EP1425822B1 - Breitbandige schlitzantenne und deren herstellungsverfahren und konfiguration - Google Patents

Breitbandige schlitzantenne und deren herstellungsverfahren und konfiguration Download PDF

Info

Publication number
EP1425822B1
EP1425822B1 EP02757580A EP02757580A EP1425822B1 EP 1425822 B1 EP1425822 B1 EP 1425822B1 EP 02757580 A EP02757580 A EP 02757580A EP 02757580 A EP02757580 A EP 02757580A EP 1425822 B1 EP1425822 B1 EP 1425822B1
Authority
EP
European Patent Office
Prior art keywords
slot
balun
conductive
slot portion
antenna element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02757580A
Other languages
English (en)
French (fr)
Other versions
EP1425822A2 (de
Inventor
James M. Ii Irion
Nicholas A. Schuneman
Richard E. Hodges
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Co
Original Assignee
Raytheon Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/023,800 external-priority patent/US6850203B1/en
Priority claimed from US10/023,229 external-priority patent/US6867742B1/en
Priority claimed from US10/022,753 external-priority patent/US6963312B2/en
Application filed by Raytheon Co filed Critical Raytheon Co
Publication of EP1425822A2 publication Critical patent/EP1425822A2/de
Application granted granted Critical
Publication of EP1425822B1 publication Critical patent/EP1425822B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • H01Q13/085Slot-line radiating ends
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • H01Q9/0457Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line

