeug beim Tanken oder im Leerlauf, um Fehler durch schwappendes Reduktionsmittel beim Fahren auszuschliessen. Bei erhöhter Umgebungstemperatur bis zu 60 Grad Celsius kann sich durch den veränderten Dampfdruck des Reduktionsmittels ein erhöhter Druck im Tank einstellen, der das Füllstandssignal in der Leitung 81 verfälschen würde, wenn es allein auf einem Signal des ersten Druckaufnahmeelements 77 beruhen würde. Dies wird dadurch kompensiert, dass der Gasdruck im oberen Bereich des Tanks vom zweiten Druckaufnahmeelement 78 gemessen und über die Leitung 79 an die Auswerteschaltung 80 weitergeleitet wird, so dass bei entsprechender Auslegung der Auswerteschaltung 80 ein gasdruckkompensiertes Signal an der Leitung 81 anliegt, das gemäß dem oben angesprochenen im Steuergerät abgelegten Kennfeld ein eindeutiges und temperaturunabhängiges Maß für die Füllhöhe ist. In einer einfachen Anordnung wird hierbei in der Auswerteschaltung 80 die Differenz zwischen dem Signal des ersten Druckaufnahmeelements und dem Signal des zweiten Druckaufnahmeelements gebildet. Um ein Leerfahren des Tanks zu vermeiden, wird während der Fahrt der Füllstand des Tanks über eine steuergerätinterne Berechnung des Reduktionsmittelverbrauchs aktualisiert. Der Verbrauch wird hierbei aus den Ansteuerdaten der Dosierung bzw. des Dosierventils (Dosierdruck, Temperatur, Ansteuerdauer, Ansteuerfrequenz etc.) ermittelt und laufend oder in bestimmten Abständen vom zuletzt tatsächlich gemessenen Füllstand subtrahiert. Die Differenz ergibt dann den neuen aktuellen Füllstand. Bei stehendem Fahrzeug kann zusätzlich über eine Druckmessung im Tank ein weiterer Abgleich bezüglich des Füllstandes durchgeführt werden. Dies erhöht die Sicherheit bei der Ermittlung des Füllstands für das Reduktionsmittel zur Erfüllung gesetzlich vorgegebener On-Board-Diagnose-Richtlinien.
  • In einer Abwandlung kann die Auswerteschaltung 80 durch eine besondere Ausgestaltung des Druckaufnahmeelements 77 ersetzt werden, bei der die Signalleitung 79 durch eine luftdichte Rohrleitung ersetzt wird, die den im oberen Bereich des Tanks herrschenden Gasdruck zum Druckaufnahmeelement 77 führt. Das zweite Druckaufnahmeelement 78 wird in diesem Fall durch ein Druckaufnahmemittel ersetzt, das durch das in den oberen Teil des Tanks ragende offene Ende der Rohrleitung gebildet ist. Das Druckaufnahmeelement 77 generiert dann bei entsprechender mechanischer Bauweise ein elektrisches Signal, das der Druckdifferenz zwischen dem Flüssigkeitsdruck am Boden des Tanks und dem Gasdruck im oberen Bereich des Tanks entspricht.
  • Unter Druckaufnahmemittel können im Allgemeinen beispielsweise ein offenes Ende eines Drucküberträgers, ein verformbares Teil (Druckaufnehmer) zum Verschluss des offenen Endes eines Drucküberträgers oder ein Druckaufnahmeelement verstanden werden, das ein elektrisches Signal liefert, das mit dem anliegenden Druck bzw. Differenzdruck korreliert.

Claims (14)

