EP1423454A1 - Verfahren zur herstellung von polyurethan-weichschaumstoffen - Google Patents

Verfahren zur herstellung von polyurethan-weichschaumstoffen

Info

Publication number
EP1423454A1
EP1423454A1 EP02767218A EP02767218A EP1423454A1 EP 1423454 A1 EP1423454 A1 EP 1423454A1 EP 02767218 A EP02767218 A EP 02767218A EP 02767218 A EP02767218 A EP 02767218A EP 1423454 A1 EP1423454 A1 EP 1423454A1
Authority
EP
European Patent Office
Prior art keywords
ppm
compounds
flexible polyurethane
polyurethane foams
catalysts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02767218A
Other languages
English (en)
French (fr)
Inventor
Stephan Bauer
Kathrin Harre
Raimund Ruppel
Edward Bohres
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1423454A1 publication Critical patent/EP1423454A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2642Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the catalyst used
    • C08G65/2645Metals or compounds thereof, e.g. salts
    • C08G65/2663Metal cyanide catalysts, i.e. DMC's
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4866Polyethers having a low unsaturation value
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • B01J27/26Cyanides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0008Foam properties flexible
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/005< 50kg/m3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0083Foam properties prepared using water as the sole blowing agent

Definitions

  • the invention relates to a method for producing flexible polyurethane foams by reacting polyisocyanates with polyether alcohols.
  • polyurethanes has been known for a long time and has been described many times. It is usually carried out by reacting polyisocyanates with compounds having at least two hydrogen atoms reactive with isocyanate groups.
  • Polyols in particular polyether alcohols and / or polyester alcohols, are mostly used as compounds with two hydrogen atoms reactive with isocyanate groups.
  • the polyether alcohols are usually produced by catalytic addition of lower alkylene oxides, mostly ethylene oxide and / or propylene oxide, onto H-functional starter substances. Potassium hydroxide solution is mostly used as a catalyst in the technical production of polyether alcohols.
  • high molecular weight polyether alcohols such as are required especially when used for flexible polyurethane foams, side reactions occur with the use of potassium hydroxide as a catalyst, which lead to the formation of the so-called unsaturated constituents in the polyether alcohol.
  • These unsaturated components in the polyether alcohol are undesirable because they reduce the functionality of the polyether alcohols and also lead to odor problems in the polyether alcohols.
  • EP 759 450 (US Pat. No. 5,811,829) describes polyether alcohols produced by means of DMC catalysts and prepolymers prepared therefrom with a content of double metal cyanides in the range between 10 and 1000 ppm. These compounds should have better storage stability than those without this multimetal cyanide content. The use of these polyether alcohols and prepolymers for the production of flexible polyurethane foams is not described.
  • the core discoloration is observed especially at low densities of less than 40 kg / m3 and in particular of 30 kg / m3 due to the increasing temperature in the production of flexible polyurethane foams, in particular block flexible foams. In the worst case, the soft foams can burn off.
  • Non-ferrous metals include cadmium, cobalt, copper, nickel, lead, tin and zinc. These metals and their soluble compounds are mostly highly toxic to the human organism.
  • the object of the invention was to develop a process for the production of flexible polyurethane foams by reacting polyisocyanates with polyether alcohols which were produced by means of multimetal cyanide catalysts, in which no core discoloration occurs and which leads to foams and from which no heavy metal ions emerge can.
  • Production of flexible polyurethane foams can be used without core discolouration or other decomposition reactions if these contain a content of multimetal cyanide compounds in the range between 0.1 to 1000 ppm, in particular 1 to 500 ppm, preferably 10 to 200 ppm on
  • this corresponds to a cobalt content of 0.008 ppm to 80 ppm, preferably 0.8 ppm to 40 ppm and in particular 1.6 to 20 16 ppm and a zinc content of 0.02 ppm to 200 ppm, preferably 2 ppm to 100 ppm and in particular from 4 to 40 ppm, based on the standard polyether polyurethane flexible foam with a density of approx. 30 kg / m3.
  • the invention relates to a method for producing flexible polyurethane foams by reacting
  • a polyether alcohol which can be prepared by reacting alkylene oxides with H-functional starter substances in the presence of DMC catalysts and containing DMC catalysts in the range between 0 , 1 to 1000 ppm, based on the weight of the polyether alcohol, are used.
  • the invention further relates to flexible polyurethane foams without core discoloration, which can be produced by the process according to the invention.
  • the invention further relates to flexible polyurethane foams which have extractable heavy metals below the limits of the Oeko-Tex Standard 100 according to product classes 2 to 4 of:
  • the extraction is carried out with a foam body with the dimensions 100 x 100 x 50 mm using artificial sweat according to DIN 53160-2.
  • the welding simulant has a pH of 6.5 ⁇ 0.1.
  • composition of the sweat simulant is as follows:
  • Lactic acid (> 88% by mass) 1.0 g / 1
  • the foam body is stored in approx. 500 ml of artificial sweat in a migration cell with a cover for 24 hours at 40 ° C. After storage, the foam body is separated from the migration solution, the migration solution in the foam being removed by dripping.
  • the quantitative detection is determined using an atomic desoption spectrometer or inductively coupled plasma (ICP).
  • the invention further relates to the use of the flexible polyurethane foams produced by the process according to the invention for the manufacture of mattresses and furniture.
  • the multimetal cyanide compounds have no negative influence on the urethane formation reaction.
  • polyether alcohols used for the process according to the invention with a content of multimetal cyanide compounds in the range from 0.1 to 1000 ppm are, as described above, prepared by catalytic addition of alkylene oxides onto H-functional starter substances, using multimetal cyanide compounds as catalysts.
  • the multimetal cyanide compounds used to prepare the polyether alcohols used according to the invention are known. They mostly have the general formula (I)
  • M 1 is a metal ion selected from the group containing Zn2 +, Fe2 +, Co3 +, Ni2 +, Mn2 +, Co2 +, Sn2 +, Pb2 +, Mo4 +, Mo6 +, A13 +, V4 +, V5 +, Sr2 +, W4 +, W6 +, Cr2 +, Cr3 +, Cd2 +, Hg2 + , Pd2 +, Pt2 +, V2 +, Mg2 +, Ca2 +, Ba2 +, Cu2 +,
  • M 2 is a metal ion selected from the group containing Fe2 +, Fe3 +, Co2 +, Co3 +, Mn2 +, Mn3 +, V4 +, V5 +, Cr2 +, Cr3 +, Rh3 +, Ru2 +, Ir3 +
  • A is an anion selected from the group consisting of halide, hydroxide, sulfate, carbonate, cyanide, thiocyanate, isocyanate, cyanate, carboxylate, oxalate or nitrate,
  • X is an anion selected from the group consisting of halide, hydroxide, sulfate, carbonate, cyanide, thiocyanate, isocyanate, cyanate, carboxylate, oxalate or nitrate,
  • L is a water-miscible ligand selected from the group comprising alcohols aldehydes, ketones, ethers, polyether esters, ureas, amides, nitriles, lactones, lactams and sulfides,
  • e represents the coordination number of the ligand or 0
  • f represents a fractional or whole number greater than or equal to 0
  • h represents a fractional or whole number greater than or equal to 0.
  • These compounds are prepared by generally known processes, by combining the aqueous solution of a water-soluble metal salt with the aqueous solution of a hexacyanometallate compound, in particular a salt or an acid, also referred to below as educt solutions, and, if appropriate, during or after the combination gives a water soluble ligand.
  • a hexacyanometallate compound in particular a salt or an acid, also referred to below as educt solutions
  • Such catalysts and their preparation are described for example in EP 862,947 and DE 197,42,978.
  • Multimetal cyanide compounds are particularly advantageous for use as catalysts, and the corresponding acids are used in their preparation as cyanometallate compounds.
  • the multimetal cyanide compounds preferably have a crystalline structure. Their particle size is preferably in the range between 0.1 and 100 ⁇ m.
  • a particular advantage of the crystalline DMC catalysts, in particular those which have been prepared using cyanometalic acids, is their higher catalytic activity.
  • the polyether alcohols can be prepared using a smaller amount of catalyst. The amount used in this case mostly corresponds to the amount of multimetal cyanide compounds according to the invention in the finished polyether alcohol. The elaborate removal of the multimetal cyanide compounds from the polyether alcohol after production can thus be dispensed with.
  • multimetal cyanide compounds are preferably used in the form of suspensions, the multimetal cyanide compounds being suspended in organic compounds, preferably alcohols.