Definitions

  • This invention relates in general to tapered slot antennas and, more particularly, to a method and apparatus for obtaining wide band performance in a tapered slot antenna.
  • antenna technology has experienced an increase in the use of antennas that utilize an array of antenna elements, one example of which is a phased array antenna.
  • Antennas of this type have many applications in commercial and defense markets, such as communications and radar systems. In many of these applications, broadband performance is desirable. Some of these antennas are designed so that they can be switched between two or more discrete frequency bands. Thus, at any given time, the antenna is operating in only one of these multiple bands. However, in order to achieve true broadband operation, the antenna needs to be capable of satisfactory operation in a single wide frequency band, without the need to switch between two or more discrete frequency bands.
  • a tapered slot antenna element One type of antenna element that has been found to work well in an array antenna is often referred to as a tapered slot antenna element.
  • the spacing between antenna elements in an array antenna is typically determined by the frequency at which the antenna operates, and a tapered slot antenna element fits comfortably within the space available for an antenna element in many array antennas.
  • European Patent application EP 0, 343, 322 describes an antenna having a strip conductor, and a ground plane separate from and lying parallel to the strip conductor.
  • the ground plane has a slot which extends transverse to the strip conductor.
  • United States patent US 6, 008, 770 describes a tapered slot antenna which provides a tapered pattern composed by utilising a Fermi-Dirac distribution function.
  • Existing tapered slot antenna elements typically have a bandwidth of about 3:1 to 4:1, although some have a bandwidth that approaches 6:1. While these existing tapered slot antenna elements have been generally adequate for their intended purposes, they have not been satisfactory in all respects. In this regard, there are applications in which it is desirable for a tapered slot antenna element to provide broadband performance involving a bandwidth in the neighbourhood of 10:1, or even larger. Existing designs and design techniques have not been able to provide a tapered slot antenna element which approaches this desired level of broadband performance.
  • An aspect of the present invention provides an antenna element as set out in claim 1.
  • FIGURE 1 is a diagrammatic fragmentary front view of an apparatus 10 which includes an antenna element 12 and part of a radome 13.
  • the apparatus 10 is configured for use in a not-illustrated phased array antenna system.
  • the antenna system includes a plurality of the antenna elements 12 arranged in a two-dimensional array of rows and columns, and includes a radome which extends over all the antenna elements, a portion of this radome being shown at 13 in FIGURE 1.
  • FIGURE 2 is a diagrammatic fragmentary rear view of the apparatus 10, and FIGURE 3 is a diagrammatic sectional view taken along the section line 3-3 in FIGURE 1.
  • the antenna element 12 includes two adjacent and parallel layers 17 and 18 of a dielectric material.
  • the dielectric layers each have a dielectric constant (Er) of approximately 3.0.
  • the dielectric layers 17 and 18 are bonded to each other by a thin layer 19 of bond film, which is of a type well known in the art.
  • the dielectric layers 17 and 18 are each approximately 20 mils thick.
  • the bond film 19 is approximately 2-3 mils thick.
  • FIGURE 4 is a diagrammatic fragmentary sectional front view of the apparatus 10, taken along a central plane which extends between the dielectric layers 17 and 18, with the bond film 19 omitted for clarity.
  • the dielectric layer 17 has on the front side thereof a first ground plane 26 (FIGURE 1)
  • the dielectric layer 18 has on the rear side thereof a second ground plane 27 (FIGURE 2)
  • the dielectric layer 18 has on the front side thereof a third ground plane defined by three separate portions 28A, 28B and 28C (FIGURE 4), which are sometimes referred to collectively herein as a ground plane 28.
  • the ground planes 26 and 27 are each electro-deposited metal layers with a thin gold plating on the outer side thereof to resist corrosion.
  • the ground planes 26 and 27 each have an overall thickness which is approximately 1-2 mils.
  • the ground plane 28 is an electro-deposited metal layer which is approximately 0.5-1 mils thick.
  • the ground plane 26 has a recess etched through it, and this recess includes a balun portion 36 and a slot portion 37.
  • the balun portion 36 of the recess is approximately rectangular, except that it has corners which are slightly rounded. It has a length dimension 38, and a width dimension 39.
  • the length dimension 38 is one-quarter of a wavelength of interest.
  • the embodiment of FIGUREs 1-4 is optimized for use in a frequency range of approximately 1.8 GHz to 18 GHz, and the length dimension 38 is approximately one-quarter of the wavelength of a center frequency of about 10 GHz.
  • the width dimension 39 in the disclosed embodiment is in the range of approximately one-quarter of this wavelength to approximately three-eighths of this wavelength. That is, the width dimension 39 is at least as large as the length dimension 38, but is kept somewhat short of one-half wavelength in order to avoid potentially undesirable operational characteristics.
  • the width dimension 39 should be as large as possible within these stated constraints.
  • the size of the array must progressively decrease, because the space available for each antenna element is approximately one-half of the wavelength of the highest frequency of operation.
  • the maximum amount of space available for the width dimension 39 of the balun portion 36 also progressively decreases.
  • the width dimension 39 is about 5% longer than the length dimension 38, but is not 50% to 70% longer, due to space limitations imposed by the operational frequency range of the antenna system.
  • the slot portion 37 of the recess in ground plane 26 has a narrow end which communicates with the balun portion 36 along one of the linear sides of the balun portion 36, at a location spaced from each end of that linear side.
  • the opposite end of the slot portion 37 is significantly wider than the narrow end.
  • FIGURE 5 is a graph showing the shape of one edge of the slot portion 37, where the horizontal axis represents the centerline of the slot, from the end at the balun portion 36 to the end at the radome 13.
  • the vertical axis in FIGURE 5 represents the half-width of the slot, or in other words, the distance from the edge of the slot to the centerline.
  • the edges of the slot portion 37 are mirror images of each other with respect to the centerline of the slot, and therefore only one of these edges is depicted in the graph of
  • the edges of the slot portion 37 do not follow a pure first-order exponential curve. Instead, the slot edges have a shape which has been carefully configured to minimize reflections and reduce return loss in a manner facilitating a wide bandwidth in excess of 10:1.
  • the technique used to configure the shape of the slot edge is described in detail later. For the moment, it is sufficient to note certain characteristics of the specific shape shown in FIGURE 5 for the slot portion 37. More specifically, it can be seen that the narrowest part 41 of the slot portion 37 is not precisely at the end of the slot portion which opens into the balun portion 36, but instead is spaced a small distance from this end. This narrow part 41 provides a region of increased capacitance.
  • each edge of the slot portion 37 is somewhat “wavy" in the section from the balun portion 36 to the discontinuity 42, which is not a random meandering, but instead is a carefully configured shape that reduces reflections and return loss in order to increase bandwidth and improve performance.
  • the curve shown in FIGURE 5 might be described as approximately a first-order exponential curve that has at least one higher-order characteristics superimposed on the first-order characteristic, and in fact the particular curve of FIGURE 5 has a number of higher-order characteristics superimposed on the first-order characteristic.
  • the specific curve shown in FIGURE 5 can be expressed in the form of the following equation, where the coefficients for the equation are set forth in Table 1.
  • the ground plane 27 has therethrough a recess which includes a balun portion 43 and a slot portion 44
  • the ground plane 28 has therethrough a recess which includes a balun portion 46 and a slot portion 47.
  • the slot portions 37, 44 and 47 all have the same size and shape, in particular the shape described above in association with FIGURE 5. Further, the slot portions 37, 44 and 47 are all precisely aligned with each other. In a similar manner, the balun portions 36, 43 and 46 all have the same size and shape, and are precisely aligned with each other.
  • the dielectric layers 17 and 18 each have therethrough an approximately rectangular opening, which has the same size and shape as the balun portions 36, 43 and 46, and which is aligned with the balun portions 36, 43 and 46.
  • these aligned openings of approximately rectangular shape in the three groundplanes and the two dielectric layers define a balun hole 49 of approximately rectangular shape, which extends completely through the antenna element 12.
  • FIGURE 6 is diagrammatic fragmentary perspective view showing a portion of the rear side of the antenna element 12 in an enlarged scale.
  • the balun opening 49 through the antenna element 12 is plated with an electrically conductive material, such that a strip 51 of this conductive material extends along the edges of the balun hole.
  • the ends of the strip 51 are spaced so as to define a slot 52 aligned with the narrow ends of the slot portions 37, 44 and 47.
  • the strip 51 extends between and is electrically coupled to the ground planes 26 and 27, and is also in electrical contact with the ground plane 28A.
  • the antenna element 12 also has its opposite side edges plated with an electrically conductive material, such that respective strips 53 and 54 of this conductive material extend the full length of the dielectric elements 17-18, and also extend between and are electrically coupled to each of the ground planes 26 and 27.
  • the strip 53 is also in electrical contact with the ground plane 28A along its entire length, and the strip 54 is in electrical contact with each of the ground planes 28B and 28C.
  • the dielectric layers 17 and 18 have respective wedge-shaped openings 57 and 58 therethrough, which are identical size and shape and are aligned with each other.
  • the openings 57 and 58 begin at the outer ends of the dielectric elements 17 and 18, and decrease progressively in width in a direction toward the balun hole 49.
  • the tapering sides of the openings 57 and 58 are spaced inwardly from the tapering edges of the slot portions 37, 44 and 47. In a direction along the centerline of the slot portions 37, 44 and 47, the inner ends of the openings 57 and 58 are approximately aligned with the discontinuity 42 (FIGURE 5).
  • the discontinuity 42 compensates to some extent for an impedance discontinuity caused within the dielectric material by the start of the openings 57 and 58 at their left ends.
  • the layer 19 of bond film (FIGURE 3) has a wedge-shaped opening through it which is identical in size and shape to the openings 57 and 58, and which is aligned with the openings 57 and 58.
  • the ground plane 28 (FIGURE 4) has, in addition to the recess which includes the balun portion 46 and the slot portion 47, a further recess 66 which is an elongate channel that extends from an inner end of the dielectric layer 18 around the balun portion 46, and opens into the narrow end of the slot portion 47.
  • the channel 66 communicates along one side with the balun portion 46, but it would alternatively be possible for a portion of the groundplane 28A to extend between them.
  • An elongate conductive strip 67 extends through the channel 66, such that one end is disposed at the inner end of the dielectric layer 18 located at the left side of FIGURE 1, and the other end extends across the narrow end of the slot portion 47 and is shorted directly to the ground plane 28A.
