EP1420917A1 - Verfahren und vorrichtung zur mikrobearbeitung eines werkstücks mit laserstrahlung - Google Patents

Verfahren und vorrichtung zur mikrobearbeitung eines werkstücks mit laserstrahlung

Info

Publication number
EP1420917A1
EP1420917A1 EP02769865A EP02769865A EP1420917A1 EP 1420917 A1 EP1420917 A1 EP 1420917A1 EP 02769865 A EP02769865 A EP 02769865A EP 02769865 A EP02769865 A EP 02769865A EP 1420917 A1 EP1420917 A1 EP 1420917A1
Authority
EP
European Patent Office
Prior art keywords
workpiece
sacrificial layer
laser
laser radiation
micromachining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP02769865A
Other languages
English (en)
French (fr)
Inventor
Henning Hanebuth
Eberhard Kull
Günter KAMLAGE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1420917A1 publication Critical patent/EP1420917A1/de
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0734Shaping the laser spot into an annular shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/066Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms by using masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/18Working by laser beam, e.g. welding, cutting or boring using absorbing layers on the workpiece, e.g. for marking or protecting purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • B23K26/389Removing material by boring or cutting by boring of fluid openings, e.g. nozzles, jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/12Copper or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26

Definitions

  • the invention relates to a method for micromachining a workpiece, in particular for producing a hole in the workpiece, by means of ultra-short pulsed laser radiation.
  • the radius of the rounding is essentially influenced by the beam caustics in the focal point area, ie the sharper the radiation is focused, the greater the rounding radius on the surface of the workpiece.
  • the minimum focal diameter and the divergence angle are mainly determined by the world length of the laser radiation used, the diameter of the laser light emerging from the laser and the focal length of the focusing optics.
  • both the pulse energy and the pulse number have an influence on the edge geometry of the workpiece to be machined.
  • Percussion drilling d. H. when drilling with a rigid laser beam and a stationary workpiece, an increase in the rounding at the leading edge of the laser light on the workpiece can be observed with increasing pulse number and increasing pulse energy.
  • Another problem is that the particles removed from the workpiece during drilling are deposited in the vicinity of the borehole during the drilling process and interfere with the continuation of the drilling process. The particles can stick to the surface and then have to be removed afterwards.
  • the problem of edge rounding has been solved by galvanically coating the surface of the workpiece to be machined with a sacrificial layer made of copper, so that the edge entry side profile that is typical for laser drilling can form therein.
  • the use of the sacrificial layer also has the advantage that that of the
  • Drilling loosened material particles are deposited on the surface of the sacrificial layer and are removed together with the sacrificial layer when it is removed.
  • the sacrificial layer is removed by being stripped off with an acid.
  • This process is very complex. The duration of the step must be determined so that the workpiece itself is not attacked by the acid becomes.
  • hydrogen is generated during scraping, which penetrates into the surface of the workpiece and embrittles it.
  • a very high pressure-loaded metallic material such as is used in a diesel injection nozzle, there is a risk of hydrogen embrittlement
  • Another problem with processing with conventional pulsed lasers is that with laser pulses in the nanosecond range, the laser energy causes a fusion in the transition area between the sacrificial layer and the workpiece, which leads to plastic deformations in the transition region between the sacrificial layer and the workpiece. After removing the sacrificial layer, an undesirable ridge remains.
  • this object is achieved in one of the methods of the type mentioned at the outset in that a sacrificial layer is placed firmly on a surface of the workpiece, that subsequently ultrashort laser pulses are generated which penetrate the sacrificial layer and remove material of the workpiece, and that after sufficient removal of Material of the workpiece the sacrificial layer is removed.
  • the sacrificial layer is not chemically firmly connected to the workpiece to be machined, the sacrificial layer can be easily removed after laser processing. To do this, the sacrificial layer only has to be pushed away or lifted off. Together with the sacrificial layer the particles removed from the workpiece and deposited on the free surface of the sacrificial layer are also removed. The edge profile with the edge rounding caused by the laser radiation is formed in the sacrificial layer and is removed with it. This creates a sharp-edged contour at the transition between the surface of the workpiece and the depression or hole caused by the laser radiation.
  • ultra-short laser pulses enable melt-free removal, i.e. melting of the sacrificial layer with the workpiece is avoided.
  • the fact that the sacrificial layer lies on the workpiece without any gaps means that the workpiece can be precisely removed without any edges being wrinkled. Rather, sharp edged edges are on
  • Drilled holes or other depressions in the workpiece produced by the laser pulses are Drilled holes or other depressions in the workpiece produced by the laser pulses.