  • polyether alcohols used for the process according to the invention are produced, as stated, by adding alkylene oxides to H-functional starter substances using the catalysts described.
  • alkylene oxides can be used as alkylene oxides, for example ethylene oxide, propylene oxide, butylene oxide, styrene oxide, in particular ethylene oxide, propylene oxide and mixtures of the compounds mentioned are used as alkylene oxides.
  • H-functional compounds are used as starting substances.
  • alcohols with a functionality of 1 to 8, preferably 2 to 8, are used.
  • the starting substances used are, in particular, alcohols with a functionality of 2 to 4, in particular 2 and 3.
  • examples are ethylene glycol, propylene glycol, glycerin, trimethylolpropane, pentaerythritol.
  • alkylene oxides are added by means of DMC catalysts, it is advantageous to use their reaction products with alkylene oxides, in particular propylene oxide, together with or instead of the alcohols mentioned.
  • Such compounds preferably have a molecular weight of up to 500 g / mol.
  • the addition of the alkylene oxides in the production of these reaction products can take place with any catalysts, for example with basic catalysts.
  • the polyether alcohols for the production of flexible polyurethane foams mostly have a hydroxyl number in the range between 20 and 100 mgKOH / g.
  • the addition of the alkylene oxides in the production of the polyether alcohols used for the process according to the invention can be carried out by the known processes. It is possible that the polyether alcohols contain only one alkylene oxide. When using several alkylene oxides, a so-called blockwise addition, in which the alkylene oxides are added one after the other, or a so-called statistical addition, in which the alkylene oxides are metered in together, is possible. It is also possible to incorporate both block-by-block and statistical sections into the polyether chain in the production of the polyether alcohols.
  • Polyether alcohols having a high content of secondary hydroxyl groups and a content of ethylene oxide units in the polyether chain of at most 30% by weight, based on the weight of the polyether alcohol are preferably used for the production of flexible polyurethane foams.
  • These polyether alcohols preferably have a propylene oxide block at the chain end.
  • polyether alcohols with a high content of primary hydroxyl groups and an ethylene oxide end block in an amount of ⁇ 20% by weight, based on the weight of the polyether alcohol are used for the production of flexible molded polyurethane foams.
  • the alkylene oxides are preferably added under the conditions customary for this, at temperatures in the range from 60 to 180 ° C., preferably between 90 to 140 ° C., in particular between 100 to 130 ° C. and pressures in the range from 0 to 20 bar in the range from 0 to 10 bar and in particular in the range from 0 to 5 bar.
  • the mixture of starter substance and DMC catalyst can be pretreated by stripping before the start of the alkoxylation according to the teaching of WO 98/52689.
  • the polyether alcohol is worked up by customary processes in that the unreacted alkylene oxides and volatile constituents are removed, usually by distillation, steam or gas stripping and or other methods of deodorization. If necessary, filtration can also be carried out.
  • the DMC catalyst content according to the invention in the polyether alcohol can, as stated, be adjusted in various ways. It is thus possible, before the start of the reaction, to use the amount of DMC catalyst which corresponds to the content of this compound in the end product according to the invention. If a higher amount of DMC catalyst is used in the production of the polyether alcohols, the excess fraction can be removed from the polyether alcohol after the reaction.
  • the usual and known methods of cleaning the polyether alcohols are suitable for this, for example the filtration, which can be carried out as a deep filtration or by means of a membrane, or sedimentation, for example by means of centrifugation.
  • the polyether alcohols thus produced are, as described, preferably used as starting materials for the process according to the invention for the production of flexible polyurethane foams.
  • isocyanates with two or more isocyanate groups in the molecule are used as polyisocyanates.
  • Both aliphatic isocyanates such as hexamethylene diisocyanate (HDI) or isophorone diisocyanate (IPDI), or preferably aromatic isocyanates, such as tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI) or mixtures of diphenylmethane diisocyanate and polymethylene polyphenylene polyisocyanates (crude) can be used.
  • TDI tolylene diisocyanate
  • MDI diphenylmethane diisocyanate
  • CAde polymethylene polyphenylene polyisocyanates
  • isocyanates which have been modified by the incorporation of urethane, uretdione, isocyanurate, allophanate, uretonimine and other groups, so-called modified isocyanates.
  • TDI is used in particular for the production of flexible flexible foams
  • MDI and its higher homologues are preferably used in the production of molded foams.
  • Polyols can preferably be used as compounds having at least two groups which are reactive with isocyanate groups and are used in a mixture with the polyether alcohols according to the invention.
  • the polyether polyols and the polyester polyols are of the greatest technical importance.
  • the polyether polyols used for the production of polyurethanes are mostly produced by base-catalyzed addition of alkylene oxides, in particular ethylene oxide and / or propylene oxide, onto H-functional starter substances.
  • Polyester polyols are usually made by esterifying polyfunctional carboxylic acids with polyfunctional alcohols.
  • the compounds with at least two groups reactive with isocyanate groups also include the chain extenders and / or crosslinking agents, which can optionally also be used. These are at least two-functional amines and / or alcohols with molecular weights in the range from 60 to 400.
  • the blowing agents used are mostly water, at the reaction temperature of the urethane reaction gaseous compounds which are inert to the starting materials of the polyurethanes, so-called physically active blowing agents, and mixtures thereof.
  • the most common physical blowing agents are hydro- Substances with 2 to 6 carbon atoms, halogenated hydrocarbons with 2 to 6 carbon atoms, ketones, acetals, ethers, inert gases such as carbon dioxide or noble gases are used.
  • a catalysts and / or metal compounds, in particular heavy metal salts and / or organometallic compounds, are preferably used as catalysts.
  • known tertiary amines and / or with organic metal compounds are used as catalysts.
  • organic metal compounds e.g. Tin compounds in question, such as
  • Tin (II) salts of organic carboxylic acids e.g. Tin (II) acetate, tin (I ⁇ ) octoate, tin (II) ethylhexoate and tin (II) laurate and the dialkyltin (IV) salts of organic carboxylic acids, e.g. Dibutyltin diacetate, dibutyltin dilaurate, dibutyltin maleate and dioctyltin diacetate.
  • organic amines which are customary for this purpose are: triethylamine, 1,4-diazabicyclo [2,2,2] octane, tributylamine, dimethylbenzylamine, N, N, N ', N'-tetramethylethylenediamine, N , N, N ', N' -tetramethyl-butanediamine, N, N, N ', N' -tetramethyl-hexane-1,6-diamine, dimethylcyclohexylamm.
  • the catalysts described can be used individually or in the form of mixtures.
  • Release agents, flame retardants, dyes, fillers and / or reinforcing agents are used as auxiliaries and / or additives.
  • the polyurethanes can be produced by the so-called one-shot process or by the prepolymer process.
  • the flexible polyurethane foams can be block foams as well as molded foams.
  • the soft foams produced in the amount according to the invention in the presence of multimetal cyanide compounds in the polyether alcohols show a significantly improved curing behavior without crack formation compared to those which had a lower or higher content of multimetal cyanide compounds.
  • the flexible polyurethane foams produced by the process according to the invention show no or only an extremely low exposure to heavy metals even when exposed to moisture.
  • the metals are effectively fixed in the foam matrix.
  • the polyether alcohols according to the invention can be processed to flexible polyurethane foams with a high open cell or high air permeability and a trouble-free foam structure without crack formation and core combustion.
  • Example 2 Determination of the migration of cobalt from the foam material, according to Example 1
  • Simulants / test migration agents Artificial sweat according to DIN 53160 Migration conditions: 24 h at 40 ° C; the two test specimens - are each stored in approx. 500 ml artificial sweat in a migration cell with a cover -. Determination method: After storage and cooling to room temperature, the test specimen and migration solution were separated, the migration solution in the foam body being removed by dripping. Cobalt was determined by atomic spectroscopy in the Migrat.
  • the initial weight of the initial weight of the test specimens can be the maximum amount of extractable cobalt (Co) M ig rat i on, derived.
  • the value is w (Co) M i gra ti on . ⁇ 0.3 ⁇ g / kg.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Toxicology (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