  • the conductive strip 67 and the ground plane 28A are discussed herein as if they are physically separate parts, because they serve different operational functions in the antenna element 12. However, as a practical matter, the ground plane 28A and the conductive strip 67 are just different integral portions of the same conductive layer.
  • an approximately semicircular cutout 71 is provided through the ground plane 26 and the dielectric layer 17, in order to expose an end portion of the conductive strip 67, and an end portion of each of the portions 28A and 28C of the ground plane 28.
  • This permits a contact of a not-illustrated connector arrangement to respectively engage the strip 67 and the ground plane portions 28A and 28C, in order to electrically couple the conductive strip 67 of the antenna element 12 to antenna system circuitry which is known in the art and therefore not shown in the drawings.
  • the not-illustrated antenna system circuitry is electrically coupled to the arrangement of interconnected ground planes through direct engagement of a metal chassis of the antenna system with one or more of the outer ground planes 26-27 and the conductive strips 53-54.
  • the conductive strip 67 serves as a conductive element of the type which is commonly referred in the art as a stripline, and carries signals that are being transmitted from or received by the antenna element 12.
  • the direct connection between the ground plane 28A and an end of the stripline 67 represents an electrical termination of that end of the stripline 67. Since the stripline 67 terminates directly into the groundplane 28, reactances are minimized where the stripline 67 extends across the slot portion 47, in comparison to pre-existing devices where the stripline is coupled by a via to a groundplane on the opposite side of a dielectric layer, or where the stripline terminates into some form of standalone termination structure designed to produce a standing wave resonance.
  • a plurality of vias extend through both of the dielectric layers 17 and 18 at a number of different locations, so as to electrically couple all three of the ground planes 26-28.
  • Three of these vias are identified with reference numerals 76, 77 and 78.
  • the vias facilitate precise control over impedance characteristics within the slot portions 37, 44 and 47 and along the stripline 67, and also help to reduce or eliminate the extent to which electromagnetic fields can form parallel plate and waveguide modes within the dielectric material.
  • One of the illustrated vias is identified by reference numeral 79, and is slightly larger in diameter than the rest of the vias.
  • the via 79 is disposed closely adjacent the point at which one end of the stripline 67 terminates directly into the ground plane portion 28A, and serves to ensure that this end of the stripline 67 is directly and reliably terminated to not only the center groundplane 28, but also the two outer groundplanes 26-27. It will be noted that a respective row of the vias extends adjacent each edge of the slot portions 37, 44 and 47, with approximately uniform spacing from each via to the edge of the slot portions, and with approximately uniform spacing between adjacent vias. Behind each of these rows, along most of the length thereof, is a further row of vias.
  • FIGURE 7 is a diagrammatic fragmentary perspective view of the outer end portion of the apparatus 10, in an enlarged scale.
  • the radome 13 includes a dielectric layer 91 which is fixedly coupled to an outer end of the antenna element 12 by a bond film 92, a second dielectric layer 93 which is fixedly coupled to the dielectric layer 91 by a bond film 94, and a third dielectric layer 97 which is fixedly coupled to the dielectric layer 93 by a bond film 98.
  • the bond films 92, 94 and 98 are materials of a type known in the art.
  • the dielectric layer 97 is relatively thin, and serves primarily as a protective outer cover.
  • the dielectric layers 91, 93 and 97 have respective thickness of 120 mils, 60 mils and 2 mils, and have respective dielectric constants (Er) of 1.08, 1.3 and 3.6.
  • the dielectric layers 91, 93 and 97 could have respective thicknesses of 60 mils, 120 mils and 2 mils, and respective dielectric constants of 1.3, 1.08 and 3.6.
  • the dielectric layers 91 and 93 are transmissive to radiation which is being transmitted from or received by the antenna element 12. Further, the dielectric layers 91 and 93 effect a degree of refraction of this radiation, as discussed in more detail below.
  • the dielectric layers 91 and 93 can also effect a small degree of impedance matching between the adjacent wide end of the slot portions located on one side thereof, and the free space located on the other side thereof.
  • the stripline 67 and the not-illustrated antenna system circuitry to which it is coupled are matched, so as to provide a substantial uniform impedance of approximately 50 ohms from the circuitry through the stripline 67 to the slotline.
  • Free space beyond the right end of the apparatus 10 has an impedance of approximately 377 ohms, for a two-dimensional square unit cell representing uniform spacing in both directions of the two-dimensional array of antenna elements 12 within the phased array antenna system.
  • the slotline effects an impedance transformation from a value of approximately 50 ohms at the left end, which is matched to the impedance of the stripline 67, to a value of approximately 360-370 ohms at the right end, which closely approaches the impedance of free space.
  • groundplanes 26-28 provides more conductive material along the edges of the slotline than in pre-existing arrangements that have only one or two groundplanes, which in turn provides increased capacitance within the slotline.
  • the increased capacitance permits the narrow end of the slotline to be slightly wider than in pre-existing devices, while still achieving an impedance of 50 ohms which is matched to the impedance of the stripline 67.
  • fabrication of the ground planes 26-28 is easier, due to the fact that tolerances involved in the etching techniques for the groundplanes are fixed.
  • the wedge-shaped openings 57 and 58 within the dielectric layers 17 and 18, and the congruent wedge-shaped opening within the bond film layer 19, help facilitate this impedance transformation, by reducing the amount of dielectric and bond film material disposed within the slotline at the right end thereof.
  • the impedance within the slotline will more closely approach the impedance of the free space located beyond the right end of the apparatus 10 than would be the case if the openings 57 and 58 were omitted and the right end of the slotline was completely filled with dielectric material. This is due to the fact that air has a somewhat higher impedance than the dielectric material, and the provision of the openings 57 and 58 substitutes air for what would otherwise be dielectric material.
  • the balun hole 49 is designed so that the width dimension 39 (FIGURE 1) is as large as possible in the region where the slotline opens into the balun hole 49, up to about three-eighths of a wavelength of interest. This is intended to provide the largest possible impedance discontinuity between the balun hole 49 and the narrow end of the slotline. This large discontinuity is facilitated by the fact that the slotline opens into the balun hole 49 through a side of the balun hole 49 which is approximately linear, and at a location spaced from both ends of this linear side.
  • the balun hole has an impedance of approximately 300 ohms, which represents a relatively large discontinuity in relation to the 50 ohm impedance of the adjacent end of the slotline.
  • impedance approximately 300 ohms
  • the large impedance discontinuity between the balun hole 49 and the left end of the slotline will cause the majority of this electromagnetic energy to travel rightwardly rather than leftwardly along the slotline, and to be transmitted into free space.
  • the balun hole 49 has a length dimension which is approximately one-quarter wavelength (as discussed above), and this creates an open circuit standing wave which also tends to cause electromagnetic energy to travel rightwardly within the slotline.
  • the inner edge of the balun hole 49 is plated with a conductive strip 51, except at the slotline.
  • the strip 51 helps to keep electromagnetic fields present within the balun hole 49 from entering the dielectric material of layers 17 and 18, which helps to increase system bandwidth. Consequently, the strip 51 helps establish the standing wave or resonant condition with respect to electromagnetic energy within the balun hole 49, which in turn helps to direct electromagnetic energy rightwardly within the slotline.
  • the balun hole 49 is a tuned inductive hole, which can operate over a 10:1 bandwidth without electrical or structural adjustment.
  • the balun hole 49 does not have any dielectric material within it.
  • the balun hole 49 is filled with air, rather than dielectric material.
  • the wavelength of electromagnetic radiation is longer in air than it would be in dielectric material. Consequently, to the extent the balun hole 49 is made as wide as possible in order to maximize the impedance discontinuity between the balun hole and the adjacent end of the slotline, a given width will be further below one-half wavelength when the balun hole is filled with air than would be the case if the balun hole was filled with dielectric material.
  • FIGURE 8 is a highly diagrammatic view of the apparatus 10, including both the antenna element 12 and the radome 13.
  • Arrow 111 represents electromagnetic radiation which is traveling outwardly through the slotline. As this radiation passes through the interface between the antenna element 12 and the dielectric layer 91, it is refracted to a degree, so that it travels in a slightly different direction, as indicated diagrammatically in FIGURE 8 by the arrow 112. Similarly, as this radiation passes through the interface between dielectric layer 91 and dielectric 93, it experiences a further degree of refraction which further increases its angle, as indicated diagrammatically by arrow 113.
  • this radiation passes through the interface between dielectric layer 93 and free space, it is refracted a little further, so that it travels at a slightly greater angle, as indicated diagrammatically by arrow 114.
  • This refraction within the radome 13 permits the apparatus 10 to operate more effectively over a wider scan angle, which in the disclosed embodiment approaches about 50° to 60°. In a sense, the refraction causes a portion of the radiation transmitted at each edge of the scan angle to have a higher effective power level than would be the case without such refraction.
  • the provision of the wedge-shaped openings 57 and 58 in the dielectric layer of the antenna element 12 permit the use of lower dielectric constants for the dielectric layers 91 and 93 of the radome 13 than would otherwise be the case. This in turn reduces the extent to which electromagnetic energy is diverted into transverse surface waves within the dielectric layers, for example as indicated diagrammatically by a broken line arrow 117, which in turn reduces or avoids an effect that is sometimes referred to as scan blindness.
  • reference numeral 121 diagrammatically represents radiation which is approaching the antenna element 12 at an angle to the centerline of the slot portions in the antenna element 12. As this radiation passes through the radome 13 and enters the antenna element 12, the radiation is progressively refracted, as indicated diagrammatically by arrows 122, 123 and 124, until the radiation is traveling through the slot portion of the antenna element 12 approximately parallel to the centerline.
  • FIGURE 9 is a graph showing return loss as a function of frequency for the embodiment of FIGUREs 1-8, for what is known in the art as E-plane scan. Since return loss is a standard way of expressing the amount of reflection, it is desirable that return loss be as low as possible. It will be noted that the apparatus 10 provides a return loss which is continuously below -10dB for a scan width of 60° across a bandwidth from approximately 1.8 GHz to approximately 17.5 GHz. Persons skilled in the art will recognize that, expressed according to another industry standard, the embodiment of FIGUREs 1-8 provides a bandwidth of at least 10:1 for -9.5dB (VSWR less than 2).
  • FIGURE 10 is a graph similar to FIGURE 9, but showing return loss for what is commonly known in the art as H-plane scan.
  • FIGURE 10 shows that the apparatus 10 provides a return loss of -10dB across a scan width of 45° to 50° from a frequency of about 3.5 GHz to a frequency in excess of 18 GHz.