  • the workpiece is irradiated with laser pulses that have a length of less than 500 picoseconds, in particular less than 1 picosecond.
  • materials for the sacrificial layer in particular those which consist of a soft material which can be adapted to the surface shape of the workpiece and whose properties are similar to the material of the workpiece.
  • a correspondingly heat-resistant plastic is also suitable.
  • a layer of soft metal is preferably used as the sacrificial layer, since the surface of the soft metal can easily be adapted to the surface of the workpiece.
  • Lead can be used as a soft metal.
  • Copper is particularly suitable as metal.
  • a copper layer of a few hundred micrometers thick is preferably used, for example with a thickness of 200 ⁇ m.
  • the invention also relates to a device with an ultra-short-pulsed laser for carrying out one of the methods identified above.
  • the device according to the invention has means for focusing the laser beam. This means that precise micromachined workpieces can be produced.
  • means for rotating the direction of polarization of the laser beam and the workpiece relative to one another during the machining process are preferred
  • the plane of polarization of the laser beam has a substantially vertical axis. This measure also increases the precision in micromachining.
  • the method according to the invention makes it possible to produce injection nozzles for fuel injection, cooling bores in turbine blades, control throttles for hydraulic applications and spinnerets.
  • Fig. 3 shows a nozzle tip of an injection nozzle with spray holes.
  • a laser system 1 according to the invention has an ultrashort pulsed laser which generates laser pulses in the femtosecond range.
  • the laser is, for example, a Ti: sapphire system that emits pulses with a wavelength of 775 nm.
  • a half-wave plate 2 is arranged in the propagation path of the linearly polarized laser radiation generated by the laser system 1 and is arranged coplanar to the polarization plane of the laser radiation.
  • the plane of polarization of the laser radiation is perpendicular to the plane of the drawing and extends into it, which is indicated by a line P.
  • the half-wave plate 2 serves to rotate the direction of polarization of the laser radiation.
  • the half-wave plate 2 is equipped with a rotary drive device, not shown here, which rotates it about an axis of rotation essentially perpendicular to the plane of polarization.
  • a diffractive optic is arranged in the path of the laser radiation, which forms a device for generating a specific intensity distribution on a workpiece 3 to be machined and is formed by a hologram 4 in the exemplary embodiment shown.
  • the workpiece 3 is designed as a flat plate.
  • the hologram 4 is arranged on a positioning table, which is symbolized in FIG. 1 by an arrow 5 and is used for the exact setting of the distance between the hologram 4 and the workpiece 3 to be processed.
  • the hologram 4 is introduced into a transparent material made of plastic, a polymer, glass, quartz or a salt.
  • a lens system can also be used to diffract the beam of the laser pulses.
  • the workpiece 3 is also arranged on a positioning table, which is indicated in FIG. 1 by an arrow 6 and is used for precise adjustment of the area of the workpiece 3 that is to be machined.
  • a sacrificial layer 7 is placed in front of the workpiece 3 as a plate without gap formation.
  • Fastening means (not shown), in the simplest case an adhesive tape or a screw clamp, are used to produce a detachable connection between the workpiece 3 and the sacrificial layer.
  • the hologram 4 is, for example, a donut hologram, so that when the laser system 1 is operating, an intensity distribution in the form of a circle is established on the sacrificial layer 7 and after removal of the corresponding area on the sacrificial layer 7 on the workpiece 3 itself.
  • the laser radiation from the laser system 1 is directed via the half-wave plate 2 and the hologram 4 onto the sacrificial layer 7 and thus also onto the workpiece 3, so that the intensity distribution is circular.
  • the half-wave plate 2 is through the rotary drive device is continuously driven in rotation, so that the direction of polarization of the laser radiation is continuously rotated in the direction of rotation P in the polarization plane P during the machining process.
  • the laser radiation removes material from the sacrificial layer 7 and then from the workpiece 3 itself. In this case, either a blind hole is produced or a through hole is formed so that the laser radiation emerges again on the exit side 9 of the workpiece 3 facing away from an entry region 8 (FIG. 2c).
  • circularly polarized laser radiation can also be used.
  • a stationary ⁇ / 4 plate is used which circularly polarizes the laser radiation.
  • the workpiece 3 consists, for example, of a case-hardened steel, a nitriding steel or a stainless steel.
  • a nozzle tip 18 of an injection nozzle for a diesel engine has spray holes 19 and 20 which are generated by the laser system 1 when its laser pulses are directed onto the nozzle tip 18 from the outside.
  • a sacrificial layer 21 made of copper is placed on it, which is unwound from a roll, for example. After the respective spray hole 19 or 20 has been formed, the roll is further wound so that new material from the strip of sacrificial material rests on the nozzle tip 18, which then serves as the sacrificial layer 21.
  • the spray holes 19, 20 have a diameter of 100 to 200 microns and a depth in the millimeter range. With the laser system 1, however, bores with a diameter of only 50 ⁇ m can also be achieved.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