Gegenstand der Erfindung ist ein Verfahren zur Herstellung von polyurethan-Weichschaumstoffen durch Umsetzung von a) polyisocyanaten mit b) Verbindungen mit mindestens zwei mit Isocyanatgruppen reaktiven Wasserstoffatomen in Gegenwart von c) Treibmitteln, dadurch gekennzeichnet, dass als Verbindungen mit mindestens zwei mit Isocyanatgruppen reaktiven Wasserstoffatomen b) mindestens ein polyetheralkohol, herstellbar durch Umsetzung von Alkylen- oxiden mit H-funktionellen Startsubstanzen in Gegenwart von DMC- Katalysatoren, mit einem Gehalt an DMC-Katalysatoren im Bereich zwischen 0,1 bis 1000 ppm, bezogen auf das Gewicht des polyether- 20 alkohols, eingesetzt werden.

Description

Verfahren zur Herstellung von Polyurethan-Weichschaumstoffen
Beschreibung
Die Erfindung betrifft ein Verfahren zur Herstellung von Polyurethan-Weichschaumstoffen durch Umsetzung von Polyisocyanaten mit Polyetheralkoholen.
Die Herstellung von Polyurethanen ist seit langen bekannt und vielfach beschrieben. Sie erfolgt üblicherweise durch Umsetzung von Polyisocyanaten mit Verbindungen mit mindestens zwei mit Isocyanatgruppen reaktiven Wasserstoffatomen. Als Verbindungen mit zwei mit Isocyanatgruppen reaktiven Wasserstoffatomen werden zumeist Polyole, insbesondere Polyetheralkohole und/oder Polyesteralkohole eingesetzt.
Die Polyetheralkohole werden üblicherweise durch katalytische Anlagerung von niederen Alkylenoxiden, zumeist Ethylenoxid und/ oder Propylenoxid, an H-funktionelle Startsubstanzen hergestellt. Als Katalysator wird bei der technischen Herstellung von Polyetheralkoholen zumeist Kalilauge eingesetzt. Bei der Herstellung von hochmolekularen Polyetheralkoholen, wie sie besonders beim Einsatz für Polyurethan-Weichschaumstoffe benötigt werden, laufen beim Einsatz von Kalilauge als Katalysator Nebenreaktionen ab, die zur Ausbildung der sogenannten ungesättigten Bestandteile im Polyetheralkohol führen. Diese ungesättigten Bestandteile im Polyetheralkohol sind unerwünscht, da sie die Funktionalität der Polyetheralkohole herabsetzen und auch zu Geruchsproblemen der Polyetheralkohole führen.
Zur Behebung dieses Mangels wird der Einsatz alternativer Katalysatoren zur Anlagerung der Alkylenoxide vorgeschlagen. Ein häufig beschriebener Katalysatortyp sind Multimetallcyanid- katalysatoren, häufig auch als DMC-Katalysatoren bezeichnet. Derartige Katalysatoren sind beispielsweise beschrieben in EP 862 947 oder WO 99/16775. Bei der Verwendung derartiger Katalysatoren wird die Bildung der ungesättigten Bestandteile stark unterdrückt.
Schwierig bei der Verwendung von DMC-Katalysatoren ist deren Abtrennung vom fertigen Polyetheralkohol nach der Umsetzung. Eine Möglichkeit zur Abtrennung ist es, den Katalysator chemisch zu desaktivieren und danach vom Polyetheralkohol abzutrennen. Da die Multimetallcyanidkatalysatoren zumeist in sehr feinverteilter Form im Polyetheralkohol vorliegt, ist die Abtrennung sehr schwierig. In US 5,416,241 wird ein Verfahren zur Herstellung von Polyetheralkoholen mittels DMC-Katalysatoren beschrieben. Nach der Umsetzung wird der Katalysator durch Zusatz von Alkaliverbindungen unlöslich gemacht und danach filtriert. In dem in US 5,248,833 beschriebenen Verfahren wird der DMC-Katalysator mit Chelat- bildner ausgefällt und anschließend filtriert.
In EP 759 450 (US 5,811,829) werden mittels DMC-Katalysatoren hergestellte Polyetheralkohole sowie daraus hergestellte Pre- polymere mit einem Gehalt an Doppel etallcyaniden im Bereich zwischen 10 und 1000 ppm beschrieben. Diese Verbindungen sollten eine bessere Lagerstabilität aufweisen als solche ohne diesen Gehalt an Multimetallcyaniden. Eine Verwendung dieser Polyetheralkohole und Prepolymere zur Herstellung von Polyurethan-Weich- Schaumstoffen wird nicht beschrieben.
Im Band 7 "Polyurethane", Carl-Hanser-Verlag München Wien, 3. Auflage 1993, Seite 204 wird beschrieben, dass Verunreinigungen in den Rohstoffen, z.B. Buntmetalle und Oxidationsmittel, zu Kernverfärbungen in den daraus hergestellten Polyurethan-Weichschaumstoff führen.
Die Kernverfärbung wird besonders bei niedrigen Dichten von unter 40 kg/m3 und insbesondere von 30 kg/m3 aufgrund der zunehmenden Temperatur bei der Herstellung von Polyurethan-Weichschaumstoffen, insbesondere von Blockweichschaumstoffen, beobachtet. Im ungünstigsten Fall kann es zum Abbrennen der Weichschaumstoffe kommen.
Zu den Buntmetallen werden beispielsweise Cadmium, Cobalt, Kupfer, Nickel, Blei, Zinn und Zink gezählt. Diese Metalle sowie ihre löslichen Verbindungen sind für den menschlichen Organismus zumeist stark toxisch.
Daher ist es bei der Verwendung von Polyetheralkoholen, die mittels DMC-Katalysatoren hergestellt wurden, notwendig, dass aus den Schaumstoffen keine Schwermetalle austreten. Dies gilt in besonderem Maße bei der Verwendung der Polyetheralkohole zur Herstellung von Polyurethan-Weichschaumstoffen. Da die Polyurethan- Weichschaumstoffe häufig in Matratzen und Liegemöbeln verwendet werden, darf auch es auch bei Einwirkung von Feuchtigkeit, wie sie beispielsweise durch Schweiß entsteht, auf die Schaumstoffe zu keinerlei Exposition von Schwermetallen aus dem Schaumstoff komme . Aufgabe der Erfindung war es, ein Verfahren zur Herstellung von Polyurethan-Weichschaumstoffen durch Umsetzung von Polyisocyanaten mit Polyetheralkoholen, die mittels Multimetallcyanid- Katalysatoren hergestellt wurden, zu entwickeln, bei dem keine 5 Kernverfärbungen auftreten und das zu Schaumstoffen führt, und aus denen keine Schwermetallionen austreten können.
Überraschenderweise wurde gefunden, dass Polyetheralkohole, die mittels Multimetallcyanid-Katalysatoren hergestellt wurden, zur
10 Herstellung von Polyurethan-Weichschaumstoffen eingesetzt werden können, ohne dass es zu Kernverfärbungen oder anderen Zersetzungsreaktionen kommt, wenn diese einen Gehalt an Multimetall- cyanidverbindungen im Bereich zwischen 0,1 bis 1000 ppm, insbesondere 1 bis 500 ppm bevorzugt 10 bis 200 ppm, bezogen auf
15 das Gewicht des Polyetheralkohols, aufweisen.
Dieses entspricht beim Einsatz der üblicherweise verwendeten Zinkhexacyanocobaltate einem Cobaltgehalt von 0,008 ppm bis 80 ppm, bevorzugt 0,8 ppm bis 40 ppm und insbesondere 1,6 bis 20 16 ppm und einem Zinkgehalt von 0,02 ppm bis 200 ppm, bevorzugt 2 ppm bis 100 ppm und insbesondere von 4 bis 40 ppm, bezogen auf den Standard-Polyether-Polyurethan-Weichschaumstoff mit einer Dichte von ca. 30 kg/m3.
