EP1427530B1 - Einen kontrollierten strom in einer mikrofluidvorrichtung ermöglichende funktionseinheit - Google Patents

Einen kontrollierten strom in einer mikrofluidvorrichtung ermöglichende funktionseinheit Download PDF

Info

Publication number
EP1427530B1
EP1427530B1 EP02773081A EP02773081A EP1427530B1 EP 1427530 B1 EP1427530 B1 EP 1427530B1 EP 02773081 A EP02773081 A EP 02773081A EP 02773081 A EP02773081 A EP 02773081A EP 1427530 B1 EP1427530 B1 EP 1427530B1
Authority
EP
European Patent Office
Prior art keywords
microconduit
restriction
microfluidic device
microcavity
microconduits
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02773081A
Other languages
English (en)
French (fr)
Other versions
EP1427530A1 (de
Inventor
Gunnar Kylberg
Per Andersson
Gunnar Thors N
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gyros Patent AB
Original Assignee
Gyros Patent AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from SE0103117A external-priority patent/SE0103117A0/sv
Priority claimed from PCT/SE2002/000537 external-priority patent/WO2002075312A1/en
Application filed by Gyros Patent AB filed Critical Gyros Patent AB
Publication of EP1427530A1 publication Critical patent/EP1427530A1/de
Application granted granted Critical
Publication of EP1427530B1 publication Critical patent/EP1427530B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502746Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means for controlling flow resistance, e.g. flow controllers, baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0803Disc shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/087Multiple sequential chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0409Moving fluids with specific forces or mechanical means specific forces centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/08Regulating or influencing the flow resistance
    • B01L2400/084Passive control of flow resistance
    • B01L2400/086Passive control of flow resistance using baffles or other fixed flow obstructions