Bei einem Verfahren zur Mikrobearbeitung eines Werkstücks (3), insbesondere zum Erzeugen einer Bohrung in dem Werkstück (3), mittels ultrakurzgepulster Laserstrahlung, wird eine Opferschicht (7) fest auf eine Oberfläche des Werkstücks (3) aufgelegt. Anschliessend werden ultrakurze Laserpulse erzeugt, die die Opferschicht (7) durchdringen und Material des Werkstücks (3) abtragen. Nach ausreichendem Abtrag von Material des Werkstücks (3) wird die Opferschicht (7) abgenommen.

Description

Beschreibung
Verfahren und Vorrichtung zur Mikrobearbeitung eines Werkstucks mit Laserstrahlung
Die Erfindung bezieht sich auf ein Verfahren zur Mikrobearbeitung eines Werkstucks, insbesondere zum Erzeugen einer Bohrung in dem Werkstuck, mittels ultrakurzgepulster Laserstrahlung.
Aus C. Momma et al. „Präzise Mikro-Bearbeitung mit Femtose- kunden-Laserpulsen" , Laser und Optoelektronik 29(3/1997) sind ein Verfahren und eine Vorrichtung zur Mikrobearbeitung von Werkstucken mittels Laserstrahlung, insbesondere zum Bilden von rotationssymmetrischen Ausnehmungen in Werkstucken, bekannt. Bei diesem Verfahren wird Laserstrahlung aus einem ultrakurzgepulsten Laser, beispielsweise aus einem im Fe to- sekundenbereich gepulsten Laser, auf ein Werkstuck gerichtet, um in diesem beispielsweise eine im wesentlichen rotations- symmetrische Ausnehmung, z. B. eine Bohrung, zu bilden.
Aus der DE 197 44 368 AI ist der Einsatz eines Femtosekunden- lasers in Verbindung mit einem Mittel zum Drehen der Polari- sationsemrichtung bekannt.
Andererseits ist es bekannt, dass beim Bohren mit einem fo- kussierten Laserstrahl strahlemtrittsseitig eine Kantenverrundung nicht vermeidbar ist. Der Radius der Verrundung wird dabei im wesentlichen durch die Strahlkaustik im Brennpunkt- bereich beemflusst, d. h. je scharfer die Strahlung fokus- siert wird, desto großer ist der Verrundungsradius an der 0- berflache des Werkstucks. Der minimale Brennpunktdurchmesser sowie der Divergenzwinkel werden hauptsächlich durch die Wel- lenlange der verwendeten Laserstrahlung, den Durchmesser des aus dem Laser heraustretenden Laserlichts sowie durch die Brennweite der Fokussieroptik bestimmt.
Zusätzlich haben sowohl die Pulsenergie als auch die Pulszahl Emfluss auf die Kantengeometrie des zu bearbeitenden Werkstucks. Beim Perkussionsbohren, d. h. beim Bohren mit einem starren Laserstrahl und einem unbewegten Werkstuck ist mit steigender Pulszahl und steigender Pulsenergie eine Zunahme der Verrundung an der Eintrittskante des Laserlichts auf dem Werkstuck zu beobachten.
Ein weiteres Problem besteht darin, dass die beim Bohren abgetragenen Partikel aus dem Werkstuck sich im Laufe des Bohr- prozesses in der Nahe des Bohrlochs ablagern und bei der Fortsetzung des Bohrvorgangs störend wirken. Die Partikel können an der Oberflache haften bleiben und müssen dann nachtraglich entfernt werden.
Bislang wird das Problem der Kantenverrundung dadurch gelost, dass die zu bearbeitende Oberflache des Werkstucks galvanisch mit einer Opferschicht aus Kupfer beschichtet wird, damit sich in dieser die für das Laserbohren typische strahlein- trittsseitige Kantenprofil ausbilden kann. Der Einsatz der Opferschicht hat außerdem den Vorteil, dass auch die beim
Bohren gelosten Werkstoffpartikel auf der Oberflache der Opferschicht abgelagert werden und bei Entfernung der Opferschicht zusammen mit dieser entfernt werden.
Nach dem Bohrvorgang wird die Opferschicht wieder entfernt, indem sie durch eine Saure abgeatzt wird. Dieser Vorgang ist sehr aufwendig. Die Abatzdauer muss so festgelegt werden, dass das Werkstuck selber nicht durch die Saure angegriffen wird. Ferner entsteht beim Abatzen Wasserstoff, der in die 0- berflache des Werkstucks eindringt und dieses versprödet. Bei einem sehr hoch druckbelasteten metallischen Werkstoff, wie er beispielsweise in einer Dieseleinspritzduse eingesetzt wird, besteht durch die Wasserstoffversprodung die Gefahr von