25 Gegenstand der Erfindung ist ein Verfahren zur Herstellung von Polyurethan-Weichschaumstoffen durch Umsetzung von
a) Polyisocyanaten mit b) Verbindungen mit mindestens zwei mit Isocyanatgruppen 30 reaktiven Wasserstoffatomen in Gegenwart von c) Treibmitteln,
dadurch gekennzeichnet, dass als Verbindungen mit mindestens zwei mit Isocyanatgruppen reaktiven Wasserstoffatomen b) mindestens 35 ein Polyetheralkohol, herstellbar durch Umsetzung von Alkylen- oxiden mit H-funktionellen Startsubstanzen in Gegenwart von DMC- Katalysatoren, mit einem Gehalt an DMC-Katalysatoren im Bereich zwischen 0,1 bis 1000 ppm, bezogen auf das Gewicht des Polyetheralkohols, eingesetzt werden.
40
Gegenstand der Erfindung sind weiterhin Polyurethan-Weichschaumstoffe ohne Kernverfärbung, herstellbar nach dem erfindungsgemäßen Verfahren.
45 Gegenstand der Erfindung sind weiterhin Polyurethan-Weichschaumstoffe, die extrahierbare Schwermetalle unterhalb der Grenzen des Öko-Tex Standard 100 nach Produktklasse 2 bis 4 aufweisen von:
Blei (Pb) 1,0 ppm
Cadmium (Cd)l 0,1 ppm
Chrom (Cr) 2,0 ppm
Cobalt (Co) 4,0 ppm
Kupfer (Cu) 50,0 ppm Nickel (Ni) 4,0 ppm
Quecksilber (Hg) 0,02 ppm
und insbesondere Polyurethan-Weichschaumstoffe, die extrahierbare Schwermetalle unterhalb der Grenzen des Öko-Tex-Standard 100 nach Produktklasse 1 aufweisen von:
Blei (Pb) 0,2 ppm
Cadmium (Cd)l 0,1 ppm
Chrom (Cr) 1,0 ppm Cobalt (Co) 1,0 ppm
Kupfer (Cu) 25,0 ppm
Nickel (Ni) 1,0 ppm
Quecksilber (Hg) 0,02 ppm
Die Extraktion wird mit einem Schaumkörper mit den Maßen 100 x 100 x 50 mm unter Verwendung von künstlichem Schweiß, gemäß DIN 53160-2 durchgeführt. Das Schweißsimulanz hat einen pH-Wert von 6,5 ± 0,1.
Die Zusammensetzung Schweißsimulanzes ist wie folgt:
Natriumchlorid 5,0 g/1
Harnstoff 1,0 g/1,
Milchsäure (> 88 % Massenanteil) 1,0 g/1
Ammoniumhydroxid-Lösung
(1 % Massenanteil) Zugabe bis pH = 6,5 ± 0,1
Zur Bestimmung der extrahierbaren Schwermetalle wird der Schaum- körper in ca. 500 ml künstlichem Schweiß in einer Migrationszelle mit Abdeckung 24 h bei 40°C gelagert. Nach Lagerung wird der Schaumkörper von der Migrationslösung getrennt, wobei die Migrationslösung im Schaumstoff durch Abtropfen entfernt wurde. Der quantitative Nachweis wird mit einem Atomdesoptionsspektro- eter oder durch Induktiv gekoppeltes Plasma (ICP) bestimmt. Gegenstand der Erfindung ist weiterhin die Verwendung der nach dem erfindungsgemäßen Verfahren hergestellten Polyurethan-Weichschaumstoffe zur Herstellung von Matratzen und Möbeln.
Überraschenderweise üben die Multimetallcyanidverbindungen keinerlei negativen Einfluss auf die Urethan-Bildungsreaktion aus.
Die für das erfindungsgemäße Verfahren eingesetzten Polyetheralkohole mit einem Gehalt an Multimetallcyanidverbindungen im Bereich von 0,1 bis 1000 ppm werden, wie oben beschrieben, durch katalytische Anlagerung von Alkylenoxiden an H-funktionelle Startsubstanzen hergestellt, wobei als Katalysatoren Multimetallcyanidverbindungen eingesetzt werden, hergestellt.
Die zur Herstellung der erfindungsgemäß eingesetzten Polyetheralkohole verwendeten Multimetallcyanidverbindungen sind bekannt. Sie haben zumeist die allgemeine Formel (I)
Ml a[M2(CN)b(A)c]d • fMlgXn • h(H20) • eL, (I)
wobei
M1 ein Metallion, ausgewählt aus der Gruppe, enthaltend Zn2+, Fe2+, Co3+, Ni2+, Mn2+, Co2+, Sn2+, Pb2+, Mo4+, Mo6+, A13+, V4+, V5+, Sr2+, W4+, W6+, Cr2+, Cr3+, Cd2+, Hg2+, Pd2+, Pt2+, V2+, Mg2+, Ca2+, Ba2+, Cu2+,
M2 ein Metallion, ausgewählt aus der Gruppe, enthaltend Fe2+, Fe3+, Co2+, Co3+, Mn2+, Mn3+, V4+, V5+, Cr2+, Cr3+, Rh3+, Ru2+, Ir3+
bedeuten und M1 und M2 gleich oder verschieden sind,
A ein Anion, ausgewählt aus der Gruppe, enthaltend Halogenid, Hydroxyd, Sulfat, Carbonat, Cyanid, Thiocyanat, Isocyanat, Cyanat, Carboxylat, Oxalat oder Nitrat,
X ein Anion, ausgewählt aus der Gruppe, enthaltend Halogenid, Hydroxyd, Sulfat, Carbonat, Cyanid, Thiocyanat, Isocyanat, Cyanat, Carboxylat, Oxalat oder Nitrat,
L ein mit Wasser mischbarer Ligand, ausgewählt aus der Gruppe, enthaltend Alkohole Aldehyde, Ketone, Ether, Polyether Ester, Harnstoffe, Amide, Nitrile, Lactone, Lactame und Sulfide,
bedeuten, sowie a, b, c, d, g und n so ausgewählt sind, dass die Elektro- neutralität der Verbindung gewährleistet ist, und
e die Koordinationszahl des Liganden oder 0 bedeutet,
f eine gebrochene oder ganze Zahl größer oder gleich 0 bedeutet, sowie
h eine gebrochene oder ganze Zahl größer oder gleich 0 bedeutet.
Die Herstellung dieser Verbindungen erfolgt nach allgemein bekannten Verfahren, indem man die wäßrige Lösung eines wasserlöslichen Metallsalzes mit der wäßrigen Lösung einer Hexacyano- metallatverbindung, insbesondere eines Salzes oder einer Säure, im folgenden auch als Eduktlösungen bezeichnet, vereinigt und gegebenenfalls dazu während oder nach der Vereinigung einen wasserlöslichen Liganden gibt. Solche Katalysatoren sowie ihre Herstellung werden beispielsweise in EP 862,947 und DE 197,42,978 beschrieben.
Besonders vorteilhaft für den Einsatz als Katalysatoren sind Multimetallcyanidverbindungen, bei deren Herstellung als Cyano- metallatverbindung die entsprechenden Säuren eingesetzt werden.
Die Multimetallcyanidverbindungen haben vorzugsweise einen kristallinen Aufbau. Ihre Partikelgröße liegt vorzugsweise im Bereich zwischen 0,1 und 100 um. Ein besonderer Vorteil der kristallinen DMC-Katalysatoren, insbesondere von solchen, die unter Verwendung von Cyanometallatsäuren hergestellt wurden, besteht in ihrer höheren katalytischen Aktivität . Dadurch kann die Herstellung der Polyetheralkohole mit einer geringeren Menge an Katalysator durchgeführt werden. Die in diesem Fall eingesetzte Menge entspricht zumeist der erfindungsgemäßen Menge an Multi- metallcyanidverbindungen im fertigen Polyetheralkohol . Auf die aufwendige Abtrennung der Multimetallcyanidverbindungen aus dem Polyetheralkohol nach der Herstellung kann somit verzichtet werden. Es ist jedoch auch möglich, eine größere Menge an Multimetallcyanidverbindungen einzusetzen und nach der Synthese des Polyetheralkohole die Menge der Multimetallcyanidverbindung im Polyol so weit abzureichern, dass der Polyetheralkohol die für das erfindungsgemäße Verfahren nötige Menge an Multimetallcyanidverbindungen enthält. Die Multimetallcyanidverbindungen werden vorzugsweise in Form von Suspensionen eingesetzt, wobei die Multimetallcyanidverbindungen in organischen Verbindungen, vorzugsweise Alkoholen, suspendiert werden.