Definitions

  • the present invention relates a microfluidic device which comprises two or more microchannel structures (201,301) (set 1), each of which comprises (a) one or more inlet ports (230,307,310), (b) one or more outlet ports (225,316,325), and (c) a structural unit which is located between an inlet port and an outlet port.
  • the structural unit comprises (i) one or more inlet microconduits (102,103,202,203,302,303), each of which communicates with an inlet port, and (ii) an outlet microconduit (105,205,305) which communicates with an outlet port, and (iii) an microcavity (104,204,304) which is located between said inlet port and said outlet port.
  • the structural unit starts at the inlet ends of the inlet microconduits and ends at the outlet end of the outlet microconduit and includes valves and anti-wicking means that may be present at the end parts.
  • the microcavity (104,204,304) may be infinitesimal, i.e. this microcavity may or may not be present.
  • a liquid aliquot passes through the structural unit via at least one of the inlet microconduits, the microcavity (if present) and the outlet microconduit of the structural unit.
  • microchannel structures of a set are identical in the sense that corresponding parts in the individual microchannel structures are essentially identical.
  • the microfluidic device may also comprise one or more additional sets of identical microchannel structures that are not identical to microchannel structures of set 1.
  • Reactions may be performed in the microcavities (104,204,304) or downstream, for instance in and/or downstream the outlet microconduit (105,205,305).
  • microfluidic devices that comprise the above-mentioned structural unit have not comprised any means that will secure parallelity with a low inter-channel variation in flow rate between individual microchannel structures.
  • the residence time for reactants within the individual microcavities and elsewhere in the microchannel structures has typically varied in an unintended manner within wide limits. Depending on kind of reactants, for instance, this may heavily influence the results obtained.
  • WO 99/64160 shows a set of parallel channels leading to a corresponding set of parallel reactors comprising library members, and teaches that a set of fluid restrictors can ensure that each library member is contacted with approximately the same amount of test fluid per unit time.
  • centrifugal force for moving liquids within microfluidic systems has been described for instance by Abaxis Inc ( WO 9533986 , WO 9506870 , US 5,472,603 ); Molecular devices ( US 5,160,702 ); Gamera Biosciences/Tecan ( WO 9721090 , WO 9807019 , WO 9853311 ), WO 01877486 , WO 0187487 ; Gyros AB/Amersham Pharmacia Biotech ( WO 9955827 , WO 9958245 , WO 0025921 , WO 0040750 , WO 0056808 , WO 0062042 , WO 0102737 , WO 0146465 , WO 0147637 , WO 0147638 , WO 0154810 , WO 0241997 , WO 0241998 , PCT/SE02/00531 , PCT/SE02/00537 ,
  • Gyros Documentation on Gyros' presentations can be found On www. gyros.com .
  • the publications above in the name Gyros AB or Amesham Pharmacia Biotech primarily concerns nl-volmes and problems associated therewith while the other publications primarily aims at ⁇ l-volumes or larger.
  • a first object is to provide a fluidic function that when incorporated into a set of microchannel structures of a microfluidic device will standardize the flow rate through the microcavity, if present, and the outlet microcounduit (105,205,305) of the microchannel structures of the set, i.e. to control the flow rate such that the inter-channel variation in flow rate is reduced to an acceptable level.
  • a second object is to provide a robust microfluidic system that can be used for performing a plurality of experiments in parallel for determining reaction variables, e.g. as described in PCT/SE02/00537 .
  • the determination concerns finding the content of analytes in samples and new and/or optimal binder-ligand combinations, and/or to grade affinity for a range of affinity complexes, ligands and binders, and/or to optimize processes involving formation or dissociation of immobilized affinity complexes under flow conditions.
  • a third object is to provide a device and a method for creating a parallel liquid flow with a low intra-channel variation in flow rate through a set of microchannel structures of a microfluidic device.
  • a fourth object is to provide a structural unit that enables a microfluidic device which comprises two or more sets of microchannel structures which permits parallel liquid flow with a low interchannel variation within the individual sets and well defined differences in flow rates between the sets.
  • One set for instance, may represent a particular liquid flow rate in a particular step of an application carried out within the structures, while another set represent another different flow rate for the corresponding step.
  • This object also includes a microfluidic device comprising this kind of structural units
  • FIGS. 2-3 are intended for a circular disc in which the microchannel structures are placed around its axis of symmetry that also can be used as a spin axis.
  • the arrow shows the direction towards the centre of the disc. Note the arc-like configuration.
  • Figures 2-3 show the dimensions in micro-metre of various parts of the structures.
  • the microcavity (104,204) may contain a solid phase with an immobilized affinity reactant, which is to react with an affinity counterpart that is present as a solute in the liquid flow.
  • the product obtained is an immobilized affinity complex.
  • Residence time refers to the time it takes for a liquid aliquot to pass through the microcavity (e.g. comprising a solid phase).
  • the first aspect of the invention thus relates to a structural unit and a microfluidic device comprising the unit as defined in the introductory part in each of said two or more microchannel structures.
  • the structural unit and also the microfluidic device are characterized in that there are means for creating a significant pressure drop in the outlet microconduits (105,205,305) (restriction microconduit) and possibly also in the microcavities (104,204,304), if present.
  • the flow through the individual microchannel structures, in particular the inventive structural units, on a microfluidic device is preferably under common flow control.
  • the restriction microconduits are dimensioned according to the characterising portion of claim 1.
  • FIG. 1 A generalised view of the innovative structural unit is given in figure 1 .
  • these means may also create a pressure drop that is larger than the total resistance to flow upstream the location comprising the pressure drop means, for instance upstream the microcavity (104,204,304) or restriction microconduit (but within the structural unit).
  • the microchannel structures are designed such that the flow resistance and interchannel variations in flow resistance at the end of the restriction microconduits (206,306) and/or in other downstream positions are insignificant compared to the upstream part of a structural unit.
  • the inter-channel variations in flow resistance and pressure drop for the structural unit of different microchannel structures primarily depend on (a) variations in inner surface characteristics upstream the microcavity (104,204,304), (b) variations in the solid phase used (for instance the packing geometry may differ), and (c) design around the outlet end (206) and surface variations in other positions downstream the restriction microconduit (205).
  • the pressure drop means in the outlet microconduit (restriction microconduit) and/or in the microcavity should give an inter-channel variation in residence time for a liquid aliquot within the intervals of mean residence time ⁇ 90 %, such as ⁇ 75 % or ⁇ 50 % or ⁇ 25% for essentially identical microchannel structures for which the driving force for the liquid flow is essentially the same.
  • the appropriate flow rate through and residence time in the reaction microcavity depends on a number of factors which among others are determined by the purpose of the passage through the microcavity, for instance kind of reaction to take place, the volume of the microcavity, possible presence and form of a the solid phase etc.
  • the flow rate applied should in most cases give a residence time of ⁇ 0.010 seconds such as ⁇ 0.050 sec or ⁇ 0.1 sec with an upper limit that typically is below 2 hours such as below 1 hour.
  • Illustrative flow rates are within 0.01-100 nl/sec, typically 0.1 - 10 nl/sec.
  • the same ranges of flow rate also apply to the flow in the restriction microconduit but the residence time may be different.
  • the pressure drop means may be a porous material through which the liquid flow has to pass. See below.
  • the pressure drop means typically contemplates that the largest cross-sectional area of this microconduit is less than the largest cross-sectional area of the inlet microconduits (102,103,202,203,302,303) or the microcavity (104,204,304) with preference for ⁇ 0.25, such as ⁇ 0.10.
  • ⁇ 0.25 such as ⁇ 0.10
  • Preferentially these ranges apply for ⁇ 10%, such as in ⁇ 50 %, of the length of a restriction microconduit, often with absolute preference for ⁇ 90 % or the whole length of the restriction microconduit.
  • the restriction microconduit typically ends when its cross-sectional area becomes larger than the smallest cross-sectional area of the shortest inlet microconduits (102,103,202,203,302,303) or the microcavity (104,204,304), for instance ⁇ 4 times or 10 times larger.
  • Other kinds of pressure drop means are also possible in the outlet microconduits (105,205,305):
  • the term "length" of a microcavity or a microconduit refers to the distance inside the microchannel structure between the most downstream and the most upstream position of a microcavity/microconduit, or the difference in radial distance for these two positions.
  • An inlet microconduit typically stretches from the restriction microconduit, or from the microcavity (if present) to and also encompasses the closest valve function, anti-wicking function or branch in the upstream direction, or if none of these functions are present to the closest inlet port.