Brüchen.
Ein weiteres Problem bei der Bearbeitung mit konventionellen gepulsten Lasern besteht darin, dass bei Laserpulsen im Nano- Sekundenbereich durch die Laserenergie eine Verschmelzung im Ubergangsbereich zwischen der Opferschicht und dem Werkstuck stattfindet, die zu plastischen Verformungen im Ubergangsbereich zwischen der Opferschicht und dem Werkstuck fuhren. Nach Entfernung der Opferschicht bleibt dann ein unerwunsch- ter Grat zurück.
Es ist die Aufgabe der Erfindung, ein Verfahren zur Mikrobearbeitung zu schaffen, bei dem die Nachteile des Standes der Technik vermieden werden.
Erfmdungsgemaß wird diese Aufgabe bei einem der Verfahren der eingangs genannten Art dadurch gelost, dass eine Opferschicht fest auf eine Oberflache des Werkstucks aufgelegt wird, dass anschließend ultrakurze Laserpulse erzeugt werden, die die Opferschicht durchdringen und Material des Werkstucks abtragen, und dass nach ausreichendem Abtrag von Material des Werkstucks die Opferschicht abgenommen wird.
Dadurch, dass erfmdungsgemaß die Opferschicht nicht chemisch fest mit dem zu bearbeitenden Werkstuck verbunden wird, lasst sich die Opferschicht nach der Laserbearbeitung leicht entfernen. Dazu muss die Opferschicht lediglich weggeschoben o- der abgehoben werden. Zusammen mit der Opferschicht werden auch die von dem Werkstück abgetragenen Partikel, die sich auf der freien Oberfläche der Opferschicht abgelagert haben, entfernt. Das durch die Laserstrahlung hervorgerufene strahl- eintrittsseitige Kantenprofil mit der Kantenverrundung ist in der Opferschicht ausgebildet und wird mit dieser entfernt. Dadurch wird eine scharfkantige Kontur am Übergang zwischen der Oberfläche des Werkstücks und der durch die Laserstrahlung hervorgerufenen Vertiefung oder Bohrung erzeugt.
Erfindungsgemaß wird durch ultrakurze Laserpulse ein schmelzfreies Abtragen ermöglicht, d h. ein Verschmelzen der Opferschicht mit dem Werkstuck wird vermieden. Dadurch, dass die Opferschicht spaltfrei auf dem Werkstuck aufliegt, wird ein exakter Materialabtrag von dem Werkstück ohne Kantenverrun- düngen erreicht. Vielmehr werden scharfkantige Rander an
Bohrlochern oder anderen durch die Laserpulse erzeugten Vertiefungen in dem Werkstück erreicht.
Vorteilhafte Weiterbildungen ergeben sich aus den Unteran- spruchen und aus der Beschreibung.
In einer bevorzugten Ausfuhrungsform des Verfahrens wird das Werkstuck mit Laserpulsen bestrahlt, die eine Lange von weniger als 500 Pikosekunden Dauer, insbesondere von weniger als 1 Pikosekunde, haben.
Als Materialien für die Opferschicht kommen viele verschiedene Materialien in Betracht, insbesondere solche, die aus einem weichen, an die Oberflachenform des Werkstucks anpassba- ren und in seinen Eigenschaften dem Material des Werkstucks ahnlichen Material bestehen. Beispielsweise ist auch ein entsprechend hitzebestandiger Kunststoff geeignet. Bevorzugt wird eine Schicht aus einem weichen Metall als Opferschicht eingesetzt, da die Oberflache des weichen Metalls leicht an die Oberflache des Werkstucks angepasst werden kann. Als weiches Metall lasst sich Blei einsetzen.
Als Metall ist besonders Kupfer geeignet. Bevorzugt wird eine Kupferschicht von wenigen Hundert Mikrometern Starke eingesetzt, etwa mit einer Dicke von 200 μm.
Die Erfindung bezieht sich ebenfalls auf eine Vorrichtung mit einem ultrakurzgepulsten Laser zur Durchfuhrung eines der o- ben gekennzeichneten Verfahren.