  • Advantageous performance characteristics are due in part to the shape determined for the edges of the slot portions 37, 44 and 47, which collectively serve as the slotline of the antenna element 12. An explanation will now be provided of how the shape for the edges of the slot portions is determined.
  • the apparatus 10 is conceptually broken into three functional sections for purposes of carrying out an analysis which determines an optimum shape for the edges of the slot portions. More specifically, one functional section is referred to as the balun, and corresponds roughly to the balun hole 49 and the conductive stripline 67. The next functional section is referred to as the slot, and corresponds roughly to the part of the slot portion which extends from the balun hole 49 to the discontinuity 42 at the left end of the wedge-shaped openings 57 and 58.
  • the third functional section 203 is referred to as the end piece, and corresponds roughly to the part of the apparatus 10 located to the right of the discontinuity 42, in particular from the left end of the wedge-shaped openings 57-58 to the right side of the outer dielectric layer 97.
  • FIGURE 11 is a diagram showing three blocks 201-203, which respectively represent the three functional sections discussed above, namely the balun, slot and end piece sections.
  • blocks 201-203 represent the apparatus 10 of FIGURE 1, as indicated diagrammatically by a broken line in FIGURE 11.
  • Each of the blocks 201-203 is depicted as a two-port element, including one port with two terminals on the left side, and another port with two terminals on the right side. Adjacent ports of the adjacent blocks are coupled to each other.
  • the end piece 203 has the port on the right side coupled to a further block 208, which diagrammatically represents the impedance of the free space disposed beyond the right end of the apparatus 10 in FIGURE 1.
  • two-port blocks such as those depicted at 201-203 can each be represented by what is commonly referred to as an [ABCD] matrix.
  • the left port has a voltage V X and current I X and the right port has a voltage V Y and current I Y .
  • the balun and end piece (which correspond to blocks 201 and 203) are designed so as to achieve appropriate design goals.
  • the balun hole 49 (FIGURE 1) has various aspects, such as shape, size and the absence of dielectric material, which are intended to achieve the design goal of a large impedance discontinuity between the balun hole and slotline, which in turn supports a wide bandwidth for the antenna element 12.
  • Possible design configurations for both the balun and end piece can be rigorously analyzed with an existing software program to determine expected operational characteristics.
  • One suitable software program for this task is available under the tradename High Frequency Structure Simulator (HFSS), and can be commercially obtained from Ansoft Corporation of Pittsburgh, Pennsylvania.
  • HFSS High Frequency Structure Simulator
  • the apparatus 10 is designed for use across a frequency range of interest.
  • the operational characteristics of the balun section will be different at different frequencies, and the operational characteristics of the end piece section will be different at different frequencies. Accordingly, several predetermined frequencies are selected, which are spread throughout the frequency range of interest. Then, a respective different [ABCD] matrix is determined for the balun section 201 for each selected frequency, and a respective different [ABCD] matrix is determined for the end piece section 203 for each such frequency.
  • Appropriate techniques for determining an [ABCD] matrix from a physical design are known in the art.
  • parameters representing the physical design can be provided to a known software program, which can then calculate a form of transfer function known in the art as an [S] matrix.
  • the HFSS computer program mentioned above is suitable for this task. Thereafter, the [S] matrix can be converted into a corresponding [ABCD] matrix, using known mathematical techniques.
  • FIGURE 12 is a diagrammatic view of a model which is a transmission line 241, made up of a plurality of N contiguous rectangular segments SEG1, SEG2, SEG3,... SEGN.
  • N 40 contiguous rectangular segments
  • the centerline of the slot is indicated diagrammatically at 243, and the outer ends of the N segments collectively represent the edges of the slot.
  • the segments all have same length in a direction parallel to the centerline 243, but have a variety of different widths in a direction transverse to the centerline 243.
  • the segments in FIGURE 12 do not necessarily represent the precise slot shape shown in FIGURE 5, but instead can be considered representative of one of a number of different shapes that are evaluated to determine which shape should serve as the optimum shape shown in
  • the common length value for all of the segments SEG1 through SEGN and also the N respective width values are varied selectively and independently, and the performance of the apparatus 10 is evaluated for each such configuration of the segmented transmission line, in a manner explained in more detail below. It should be noted that the number N of segments is not varied. Consequently, to the extent that the common length value for the segments is varied, the overall length of the segmented transmission line, and thus the overall length of the slot it represents, will vary. Thus, part of what is optimized is the length of the slot itself.
  • Nelder-Mead Various existing techniques are known for effecting the independent variation of a number of parameters in a selective manner so as to optimize a specified characteristic.
  • One such technique is commonly known in the art as the Nelder-Mead technique.
  • There are commercially available software programs which implement the Nelder-Mead technique one example of which is the program MATLAB® available from The MathWorks of Natick, Massachusetts. Programs of this type provide generic Nelder-Mead capability, and can be provided with input data for a specific application which cause the program to apply the generic principles to that specific application. Since Nelder-Mead techniques are known in the art, they are not described in detail here. Instead, to facilitate an understanding of the present invention, a brief overview is provided.
  • a program which implements Nelder-Mead techniques is capable of varying multiple parameters in an intelligent manner according to Nelder-Mead principles, while evaluating a characteristic which is to be optimized.
  • configurations of parameters which tend to improve the specified characteristic are favored over configurations which do not improve the characteristic, and the favored configurations are used to predict other new configurations that may possibly provide even greater improvement in the specified characteristic.
  • an initial slot shape is selected, for example where the edges of the slot simply follow a first-order exponential curve.
  • a segmented transmission line model of the type shown in FIGURE 12 is used to model this initial slot shape, using N segments where N is roughly 40 to 60.
  • the respective widths of the segments and also the common length of the segments are then independently varied using Nelder-Mead techniques in order to come up with a plurality of different configurations of the segmented transmission line, which each represent a different slot shape. For each such configuration, performance of that configuration is evaluated.
  • FIGURE 13 is a diagrammatic view, in an enlarged scale, of the end portions of four of the transmission line segments shown in the upper right portion of FIGURE 12.
  • the solid lines in FIGURE 13 correspond directly to the segments which are shown in FIGURE 12.
  • the broken lines in FIGURE 13 show how the overall number of line segments is tripled from N to 3N.
  • two points 261 and 262 are identified through interpolation at uniformly spaced locations along a straight line extending between two points 263 and 264, which are at respective corners of two of the N segments shown in FIGURE 12.
  • Each of the points 261-264 then becomes a corner of a respective new segment having a length which is one-third the length of each of the N segments shown in FIGURE 12.
  • the Nelder-Mead techniques are not used to independently vary the widths of all 3N segments, but only the widths of the N segments shown in FIGURE 12. The other two-thirds of the segments have widths that are directly dependent on the original N widths, rather than widths determined through completely independent variation.
  • a theoretical transmission line has a length l, which corresponds to the uniform dimension of each of the 3N segments in a direction parallel to the centerline 243 (FIGURE 12) of the slot.
  • the theoretical transmission line in FIGURE 14 has an impedance Z SEG and, in the case of each of the 3N segments shown in FIGURE 13, this impedance depends on one or more different factors. First, it depends on the width of the segment in a direction transverse to the centerline 243. Further, and with reference to the apparatus 10 shown in FIGURE 1, it depends on whether there is material within the slot and, if so, the characteristics of that material.
  • the embodiment of FIGURE 1 has portions of the dielectric layers 17 and 18 which are disposed within the slot, and the dielectric layers have impedance characteristics that vary with frequency, even for a given width.
  • the impedance characteristic would vary with width but not frequency, because the impedance of air does not vary with frequency.
  • the theoretical transmission line can be modeled as a two-port element of the type discussed earlier, and its characteristics can thus can be represented by an [ABCD] matrix.
  • the value of the wavelength ⁇ can vary not only as a function of frequency, but also as function of the type of material present within the slot.
  • the wavelength will be one value if there is dielectric material within the slot (as is the case in the embodiment of FIGURE 1), but will be a different value if the slot contains air rather than dielectric material.
  • an [ABCD] matrix can be determined in the following manner for the entire apparatus of FIGURE 1, identified by the subscript "APP", including the antenna element 12 and the radome portion 13.
  • [ A B C D ] APP [ A B C D ] B x [ A B C D ] S x [ A B C D ] EP
  • V IN I FS ( A Z FS + B )
  • I IN I FS ( C Z FS + D )
  • A, B, C and D are from [ A B C D ] APP
  • the antenna element 12 of FIGURE 1 is coupled to a not-illustrated antenna system, for example through a cable.
  • the antenna system supplies electrical signals to and from the input port at the left side of FIGURE 11.
  • Z 0 represents the characteristic impedance of the not-illustrated cable and other circuitry of the antenna system. It is customary in the art to design this circuitry and cable so that the impedances are all matched, to thereby provide a line of effectively constant impedance with no reflection. In the disclosed embodiment, this characteristic impedance Z 0 has a value of 50 ohms.
  • a first criteria involves a determination of the maximum value of return loss RL calculated for a given slot shape.
  • the slot shape having the lowest maximum value of RL could be selected as the optimum design.
  • all evaluated slot shapes with a maximum value of return loss RL lower than a specified value (such as -10dB) could be identified, and the shapes in this group could then be comparatively evaluated using other criteria.
  • a second criteria would be to determine the maximum value, for each slot shape, of the absolute value of the calculated reflection R.
  • the slot design with the lowest such maximum value could be selected as the optimum design.
  • all evaluated slot shapes for which this calculated maximum value is less than a specified value could be selected, and the slot shapes in this group could then be comparatively evaluated using other criteria.
  • FIGURE 15 is a flowchart, which summaries the optimization technique discussed above. More specifically, in block 301, the designs of the balun and end piece are each optimized and finalized. Then, transfer functions are determined for each of the balun and end piece at each of a plurality of predetermined frequencies spread across a frequency range of interest. As discussed above, each of these transfer functions can be represented in the form of an [ABCD] matrix.