  • the pressure drop in the restriction microconduit (105) is proportional to its length and inversely proportional to its hydraulic cross-sectional area. An increase in length of the restriction microconduit may thus compensate for an increase in its cross-sectional area and vice versa.
  • the invention is particularly adapted to liquids that have a viscosity that is within the range of 10-1000 % of the viscosity of water, i.e. 10 4 - 10 -2 Ns/m 2 .
  • the liquids are typically aqueous.
  • the term "common flow control" means that when a driving force for a liquid flow is applied in one part of a microchannel structure, there will also be applied a driving force for liquid flow in the corresponding part of each of the other microchannel structures of the device.
  • the driving force in the individual microchannel structures derives from the same source, e.g. spinning the device if centrifugal force is the driving force.
  • an increase or a decrease in driving force in one microchannel structure is paralleled with an increase or a decrease in the other microchannel structures.
  • the size of the force (and the liquid flow rate) may differ between different microchannel structures for which common flow control is applied. In centrifugal based systems, for instance, the designs of the microchannel structures may differ and/or the microchannel structures may be placed at different radial distances.
  • Common flow control primarily refers to the flow through the microcavity (104,204,304). This in particular applies when a reaction is to take place locally in the microcavity, for instance when a solid phase that exhibits an immobilized reactant that is to interact with a reactant which is present in the liquid flow passing the solid phase/microcavity. See further elsewhere in this specification. Common flow control may be less critical in other parts of the structures and/or for other steps of a method performed in the innovative microfluidic device.
  • the liquid flow may be driven by distinct means that either is present in or external to the device.
  • liquid flow may be created by electroosmosis, micropumps, expanding gas etc.
  • forces such as capillary force and inertia force including gravitational force and centrifugal force to drive the liquid, i.e. forces that do not require any means on the microfluidic device.
  • Capillary flow is typically not under common flow control since it depends on local surface characteristics.
  • common flow control is accomplished by spinning a microfluidic device in which the microchannel structures are oriented from an inward position to an outward position in relation to an axis of symmetry (spin axis) of a substrate comprising the device.
  • spin axis coincides with an axis of symmetry of the device as discussed below.
  • Common flow control also includes that centrifugal force is used to create a sufficient local hydrostatic pressure within a structure to drive a liquid aliquot through an outward (downward) and/or an inward (upward) bent of a microchannel structure. See for instance WO 0146465 .
  • centrifugal force for driving a liquid flow has been described in the publications in the name of Gyros, Gamera Biosciences and Abaxis that are referenced above.
  • Typical spinning speeds are within the interval 50-25000 rpm, such as 50-15000 rpm.
  • the spinning speed within a given protocol may vary, for instance comprise sequences with individual ramps of acceleration, deceleration, and constant spinning. It may be beneficial to include a pulse of increased spinning at certain positions. See above.
  • a microfluidic device comprises at least one, two or more enclosed microchannel structure through which liquid flow is used for the transport of reactants
  • microformat comprises one or more cavities and/or channels that have a depth and/or a width that is ⁇ 10 3 ⁇ m, preferably ⁇ 10 2 ⁇ m.
  • Liquid aliquots used in the invention typically have volumes in the range ⁇ 5000 nl, such as ⁇ 1000 nl or ⁇ 500 nl or ⁇ 100 nl or ⁇ 50 nl, but may also be in other intervals, such as 1-1000 ⁇ l, or 1-100 ⁇ l or 1-10 ⁇ l. Dispensed aliquots are typically sucked completely into the microchannels by capillarity before some other driving force is applied to transport them downstream in the microchannel structures, typically stepwise with one step for each functional unit.
  • Cross-sectional areas are perpendicular to the intended flow direction.
  • the present invention is primarily intended for geometric arrangements in which the microchannel structures are present in a substrate (e.g. a microfluidic device) that has an axis - of symmetry that may be used as a spin axis.
  • the substrate in this context may be the microfluidic device as such or a disc holder on which a microfluidic disc comprising the microchannel structures may be placed.
  • the innovative structural unit is in the upstream direction communicating with a unit, which delivers liquid to the unit via the inlet microconduit (302,303) and communicates with or comprises an inlet port. In the downstream direction the innovative structural unit communicates with an outlet port via the restriction microconduit (205,305).
  • Each microchannel structure is oriented either fully or partly in an outward direction relative to the axis of symmetry (spin axis) thereby enabling centrifugal force to be used for driving liquid flow.
  • microchannel structures and microconduits may or may not be oriented in a plane perpendicular to the axis of symmetry (spin axis).
  • Axes of symmetry are n-numbered (C n ) and may coincide with a spin axis, n is an integer between 2 and ⁇ , preferably 6, 7, 8 and larger, for instance ⁇ .
  • microfluidic device as such may have a circular, cylindrical, spherical or conical symmetry (C ⁇ ).
  • the preferred devices are typically disc-shaped with sizes and forms similar to the conventional CD-format, e.g. in the interval from 10% up to 300 % of the conventional CD-radii.
  • FIGS 2a-b and 3 illustrate a microchannel structure (201,301) of the invention adapted for a heterogeneous reaction.
  • the structure comprises a microcavity (204,304) (reaction microcavity) in which there may be an immobilized reactant (reactant 1) that is to react with a reactant (reactant 2) that is present in a liquid flow passing through the microcavity.
  • the microcavity (204,304) is connected to one or more inlet microconduits (202,203) each of which communicates with an inlet port (208,308,310), and a restriction microconduit (205,305) with an outlet end (206,306) which in turn communicates with an outlet port (216,316).
  • the inlet port (208,307,308) may be located at a shorter radial distance (higher level) and the outlet port (216,316) at a larger radial distance (lower level) than the microcavity (204,304).
  • inlet ports may be located at in principle any radial distance (level) (e.g. more remote from the axis of symmetry (spin axis) than an outlet port and/or than the microcavity (not shown).
  • Outlet ports may be located at a shorter radial distance (higher level) than the microcavity (204,304) as illustrated by port (225,325).
  • the trespass into the restriction microconduit (205,305) typically is a sharp drop in the cross-sectional area that prevents the particles from passing into the restriction microconduit.
  • two inlet microconduits typically form a downward bent (207,307) that has shanks corresponding to the inlet microconduits (202,203 and 302,303).
  • the restriction microconduit (205,305) is connected to the lower part of the bent, for instance as illustrated in figures 2-3 via the microcavity (204,304).
  • An inlet microconduit (202,302) may be connected to an inlet port (208,308) via a volume-defining unit (211) that comprises a metering microcavity (212,312) connected to one of the inlet microconduits (202,302), an overflow channel (213,313) that starts in a narrow conduit part between the metering microcavity (212,312) and the inlet unit (214) and ends in a waste function, for instance comprising a common waste reservoir/channel (215,315).
  • the waste function may have one or more outlet ports (216,316).
  • the volume-defining unit (211) typically comprises valve functions (217,218,317,318) that are associated with the overflow channel (213,313) and with the outlet end of the metering microcavity (212,312), respectively.
  • these valve functions are typically passive and are preferably based on local changes in surface characteristics.
  • the valve function (218,318) is at a larger radial distance than the valve function (217,317). This means that the positions of these valves are selected to support that liquid in the overflow channel (213,313) is passed into the waste function at a lower spinning speed than liquid in the metering microcavity (312,312) is passed into the inlet microconduit (202,303).
  • a volume-defining unit of this kind (211) is primarily intended for liquid aliquots that are to be introduced with high accuracy with respect to volume. This means liquid aliquots that contain (a) an analyte and/or (b) any other reagent that has to be delivered with a high accuracy. See WO 02074438 (Gyros AB) and WO 03018198 (Gyros AB).
  • An alternative functional unit that may be connected to one of the inlet microconduits (203,303) is a unit for simultaneously distributing liquid aliquots to several separate microchannel structures.
  • the unit may be in the form of a distribution channel (219,319) that is common for several microchannel structures (201,301).
  • the channel may have alternating upper and lower parts (220,320 and 221,321, respectively) with an inlet vent (222,322) (top vent) to ambient atmosphere in each upper part (220,320) and a liquid communication with a valve function (223,323) in each lower part (221,321) to one of the inlet conduits (203,303) of a microchannel structure (201,301).
  • the top vents (222,322) may communicate with ambient atmosphere via a common venting channel (224,324).
  • the distribution channel may have one or more inlet ports (307,310) and one or more outlet ports (225,325) (only one shown) connected to separate upper parts. Several units may be linked together in series via ending upper parts as illustrated in figure 3 .
  • Each of the top vents may be combined or replaced with anti-wicking means in the lower wall of the upper part connected to the top vent concerned.