Bei der erf dungsgemaßen Vorrichtung sind Mittel zur Fokus- sierung des Laserstrahls vorhanden. Durch diese Mittel lassen sich präzise mikrobearbeitete Werkstucke herstellen.
Bevorzugt sind bei der Vorrichtung Mittel zur Drehung der Polarisationsrichtung des Laserstrahls und des Werkstucks rela- tiv zueinander wahrend des Bearbeitungsvorgangs um eine zur
Polarisationsebene des Laserstrahls im wesentlichen senkrechte Achse vorgesehen. Auch durch diese Maßnahme wird die Präzision bei der Mikrobearbeitung erhöht.
Durch das erfmdungsgemaße Verfahren lassen sich Einspritzdüsen für die Kraftstoffeinspritzung, Kuhlbohrungen in Turbi- nenschaufein, Steuerdrosseln für Hydraulikanwendungen und Spinndüsen herstellen.
Nachstehend wird die Erfindung m Ausfuhrungsbeispielen anhand der Zeichnungen naher erläutert. Diese zeigen: Fig. 1 eine schematische Seitenansicht einer erfindungsgemäßen Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens,
Fig. 2a - c Raster-Elektronenmikroskop-Aufnahmen von mit einem Verfahren gemäß dem Stand der Technik erzeugten Bohrungen (a und b) und einer erfindungsgemäß hergestellten Bohrung (c) und
Fig. 3 eine Düsenkuppe einer Einspritzdüse mit Spritzlöchern.
Ein erfindungsgemäßes Lasersystem 1 (Fig. 1) weist einen ult- rakurzgepulsten Laser auf, der Laserimpulse im Femtosekunden- bereich erzeugt. Der Laser ist beispielsweise ein Ti: Saphir- System, das Pulse mit einer Wellenlänge von 775 nm emittiert. Im Ausbreitungsweg der durch das Lasersystem 1 erzeugten, linear polarisierten Laserstrahlung ist eine Halbwellenplatte 2 angeordnet, die koplanar zur Polarisationsebene der Laserstrahlung angeordnet ist. Die Polarisationsebene der Laserstrahlung liegt senkrecht zur Zeichnungsebene und verläuft in diese hinein, was durch eine Linie P gekennzeichnet ist. Die Halbwellenplatte 2 dient zur Drehung der Polarisationsrichtung der Laserstrahlung. Hierzu ist die Halbwellenplatte 2 mit einer hier nicht dargestellten Drehantriebseinrichtung ausgestattet, die sie um eine zu der Polarisationsebene im wesentlichen senkrechte Drehachse dreht.
In Ausbreitungsrichtung hinter der Halbwellenplatte 2 ist im Ausbreitungsweg der Laserstrahlung eine diffraktive Optik angeordnet, die eine Einrichtung zur Erzeugung einer bestimmten Intensitatsverteilung auf einem zu bearbeitenden Werkstück 3 bildet und bei dem dargestellten Ausführungsbeispiel durch ein Hologramm 4 gebildet ist. Das Werkstück 3 ist als ebene Platte ausgebildet. Das Hologramm 4 ist auf einem Positioniertisch angeordnet, der in Fig. 1 durch einen Pfeil 5 symbolisiert ist und zur genauen Einstellung des Abstands zwischen dem Hologramm 4 und dem zu bearbeitenden Werkstuck 3 dient. Das Hologramm 4 ist in ein transparentes Material aus Kunststoff, aus einem Polymer, aus Glas , Quarz oder einem Salz eingebracht. Anstelle des Hologramms 4 lasst sich auch ein Linsensystem zur Beugung des Strahls der Laserpulse einsetzen.
Das Werkstuck 3 ist ebenfalls an einem Positioniertisch angeordnet, der in Fig. 1 durch einen Pfeil 6 angedeutet ist und zur genauen Einstellung des Bereichs des Werkstucks 3 dient, der bearbeitet werden soll.
Vor dem Werkstuck 3 ist eine Opferschicht 7 als Platte ohne Spaltbildung aufgelegt. Zur Herstellung einer losbaren Verbindung zwischen dem Werkstuck 3 und der Opferschicht dienen hier nicht dargestellte Befestigungsmittel, im einfachsten Fall ein Klebeband oder eine Schraubzwinge.
Das Hologramm 4 ist beispielsweise ein Doughnut-Hologramm, so dass sich bei Betrieb des Lasersystems 1 eine kreisrmgformi- ge Intensitatsverteilung auf der Opferschicht 7 und nach Ab- tragung des entsprechenden Bereichs auf der Opferschicht 7 auf dem Werkstück 3 selbst einstellt.