Die Herstellung der für das erfindungsgemäße Verfahren eingesetzten Polyetheralkohole erfolgt, wie ausgeführt, indem man Alkylenoxide unter Verwendung der beschriebenen Katalysatoren an H-funktionelle Startsubstanzen anlagert.
Als Alkylenoxide können alle bekannten Alkylenoxide verwendet werden, beispielsweise Ethylenoxid, Propylenoxid, Butylenoxid, Styroloxid, insbesondere werden als Alkylenoxide eingesetzt Ethylenoxid, Propylenoxid und Mischungen aus den genannten Verbindungen.
Als Startsubstanzen kommen H-funktionelle Verbindungen zum Einsatz . Insbesondere werden Alkohole mit einer Funktionalität von 1 bis 8, vorzugsweise 2 bis 8, eingesetzt. Zur Herstellung von Polyetheralkoholen, die für Polyurethan-Weichschaumstoffe eingesetzt werden, kommen als Startsubstanzen insbesondere Alkohole mit einer Funktionalität von 2 bis 4, insbesondere von 2 und 3, zum Einsatz. Beispiele sind Ethylenglykol, Propylenglykol, Glyzerin, Trimethylolpropan, Pentaerythrit . Bei der Anlagerung der Alkylenoxide mittels DMC-Katalysatoren ist es vorteilhaft, zusammen mit oder an Stelle von den genannten Alkoholen deren Umsetzungsprodukte mit Alkylenoxiden, insbesondere Propylenoxid, einzusetzen. Derartige Verbindungen haben vorzugsweise eine Molmasse bis 500 g/mol. Die Anlagerung der Alkylen- oxide bei der Herstellung dieser Umsetzungsprodukte kann mit beliebigen Katalysatoren erfolgen, beispielsweise mit basischen Katalysatoren. Die Polyetheralkohole für die Herstellung von Polyurethan-Weichschaumstoffen haben zumeist eine Hydroxylzahl im Bereich zwischen 20 und 100 mgKOH/g.
Die Anlagerung der Alkylenoxide bei der Herstellung der für das erfindungsgemäße Verfahren eingesetzten Polyetheralkohole kann nach den bekannten Verfahren erfolgen. So ist es möglich, dass die Polyetheralkohole nur ein Alkylenoxid enthalten. Bei Verwendung von mehreren Alkylenoxiden ist eine sogenannte blockweise Anlagerung, bei der die Alkylenoxide einzeln nacheinander angelagert werden, oder eine sogenannte statistische Anlagerung, bei der die Alkylenoxide gemeinsam zudosiert werden, möglich. Es ist auch möglich, bei der Herstellung der Polyetheralkohole sowohl blockweise als auch statistische Abschnitte in die Poly- etherkette einzubauen. Vorzugsweise werden zur Herstellung von Polyurethan-Blockweichschaumstoffen Polyetheralkohole mit einem hohen Gehalt an sekundären Hydroxylgruppen und einem Gehalt an Ethylenoxideinheiten in der Polyetherkette von maximal 30 Gew.-%, bezogen auf das Gewicht des Polyetheralkohols, verwendet. Vorzugsweise haben diese Polyetheralkohole am Kettenende einen Propylenoxidblock. Für die Herstellung von Polyurethan-Formweichschaumstoffen werden insbesondere Polyetheralkohole mit einem hohen Gehalt an primären Hydroxylgruppen und einem Ethylenoxid-Endblock in einer Menge von < 20 Gew.-%, bezogen auf das Gewicht des Polyetheralkohols, verwendet .
Die Anlagerung der Alkylenoxide erfolgt bei den hierfür üblichen Bedingungen, bei Temperaturen im Bereich von 60 bis 180°C, bevor- zugt zwischen 90 bis 140°C, insbesondere zwischen 100 bis 130°C und Drücken im Bereich von 0 bis 20 bar, bevorzugt im Bereich von 0 bis 10 bar und insbesondere im Bereich von 0 bis 5 bar. Die Mischung aus Startsubstanz und DMC-Katalysator kann vor Beginn der Alkoxylierung gemäß der Lehre von WO 98/52689 durch Strippen vorbehandelt werden.
Nach Beendigung der Anlagerung der Alkylenoxide wird der Polyetheralkohol nach üblichen Verfahren aufgearbeitet, indem die nicht umgesetzten Alkylenoxide sowie leicht flüchtige Bestand- teile entfernt werden, üblicherweise durch Destillation, Wasserdampf- oder Gasstrippen und oder anderen Methoden der Desodorierung. Falls erforderlich, kann auch eine Filtration erfolgen.
Der erfindungsgemäße Gehalt an DMC-Katalysator im Polyetheralkohol kann, wie ausgeführt, durch verschiedene Möglichkeiten eingestellt werden. So ist es möglich, vor Beginn der Reaktion die Menge an DMC-Katalysator zur Reaktion einzusetzen, die dem erfindungsgemäßen Gehalt dieser Verbindung im Endprodukt ent- spricht. Bei Einsatz einer höheren Menge an DMC-Katalysator bei der Herstellung der Polyetheralkohole kann der überschüssige Anteil nach der Umsetzung aus dem Polyetheralkohol entfernt werden. Hierfür sind die üblichen und bekannten Methoden der Reinigung der Polyetheralkohole geeignet, beispielsweise die Filtration, die als Tiefenfiltration oder mittels einer Membran durchgeführt werden kann, oder die Sedimentation, beispielsweise mittels Zentrifugieren. Die so hergestellten Polyetheralkohole werden, wie beschrieben, vorzugsweise als Ausgangsstoffe für das erfindungsgemäße Verfahren zur Herstellung von Polyurethan-Weichschaumstoffen eingesetzt.
Zu den übrigen für das erfindungsgemäße Verfahren eingesetzten Ausgangsstoffen ist im einzelnen folgendes zu sagen.
Als Polyisocyanate kommen hierbei alle Isocyanate mit zwei oder mehreren Isocyanatgruppen im Molekül zum Einsatz . Dabei können sowohl aliphatische Isocyanate, wie Hexamethylendiisocyanat (HDI) oder Isophorondiisocyanat (IPDI), oder vorzugsweise aromatische Isocyanate, wie Toluylendiisocyanat (TDI) , Diphenylmethandiiso- cyanat (MDI) oder Mischungen aus Diphenylmethandiisocyanat und Polymethylenpolyphenylenpolyisocyanaten (Roh-MDI) verwendet werden. Es ist auch möglich, Isocyanate einzusetzen, die durch den Einbau von Urethan-, Uretdion-, Isocyanurat-, Allophanat-, Uretonimin- und anderen Gruppen modifiziert wurden, sogenannte modifizierte Isocyanate.
Für die Herstellung von Blockweichschaumstoffen wird insbesondere TDI eingesetzt, während bei der Herstellung von Formschäumen vorzugsweise MDI und seine höheren Homologen eingesetzt werden.
Als Verbindungen mit mindestens zwei mit Isocyanatgruppen reaktiven Gruppen, die im Gemisch mit den erfindungsgemäßen Polyetheralkoholen eingesetzt werden, können vorzugsweise Poly- ole verwendet werden. Unter den Polyolen haben die Polyether- polyole und die Polyesterpolyole die größte technische Bedeutung. Die zur Herstellung von Polyurethanen eingesetzten Polyether- polyole werden zumeist durch basisch katalysierte Anlagerung von Alkylenoxiden, insbesondere Ethylenoxid und/oder Propylenoxid, an H-funktionelle Startsubstanzen hergestellt. Polyesterpolyole werden zumeist durch Veresterung von mehrfunktionellen Carbon- säuren mit mehrfunktionellen Alkoholen hergestellt.