  • This kind of distribution system typically is used when identical liquids are to be distributed as separate aliquots to different microchannel structures. Typical liquids are buffers, reagents, washing liquids, samples etc.
  • the outlet end (206,306) of a restriction microconduit (205,305) may mouth into a microconduit (226,326) with enlarged cross-sectional area and communicating with ambient atmosphere as is illustrated with a waste function in figures 2-3 .
  • This enlarged microconduit may also have other functions, for instance as microchamber/microcavity for controlled mixing and addition of reactants such as in microtitration, organic microsynthesis etc.
  • the waste function may comprise a waste microconduit (226,326) (belonging to the microchannel structure), which in turn may mouth into a common waste microconduit/reservoir (215,315).
  • the outlet end (206,306) may open directly into a common waste microconduit/reservoir, or into ambient atmosphere (not shown).
  • the cross-sectional area, typically the largest cross-sectional area, of the waste function in the proximity of the outlet opening (206,306) should be larger than the cross-sectional area of the restriction microconduit (205,305) at its outlet end (206,306), e.g. ⁇ 4 or ⁇ 10 times larger.
  • microconduits that are located to this position but have other functions.
  • the outlet end (206,306) of the restriction microconduit (205,305) typically is at the same or at a higher level than the joint between an inlet microconduit and the restriction microcavity, or than the microcavity (204,304) (if present) (preferably its top part). What has been said above in particular applies to centrifugal system that utilizes passive valves at the inlet ends of the innovative structural unit.
  • a waste function typically has anti-wicking means (233,235,333,335) in close proximity to the outlet end (206,306) in one or more edges extending from the restriction microconduit (205,305) into the waste function, typically in edges that have a downward direction. In close proximity contemplates that these anti-wicking means always are above the lowest part of the restriction microconduit including within in the outlet end (206,306) (not shown).
  • the restriction microconduit (205,305) is connected to a waste microconduit (226,326)
  • the positioning of anti-wicking means in the waste function also applies if the enlarged microconduit (226,326) does not comprise a waste function.
  • microchannel structures have a depth of 100 ⁇ m.
  • hydrophobic surface breaks 233,333 and/or 235,335) and a vent (227,327) to ambient atmosphere.
  • the inlet ports (208,308) are preferably connected to an inlet microcavity (228), which typically is narrowing inwards the microchannel structure and has longitudinal proj ections (ridges) (229) in the flow direction. These ridges will facilitate quick transport of a dispensed liquid aliquot into the interior of an inlet unit.
  • the inlet ports may also have a non-wettable area (typically hydrophobised) (230, cross-hatched) that will direct a dispensed liquid into the inlet unit (214). The same applies also to the other inlet ports (307,310).
  • the microchannel structures may be equipped with anti-wicking means at selected positions in form of changes in surface characteristics that typically are local and may be related to geometric surface characteristics (231) and/or chemical surface characteristics (232,233,235)(cross-hatched area). For aqueous liquids this means that the change is from hydrophilic to hydrophobic (hydrophobic surface breaks).
  • the inlet vents (234,334,235,335) and the passive valves (217,223,317,323) comprise anti-wicking function. See WO 9958245 , Amersham Pharmacia Biotech AB), WO 0185602 ⁇ mic AB & Gyros AB and WO 02074438 , WO 03018198 .
  • Valves are preferably passive (217,223,218,318,317,323), i.e. passage of a liquid will depend on the applied driving force and the physicochemical match between a liquid and the inner surface at the valve position. No movable mechanical parts are needed. Examples are capillary valves that are based purely on a change in geometric surface characteristics ( WO 9615576 (David SamoffRes. Inst.) and WO 9807019 (Gamera). Preferred passive valves are based on a change in chemical surface characteristics, e.g. non-wettable surface breaks (hydrophobic surface breaks), possibly combined with changes in geometric surface characteristics. Other kinds of valves may also be used.
  • inlet units More details about inlet units, distribution units, volume-defining units, waste conduits, anti-wicking means and valves, in particular for centrifugal systems, are given in WO 02074438 and WO 03018198 .
  • Suitable microfluidic devices may be manufactured from a planar substrate surface comprising a plurality of uncovered microchannel structures that in a subsequent step are covered by another planar substrate (lid). See WO 9116966 (Pharmacia Biotech AB) and WO 0154810 (Gyros AB). At least one of the substrates may be transparent, e.g. the second substrate (lid). Both substrates are preferably fabricated from plastic material, e.g. plastic polymeric material.
  • inner surfaces of the microchannel structures may require hydrophilization for transport of aqueous liquids and the like. See for instance WO 0056808 (Gyros AB) and WO 0147637 (Gyros AB).
  • an essential part of the inner surfaces should have water contact angles ⁇ 90°, such as ⁇ 40° or ⁇ 30° or ⁇ 20° at the temperature of use, e.g. at least the surfaces of two or three of the inner walls enclosing a channel should comply with this range.
  • Surfaces in passive valves, anti-wicking means etc are excluded from these general rules.
  • Microcavity (104,204,304).
  • the microcavity (104,204,304) is preferably a straight microchannel that may be continuously widening and/or narrowing. At least a part of the wall of the microcavity may be transparent to allow for measuring of events taking place within the microcavity. Transparency is with respect to the principle used for measuring.
  • the microcavity (104,204,304) may comprise a solid phase, which may have either one or both of the functions: (a) carrying an immobilized reactant for a reaction to take place within the microcavity and (b) providing pressure drop means in the microcavity. Different reactants are discussed below. Additional functions for the solid phase are as a separation medium in size exclusion separation (gel chromatography, gel electrophoresis etc), support medium to reduce convection and/or diffusion (electrophoresis such as isoelectrophoresis), support medium in affinity-based separations (often included in the function of item (a)), etc.
  • the solid phase is a population of porous or non-porous particles that are packed to a bed, or a porous monolith that wholly or partly will occupy the interior of the reaction microcavity.
  • the solid phase comprises particles there should be a retaining means associated with the downstream end of the reaction microcavity.
  • This means is preferably in the form of a constriction, e.g. in the form of a barrier, that prevents the particles from leaving the microcavity.
  • the particle diameter/size should at least be of the same size as or larger than the smallest dimension of the opening in the constricted part.
  • Another kind of retaining means is magnetic particles combined with an externally applied magnetic field.
  • a porous monolith may be fabricated in one piece of material or may comprise particles that are attached to each other.
  • porous particles contemplates that the particles can be penetrated by a particular reactant that is present in a liquid flow passing through a packed bed of the particles. This typically means Kav values within the interval of 0.4 -0.95 for the reactant concerned. Non-porous particles have a Kav-value below 0.4 with respect to the same reactant.
  • a porous monolith has pores that are large enough to permit mass transport of a reactant that is present in a liquid flow passing through monolith.
  • the particles may be spherical or non-spherical. With respect to non-spherical particles, diameters and sizes refer to the "hydrodynamic" diameters.
  • the particles are preferably monodisperse (monosized) by which is meant that the population of particles placed in a reaction microcavity has a size distribution with more than 95 % of the particles within the range of the mean particle size ⁇ 5 %. Populations of particles that are outside this range are polydisperse (polysized).
  • the solid phase may or may not be transparent.
  • the material in the solid phase is typically polymeric, for instance a synthetic polymer or a biopolymer.
  • biopolymer includes semi-synthetic polymers comprising a polymer chain derived from a native biopolymer.
  • the solid phase is typically hydrophilic in the case the liquid flow is aqueous. In this context hydrophilic encompasses that a porous solid phase, e.g. a packed bead, will be penetrated by water.
  • the term also indicates that the surfaces of the particles shall expose a plurality of polar functional groups in which there is a heteroatom selected amongst oxygen, sulphur, and nitrogen.
  • Appropriate functional groups can be selected amongst hydroxy groups, straight eythylene oxide groups ([-CH 2 CH 2 O-] n , n an integer > 0), amino groups, carboxy groups, sulphone groups etc, with preference for those groups that are essentially neutral independent of pH, for instance within the interval of 2-12.
  • a hydrophobic particle may be hydrophilized, for instance by introducing hydrophilic groups. See for instance the experimental part.
  • the coating technique is similar to the technique presented in WO 9800709 (Pharmacia Biotech AB, Arvidsson & Ekstrom).
  • the solid phase may also be the inner surfaces of the microcavity, but then its main function will be to provide support for an immobilized reactant.
  • the reactant that may be immobilized to the solid phase depends on the application to be performed in the microchannel structure. It may for instance be a reactant participating in an organic, an inorganic, a biochemical reaction etc.