Zur Bildung einer rotationssymmetrischen Bohrung in dem Werkstuck 3 wird die Laserstrahlung des Lasersystems 1 über die Halbwellenplatte 2 und das Hologramm 4 auf die Opferschicht 7 und somit auch auf das Werkstuck 3 gerichtet, so dass sich die kreisrmgfor ige Intensitatsverteilung einstellt. Wahrend des Bearbeitungsvorgangs wird die Halbwellenplatte 2 durch die Drehantriebsvorrichtung kontinuierlich drehangetrieben, so dass die Polarisationsrichtung der Laserstrahlung wahrend des Bearbeitungsvorgangs kontinuierlich in einer einheitlichen Drehrichtung in der Polarisationsebene P gedreht wird. Durch die Laserstrahlung wird gemäß der kreisrmgformigen Intensitatsverteilung Material von der Opferschicht 7 und dann von dem Werkstuck 3 selbst abgetragen. Dabei wird entweder eine Sacklochbohrung erzeugt, oder es wird eine durchgehende Bohrung gebildet, so dass die Laserstrahlung auf der einem Eintrittsbereich 8 (Fig. 2c) abgewandten Austrittsseite 9 des Werkstucks 3 wieder heraustritt.
Anstelle der linear polarisierten Laserstrahlung lasst sich auch zirkulär polarisierte Laserstrahlung einsetzen. In die- sem Fall wird anstelle der drehantreibbaren Halbwellenplatte 2 eine ortsfeste λ/4-Platte verwendet, die die Laserstrahlung zirkulär polarisiert.
Aus Fig. 2c ist ersichtlich, dass durch das Auflegen der Op- ferschicht im Eingangsbereich 8 em verrundungsfreier, präziser und scharfkantiger Übergang von einer der Opferschicht 7 zugewandten Oberflache 10 des Werkstucks 3 und einer Bohrung 11 erzeugt wird.
Im Unterschied hierzu gelingt es mit einer nach dem Stand der Technik durchgeführten Laserbestrahlung mit einem Nd:YAG- Laser mit Pulsen im Nanosekundenbereich bei einer zunächst aufgelegten und dann entfernten Opferschicht nicht, eine scharfe Kante zwischen einer Bohrung 13 (Fig. 2a) und einer Oberflache 14 herzustellen. Vielmehr entsteht em Bereich, in dem das Material des Werkstucks mit dem Material der Opferschicht verschmilzt. Beim Entfernen der Opferschicht entsteht durch das gewaltsame Abreißen der Opferschicht eine gratfor- mige Zone 15 mit einer plastischen Verformung am Werkstuck. Auch bei Einsatz eines Femtosekundenlasers wird, wenn nach einem herkömmlichen Laserbestrahlungsverfahren keine Opferschicht eingesetzt wird, kein präziser Übergang zwischen einer Bohrung 16 (Fig. 2b) und einer Oberflache 17 eines Werkstucks erzeugt. Vielmehr entsteht eine trichterförmige Verbreiterung der Bohrung, die zudem noch eine Riefenstruktur aufweist .
Erst durch den erfmdungsgemaßen Einsatz ultrakurzgepulster Laserstrahlung in Verbindung mit der auf das Werkstuck 3 aufgelegten Opferschicht 7 wird der hochgenaue, in Fig. 2c dargestellte Übergang erzielt. Das Werkstuck 3 besteht bei- spielsweise aus einem emsatzgeharteten Stahl, einem Nitrierstahl oder einem Edelstahl.
In einem anderen Ausfuhrungsbeispiel (Fig. 3) weist eine Du- senkuppe 18 einer Einspritzdüse für einen Dieselmotor Spritz- locher 19 und 20 auf, die durch das Lasersystem 1 erzeugt werden, wenn dessen Laserpulse von außen auf die Dusenkuppe 18 gerichtet werden. Erfindungsgemaß wird dabei eine Opferschicht 21 aus Kupfer aufgelegt, die beispielsweise von einer Rolle abgewickelt wird. Nachdem das jeweilige Spritzloch 19 oder 20 gebildet worden ist, wird die Rolle weitergewickelt, so dass von dem Band des Opfermaterials wieder neues Materials auf der Dusenkuppe 18 aufliegt, das dann als Opferschicht 21 dient. Die Spritzlocher 19, 20 haben einen Durchmesser von 100 bis 200 μm und eine Tiefe im Millimeterbereich . Mit dem Lasersystem 1 lassen sich jedoch auch Bohrungen mit einem Durchmesser von nur 50 μm erzielen.