  • an initial slot shape is selected in order to "seed" the optimization routine.
  • the initial slot shape is selected to be a pure first-order exponential curve, but it would alternatively be possible to use some other initial slot shape.
  • the selected slot shape is modeled as a segmented transmission line, in the manner discussed above in association with FIGUREs 12 and 13. Then, at block 306, the lowest of the predetermined frequencies in the range is selected.
  • each such transfer function can be in the form of an [ABCD] matrix, as discussed above.
  • These various transfer functions for the different segments are then combined to obtain a single transfer function for the entire segmented transmission line.
  • this is also an [ABCD] matrix, as discussed above.
  • the transfer functions for the balun section, slot section and end piece section are used to calculate and save a reflection value and a return loss value, in a manner discussed previously. Then, at block 311, a determination is made of whether the currently selected frequency is the highest frequency in the range. If not, the next highest of the predetermined frequencies is selected at block 312, and control returns to block 307 to analyze the performance of the current slot design at this newly-selected frequency.
  • an evaluation is made of whether the optimum shape has been found. This determination involves use of performance criteria of the type discussed above. Further, it depends on the extent to which the Nelder-Mead techniques discussed above have reached a point where a variety of different slot shapes have been evaluated and it appears that the optimum shape is likely to be a shape that has already been evaluated, rather than a shape that has yet been evaluated. In general, a number of slot shapes will be evaluated before a decision is made at block 316 that the optimum slot shape has been identified.
  • the blocks 316 and 317 basically represent a particular application for the known Nelder-Mead techniques that were discussed earlier. In contrast, if at some point it is determined at block 316 that an optimum slot shape has been determined, the evaluation process is finished, and ends at block 318.
  • FIGURE 16 is a diagrammatic front view of an antenna element 412 which is alternative embodiment of the antenna element 12 of FIGURE 1.
  • the antenna element 412 of FIGURE 16 would normally be used with a radome of the type shown at 13 in FIGURE 1, but the radome is omitted from FIGURE 16.
  • the antenna element 412 of FIGURE 16 is substantially identical to the antenna element 12 of FIGURE 1, except for the differences which are discussed below.
  • the two dielectric layers and the bond film of the antenna element 412 each extend outwardly beyond the ends of the three ground planes, one of the dielectric layers being visible at 417, and one of the ground planes being visible at 426.
  • the upper and lower side edges of the antenna element 412 each have plating which extends from the left end of the antenna element to the right ends of the ground planes. This edge plating does not extend the rest of the way to the right end of the antenna element 412.
  • the dielectric layers each have a wedge-shaped opening therein, one of which is visible at 457. It will be noted that the left end of each wedge-shaped opening is located rightwardly of the right ends of the ground planes, including the ground plane 426. In other words, the wedge-shaped openings in the dielectric layers are not disposed within the slotline defined by the slots in the ground planes. Consequently, the edges of the slot portions in the antenna element 412 do not have a discontinuity comparable to that shown at 42 in FIGURE 1, because the discontinuity 42 is due to the fact that the wedge-shaped opening 57 in FIGURE 1 is disposed within the slotline.
  • the edges of the slot portions of the ground planes do not follow a first-order exponential curve, but instead have higher-order effects which give them a somewhat wavy shape, in a manner similar to that described above in association with the embodiment of FIGURE 1.
  • the procedure used to determine the shape of the slot edges for the embodiment of FIGURE 16 is similar to the procedure described above for the embodiment of FIGURE 1, and is therefore not described again in detail here. Further, the operation of the embodiment of FIGURE 16 is similar to the operation of the embodiment of FIGURE 1, and is therefore not explained again in detail here.
  • FIGURE 17 is a diagrammatic perspective view of an antenna element 512 which is a further alternative embodiment of the antenna element 12 of FIGURE 1.
  • the antenna element 512 includes a body 514 which is made from a single metal plate.
  • a recess is provided through the metal plate, and includes a balun portion 536 in the shape of a rectangular hole, and an elongate slot portion 537 which communicates at its narrow end with the balun portion 536.
  • the balun portion 536 and the slot portion 537 have sizes and shapes that are comparable to those discussed above in association with the embodiment of FIGURE 1.
  • the edges of the slot portion 537 do not follow merely a first-order exponential curve, but instead include higher-order effects which give the edges a somewhat wavy shape.
  • the shape of the edges is determined by a procedure similar to that discussed above in association with the embodiment of FIGURE 1, and this procedure is not described again in detail here.
  • the antenna element 512 includes a coaxial stripline 561, which has an electrically conductive exterior sheath that is fixedly secured to the front of the plate 514 by a conductive epoxy adhesive of a known type.
  • FIGURE 18 is a diagrammatic sectional view of the coaxial stripline 561, taken along the section line 18-18 in FIGURE 17.
  • the coaxial stripline 561 includes two adjacent dielectric layers 563 and 564, with a conductive stripline 567 disposed between them.
  • the stripline 567 has a width which is substantially less than the width of the dielectric layers 563 and 564, so that the dielectric layers 563 and 564 serve as a layer of insulating material which extends coaxially around the stripline 567.
  • a sheath 569 of an electrically conductive material extends completely around the dielectric layers 563 and 564. As mentioned above, the sheath 569 is physically and electrically coupled to the metal plate 514 in FIGURE 17 by a conductive epoxy adhesive of a known type, which is not separately shown in the drawings.
  • FIGURE 19 is a diagrammatic fragmentary sectional top view of the coaxial stripline 561, taken along a plane defined by the top surface of the stripline 567, and showing an end portion of the coaxial stripline 561 which is located in the region of the narrow end of the slot portion 537 (FIGURE 17).
  • the conductive sheath 569 has an annular gap 572 which extends completely around the coaxial stripline 561. The gap 572 is aligned with the slot portion 537, and permits current within the stripline 567 to generate electromagnetic fields that can escape the sheath 569 and extend into the slot portion 537.
  • the stripline 567 begins expanding progressively in width, which serves as a transition to an approximately rectangular end portion 573, three sides of which electrically engage the sheath 569.
  • a via at 574 extends through the conductive stripline between opposite sides of the sheath 569, and is electrically coupled to the end portion 573 of the stripline 567.
  • the end of the stripline 567 is shorted directly to a ground plane defined by the metal plate 514 (FIGURE 17), in order to effect electrical termination of the stripline 567.
  • One technique for fabricating the coaxial stripline 561 is as follows.
  • the dielectric material 564 is fabricated, and then a layer of metal is deposited on top of it.
  • the metal layer is then photolithographically etched in a known manner, in order to remove selected portions of it, such that the remaining portions define the stripline 567 with its end portion 573.
  • the dielectric layer 563 is formed over the dielectric layer 564 and the stripline 567.
  • a cylindrical hole is created through the dielectric layers and the metal layer, at a location where the via 574 is to be formed.
  • this arrangement is immersed in an electroless plating tank, in order to form the sheath 569 over the entire exterior thereof, and in order to form the via 574 within the cylindrical hole.
  • the annular mask prevents conductive material from being plated within the region of the gap 572. After the plating is completed, the mask is removed in order to expose the gap 572. The resulting assembly is then secured to the metal plate 514, using a conductive epoxy adhesive, as discussed above.
  • the operation of the antenna element 512 of FIGUREs 17-19 is generally similar to that of the antenna element 12 of FIGURE 1. Therefore, a separate detailed discussion of the operation of the antenna element 512 is believed to be unnecessary, and is omitted here.
  • the present invention provides a number of technical advantages.
  • One such technical advantage results from the absence of dielectric material in the balun hole, such that the hole contains air. Since air has a lower dielectric constant than dielectric material, air has a higher impedance than a dielectric material, and the wavelength of a given frequency is longer in air than in a dielectric material. Consequently, for a given physical width of the balun hole, the effective electrical width is smaller for air than for a dielectric material. This in turn means that the effective electrical width is farther below 8/2 for air than for a dielectric material, which reduces undesirable effects.
  • the inner edge of the balun hole is conductive, for example due to the provision of plating, because it helps to increase the bandwidth of the balun hole by containing electrical fields to the hole.
  • the conductive edge of the hole prevents electric fields from extending into the dielectric material around the hole.
  • balun hole has a generally rectangular shape, because it helps to create an abrupt impedance discontinuity between the balun hole and the associated end of the slotline. With an abrupt discontinuity in impedance, electric fields in the region of the narrow end of the slot see the balun hole as approximately an open circuit across a frequency range of interest, which gives the balun hole a relatively wide bandwidth.
  • dielectric material is omitted within the rectangular balun hole, and the edge of the balun hole is conductive, because the bandwidth of the balun hole is further enhanced. The resulting balun hole is effectively a tuned conductive hole.
  • balun hole is approximately rectangular, contains no dielectric material, has conductive edges, is associated with two or more ground planes, and is associated with a stripline termination into a ground plane, the standalone bandwidth of the balun hole can approach about 8:1.
  • balun hole is used with a slot having a shape that has been optimized using techniques according to the invention.
  • the balun hole is inductive and the slot is capacitive.
  • the optimization technique is used to achieve conjugate matching of the balun hole and slot, they cooperate to provide good performance even at low frequencies, in a manner somewhat analogous to resonance in a tuned RLC circuit.
  • they can provide a decade (10:1) bandwidth capable of a ⁇ 60° E-plane and ⁇ 50° H-plane scan volume.
  • ground planes can also provide another advantage, by helping to minimize reactances at the stripline to slotline transition. Further, providing three or more ground planes increases the amount of conductive material present along the edges of the slot, thereby increasing capacitance, which in turn allows the narrow end of the slot be wider. Where the narrow end of the slot is wider, it is easier to fabricate the slot while still achieving a low impedance of approximately 50 ohms for the narrow end of the slot. This is because the tolerances for etching are basically fixed, and etching the narrow end of the slot is progressively increased.
  • stripline terminated directly into one of the ground planes, because this effectively provides an actual physical short circuit to a ground plane, in comparison to pre-existing techniques that essentially seek to emulate or approximate a physical short circuit by creating a standing wave resonance.
  • the disclosed antenna elements provide a stripline to slotline transition with a transformer ratio that is close to unity, and with minimal stray reactances.