  • the reactant may thus be a catalytic system or a part of a catalytic system, such as a catalyst as such, a cocatalyst, a cofactor, a substrate or cosubstrate to the catalyst, an inhibitor, a promotor etc with specific emphasis to the corresponding parts of enzymatic systems (enzyme, cocatalyst, cofactor, coenzyme, substrate, cosubstrate etc).
  • a catalytic system also includes linked catalytic systems, for instance a series of systems in which the product of the first system is the substrate of the second catalytic system etc and whole biological cells or part of such cells.
  • the reactant may be a so-called affinity reactant i.e. an affinity reactant that together with its affinity counterpart (affinity pair) is capable of forming an affinity complex held together by affinity bonds.
  • affinity bonds typically are based on: (a) electrostatic interaction, (b) hydrophobic interaction, "(c) electron-donor acceptor interaction, and/or (d) bioaffinity binding.
  • Bioaffinity binding typically is complex in nature and comprises e.g. a combination of interactions selected amongst variations of items (a)-(c).
  • An affinity reactant may thus: (a) be electrically charged or chargeable, i.e. contains positively charged nitrogen (e.g. primary, secondary, tertiary or quaternary ammonium groups, and amidinium groups) and/or negatively charged groups (e.g. carboxylate groups, phosphate groups, phosphonate groups, sulphate groups and sulphonate groups); (b) comprise hydrocarbyl groups and other hydrophobic groups; (c) comprise heteroatoms, possibly linked to hydrogen, and/or sp 2 - and/or sp 3 -hybridised carbon, or (d) comprise in combination variations of items (a)-(c).
  • positively charged nitrogen e.g. primary, secondary, tertiary or quaternary ammonium groups, and amidinium groups
  • negatively charged groups e.g. carboxylate groups, phosphate groups, phosphonate groups, sulphate groups and sulphonate groups
  • (b) comprise hydrocarbyl groups and other hydro
  • a bioaffinity reactant is a member of a bioaffinity pair.
  • Typical bioaffinity pairs are antigen/hapten and an antibody or an antigen binding fragment of the antibody mimetic of an antibody; complementary nucleic acids; immunoglobulin-binding protein and immunoglobulin (for instance IgG or an Fc-part thereof and protein A or G), lectin and the corresponding carbohydrate, biotin and (strep)avidin etc.
  • bioaffinity pair includes affinity pairs in which one or both of the members are synthetic, for instance mimicking a native member of a bioaffinity pair.
  • affinity reactant also includes a reactant that is capable of binding via chelate formation, i.e. a reactant that exhibits a chelating group, possibly in chelate form with remaining chelating ability.
  • Affinity reactants typically exhibit amino acid structure including peptide structure such as poly and oligopeptide structure, carbohydrate structure, nucleotide structure including nucleic acid structure, and lipid structure such as steroid structure, triglyceride structure etc.
  • the techniques for immobilization of a reactant may be selected amongst techniques that are commonly known in the field.
  • the linkage to the solid phase may be via covalent bonds, affinity bonds (for instance biospecific affinity bonds), physical adsorption (mainly hydrophobic interaction) etc.
  • affinity bonds for instance biospecific affinity bonds
  • physical adsorption mainly hydrophobic interaction
  • biospecific affinity bonds bonds between strepavidin and a biotinylated affinity reactant (or vice versa), between an antibody and a haptenylated affinity reactant (or vice versa), etc.
  • a microchannel structure may also comprise additional units with separate or combined functions enabling e.g.:
  • microcavity (104,204,304).
  • a unit for separation of particulate matter is typically positioned upstream a volume metering unit or the two units are combined in a common unit.
  • Preferred separation units, volume metering units and mixing units are given in WO 02074438 and WO 03018198 .
  • a separation unit is typically combined with or present upstream a volume-metering unit.
  • a mixing unit if present, is typically present downstream a volume metering step.
  • Microchannel structures that differ with respect to having restriction microconduits (105,205,305) providing different pressure drops.
  • the microfluidic device may contain microchannel structures that are essentially equal.
  • the term equal in this context means that the structures are essentially identical except for differences in design of the restriction microconduits (105,205,305) in order to allow them to provide different pressure drops.
  • the microchannel structures is grouped into sets, each of which contains restriction microconduits which are designed for essentially the same pressure drop, e.g. have the same length and cross-sectional area. In other words the intended pressure drop vary between the sets but is essentially the same within a set.
  • restriction microconduits which are designed for essentially the same pressure drop, e.g. have the same length and cross-sectional area. In other words the intended pressure drop vary between the sets but is essentially the same within a set.
  • a particular interesting variant is a microfluidic device which
  • An innovative centrifugal microfluidic device may thus comprise microchannel structures that are grouped into sets that differ with respect to the length and/or cross-sectional area of their restriction microconduits.
  • Each of these sets may be arranged in an annular zone or sector thereof, that is concentric with the spin axis, for instance with restriction microconduits that are shorter and/or have a larger cross-sectional area at a shorter radial distance than restriction microconduits that are longer and/or have a smaller cross-sectional area.
  • restriction microconduits which are designed for different pressure drops and located at the same radial distance, i.e. in an annular zone concentric with the spin axis, or a sector of such a zone.
  • the same annular zone or sector may comprise restriction microconduits of different length and/or cross-sectional areas.
  • restriction microconduits which are designed for the same pressure drop but located at different radial distances, i.e. in different annular zones that are concentric with the spin axis, or in sectors of such zones.
  • the flow rate will differ between restriction microconduits/microcavities in the same annular zone.
  • the flow rate will differ between restriction microconduits/microcavities of different annular zones.
  • One of the uses of the innovative device is a method for creating a controlled liquid flow in parallel through a plurality of microchannel structures of a microfluidic device.
  • the method comprises the steps of
  • Step (ii) includes among others that a larger aliquot is dispensed to a common inlet port and portioned into individual microchannel structures via a distribution unit, and/or that an aliquot is dispensed directly to each microchannel structure as illustrated in figures 2 and 3 .
  • the method is characterized in that A) the outlet microconduits (105,205,305) are restriction microconduits as defined above, B) the liquid flow created in step iii) is under common flow control, and C) the driving force is adjusted to give the flow rate that is required by the restriction microconduits (105,205,305), i.e. a flow rate within the interval given above that will give the pressure drop that the microconduits (105,205,305) are designed for.
  • microfluidic device discussed elsewhere in this specification and defined in claims further characterize sub-aspects of the method. This includes the characteristics of the liquid as such and of the liquid flow, e.g. viscosity, flow rate, residence time, inter-channel variation.
  • the device utilizes in preferred variants spinning and centrifugal force for common flow control and for creating the liquid flow in step (iii).
  • the applications includes that one or more reactions are carried out within each of the microchannel structures, for instance with at least one reaction within the microcavity (104,204,304) or within a reaction microcavity in a downstream position (not shown), for instance linked directly to the outlet end of the restriction microconduit (205,305) but upstream the waste function, if present.
  • the reactions e.g. within the microcavity (104,204,304), may be:
  • liquid flow is controlled and under common flow control as described elsewhere in this specification.
  • An application may comprise a separation that may or may not comprise a reaction, for instance adsorptions that are based of an affinity reaction as defined herein, and size exclusion separations and electrophoresis that do not need to involve any reaction as such.
  • microfluidic device is well adapted to applications in which controlled mixing or controlled addition of reagents are needed, for instance microtitration and inorganic and organic chemical synthesis in the microformat.
  • Microtitration and controlled addition of reagents may for instance take place in a separate reaction microcavity linked directly to the outlet end of the restriction microconduit (and upstream a waste function).
  • An important class of reactions that can be performed in the innovative microfluidic device comprises formation or dissociation of an affinity complex.
  • Formation comprises that an affinity reactant that is immobilized to a solid phase (capturing reactant) is introduced into the microcavity prior to the reaction.
  • a liquid flow comprising an affinity counterpart to the immobilized reactant is passed through the microcavity.
  • Dissociation comprises that an immobilized form of an affinity complex is introduced into the microcavity prior to the desired reaction is taking place.
  • a liquid flow providing conditions for dissociation is passed through the microcavity.
  • reaction microcavity e.g. microcavity (104,204,304), and/or in one or more detection microcavities downstream the microcavity in which the desired reaction is taking place. Measurements are typically made through a transparent "widow". Alternatively, a product (including intermediate) and/or a remaining part of a reactant is transferred via an outlet port to an external instrument for measurement.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Micromachines (AREA)