Claims

Patentansprüche
1. Verfahren zur Mikrobearbeitung eines Werkstucks (3), insbesondere zum Erzeugen einer Bohrung in dem Werkstuck (3) , mittels ultrakurzgepulster Laserstrahlung, d a d u r c h g e k e n n z e i c h n e t , dass eine Opferschicht (7) fest auf eine Oberflache des Werkstucks (3) aufgelegt wird, dass anschließend ultrakurze Laserpulse erzeugt werden, die die Opferschicht (7) durchdrin- gen und Material des Werkstucks (3) abtragen, und dass nach ausreichendem Abtrag von Material des Werkstucks (3) die Opferschicht (7) abgenommen wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Werkstuck (3) von Laserpulsen mit einer Lange von weniger als 500 Pikosekunden Dauer, insbesondere von weniger als 1 Pikosekunde, bestrahlt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass als Opferschicht (7) eine Schicht aus einem weichen, an die Oberflachenform des Werkstücks (3) anpassbaren und in seinen Eigenschaften dem Material des Werkstucks (3) ahnlichen Material gewählt wird.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass als Opferschicht (7) eine Schicht aus einem weichen Metall eingesetzt wird.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass als Metall Kupfer verwendet wird.
6. Vorrichtung mit einem ultrakurzgepulsten Laser (1) zur
Durchführung eines Verfahrens nach einem der Ansprüche 1 bis 5, d a d u r c h g e k e n n z e i c h n e t, dass Mittel (4) zur Fokussierung des Laserstrahls vorhanden sind.
7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass Mittel (2) zur Drehung der Polarisationsrichtung des Laser- Strahls und des Werkstücks (3) relativ zueinander während des Bearbeitungsvorgangs um eine zur Polarisationsebene des Laserstrahls im wesentlichen senkrechte Achse vorhanden sind.
EP02769865A 2001-08-17 2002-08-12 Verfahren und vorrichtung zur mikrobearbeitung eines werkstücks mit laserstrahlung Ceased EP1420917A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10140533 2001-08-17
DE10140533A DE10140533B4 (de) 2001-08-17 2001-08-17 Verfahren zur Mikrobearbeitung eines Werkstücks mit Laserstrahlung
PCT/DE2002/002958 WO2003018248A1 (de) 2001-08-17 2002-08-12 Verfahren und vorrichtung zur mikrobearbeitung eines werkstücks mit laserstrahlung

Publications (1)

Publication Number Publication Date
EP1420917A1 true EP1420917A1 (de) 2004-05-26

Family

ID=7695855

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02769865A Ceased EP1420917A1 (de) 2001-08-17 2002-08-12 Verfahren und vorrichtung zur mikrobearbeitung eines werkstücks mit laserstrahlung

Country Status (3)

Country Link
EP (1) EP1420917A1 (de)
DE (1) DE10140533B4 (de)
WO (1) WO2003018248A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112004000921D2 (de) * 2003-06-06 2006-08-17 Siemens Ag Verfahren zur Herstellung von Durchgangsbohrungen in metallischen Werkstoffen
DE10340931A1 (de) * 2003-09-05 2005-03-31 Herbert Walter Verfahren und Vorrichtung zum Bohren feinster Löcher
JP2006150433A (ja) * 2004-12-01 2006-06-15 Fanuc Ltd レーザ加工装置
DE102007024700A1 (de) 2007-05-25 2008-12-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Materialbearbeitung mit Laserstrahlung sowie Vorrichtung zur Durchführung des Verfahrens
DE102007024701A1 (de) 2007-05-25 2008-11-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Materialabtragung sowie Vorrichtung zur Durchführung des Verfahrens
DE102007051408A1 (de) 2007-10-25 2009-05-28 Prelatec Gmbh Verfahren zum Bohren von Löchern definierter Geometrien mittels Laserstrahlung
NL2009642C2 (nl) * 2012-10-16 2014-04-22 Climate Invest B V Werkwijze voor het bewerken van een oppervlak en bewerkt oppervlak.
EP3296054B1 (de) 2016-09-19 2020-12-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur herstellung eines mikrobearbeiteten werkstücks mittels laserabtrag