Zu den Verbindungen mit mindestens zwei mit Isocyanatgruppen reaktiven Gruppen gehören auch die Kettenverlängerer und/oder Vernetzer, die gegebenenfalls mit eingesetzt werden können. Dabei handelt es sich um mindestens zweifunktionelle Amine und/oder Alkohole mit Molekulargewichten im Bereich von 60 bis 400.
Als Treibmittel werden zumeist Wasser, bei der Reaktionstempera- tur der Urethanreaktion gasförmige, gegenüber den Ausgangsstoffen der Polyurethane inerte Verbindungen, sogenannte physikalisch wirkende Treibmittel, sowie Gemische daraus eingesetzt. Als physikalisch wirkende Treibmittel werden zumeist Kohlenwasser- Stoffe mit 2 bis 6 Kohlenstoffatomen, halogenierte Kohlenwasserstoffe mit 2 bis 6 Kohlenstoffatomen, Ketone, Acetale, Ether, Inertgase wie Kohlendioxid oder Edelgase eingesetzt.
Als Katalysatoren werden vorzugsweise A inverbindungen und/oder Metallverbindungen, insbesondere Schwermetallsalze und/oder metallorganische Verbindungen, eingesetzt. Insbesondere werden als Katalysatoren bekannte tertiäre A ine und/oder mit organische Metallverbindungen verwendet. Als organische Metallverbindungen kommen z.B. Zinnverbindungen in Frage, wie beispielsweise
Zinn- (II) -salze von organischen Carbonsäuren, z.B. Zinn- (II)- acetat, Zinn- (IΙ)-octoat, Zinn-(II)-ethylhexoat und Zinn-(II)- laurat und die Dialkylzinn-(IV) -salze von organischen Carbonsäuren, z.B. Dibutyl-zinndiacetat, Dibutylzinndilaurat, Dibutyl- zinn-maleat und Dioctylzinn-diacetat . Als für diesen Zweck übliche organische Amine seien beispielhaft genannt: Triethyl- amin, 1, 4-Diazabicyclo- [2,2,2] -octan, Tributylamin, Dimethyl- benzylamin, N,N,N' ,N'-Tetramethylethylendiamin, N,N,N' ,N' -Tetramethyl-butandiamin, N,N,N' ,N' -Tetramethyl-hexan-1, 6-diamin, Dimethylcyclohexylamm. Die beschriebenen Katalysatoren können einzeln oder in Form von Mischungen eingesetzt werden.
Für das erfindungsgemäße Verfahren ist es bevorzugt, organische Metallverbindungen als Katalysatoren einzusetzen, da diese mit den Multimetallcyanidverbindungen am besten verträglich sind.
Als Hilfsmittel und/oder Zusatzstoffe werden beispielsweise Trennmittel, Flammschutzmittel, Farbstoffe, Füllstoffe und/oder VerStärkungsmittel verwendet.
In der Technik ist es üblich, alle Einsatzstoffe mit Ausnahme der Polyisocyanate zu einer sogenannten Polyolkomponente zu vermischen und diese mit den Polyisocyanaten zum Polyurethan umzusetzen.
Die Herstellung der Polyurethane kann nach dem sogenannten one- shot-Verfahren oder nach dem Prepolymerverfahren erfolgen. Die Polyurethan-Weichschaumstoffe können sowohl Blockschäume als auch Formschäume sein.
Eine Übersicht über die Einsatzstoffe für die Herstellung von Polyurethanen sowie die dazu angewendeten Verfahren findet sich beispielsweise im Kunststoffhandbuch, Band 7 "Polyurethane", Carl-Hanser-Verlag München Wien, 1. Auflage 1966, 2. Auflage 1983 und 3. Auflage 1993. Besonders vorteilhaft kann das erfindungsgemäße Verfahren zur Herstellung von Polyurethan-Blockweichschaumstoffen eingesetzt werden, da es bei der Verschäumung von großen Blöcken in verstärktem Maße zu Kernverfärbungen bis hin zur Kernverbrennung kommen kann.
Überraschenderweise zeigen die in Anwesenheit von Multimetallcyanidverbindungen in der erfindungsgemäßen Menge in den Polyetheralkoholen hergestellten Weichschäume gegenüber solchen, die einen geringeren oder höheren Gehalt an Multimetallcyanidverbindungen aufwiesen, auch ein deutlich verbessertes Aushärtverhalten ohne Rißbildung. Es trat keinerlei Kernverfärbung auf . Dies war für den Fachmann nicht vorhersehbar, da allgemein bekannt ist, dass Schwermetalle die Neigung zur Rißbildung verstärken.
Überraschenderweise zeigen die nach dem erfindungsgemäßen Verfahren hergestellten Polyurethan-Weichschaumstoffe auch bei Einwirkung von Feuchtigkeit keine oder nur eine außerordentlich geringe Exposition von Schwermetallen. Insbesondere bei Verwendung von kristallinen Multimetallcyanidverbindungen als Katalysatoren bei der Herstellung der eingesetzten Polyetheralkohole werden die Metalle wirksam in der Schaummatrix fixiert .
Die erfindungsgemäßen Polyetheralkohole können zu Polyurethan- Weichschaumstoffen mit einer hohen Offenzelligkeit bzw. hohen Luftdurchlässigkeit und einer störungsfreien Schaumstruktur ohne Rißbildung und Kernverbrennung verarbeitet werden.
Auf Grund ihrer sehr geringen Exposition von Schwermetallen sind sie besonders für die Anwendung als Matratzen und Möbel geeignet.
Die Erfindung soll an nachstehenden Beispielen näher erläutert werden.
Beispiel 1 - Herstellung von DMC-Blockweichschaumstoff
Die in der Tabelle 1 genannten Ausgangsprodukte wurden in den aufgeführten Mengenverhältnissen zur Umsetzung gebracht.
Alle Komponenten außer dem Isocyanat Lupranat® T80 A wurden zunächst durch intensives Mischen zu einer Polyolkomponente vereinigt. Danach wurde das Lupranat® T80 A unter Rühren hinzugegeben und die Reaktionsmischung in eine offene Form vergossen, worin sie zum Polyurethan-Schaumstoff ausschäumte. Tabelle 1 :
Beispiel 2 - Bestimmung der Migration von Cobalt aus dem Schaum- Stoff, gemäß Beispiel 1
Proben: Schaumwürfel mit den Maßen 100 x 100 x 50 mm
Simulans/ Prüfmigrationsmittel : Künstlicher Schweiß gemäß DIN 53160 Migrationsbedingungen: 24 h bei 40°C; die beiden Prüfkörper - werden jeweils in ca. 500 ml künstlichem Schweiß in einer Migrationszelle mit Abdeckung gelagert -. Bestimmungsmethode: Nach Lagerung und abkühlen auf Raumtemperatur wurden Prüfkörper und Migrationslösung getrennt, wobei die Migrationslösung im Schaumkörper via Abtropfen entfernt wurde. Im Migrat wurde Cobalt atomspektroskopisch bestimmt .
Bestimmungsgrenze : w(Co) ca. 0,01 mg/1 Ergebnisse: Die Ergebnisse der Untersuchung sind in der folgenden Tabelle zusammengestellt. Dabei erfolgt die Angabe in μg/kg unter der Annahme, dass 1 kg Prüfmigrations- ittel mit 6 dm.2 in Kontakt steht:
Tabelle 2
Aus dem ermittelten Cobaltgehalt (Bestimmungsgrenze) , der Einwaage des Prüfmigrationsmittels sowie der Einwaage der Prüfkörper lässt sich der maximale Anteil an extrahierbarem Cobalt (Co)Migration, ableiten. Unter den angegebenen Prüf- bedingungen beträgt der Wert w(Co)Migration. < 0,3 μg/kg.