Claims (33)

  1. Mikrofluidik-Vorrichtung, die einen Satz aus mindestens zwei Mikrokanalstrukturen (201, 301) (Satz 1) aufweist, von denen jede eine Struktureinheit aufweist, die aufweist: (i) eine oder mehrere Einlaßmikroleitungen (102, 103, 202, 203, 302, 303) und (ii) eine Auslaßmikroleitung (105, 205, 305) stromabwärts von der einen oder den mehreren Einlaßmikroleitungen und (iii) einen Strömungsweg für ein Flüssigkeitsaliquot, das eine der Einlaßmikroleitungen und die Auslaßmikroleitung durchläuft, dadurch gekennzeichnet, daß in jeder der mindestens zwei Mikrokanalstrukturen (201, 301) die Auslaßmikroleitung (105, 205, 305) eine Restriktionsmikroleitung ist und eine Mikrokavität (104, 204, 304) zwischen der einen oder den mehreren Einlaßmikroleitungen (102, 103, 202, 203, 302, 303) und der Restriktionsmikroleitung (105, 205, 305) in jeder der mindestens zwei Mikrokanalstrukturen vorhanden ist, wobei die Restriktionsmikroleitung (105, 205, 305) eine Druckabfalleinrichtung hat, die aufweist, daß die Restriktionsmikroleitung (105, 205, 305) eine Querschnittfläche hat, die höchstens das 0,25-fache der größten Querschnittfläche der einen oder der mehreren Einlaßmikroleitungen (102, 103, 202, 203, 302, 303) oder der Mikrokavität (104, 204, 304) in jeder der Mikrokanalstrukturen (201, 301) beträgt, und daß die Länge der Restriktionsmikroleitung (105, 205, 305) mindestens das 4-fache der Länge der Einlaßmikroleitung (102, 103, 202, 203, 302, 303) und/oder der Mikrokavität (104, 204, 304) in jeder der Mikrokanalstrukturen (201, 301) beträgt, so daß im Gebrauch der Druckabfall der Restriktionsmikroleitung (105, 205, 305) Zwischenkanalvariationen des Strömungswiderstands an Positionen ausgleicht, die sich in der Struktureinheit und stromaufwärts von der Restriktionsmikroleitung (105, 205, 305) befinden.
  2. Mikrofluidik-Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß a) eine Mikrokavität (104, 204, 304) zwischen der einen oder den mehreren Einlaßmikroleitungen (102, 103, 202, 203, 302, 303) und der Restriktionsmikroleitung (105, 205, 305) vorhanden ist und b) eine Druckabfalleinrichtung in dieser Mikrokavität vorhanden ist.
  3. Mikrofluidik-Vorrichtung nach einem der Ansprüche 1-2, dadurch gekennzeichnet, daß der Druckabfall entlang den Restriktionsmikroleitungen (105, 205, 305) Zwischenkanalvariationen des Strömungswiderstands an stromaufwärts und stromabwärts gelegenen Positionen der die Restriktionsmikroleitung aufweisenden Struktureinheit ausgleicht.
  4. Mikrofluidik-Vorrichtung nach einem der Ansprüche 1-3, dadurch gekennzeichnet, daß der Druckabfall entlang der Restriktionsmikroleitung (105, 205, 305) größer als der Gesamtströmungswiderstand in der Struktureinheit an Positionen stromaufwärts von der Restriktionsmikroleitung (105, 205, 305) ist.
  5. Mikrofluidik-Vorrichtung nach einem der Ansprüche 2-4, dadurch gekennzeichnet, daß der Druckabfall in der Restriktionsmikroleitung (105, 205, 305) und der Mikrokavität (104, 204, 304), falls vorhanden, in jeder der mindestens zwei Mikrokanalstrukturen (201, 301) eine Zwischenkanalvariation der Verweilzeit in den Mikrokavitäten (104, 204, 304) ergeben kann, die innerhalb der mittleren Verweilzeit ±90 % für eine Strömungsgeschwindigkeit im Bereich von 0,01-100 nl/s einer Flüssigkeit mit einer Viskosität im Bereich von 10-4-10-2 Ns/m2 liegt.
  6. Mikrofluidik-Vorrichtung nach einem der Ansprüche 2-5, dadurch gekennzeichnet, daß die Druckabfalleinrichtung ein poröses Bett aufweist.
  7. Mikrofluidik-Vorrichtung nach einem der Ansprüche 2-6, dadurch gekennzeichnet, daß die Druckabfalleinrichtung ein poröses Bett aufweist, das monolithisch ist oder Kügelchen aufweist, die porös oder nichtporös und/oder gleich groß oder unterschiedlich groß sind.
  8. Mikrofluidik-Vorrichtung nach einem der Ansprüche 6-7, dadurch gekennzeichnet, daß das poröse Bett einen Reaktanden aufweist, der mit einem Reaktanden reagieren kann, der im Flüssigkeitsaliquot vorhanden ist, das das poröse Bett durchlaufen soll.
  9. Mikrofluidik-Vorrichtung nach einem der Ansprüche 1-8, dadurch gekennzeichnet, daß das Auslaßende (206, 306) der Restriktionsmikroleitung (105, 205, 305) mit einer vergrößerten Mikroleitung (Mikrokavität) (226, 326) registerhaltig ist, die (a) in Stromabwärtsrichtung mit Umgebungsatmosphäre über einen Auslaßanschluß (216) kommuniziert und (b) eine Querschnittsfläche hat, die mindestens das 4-fache der Querschnittsfläche der Restriktionsmikroleitung (105, 205, 305) an ihrer Verbindungsstelle (Auslaßende, 206) mit der Restriktionsmikroleitung (105, 205, 305) beträgt.
  10. Mikrofluidik-Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß die Verbindungsstelle zwischen der Restriktionsmikroleitung (204, 304) und der vergrößerten Mikroleitung (226, 326) mindestens auf gleicher Höhe liegt wie
    (a) die Verbindung zwischen der einen oder den mehreren Einlaßmikroleitungen und der Restriktionsmikroleitung oder
    (b) das Oberteil der Mikrokavität (204, 304), falls vorhanden.
  11. Mikrofluidik-Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, daß die vergrößerte Mikroleitung (226, 326) vorzugsweise eine Einlaßbelüftung (227+235, 327+ 335) für Umgebungsatmosphäre an ihrem Oberteil hat.
  12. Mikrofluidik-Vorrichtung nach einem der Ansprüche 9-11, dadurch gekennzeichnet, daß die vergrößerte Mikroleitung (226, 326) eine Dochtwirkung verhindernde Einrichtung (233, 333, 235, 335) mindestens in Kanten hat, die von der Restriktionsmikroleitung (205, 305) kommen und in enger Nähe zum Auslaßende (206) der Restriktionsmikroleitung (205, 305) liegen.
  13. Mikrofluidik-Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, daß die Dochtwirkung verhindernde Einrichtung (233, 333, 235, 335) die Form hydrophober Oberflächenaufbrüche hat.
  14. Mikrofluidik-Vorrichtung nach einem der Ansprüche 1-13, dadurch gekennzeichnet, daß mindestens eine der Einlaßmikroleitungen (202, 203, 302, 303) mit einer volumendefinierenden Einheit (211, 119+121, 319+321) verbunden ist.
  15. Mikrofluidik-Vorrichtung nach einem der Ansprüche 1-14, dadurch gekennzeichnet, daß die Mikrokavität (104, 204, 304) ein Volumen im Bereich von 1-1000 nl hat.
  16. Mikrofluidik-Vorrichtung nach einem der Ansprüche 1-15, dadurch gekennzeichnet, daß