  1. Differenzdrucksensor zur Messung der Flüssigkeitshöhe einer in einem Tank eines Dosiersystems eingefüllten Flüssigkeit, insbesondere einer Harnstoff-Wasser-Lösung, wobei ein erstes Druckaufnahmemittel (7, 77) zur Messung eines Drucks am Boden des Tanks und ein zweites Druckaufnahmemittel (12, 78) zur Messung eines Referenzdrucks in einem oberen Bereich des Tanks vorgesehen ist, wobei das zweite Druckaufnahmeinittel in einer solchen Befestigungshöhe (hges-href, H) des Tanks angeordnet ist, dass das zweite Druckaufnahmemittel (12, 78) höchstens bei Erreichen einer Flüssigkeitshöhe, bei der der Tank als voll definiert ist, von Flüssigkeit (2) umgeben ist, wobei der Differenzdrucksensor (1) zumindest einen ersten, nicht verformbaren, flüssigkeitsresistenten Drucküberträger (5) insbesondere zur Messung des Drucks am Boden des Tanks (3) aufweist, wobei der Differenzdrucksensor (1) zumindest einen nicht verformbaren, flüssigkeitsresistenten, zweiten Drucküberträger (6) insbesondere zur Messung eines Referenzdrucks im oberen Bereich des Tanks (3) aufweist, dadurch gekennzeichnet, dass die Druckaufnahmemittel (7, 12) am offenen Ende des jeweiligen Drucküberträgers (5, 6) angeordnet sind und dass der Differenzdrucksensor (1) ein geschlossenes System bildet, wobei ein druckübertragendes Medium (8) von den Drucküberträgern (5, 6) und den Druckaufnahmemitteln (7,12) umschlossen ist, wobei die Druckaufnahmemittel (7, 12) ein verformbares Teil aufweisen.
  2. Differenzdrucksensor nach Anspruch 1, dadurch gekennzeichnet, dass der bzw. die Drucküberträger (5, 6) die Form eines länglichen Hohlprofils aufweisen.
  3. Differenzdrucksensor nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das verformbare Teil eine Membran, ein Faltenbalg oder ein Ballon ist.
  4. Differenzdrucksensor nach Anspruch 1, dadurch gekennzeichnet, dass das Material der Drucküberträger (5, 6) und der Druckaufnahmemittel (7,12) gegen die Flüssigkeit im Tank (3), insbesondere gegen Harnstoff-Wasser-Lösung, resistent ist.
  5. Differenzdrucksensor nach Anspruch 4, dadurch gekennzeichnet, dass das Material der Drucküberträger (5, 6) und der Druckaufnahmemittel (7, 12) ein harnstoffresistenter Thermoplast bzw. harnstoffresistentes Elastomer oder Metall ist.
  6. Differenzdrucksensor nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Differenzdrucksensor (1) eingerichtet ist zum Einsatz in einem Dosiersystem (4), welches an einen Abgastrakt einer Brennkraftmaschine, insbesondere eines Fahrzeugmotors, angeschlossen ist.
  7. Differenzdrucksensor nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Differenzdrucksensor (1) eingerichtet ist zum Einsatz in Flüssigkeiten (2), die als Reduktionsmittel zur Verringerung der NOx-Emissionen des Abgases einer Brennkraftmaschine dienen.
  8. Differenzdrucksensor nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass er eingerichtet ist zum Abgleich einer Kennlinie des Differenzdrucksensors (1) bei vollem Tank.
  9. Differenzdrucksensor nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass ein Steuergerät eingerichtet ist zur Detektion einer (plötzlichen) Zunahme des Tankstands.
  10. Differenzdrucksensor nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Drucküberträger (5, 6) und/oder die Druckaufnahmemittel durch einen mechanischen Schutz, insbesondere durch eine Ummantelung, geschützt sind.
  11. Differenzdrucksensor nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass beide Druckaufnahmemittel (7, 12) so in dem Tank angeordnet sind, dass die Flüssigkeit bei vollem Tank beide Druckaufnahmemittel (7, 12) umschließt.
  12. Differenzdrucksensor nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Befestigungshöhe des zweiten Druckaufnahmemittels so gewählt ist, dass das zweite Druckaufnahmemittel auch bei als voll definiertem Tank nicht von Flüssigkeit umgeben ist.
  13. Differenzdrucksensor nach Anspruch 12, dadurch gekennzeichnet, dass das zweite Druckaufnahmemittel einen Gasdruck oberhalb der Oberfläche der Flüssigkeit detektiert.
  14. Verwendung eines Differenzdrucksensors nach einem der Ansprüche 1 bis 13 zur Bestimmung der Dichte einer Flüssigkeit
EP20030019059 2002-12-17 2003-08-22 Differenzdrucksensor zur Messung der Höhe der Flüssigkeit in einem Tank Expired - Lifetime EP1431722B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10258864 2002-12-17
DE10258864 2002-12-17
DE10324009A DE10324009A1 (de) 2002-12-17 2003-05-27 Differenzdrucksensor zur Messung der Höhe der Flüssigkeit in einem Tank, insbesondere dem Harnstofftank eines Harnstoffdosiersystems
DE10324009 2003-05-27

Publications (3)

Publication Number Publication Date
EP1431722A2 EP1431722A2 (de) 2004-06-23
EP1431722A3 EP1431722A3 (de) 2005-11-16
EP1431722B1 true EP1431722B1 (de) 2010-10-13

Family

ID=32395022

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20030019059 Expired - Lifetime EP1431722B1 (de) 2002-12-17 2003-08-22 Differenzdrucksensor zur Messung der Höhe der Flüssigkeit in einem Tank

Country Status (1)

Country Link
EP (1) EP1431722B1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104280094A (zh) * 2014-10-22 2015-01-14 广东美的生活电器制造有限公司 水壶水位检测装置、水壶及水壶水位检测方法
KR101745327B1 (ko) 2014-09-15 2017-06-09 호페 보드메스테크닉 게엠베하 연료 질량 및 연료 밀도를 결정하기 위한 방법