Claims (34)

  1. Antennenelement (12) mit einer dielektrischen Schicht (18), einer elektrisch leitenden Schicht (28) und einem gestreckten, leitenden Element (67), worin
    die dielektrische Schicht (18) ein dadurch verlaufendes Loch (49) aufweist;
    die elektrisch leitende Schicht (28) an eine Oberfläche der dielektrischen Schicht (18) angrenzend angeordnet ist, die leitende Schicht (28) eine darin geätzte Ausnehmung aufweist, welche einen Balunabschnitt (46) einen sich verjüngenden Schlitzabschnitt (47) beinhaltet, der Schlitzabschnitt (47) ein schmales Ende aufweist, das in Verbindung mit dem Balunabschnitt (46) steht und der Balunabschnitt mit dem Loch (49) durch die dielektrische Schicht (18) fluchtet; und
    das gestreckte, leitende Element (67) unmittelbar mit der leitenden Schicht (28) verbunden ist und sich in derselben Ebene wie diese befindet, die leitende Schicht (28) sich allgemein quer bezogen auf den Schlitzabschnitt (47) im Bereich des schmalen Endes davon erstreckt,
    worin das Loch (49) durch die dielektrische Schicht (18) im Wesentlichen dieselbe Größe und Form wie der Balunabschnitt (46) der Ausnehmung in der leitenden Schicht (28) aufweist, das Element eine weitere leitende Schicht (27) beinhaltet, die darin eine weitere Ausnehmung aufweist, die weitere Ausnehmung einen weiteren Balunabschnitt (43) beinhaltet und einen weiteren Schlitzabschnitt (44) beinhaltet, der an einem Ende mit dem weiteren Balunabschnitt (43) in Verbindung steht, die Schlitzabschnitte (44, 47) der Ausnehmungen ähnliche Größe und Form aufweisen und im Wesentlichen zueinander fluchten und der weitere Balunabschnitt (43) im Wesentlichen dieselbe Größe und Form wie das Loch (49) durch die dielektrische Schicht (18) aufweist und mit diesem fluchtet.
  2. Antennenelement (12) gemäß Anspruch 1, beinhaltend einen leitenden Streifen (51), der sich entlang eines Randes des Loches (49) in der dielektrischen Schicht (18) erstreckt, ausgenommen den Bereich der Schlitzabschnitte (44, 47), und der, der in elektrischem Kontakt mit jedem der leitenden Schichten (27, 28) steht.
  3. Antennenelement (12) gemäß Anspruch 1, beinhaltend zwei weitere leitende Schichten (26, 27), worin die leitenden Schichten (26, 27) alle im Wesentlichen zueinander parallel sind;
    beinhaltend eine weitere dielektrische Schicht (17), worin die dielektrische Schichten (17, 18) im Wesentlichen parallel zueinander und zu den leitenden Schichten (26, 27, 28) sind, und jede dielektrische Schicht (17, 18) zwischen einem zugehörigen Paar von leitenden Schichten (26/28; 27/28) angeordnet ist;
    worin die weitere dielektrische Schicht (17) ein dadurch verlaufendes Loch (49) aufweist, die Löcher (49) durch die dielektrischen Schichten (17, 18) im Wesentlichen dieselbe Größe und Form aufweisen und zueinander fluchten; und
    worin die weiteren leitenden Schichten (26, 27) darin jeweils eine weitere Ausnehmung aufweisen, jede weitere Ausnehmung einen weiteren Balunabschnitt (36, 43) beinhaltet und einen weiteren Schlitzabschnitt (37, 44) beinhaltet, der an einem Ende davon mit dem weiteren Balunabschnitt (36, 43) in Verbindung steht, die Schlitzabschnitte (37, 44, 47) in jeder der leitenden Schichten (26, 27, 28) ähnliche Größe und Form aufweisen und im Wesentlichen zueinander fluchten und die Balunabschnitte (36, 43, 46) in jeder der leitenden Schichten (26, 27, 28) dieselbe Größe und Form aufweisen und zueinander und mit den Löchern (49) durch die dielektrischen Schichten (17, 18) fluchten.
  4. Antennenetement (12) gemäß Anspruch 3, beinhaltend einen leitenden Streifen (51), der sich entlang der Ränder der Löcher (49) in den dielektrischen Schichten (17, 18) erstreckt, ausgenommen den Bereich der Schlitzabschnitte (37, 44, 47) der leitenden Schichten (26, 27, 28), und der in elektrischem Kontakt mit jedem der leitenden Schichten (26, 27, 28) steht.
  5. Antennenelement (12) gemäß Anspruch 1, worin der Schlitzabschnitt (47) Ränder auf gegenüberliegenden Seiten davon aufweist, welche jeweils einer vorgegebenen Kurve folgen, die sich von einer Exponentialkurve erster Ordnung unterscheidet.
  6. Antennenelement (12) gemäß Anspruch 5, worin die vorgegeben Kurve für jeden Rand so ausgestaltet ist, dass die Minimierung der Rücklaufdämpfung für elektromagnetische Signale gefördert wird, die innerhalb des Schlitzabschnitts (47) durch das gestreckte, leitende Element (67) induziert werden.
  7. Antennenelement (12) gemäß Anspruch 1, worin der Balunabschnitt (46) eine Form aufweist, die eine große und abrupte Unstetigkeit in der Impedanz zwischen dem Schlitzabschnitt (47) und dem Balunabschnitt (46) fördert, die Form des Balunabschnitts (46), einschließlich des Balunabschnitts (46) eine in etwa gerade Seite aufweist, das eine Ende des Schlitzabschnitts (47) in Verbindung mit dem Balunabschnitt (46) an einer Stelle zwischen den Enden der geraden Seite des Balunabschnitts (46) steht.
  8. Antennenelement (12) gemäß Anspruch 7, worin der Balunabschnitt (46) eine Form aufinreist, die in etwa rechteckig ist.
  9. Antennenelement (12) gemäß Anspruch 8, worin der Balunabschnitt (46) in einer ersten Richtung, die allgemein parallel zum einen Ende des Schlitzabschnitts (47) ist, eine Bemaßung aufweist, die in etwa einem Viertel einer gewählten Wellenlänge entspricht und in einer zweiten Richtung, die im Wesentlichen rechtwinklig zur ersten Richtung ist, ein zweite Bemaßung aufweist, die wenigstens einem Viertel der gewählten Wellenlänge entspricht und kleiner als die Hälfte der gewählten Wellenlänge ist.
  10. Antennenelement (12) gemäß Anspruch 7, worin der Schlitzabschnitt (47) Ränder auf gegenüberliegenden Seiten davon aufweist, welche jeweils einer vorgegebenen Kurve folgen, die sich von einer Exponentialkurve erster Ordnung unterscheidet.
  11. Antennenelement (12) gemäß Anspruch 10, worin die vorgegeben Kurve für jeden Rand so ausgestaltet ist, dass die Minimierung der Rücklaufdämpfung für elektromagnetische Signale gefördert wird, die innerhalb des Schlitzabschnitts (47) durch das gestreckte, leitende Element (67) induziert werden.
  12. Antennenelement (12) gemäß Anspruch 1, worin die dielektrische Schicht (18) eine erste dielektrische Schicht (18) eines Paares aus ersten und zweiten dielektrischen Schichten (17, 18) ist, die sich in etwa parallel zueinander erstrecken;
    worin die leitende Schicht (28) eine erste leitende Schicht (28) eines Satzes aus ersten, zweiten und dritten leitenden Schichten (28, 27, 26) ist, die sich in etwa parallel zueinander und zu den ersten und zweiten dielektrischen Schichten (17, 18) erstrecken, die erste dielektrische Schicht (18) zwischen den ersten und zweiten leitenden Schichten (28, 27) angeordnet ist, und die zweite dielektrische Schicht (17) zwischen den ersten und dritten leitenden Schichten (28, 26) angeordnet ist, die ersten, zweiten und dritten leitenden Schichten (28, 27, 26) jeweils eine Ausnehmung aufweisen, die einen Balunabschnitt (36, 43, 46) und einen Schlitzabschnitt (37, 44, 47) aufweist, der an einem Ende davon mit dem Balunabschnitt (36, 43, 46) in Verbindung steht, die Schlitzabschnitte (37, 44, 47) in jeder der ersten, zweiten und dritten leitenden Schichten (28, 27, 26) ähnliche Größe und Form aufweisen und im Wesentlichen zueinander fluchten, und die Balunabschnitte (36, 43, 46) in jeder der ersten, zweiten und dritten leitenden Schichten (28, 27, 26) ähnliche Größe und Form aufweisen und zueinander fluchten; mehrere leitende Durchkontakte (76, 77, 78), die sich durch Öffnungen in den ersten und zweiten dielektrischen Schichten (17, 18) erstrecken, um die ersten, zweiten und dritten leitenden Schichten (28, 27, 26) elektrisch untereinander zu verbinden.
  13. Antennenelement (12) gemäß Anspruch 12, worin das gestreckte, leitende Element (67) zwischen den ersten und zweiten dielektrischen Schichten (17, 18) vorgesehen ist und einen Endabschnitt aufweist, der sich über den Schlitzabschnitt (47) der ersten leitenden Schicht (28) erstreckt und unmittelbar mit der ersten leitenden Schicht (28) an dem einen Ende des Schlitzabschnitts (47) darin elektrisch verbunden ist
  14. Antennenelement (12) gemäß Anspruch 13, worin die erste leitende Schicht (28) eine gestreckte, weitere Ausnehmung darin aufweist, die an einem Ende mit dem Schlitzabschnitt (47) in Verbindung steht, und worin sich das gestreckte, leitende Element (67) durch die weitere Ausnehmung erstreckt.
  15. Antennenelement (12) gemäß Anspruch 5, worin die vorgegeben Kurve für jeden Rand als eine Funktion der Eigenschaften des Balunabschnitts (46) und des Schlitzabschnitts (47) ausgestaltet ist, dass die Minimierung der Rücklaufdämpfung für elektromagnetische Signale gefördert wird, die innerhalb des Schlitzabschnitts (47) durch das leitende Element (67) induziert werden.
  16. Antennenelement (12) gemäß Anspruch 5, beinhaltend eine weitere Struktur, die angrenzend an ein Ende des Schlitzabschnitts (47) entfernt von dem besagten einen Ende davon angeordnet ist; und
    worin die vorgegeben Kurve als eine Funktion der Eigenschaften des Balunabschnitts (46) und des Schlitzabschnitts (47) und der weiteren Struktur ausgestaltet ist, dass die Minimierung der Rücklaufdämpfung für elektromagnetische Signale gefördert wird, die innerhalb des Schlitzabschnitts (47) durch das leitende Element (67) induziert werden.
  17. Antennenelement (12) gemäß Anspruch 5, worin die vorgegebene Kurve erste und zweite exponentielle Charakteristiken beinhaltet, die zugehörige unterschiedliche exponentielle Potenzen umfassen.
  18. Antennenelement (12) gemäß Anspruch 5, worin die vorgegebene Kurve mehrere exponentielle Charakteristiken beinhaltet, die zugehörige unterschiedliche exponentielle Potenzen umfassen.
  19. Antennenelement (12) gemäß Anspruch 5, worin die leitende Schicht (28) zwei elektrisch leitende Schichten (28, 27) beinhaltet, die auf gegenüberliegenden Seiten der dielektrischen Schicht (18) angeordnet sind, die leitenden Schichten darin zugehörige Ausnehmungen aufweisen, die zueinander fluchten und die jede ein Balunloch (49), der Teil des Balunabschnitts (46, 43) ist, und einen Schlitz beinhaltet, der Teil des Schlitzabschnitts (47, 44) ist; und