    a) die Vorrichtung zur Verwendung von Zentrifugalkraft zum Antreiben von Flüssigkeitsströmung durch Schleudern der Vorrichtung um eine Schleuderachse geeignet ist und
    b) die Restriktionsmikroleitungen (205, 305) der mindestens zwei Mikrokanalstrukturen (Satz 1) im gleichen Radialabstand relativ zur Schleuderachse liegen.
  17. Mikrofluidik-Vorrichtung nach einem der Ansprüche 1-16, dadurch gekennzeichnet, daß
    a) die Vorrichtung zur Verwendung von Zentrifugalkraft zum Antreiben einer Flüssigkeitsströmung durch Schleudern der Vorrichtung um eine Schleuderachse geeignet ist und
    b) die Vorrichtung zusätzliche Mikrokanalstrukturen (Satz 2) aufweist, von denen jede die Struktureinheit, aber mit einer Restriktionsmikroleitung mit einer Länge und/oder Querschnittsfläche hat, die sich von der Länge und/oder Querschnittsfläche der Restriktionsmikroleitungen (205, 305) von Satz 1 unterscheiden.
  18. Mikrofluidik-Vorrichtung nach Anspruch 17, dadurch gekennzeichnet, daß eine, zwei oder mehr bis alle Restriktionsmikroleitungen der Mikrokanalstrukturen von Satz 2 im gleichen Radialabstand wie die Restriktionsmikroleitungen (205, 305) von Satz 1 liegen.
  19. Mikrofluidik-Vorrichtung nach einem der Ansprüche 16-18, dadurch gekennzeichnet, daß die Vorrichtung zusätzliche Mikrokanalstrukturen (Satz 3) aufweist, von denen jede die Struktureinheit, aber mit einer Restriktionsmikroleitung mit der gleichen Länge und/oder Querschnittsfläche wie die Restriktionsmikroleitung (205, 305) von Satz 1 hat, und daß eine, zwei oder mehr der Restriktionsmikroleitungen von Satz 3 in einem Radialabstand liegen, der sich vom Radialabstand der Restriktionsmikroleitungen (205, 305) von Satz 1 unterscheidet.
  20. Mikrofluidik-Vorrichtung nach einem der Ansprüche 1-19, dadurch gekennzeichnet, daß die Restriktionsmikroleitung (105, 205, 305) und die Mikrokavität (104, 204, 304) in jeder der Struktureinheiten für eine Flüssigkeitsströmungsgeschwindigkeit im Bereich von 0,01-100 nl/s und/ oder eine Verweilzeit in der Mikrokavität (104, 204, 304) von mindestens 0,010 s, falls vorhanden, gestaltet sind.
  21. Mikrofluidik-Vorrichtung nach einem der Ansprüche 1-20, dadurch gekennzeichnet, daß die Oberflächen mindestens zweier der Innenwände jeder Mikrokanalstruktur des Satzes Wasserkontaktwinkel von höchstens 90° haben.
  22. Mikrofluidik-Vorrichtung nach einem der Ansprüche 1-21, dadurch gekennzeichnet, daß die Oberflächen mindestens zweier der Innenwände jeder Mikrokanalstrukturen des Satzes Wasserkonta.ktwinkel von höchstens 40° haben.
  23. Mikrofluidik-Vorrichtung nach einem der Ansprüche 1-22, dadurch gekennzeichnet, daß eine oder zwei der Einlaßmikroleitungen (102, 103, 202, 203, 302, 303) ein passives Ventil aufweisen.
  24. Mikrofluidik-Vorrichtung nach Anspruch 23, dadurch gekennzeichnet, daß das passive Ventil auf einem hydrophoben Oberflächenaufbruch beruht.
  25. Verfahren zur Erzeugung einer gesteuerten Flüssigkeitsströmung parallel durch mehrere Mikrokanalstrukturen (201, 301) einer Mikrofluidik-Vorrichtung, wobei das Verfahren die Schritte aufweist:
    (a) Bereitstellen der Mikrofluidik-Vorrichtung nach Anspruch 1-24; wobei die mehreren Mikrokanalstrukturen Teil des Satzes sind;
    (b) Bereitstellen eines Flüssigkeitsaliquot in einer der einen oder der mehreren Einlaßmikroleitungen (202, 203, 302, 303) in jeder der mehreren Mikrokanalstrukturen (201, 301); und
    (c) Ausüben einer Antriebskraft, die in jeder der mehreren Mikrokanalstrukturen eine Flüssigkeitsströmung erzeugt, die
    A) unter gemeinsamer Strömungssteuerung für die mehreren Mikrokanalstrukturen steht,
    B) das Aliquot von der Einlaßmikroleitung (202, 203, 302, 303) durch die Restriktionsmikroleitung (105, 205, 305) transportiert und
    C) den Druckabfall ergibt.
  26. Verfahren nach Anspruch 25, dadurch gekennzeichnet, daß
    (i) die Mikrofluidik-Vorrichtung zum Antreiben der Flüssigkeitsströmung durch Schleudern der Vorrichtung um eine Schleuderachse geeignet ist und
    (ii) Schritt (c) Schleudern der Vorrichtung um diese Achse zum Erzeugen der Antriebskraft aufweist.
  27. Verfahren nach einem der Ansprüche 25-26, dadurch gekennzeichnet, daß i) die Mikrokavität (104, 204, 304) jeder der mehreren Mikrokanalstrukturen eine Festphase mit einem immobilisierten Reaktanden aufweist, b) das in Schritt (a) bereitgestellte Flüssigkeitsaliquot einen Reaktanden aufweist, der mit dem immobilisierten Reaktanden im Verlauf von Schritt (c) reagieren kann.
  28. Verfahren nach Anspruch 27, dadurch gekennzeichnet, daß die Festphase ein poröses Bett ist, das monolithisch ist oder Kügelchen aufweist, die porös oder nichtporös und gleich groß oder unterschiedlich groß sind.
  29. Verfahren nach einem der Ansprüche 25-28, dadurch gekennzeichnet, daß die Oberflächen mindestens zweier der Innenwände jeder Mikrokanalstruktur des Satzes Wasserkontaktwinkel von höchstens 90° haben.
  30. Verfahren nach einem der Ansprüche 25-29, dadurch gekennzeichnet, daß die Oberflächen mindestens zweier der Innenwände jeder Mikrokanalstruktur des Satzes Wasserkontaktwinkel von höchstens 40° haben.
  31. Verfahren nach einem der Ansprüche 25-30, dadurch gekennzeichnet, daß die Antriebskraft geeignet ist, der Strömung eine Geschwindigkeit zu verleihen, die im Bereich von 0,01-100 nl/s ausgewählt ist.
  32. Verfahren nach einem der Ansprüche 25-31, dadurch gekennzeichnet, daß die Antriebskraft geeignet ist, eine Zwischenkanalvariation der Verweilzeit für das Flüssigkeitsaliquot innerhalb der mittleren Verweilzeit ±90 % zu ergeben.
  33. Verfahren nach einem der Ansprüche 25-32, dadurch gekennzeichnet, daß das Flüssigkeitsaliquot eine Viskosität hat, die im Bereich von 10-4-10-2 Ns/m2 ausgewählt ist.
EP02773081A 2001-09-17 2002-09-17 Einen kontrollierten strom in einer mikrofluidvorrichtung ermöglichende funktionseinheit Expired - Lifetime EP1427530B1 (de)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US32262101P 2001-09-17 2001-09-17
US322621P 2001-09-17
SE0103117A SE0103117A0 (en) 2001-03-19 2001-09-17 Characterization of reaction variables
SE0103117 2001-09-17
PCT/SE2002/000537 WO2002075312A1 (en) 2001-03-19 2002-03-19 Characterization of reaction variables
WOPCT/SE02/00537 2002-03-19
PCT/SE2002/001701 WO2003024598A1 (en) 2001-09-17 2002-09-17 Functional unit enabling controlled flow in a microfluidic device