Claims

Patentansprüche
1. Verfahren zur Herstellung von Polyurethan-Weichschaumstoffen durch Umsetzung von
a) Polyisocyanaten mit b) Verbindungen mit mindestens zwei mit Isocyanatgruppen reaktiven Wasserstoffatomen in Gegenwart von c) Treibmitteln,
dadurch gekennzeichnet, dass als Verbindungen mit mindestens zwei mit Isocyanatgruppen reaktiven Wasserstoffatomen b) mindestens ein Polyetheralkohol, herstellbar durch Umsetzung von Alkylenoxiden mit H-funktionellen Startsubstanzen in Gegenwart von DMC-Katalysatoren, mit einem Gehalt an DMC- Katalysatoren im Bereich zwischen 0,1 bis 1000 ppm, bezogen auf das Gewicht des Polyetheralkohols, eingesetzt werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Verbindungen mit mindestens zwei mit Isocyanatgruppen reaktiven Wasserstoffatomen einen Gehalt an Multimetallcyanidverbindungen von 1 bis 500 ppm aufweisen.
3. Verfahren nach einem der Ansprüche 1, dadurch gekennzeichnet, dass die Multimetallcyanidverbindung die allgemeine Formel (I)
Ml a[M2(CN)b(A)c]d • fMlgXn • h(H20) • eL, (I)
wobei
M1 ein Metallion, ausgewählt aus der Gruppe, enthaltend Zn2+, Fe2+, Co3+, Ni2+, Mh2+, Co2+, Sn2+, Pb2+, Mo4+, Mo6+, A13+, V4+, V5+, Sr2+, W4+, W6+, Cr2+, Cr3+, Cd2+,
Hg2+, Pd2+, Pt2+, V2+, Mg2+, Ca2+, Ba2+, Cu2+,
M2 ein Metallion, ausgewählt aus der Gruppe, enthaltend
Fe2+, Fe3+, Co2+, Co3+, Mn2+, Mn3+, V4+, V5+, Cr2+, Cr3+, Rh3+, Ru2+, Ir3+
bedeuten und M1 und M2 gleich oder verschieden sind, A ein Anion, ausgewählt aus der Gruppe, enthaltend
Halogenid, Hydroxyd, Sulfat, Carbonat, Cyanid, Thiocyanat, Isocyanat, Cyanat, Carboxylat, Oxalat oder Nitrat,
X ein Anion, ausgewählt aus der Gruppe, enthaltend
Halogenid, Hydroxyd, Sulfat, Carbonat, Cyanid, Thiocyanat, Isocyanat, Cyanat, Carboxylat, Oxalat oder Nitrat,
L ein mit Wasser mischbarer Ligand, ausgewählt aus der Gruppe, enthaltend Alkohole Aldehyde, Ketone, Ether, Polyether Ester, Harnstoffe, Amide, Nitrile, Lactone, Lactame und Sulfide,
bedeuten, sowie
a, b, c, d, g und n so ausgewählt sind, dass die Elektro- neutralität der Verbindung gewährleistet ist, und
e die Koordinationszahl des Liganden oder 0 bedeutet,
f eine gebrochene oder ganze Zahl größer oder gleich 0 bedeutet, sowie
h eine gebrochene oder ganze Zahl größer oder gleich 0 bedeutet .
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass in der Formel M1 Zink und M2 Kobalt bedeuten.
5. Verfahren nach Anspruch 3 und 4, dadurch gekennzeichnet, dass die Multimetallcyanidverbindung kristallin ist.
6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Treibmittel Wasser eingesetzt wird.
7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Umsetzung der Polyisocyanate a) mit den Verbindungen mit mindestens zwei mit Isocyanatgruppen reaktiven Wasserstoffatomen b) in Anwesenheit von Katalysatoren durchgeführt wird.
8. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass als Katalysatoren Zinnverbindungen und oder Amine eingesetzt werden.
9. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Polyurethan-Weichschaumstoff ein Blockweichschaumstoff ist.
10. Polyurethan-Weichschaumstoffe ohne Kernverbrennung, herstell- 5 bar nach einem der Ansprüche 1 bis 6.
11. 11. Polyurethan-Weichschaumstoffe herstellbar nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Polyurethan-Weichschaumstoffe extrahierbare Schwermetalle unterhalb der Grenzen des Öko-Tex Standard 100 nach Produktklasse 10 2 bis 4 aufweisen von:
Blei (Pb) 1,0 ppm
Cadmium (Cd)l 0,1 ppm
Chrom (Cr) 2,0 ppm
15 Cobalt (Co) 4,0 ppm
Kupfer (Cu) 50,0 ppm
Nickel (Ni) 4,0 ppm
Quecksilber (Hg) 0,02 ppm
20 12. Verwendung von Polyurethan-Weichschaumstoffen nach Beispiel 11 zur Herstellung von Matratzen und Möbeln.
25
30
35
40
5
EP02767218A 2001-08-03 2002-07-16 Verfahren zur herstellung von polyurethan-weichschaumstoffen Withdrawn EP1423454A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10137628A DE10137628A1 (de) 2001-08-03 2001-08-03 Verfahren zur Herstellung von Polyurethan-Weichschaumstoffen
DE10137628 2001-08-03
PCT/EP2002/007887 WO2003014190A1 (de) 2001-08-03 2002-07-16 Verfahren zur herstellung von polyurethan-weichschaumstoffen