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109764932B (zh) * 2016-01-15 2020-12-08 庞极洲 采用差压传感装置的内置式液位测量装置的工作方法
FR3047261B1 (fr) 2016-01-29 2020-06-12 Zodiac Pool Care Europe Robot nettoyeur de piscine et procede d'utilisation d'un tel robot
CN109029632A (zh) * 2018-10-09 2018-12-18 洛阳源和科技有限公司 一种用于液位检测的差压控制器及测量方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3714956A1 (de) * 1987-05-06 1988-11-17 Brombach Hansjoerg Vorrichtung zum ueberwachen von regenueberlaeufen
DE3929344A1 (de) * 1989-01-19 1990-07-26 Holzer Walter Fuellstandsanzeige
DE4112559A1 (de) * 1991-04-17 1992-10-22 Bosch Gmbh Robert Fluessigkeitsbehaelter mit hydrostatischem fuellstandsmesser
US5245869A (en) * 1991-10-01 1993-09-21 Boston Advanced Technologies, Inc. High accuracy mass sensor for monitoring fluid quantity in storage tanks
DE19638476A1 (de) * 1995-09-20 1997-04-30 Norbert Hoffmann Füllstandssensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101745327B1 (ko) 2014-09-15 2017-06-09 호페 보드메스테크닉 게엠베하 연료 질량 및 연료 밀도를 결정하기 위한 방법
CN104280094A (zh) * 2014-10-22 2015-01-14 广东美的生活电器制造有限公司 水壶水位检测装置、水壶及水壶水位检测方法

Also Published As

Publication number Publication date
EP1431722A2 (de) 2004-06-23
EP1431722A3 (de) 2005-11-16

Similar Documents

Publication Publication Date Title
DE10324009A1 (de) Differenzdrucksensor zur Messung der Höhe der Flüssigkeit in einem Tank, insbesondere dem Harnstofftank eines Harnstoffdosiersystems
EP1924825B1 (de) Ultraschallmesseinheit mit integrierter feuchteermittlung
EP2035821B1 (de) Verwendung einer Vorrichtung in einer Anlage zur Erzeugung von Biogas und Verfahren zur Ultraschallbestimmung der Konzentrationen von Komponenten eines Biogasgemisches
DE102016219834B4 (de) Verfahren und Vorrichtung zur Überwachung des Tankinhalts eines Vorratstanks eines Abgasnachbehandlungssystems
DE102010045212A1 (de) Messeinrichtung und Verfahren zum Ermitteln eines Flüssigkeitsfüllstands in einem Kraftstofftank
DE102013227196A1 (de) Sensor mit drei Modi zum Bestimmen einer Temperatur, eines Pegels und einer Konzentration eines Fluids
EP0991540B1 (de) Tanksystem
DE2839634A1 (de) Fluessigkeitsstand-messgeraet
DE102013108158A1 (de) Verfahren zur Herstellung eines Tanks mit einem kalibrierten Sensor
WO1996033392A1 (de) Mess-system für flüssigkeitsvolumen und flüssigkeitspegelstände aller art
EP1081471A1 (de) Vorrichtung zur Messung eines Füllstandes einer Flüssigkeit in einem Behälter
DE102014001165A1 (de) Vorrichtung und Verfahren zur Bestimmung der Konzentrationen von Komponenten eines Gasgemisches
DE19731329C1 (de) Vorrichtung und Verfahren zur Druck- und Temperaturbestimmung eines Gases in einem Hohlraum
EP1431722B1 (de) Differenzdrucksensor zur Messung der Höhe der Flüssigkeit in einem Tank
DE102004038496A1 (de) Verfahren und Vorrichtung zur Abstandsmessung eines sich in der Umgebung eines Kraftfahrzeuges befindlichen Hindernisses
DE10312100A1 (de) Vorrichtung zur Messung eines Füllstandes einer Flüssigkeit in einem Behälter
DE19654728A1 (de) Verfahren zur Ermittlung der Kraftstoff-Restmenge im Kraftstofftank
DE102009049676A1 (de) Vorrichtung und Verfahren zur Füllstandsmessung in beliebig geformten Behältnissen, insbesondere innerhalb von Kraftfahrzeugtanks
DE102012001580A1 (de) Verfahren zur Ermittlung eines Füllvolumens einer Verbrauchsflüssigkeit in einem Vorratsbehälter eines Kraftfahrzeugs
DE102016222849B4 (de) Verfahren zur Kalibrierung einer Anzeige eines Füllstands
EP1460396B1 (de) Verfahren und Vorrichtung zur Ultraschall-Füllstandsmessung einer Flüssigkeit in einem Behälter
EP1438552B1 (de) Verfahren zur berechnung eines zeitlichen füllstandssignals
EP0416267B1 (de) Anordnung zum Messen der Mengenänderung einer Flüssigkeit, insbesondere von Öl in einer Brennkraftmaschine
DE10057934A1 (de) Verfahren und Vorrichtung zum Messen des in einem Behälter, insbesondere einem Kraftstofftank, befindlichen Flüssigkeitsvolumens
WO2015028178A1 (de) Verfahren zur bestimmung oder überwachung eines vorgegebenen füllstandes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

RIC1 Information provided on ipc code assigned before grant

Ipc: 7G 01F 23/16 B

Ipc: 7G 01F 23/18 A

17P Request for examination filed

Effective date: 20060516

AKX Designation fees paid

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20061220

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50313179

Country of ref document: DE

Date of ref document: 20101125

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110714

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50313179

Country of ref document: DE

Effective date: 20110714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110822

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50313179

Country of ref document: DE

Effective date: 20120301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110822

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120301