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5933091A (ja) * 1982-08-18 1984-02-22 Hitachi Ltd レ−ザ加工方法
US4948941A (en) * 1989-02-27 1990-08-14 Motorola, Inc. Method of laser drilling a substrate
GB8921040D0 (en) * 1989-09-16 1989-11-01 Rolls Royce Plc Laser barrier material
US5158645A (en) * 1991-09-03 1992-10-27 International Business Machines, Inc. Method of external circuitization of a circuit panel
DE4224282A1 (de) * 1992-07-23 1994-01-27 Kristina Dipl Ing Schmidt Verfahren zur abtragenden Mikrostrukturierung von Glas
DE19744368A1 (de) * 1997-10-08 1999-05-20 Lzh Laserzentrum Hannover Ev Verfahren und Vorrichtung zur Mikrobearbeitung von Werkstücken mittels Laserstrahlung, insbesondere zum Bilden von im wesentlichen rotationssymmetrischen Ausnehmungen in Werkstücken
AUPP681198A0 (en) * 1998-10-30 1998-11-19 Breville Pty Ltd Sandwich toaster
JP2000202667A (ja) * 1999-01-19 2000-07-25 Toyota Motor Corp インジェクタノズルの微細孔加工方法
GB2349106A (en) * 1999-04-17 2000-10-25 Rolls Royce Plc Laser drilling
AT408589B (de) * 1999-07-07 2002-01-25 Femtolasers Produktions Gmbh Laservorrichtung
AU7091500A (en) * 1999-08-30 2001-03-26 Board Of Regents University Of Nebraska Lincoln Three-dimensional electrical interconnects
US6552301B2 (en) * 2000-01-25 2003-04-22 Peter R. Herman Burst-ultrafast laser machining method
US6433303B1 (en) * 2000-03-31 2002-08-13 Matsushita Electric Industrial Co., Ltd. Method and apparatus using laser pulses to make an array of microcavity holes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03018248A1 *

Also Published As

Publication number Publication date
DE10140533B4 (de) 2005-04-28
DE10140533A1 (de) 2003-03-06
WO2003018248A1 (de) 2003-03-06

Similar Documents

Publication Publication Date Title
EP2781296B1 (de) Vorrichtung und verfahren zum ausschneiden von konturen aus flächigen substraten mittels laser
EP1871566B1 (de) Verfahren zum feinpolieren/-strukturieren wärmeempflindlicher dielektrischer materialien mittels laserstrahlung
WO2017009379A1 (de) Verfahren und vorrichtung zum abtrennen von glas- oder glaskeramikteilen
EP1920873B1 (de) Verfahren zum Laserstrahlschneiden eines metallischen Bauteils
EP1660269B1 (de) Verfahren und vorrichtung zum bohren von löchern mit co2-laserimpulsen
EP3965990B1 (de) Verfahren und strahlbearbeitungsvorrichtung zur strahlbearbeitung eines werkstücks
DE2719275A1 (de) Verfahren und vorrichtung fuer die materialabtragende bearbeitung von getrennten, in einem vorgegebenen muster angeordneten flaechen auf einem sich kontinuierlich bewegenden gegenstand
EP1276587A1 (de) Vorrichtung zum bearbeiten von substraten und verfahren unter verwendung einer solchen vorrichtung
DE102012003202A1 (de) Vorrichtung und Verfahren zum Bearbeiten von Werkstücken, insbesondere von Schneiden oder mit Schneiden versehenen Werkstücken, mit einem Nasslaser
DE202012012732U1 (de) Prägewalze aus Stahl mit einer strukturierten Oberfläche und Vorrichtung zum Erzeugen der strukturierten Oberfläche
DE19736110C2 (de) Verfahren und Vorrichtung zur grat- und schmelzfreien Mikrobearbeitung von Werkstücken
DE10029110B4 (de) Verfahren für die Materialbearbeitung und Verwendung desselben
DE68906793T2 (de) Ein einen laserstrahl benutzendes verfahren zur mikrobearbeitung der fläche eines werkstücks.
EP1420917A1 (de) Verfahren und vorrichtung zur mikrobearbeitung eines werkstücks mit laserstrahlung
EP2689883A1 (de) Verfahren und Vorrichtung zum Erzeugen einer strukturierten Oberfläche auf eine Prägewalze aus Stahl
DE102006023940B4 (de) Verfahren zur Nanostrukturierung eines Substrats
DE10162379B4 (de) Verfahren zum Herstellen einer Mikrobohrung
WO2020253930A1 (de) Verfahren und vorrichtung zum bohren von bauteilen
EP4031315B1 (de) Laserschneidverfahren und zugehörige laserschneidvorrichtung
DE102020127116B4 (de) Vorrichtung und Verfahren zum Laserbearbeiten eines Werkstücks
DE19801013A1 (de) Verfahren zur Abtragung von Oberflächenschichten mittels deckschichtenverstärkter laserinduzierter Schockwellen
EP3854515A1 (de) Verfahren zur bearbeitung sprödharter materialien
DE102018204250B4 (de) Verfahren zum Laserstrahlschneiden von Werkstücken
DE102004050047A1 (de) Verfahren und Vorrichtung zur Erzeugung von Bohrungen mittels Laser
DE202007016590U1 (de) Einrichtung zur Hochleistungs-Mikrobearbeitung eines Körpers oder einer Pulverschicht mit einem Laser hoher Brillanz

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040203

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KULL, EBERHARD

Inventor name: HANEBUTH, HENNING

Inventor name: KAMLAGE, GUENTER

17Q First examination report despatched

Effective date: 20040917

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20050506