    worin die leitenden Schichten (28, 27) mehrere Durchkontakte (76, 77, 78) beinhalten, die sich jeweils zwischen den leitenden Schichten (28, 27) durch die dielektrische Schicht (18) erstrecken, die Durchkontakte (76, 77, 78) nahe jedes Randes des Schlitzabschnitts (47, 44) an beabstandeten Stellen daran entlang angeordnet sind.
  20. Antennenelement (12) gemäß Anspruch 1, worin der Schlitzabschnitt (47) eine Breite hat, die in einer ersten Sektion des Schlitzabschnitts (47), der in der Nähe des einen Endes davon angeordnet ist, am schmalsten ist, der Schlitzabschnitt (47) zweite und dritte Sektionen aufweist, die auf gegenüberliegenden Seiten der ersten Sektion angeordnet sind und die jeweils eine Breite aufweisen, die größer als die Breite der ersten Sektion ist
  21. Antennenelement (12) gemäß Anspruch 1, ferner umfassend:
    eine brechende Schicht (91), die sich etwa rechtwinklig zu einer Mittellinie des Schlitzabschnitts (47) an einer Stelle jenseits des weiteren Endes des Schlitzabschnitts (47) erstreckt, worin die brechende Schicht (91) aus einem Material hergestellt ist, welches durchlässig für und Brechung von elektromagnetischen Signalen in einem gewählten Frequenzbereich bewirkt, die sich in einer der entgegen gesetzten Richtungen entlang des Schlitzabschnitts (47) ausbreiten.
  22. Antennenelement (12) gemäß Anspruch 1, beinhaltend eine weitere Schicht (93), die sich etwa rechtwinklig zur Mittellinie des Schlitzabschnitts (47) erstreckt und die angrenzend an die brechende Schicht (91) auf einer Seite davon, die entfernt vom Schlitzabschnitt (47) liegt, angeordnet ist, worin die weitere Schicht (93) aus einem Material hergestellt ist, welches durchlässig für und Brechung von elektromagnetischen Signalen in einem gewählten Frequenzbereich bewirkt, die sich in einer der entgegen gesetzten Richtungen entlang des Schlitzabschnitts (47) ausbreiten.
  23. Antennenelement (12) gemäß Anspruch 2, worin die brechenden und weiteren Schichten (91, 93) zugehörige Abschnitte einer Antennenkuppel (13) sind.
  24. Antennenelement (12) gemäß Anspruch 1, worin die brechenden und weiteren Schichten (91, 93) unterschiedliche Dielektrizitätskonstanten aufweisen.
  25. Verfahren umfassend die Schritte:
    Schaffen eines Loches (49) durch eine dielektrische Schicht (18):
    Herstellen einer elektrisch leitenden Schicht (28) angrenzend an eine Oberfläche der dielektrischen Schicht (28) mit einer darin geätzten Ausnehmung, welche einen Balunabschnitt (46) und einen sich verengenden Schlitzabschnitt (47) beinhaltet, der Schlitzabschnitt (47) ein schmales Ende aufweist, das in Verbindung mit dem Balunabschnitt (46) steht und der Balunabschnitt mit dem Loch (49) durch die dielektrische Schicht (18) fluchtet; und
    Ausbilden eines gestreckten, leitenden Elements (67), das in direktem Kontakt mit der leitenden Schicht (28) verbunden ist und sich in derselben Ebene wie diese befindet, wobei das gestreckte, leitende Element (67) sich allgemein quer bezogen auf den Schlitzabschnitt (47) im Bereich des schmalen Endes erstreckt, worin der Schritt des Schaffens so durchgeführt wird, dass das Loch (49) durch die dielektrische Schicht (18) im Wesentlichen dieselbe Größe und Form wie der Balunabschnitt (46) der Ausnehmung in der leitenden Schicht (28) aufweist,
    worin das Verfahren den Schritt des Herstellens einer weiteren leitenden Schicht (27) beinhaltet, die darin eine weitere Ausnehmung aufweist, die weitere Ausnehmung einen weiteren Balunabschnitt (43) beinhaltet und einen weiteren Schlitzabschnitt (44) beinhaltet, der an einem Ende mit dem weiteren Balunabschnitt (43) in Verbindung steht, die Schlitzabschnitte (44, 47) der Ausnehmungen ähnliche Größe und Form aufweisen und im Wesentlichen zueinander fluchten und der weitere Balunabschnitt (43) im Wesentlichen dieselbe Größe und Form wie das Loch (49) durch die dielektrische Schicht (18) aufweist und mit diesem fluchtet.
  26. Verfahren gemäß Anspruch 25, beinhaltend den Schritt der Herstellung eines leitenden Streifens (51), der sich entlang eines Randes des Loches (49) in der dielektrischen Schicht (18) erstreckt, ausgenommen den Bereich der Schlitzabschnitte (44, 47) und der, der in elektrischem Kontakt mit jedem der leitenden Schichten (27, 28) steht.
  27. Verfahren gemäß Anspruch 25, worin der Balunabschnitt (46) in einer Form ausgebildet wird, die eine große und abrupte Unstetigkeit in der Impedanz zwischen dem Schlitzabschnitt (47) und dem Balunabschnitt (46) fördert, die Form des Balunabschnitts (46), einschließlich des Balunabschnitts (46) eine in etwa gerade Seite aufweist, das eine Ende des Schlitzabschnitts (47) in Verbindung mit dem Balunabschnitt (46) an einer Stelle zwischen den Enden der geraden Seite des Balunabschnitts (46) steht.
  28. Verfahren gemäß Anspruch 27, worin der Schritt des Schaffens so durchgeführt wird, dass der Balunabschnitt (46) eine Form aufweist, die in etwa rechteckig ist.
  29. Verfahren gemäß Anspruch 28, worin der Schritt des Schaffens so durchgeführt wird, dass der Balunabschnitt (46) in einer ersten Richtung, die allgemein parallel zum einen Ende des Schlitzabschnitts (47) ist, eine Bemaßung aufweist, die in etwa einem Viertel einer gewählten Wellenlänge entspricht und in einer zweiten Richtung, die im Wesentlichen rechtwinklig zur ersten Richtung ist, ein zweite Bemaßung aufweist, die wenigstens einem Viertel der gewählten Wellenlänge entspricht und kleiner als die Hälfte der gewählten Wellenlänge ist.
  30. Verfahren gemäß Anspruch 25, ferner umfassend:
    Bereitstellen der dielektrische Schicht (18) als erste und zweite dielektrische Schichten (17, 18), die sich in etwa parallel zueinander erstrecken;
    Herstellen der leitenden Schicht (28) als erste, zweite und dritte leitende Schichten (28, 27, 26), die sich in etwa parallel zueinander und zu den ersten und zweiten dielektrischen Schichten (18, 17) erstrecken, worin die erste dielektrische Schicht (18) zwischen den ersten und zweiten leitenden Schichten (28, 27) angeordnet ist, und die zweite dielektrische Schicht (17) zwischen den ersten und dritten leitenden Schichten angeordnet ist;
    Ausbilden in jeder der ersten, zweiten und dritten leitenden Schichten (28, 27, 26) eine zugehörige Ausnehmung, die einen Balunabschnitt (46, 43, 36) und einen Schlitzabschnitt (47, 44, 37) beinhaltet, der an einem Ende davon mit dem Balunabschnitt (46, 43, 36) in Verbindung steht, worin die Schlitzabschnitte (47, 44, 37) in jeder der ersten, zweiten und dritten leitenden Schichten (28, 27, 26) ähnliche Größe und Form aufweisen und im Wesentlichen zueinander fluchten, und die Balunabschnitte (46, 43, 36) in jeder der ersten, zweiten und dritten leitenden Schichten (28, 27, 26) ähnliche Größe und Form aufweisen und zueinander fluchten;
    Ausbilden mehrerer leitender Durchkontakte (76, 77, 78), die sich durch Öffnungen in den ersten und zweiten dielektrischen Schichten (18, 17) erstrecken, um die ersten, zweiten und dritten leitenden Schichten (28, 27, 26) elektrisch untereinander zu verbinden.
  31. Verfahren gemäß Anspruch 30, worin der Herstellungsschritt auf eine Weise durchgeführt wird, dass das gestreckte, leitende Element (67) zwischen den ersten und zweiten dielektrischen Schichten (18, 17) angeordnet ist und einen Endabschnitt aufweist, der sich über den Schlitzabschnitt (47) der ersten leitenden Schicht (28) erstreckt und unmittelbar mit der ersten leitenden Schicht (28) an dem einen Ende des Schlitzabschnitts (47) darin elektrisch verbunden ist.
  32. Verfahren gemäß Anspruch 25, worin der Schlitzabschnitt (47) mit einer Breite ausgebildet wird, die in einer ersten Sektion des Schlitzabschnitts (47), der in der Nähe des einen Endes davon angeordnet ist, am schmalsten ist, der Schlitzabschnitt (47) zweite und dritte Sektionen aufweist, die auf gegenüberliegenden Seiten der ersten Sektion angeordnet sind und die jeweils eine Breite aufweisen, die größer als die Breite der ersten Sektion ist.
  33. Verfahren gemäß Anspruch 25, ferner umfassend:
    Ausbilden einer brechenden Schicht (91), die sich etwa rechtwinklig zu einer Mittellinie des Schlitzabschnitts (47) an einer Stelle jenseits des weiteren Endes des Schlitzabschnitts (47) erstreckt, worin die brechende Schicht (91) aus einem Material hergestellt ist, welches durchlässig für und Brechung von elektromagnetischen Signalen in einem gewählten Frequenzbereich bewirkt, die sich in einer der entgegen gesetzten Richtungen entlang des Schlitzabschnitts (47) ausbreiten.
  34. Verfahren gemäß Anspruch 33, beinhaltend den Schritt des Ausbildens einer weitere Schicht (93), die sich etwa rechtwinklig zur Mittellinie des Schlitzabschnitts (47) erstreckt und die angrenzend an die brechende Schicht (91) auf einer Seite davon, die entfernt vom Schlitzabschnitt (47) liegt, angeordnet ist, worin die weitere Schicht (93) aus einem Material hergestellt ist, welches durchlässig für und Brechung von elektromagnetischen Signalen in einem gewählten Frequenzbereich bewirkt, die sich in einer der entgegen gesetzten Richtungen entlang des Schlitzabschnitts (47) ausbreiten.
EP02757580A 2001-09-04 2002-09-04 Breitbandige schlitzantenne und deren herstellungsverfahren und konfiguration Expired - Lifetime EP1425822B1 (de)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US23800 1987-03-09
US31741001P 2001-09-04 2001-09-04
US317410P 2001-09-04
US10/023,800 US6850203B1 (en) 2001-09-04 2001-12-14 Decade band tapered slot antenna, and method of making same
US22753 2001-12-14
US23229 2001-12-14
US10/023,229 US6867742B1 (en) 2001-09-04 2001-12-14 Balun and groundplanes for decade band tapered slot antenna, and method of making same
US10/022,753 US6963312B2 (en) 2001-09-04 2001-12-14 Slot for decade band tapered slot antenna, and method of making and configuring same
PCT/US2002/028108 WO2003021715A2 (en) 2001-09-04 2002-09-04 Decade band tapered slot antenna, and methods of making and configuring same