Publications (1)

Publication Number Publication Date
EP1423454A1 true EP1423454A1 (de) 2004-06-02

Family

ID=7693953

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02767218A Withdrawn EP1423454A1 (de) 2001-08-03 2002-07-16 Verfahren zur herstellung von polyurethan-weichschaumstoffen

Country Status (4)

Country Link
US (1) US20040192801A1 (de)
EP (1) EP1423454A1 (de)
DE (1) DE10137628A1 (de)
WO (1) WO2003014190A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE373685T1 (de) * 2004-06-09 2007-10-15 Shell Int Research Verfahren zur herstellung von geruchsarmem polyetherpolyol
CN1329428C (zh) * 2004-12-07 2007-08-01 上海工程技术大学 一种除去聚醚多元醇中微量c1-c7低碳组分的方法
CN100591644C (zh) * 2005-12-23 2010-02-24 中国科学院金属研究所 一种高导热、高强高密的SiC/Cu复相泡沫材料及其制备方法
CN100400473C (zh) * 2005-12-23 2008-07-09 中国科学院金属研究所 一种高强高韧SiC/Al泡沫材料及其制备方法
US10258953B2 (en) 2016-08-05 2019-04-16 Covestro Llc Systems and processes for producing polyether polyols

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5248833A (en) * 1992-09-22 1993-09-28 Arco Chemical Technology, L.P. Process for purifying polyols made with double metal cyanide catalysts
US5416241A (en) * 1994-01-27 1995-05-16 Arco Chemical Technology, L.P. Method for purifying polyether polyols made with double metal cyanide catalysts
US5482908A (en) * 1994-09-08 1996-01-09 Arco Chemical Technology, L.P. Highly active double metal cyanide catalysts
US5811829A (en) * 1995-08-10 1998-09-22 Arco Chemical Technology, L.P. Viscosity stable isocyanate-terminated prepolymers and polyoxyalkylene polyether polyols having improved storage stability
US5767323A (en) * 1995-12-22 1998-06-16 Arco Chemical Technology, L.P. Process for preparing polyoxyalkylene polyether polyols having low levels of transition metals through double metal cyanide complex polyoxyalkylation
US5958994A (en) * 1997-02-25 1999-09-28 Arco Chemical Technology, L.P. Method for decreasing the propensity for phase-out of the high molecular weight component of double metal cyanide-catalyzed high secondary hydroxyl polyoxypropylene polyols
DE19709031A1 (de) * 1997-03-06 1998-09-10 Basf Ag Verfahren zur Herstellung von Doppelmetallcyanidkatalysatoren
US5844070A (en) * 1997-05-16 1998-12-01 Arco Chemical Technology, L.P. Process for rapid activation of double metal cyanide catalysts
DE19742978A1 (de) * 1997-09-29 1999-04-01 Basf Ag Multimetallcyanidkomplexe als Katalysatoren
US6063309A (en) * 1998-07-13 2000-05-16 Arco Chemical Technology L.P. Dispersion polyols for hypersoft polyurethane foam
DE19840585A1 (de) * 1998-09-05 2000-03-09 Basf Ag Verfahren zur Herstellung von Polyetherolen durch ringöffnende Polymerisation von Alkylenoxiden
DE19903274A1 (de) * 1999-01-28 2000-08-03 Basf Ag Verfahren zur Herstellung von Polyetherpolyolen
US6613714B2 (en) * 1999-06-02 2003-09-02 Basf Aktiengesellschaft Multimetal cyanide compounds, their preparation and their use
DE10008635A1 (de) * 2000-02-24 2001-09-06 Basf Ag Verfahren zur Herstellung von Polyetherpolyolen
DE10008630A1 (de) * 2000-02-24 2001-09-06 Basf Ag Verfahren zur Herstellung von Polyetherpolyolen in Gegenwart eines Multimetallcyanidkomplex-Katalysators

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO03014190A1 *

Also Published As

Publication number Publication date
DE10137628A1 (de) 2003-02-27
WO2003014190A1 (de) 2003-02-20
US20040192801A1 (en) 2004-09-30

Similar Documents

Publication Publication Date Title
EP1797129B1 (de) Verfahren zur herstellung von polyurethan-weichschaumstoffen
EP1799735B1 (de) Verfahren zur herstellung von polyurethan-weichschaumstoffen
EP2448996B1 (de) Verfahren zur herstellung von polyetherpolyolen mit primären hydroxyl-endgruppen
EP1115490B1 (de) Doppelmetallcyanid-katalysatoren für die herstellung von polyetherpolyolen
DE19905611A1 (de) Doppelmetallcyanid-Katalysatoren für die Herstellung von Polyetherpolyolen
DE19918727A1 (de) Langkettige Polyetherpolyole mit hohem Anteil primärer OH-Gruppen
EP1208132B1 (de) Polyetheralkohole
WO2003042281A1 (de) Verfahren zur herstellung von polyetheralkoholen
WO2001053381A1 (de) Verfahren zur herstellung von polyetheralkoholen
WO2003014190A1 (de) Verfahren zur herstellung von polyurethan-weichschaumstoffen
EP1115489B1 (de) Doppelmetallcyanid-katalysatoren für die herstellung von polyetherpolyolen
EP1175454B1 (de) Verfahren zur herstellung von polyurethanen
EP1230289B1 (de) Verfahren zur herstellung von blockweichschaumpolyolen
EP1516007B1 (de) Verfahren zur herstellung von polyetheralkoholen
WO2005014685A1 (de) Verfahren zur herstellung von polyetheralkoholen
WO2004029131A1 (de) Verfahren zur herstellung von polyetheralkoholen
DE10142747A1 (de) Doppelmetallcyanid-Katalysatoren für die Herstellung von Polyetherpolyolen
WO2003076488A1 (de) Verfahren zur herstellung von hochfunktionellen polyetheralkoholen
EP1425333B1 (de) Doppelmetallcyanid-katalysatoren für die herstellung von polyetherpolyolen
DE2946625A1 (de) Verfahren zur herstellung von polyurethanschaeumen mit reduziertem gehalt an aromatischem amin
DE19700944A1 (de) Polyetherpolyolgemisch sowie Verfahren zu seiner Herstellung
DE3038556A1 (de) Verfahren zur herstellung von polyurethanen und zinn (ii)-halogenid-katalysatoren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040303

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BOHRES, EDWARD

Inventor name: RUPPEL, RAIMUND

Inventor name: HARRE, KATHRIN

Inventor name: BAUER, STEPHAN

17Q First examination report despatched

Effective date: 20061120

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20070104