Publications (2)

Publication Number Publication Date
EP1427530A1 EP1427530A1 (de) 2004-06-16
EP1427530B1 true EP1427530B1 (de) 2010-08-11

Family

ID=27354751

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02773081A Expired - Lifetime EP1427530B1 (de) 2001-09-17 2002-09-17 Einen kontrollierten strom in einer mikrofluidvorrichtung ermöglichende funktionseinheit

Country Status (4)

Country Link
EP (1) EP1427530B1 (de)
JP (1) JP4368681B2 (de)
CA (1) CA2455894A1 (de)
WO (1) WO2003024598A1 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4519124B2 (ja) 2003-01-30 2010-08-04 ユィロス・パテント・アクチボラグ 微小流動性デバイスの内部の壁
SE0300822D0 (sv) 2003-03-23 2003-03-23 Gyros Ab A collection of Micro Scale Devices
US7776272B2 (en) * 2003-10-03 2010-08-17 Gyros Patent Ab Liquid router
SE0400181D0 (sv) * 2004-01-29 2004-01-29 Gyros Ab Segmented porous and preloaded microscale devices
EP1824600B1 (de) * 2004-10-18 2016-12-28 Life Technologies Corporation Fluidbehandlungsvorrichtung mit grössenändernder barriere
WO2006110093A1 (en) * 2005-04-14 2006-10-19 Gyros Patent Ab Liquid plugs
EP1874469A4 (de) 2005-04-14 2014-02-26 Gyros Patent Ab Mikrofluidvorrichtung mit fingerventilen
EP2237037A1 (de) 2005-12-12 2010-10-06 Gyros Patent Ab Mikrofluid-Vorrichtung und deren Verwendung
EP2455162A1 (de) * 2010-10-29 2012-05-23 Roche Diagnostics GmbH Mikrofluidisches Element zur Analyse einer Probenflüssigkeit
CN103706414A (zh) * 2013-12-19 2014-04-09 重庆大学 一种多段毛细管轴向精密定位与移转装置
WO2015170753A1 (ja) * 2014-05-08 2015-11-12 国立大学法人大阪大学 熱対流生成用チップ及び液体秤量具
US11185830B2 (en) 2017-09-06 2021-11-30 Waters Technologies Corporation Fluid mixer
US11555805B2 (en) 2019-08-12 2023-01-17 Waters Technologies Corporation Mixer for chromatography system
EP4179310A1 (de) 2020-07-07 2023-05-17 Waters Technologies Corporation Mischer für die flüssigkeitschromatographie
EP4179311A1 (de) 2020-07-07 2023-05-17 Waters Technologies Corporation Kombinationsmischeranordnung zur rauschminderung in der flüssigkeitschromatographie
US11821882B2 (en) 2020-09-22 2023-11-21 Waters Technologies Corporation Continuous flow mixer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999064160A1 (en) * 1998-06-09 1999-12-16 Symyx Technologies Parallel fixed bed reactor and fluid contacting apparatus and method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010055812A1 (en) * 1995-12-05 2001-12-27 Alec Mian Devices and method for using centripetal acceleration to drive fluid movement in a microfluidics system with on-board informatics
GB9828785D0 (en) * 1998-12-30 1999-02-17 Amersham Pharm Biotech Ab Sequencing systems
SE0001779D0 (sv) * 2000-05-12 2000-05-12 Gyros Ab Microanalysis device
DE60044490D1 (de) * 1999-02-23 2010-07-15 Caliper Life Sciences Inc Manipulation von mikroteilchen in mikrofluiden systemen

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999064160A1 (en) * 1998-06-09 1999-12-16 Symyx Technologies Parallel fixed bed reactor and fluid contacting apparatus and method

Also Published As

Publication number Publication date
EP1427530A1 (de) 2004-06-16
WO2003024598A1 (en) 2003-03-27
JP2005507762A (ja) 2005-03-24
CA2455894A1 (en) 2003-03-27
JP4368681B2 (ja) 2009-11-18

Similar Documents

Publication Publication Date Title
US7189368B2 (en) Functional unit enabling controlled flow in a microfluidic device
EP1427530B1 (de) Einen kontrollierten strom in einer mikrofluidvorrichtung ermöglichende funktionseinheit
US7759067B2 (en) Method for determining the amount of an analyte with a disc-shaped microfluidic device
US8268262B2 (en) Retaining microfluidic microcavity and other microfluidic structures
US6319469B1 (en) Devices and methods for using centripetal acceleration to drive fluid movement in a microfluidics system
US20110071050A1 (en) Collection of micro scale devices
EP2269736B1 (de) Mikrokammern und mikrofluidische Strukturen zur Handhabung kleiner Flüssigkeitsmengen
US20070113908A1 (en) Valve for microfluidic chips
US20050069913A1 (en) Devices and methods for using centripetal acceleration to drive fluid movement in a microfluidics system
Davidsson Microfluidic biosensing systems based on enzymes, antibodies and cells
CA2456421A1 (en) Retaining microfluidic microcavity and other microfluidic structures

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040223

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GYROS PATENT AB

17Q First examination report despatched

Effective date: 20080627

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60237289

Country of ref document: DE

Date of ref document: 20100923

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100811

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100811

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101111

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101213

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100811

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100811

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100811

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100811

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100811

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100811

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100811

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101122

26N No opposition filed

Effective date: 20110512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100917

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60237289

Country of ref document: DE

Effective date: 20110512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100811

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20210917

Year of fee payment: 20

Ref country code: FR

Payment date: 20210914

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210917

Year of fee payment: 20

Ref country code: DE

Payment date: 20210921

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60237289

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20220916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20220916