Publications (2)

Publication Number Publication Date
EP1425822A2 EP1425822A2 (de) 2004-06-09
EP1425822B1 true EP1425822B1 (de) 2006-10-04

Family

ID=27487140

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02757580A Expired - Lifetime EP1425822B1 (de) 2001-09-04 2002-09-04 Breitbandige schlitzantenne und deren herstellungsverfahren und konfiguration

Country Status (7)

Country Link
EP (1) EP1425822B1 (de)
AT (1) ATE341842T1 (de)
AU (1) AU2002323588A1 (de)
DE (1) DE60215204T2 (de)
ES (1) ES2274073T3 (de)
IL (2) IL160680A0 (de)
WO (1) WO2003021715A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11973270B2 (en) 2020-08-14 2024-04-30 Compass Technology Group Llc Flat lens antenna

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8564491B2 (en) * 2008-04-05 2013-10-22 Sheng Peng Wideband high gain antenna
WO2010129967A1 (en) * 2009-04-06 2010-11-11 Sheng Peng Wideband high gain 3g or 4g antenna
US9577330B2 (en) 2014-12-30 2017-02-21 Google Inc. Modified Vivaldi antenna with dipole excitation mode
WO2021030758A1 (en) 2019-08-14 2021-02-18 Compass Technology Group Llc Flat lens antenna

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4853704A (en) * 1988-05-23 1989-08-01 Ball Corporation Notch antenna with microstrip feed
US6008770A (en) * 1996-06-24 1999-12-28 Ricoh Company, Ltd. Planar antenna and antenna array

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11973270B2 (en) 2020-08-14 2024-04-30 Compass Technology Group Llc Flat lens antenna

Also Published As

Publication number Publication date
DE60215204T2 (de) 2007-01-18
WO2003021715A2 (en) 2003-03-13
WO2003021715A3 (en) 2003-08-28
DE60215204D1 (de) 2006-11-16
ES2274073T3 (es) 2007-05-16
EP1425822A2 (de) 2004-06-09
ATE341842T1 (de) 2006-10-15
AU2002323588A1 (en) 2003-03-18
IL160680A0 (en) 2004-08-31
IL160680A (en) 2009-12-24

Similar Documents

Publication Publication Date Title
US6963312B2 (en) Slot for decade band tapered slot antenna, and method of making and configuring same
US6867742B1 (en) Balun and groundplanes for decade band tapered slot antenna, and method of making same
US6317094B1 (en) Feed structures for tapered slot antennas
US6133879A (en) Multifrequency microstrip antenna and a device including said antenna
US5428364A (en) Wide band dipole radiating element with a slot line feed having a Klopfenstein impedance taper
US6292153B1 (en) Antenna comprising two wideband notch regions on one coplanar substrate
US6246377B1 (en) Antenna comprising two separate wideband notch regions on one coplanar substrate
US6281843B1 (en) Planar broadband dipole antenna for linearly polarized waves
EP2421092B1 (de) Triplate-Leitung-Zwischenschichtverbinder und flache Gruppenantenne
US8259027B2 (en) Differential feed notch radiator with integrated balun
US6850203B1 (en) Decade band tapered slot antenna, and method of making same
EP0922312B1 (de) Planare antennenstrahlungsstruktur mit quasi-abtastung, frequenzunabhängiger speisepunkt- impedanz
US11664589B2 (en) 5G MIMO antenna array with reduced mutual coupling
CN108511924B (zh) 一种用于毫米波通信系统的宽带端射天线阵列
US20040004580A1 (en) Wideband antenna with tapered surfaces
CN108736153B (zh) 一种三频低剖面贴片天线
CN212676469U (zh) 一种Vivaldi天线
Abdel-Rahman Design and development of high gain wideband microstrip antenna and DGS filters using numerical experimentation approach
EP1425822B1 (de) Breitbandige schlitzantenne und deren herstellungsverfahren und konfiguration
CN111180877B (zh) 一种基片集成波导喇叭天线及其控制方法
CA1256557A (en) Sandwich-wire antenna
CN113690636B (zh) 基于超表面的毫米波宽角扫描相控阵天线
CN111786118B (zh) 一种基于液晶可调材料的装备共型缝隙耦合天线
CN114284712A (zh) 一种基于人工表面等离激元的宽带高增益平面端射天线
EP1055264B1 (de) Breitbandiger übergang von mikrostreifenleitung auf parallelplatten-hohlleiter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040330

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: IRION, JAMES M., II

Inventor name: SCHUNEMAN, NICHOLAS A.

Inventor name: HODGES, RICHARD E.

17Q First examination report despatched

Effective date: 20050209

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061004

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20061004

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061004

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061004

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061004

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061004

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061004

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061004

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061004

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60215204

Country of ref document: DE

Date of ref document: 20061116

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070104

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070104

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070316

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
ET Fr: translation filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2274073

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070930

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070904

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061004

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170925

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20171002

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180712

Year of fee payment: 17

Ref country code: DE

Payment date: 20180821

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180829

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180904

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20191030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180905

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60215204

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190904