EP1415067B1 - Procede de fonctionnement et d'agencement d'un moteur a pistons a air comprime - Google Patents

Procede de fonctionnement et d'agencement d'un moteur a pistons a air comprime Download PDF

Info

Publication number
EP1415067B1
EP1415067B1 EP02726100A EP02726100A EP1415067B1 EP 1415067 B1 EP1415067 B1 EP 1415067B1 EP 02726100 A EP02726100 A EP 02726100A EP 02726100 A EP02726100 A EP 02726100A EP 1415067 B1 EP1415067 B1 EP 1415067B1
Authority
EP
European Patent Office
Prior art keywords
piston
dead center
working chamber
engine
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02726100A
Other languages
German (de)
English (en)
Other versions
EP1415067A1 (fr
Inventor
Yury Bogomolov
Juri Feldman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1415067A1 publication Critical patent/EP1415067A1/fr
Application granted granted Critical
Publication of EP1415067B1 publication Critical patent/EP1415067B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B17/00Reciprocating-piston machines or engines characterised by use of uniflow principle
    • F01B17/02Engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B29/00Machines or engines with pertinent characteristics other than those provided for in preceding main groups
    • F01B29/08Reciprocating-piston machines or engines not otherwise provided for
    • F01B29/10Engines

Definitions

  • the present invention relates to the field of engineering industry, in particular engine building, namely pneumatic piston engines (PPE).
  • PPE pneumatic piston engines
  • the invention can be used at transport in power drives and in power generation.
  • High power consumption is the main problem of present-day transport. That is the reason why experts in the field of transport engineering face a task to provide speeds being adequate to up-to-date requirements with simultaneous increasing piston specific power of the engine and decreasing specific fuel consumption.
  • ICE Internal combustion engines
  • Increase of transport speed requires increasing engine power density.
  • raise of engine power density in present-day ICEs is obstructed by high temperature in the working chamber of the engine and resulting thermo stress, as well as low reliability and low life of engine.
  • ICE disadvantages one may point to its complex construction, in which a fuel-delivery system, a cooling system, and a system of turbocharger for the working chamber of the engine are needed.
  • Pneumatic piston engines are used as control and executing units in automation, as engine brakes in vehicles, as drives for mining machines and conveyors in mining industry. PPEs are ecologically clean, but their low efficiency obstructs their use in the sphere of transport and power generation.
  • the nearest to the present invention is the method for operating and arrangement of a pneumatic piston engine according to certificate SU 663858, 1979, including supply of compressed air to the working chamber of the engine and subsequent exhaust of oddments of compressed air from the working chamber when the piston is in the region of bottom dead center (BDC).
  • BDC bottom dead center
  • supply of compressed air to the working chamber begins when the piston is in the region of top dead center (TDC) and ends when the piston is in the region of bottom dead center.
  • TDC top dead center
  • 3-4% of hydrogen-oxygen mixture is added to the air and the mixture obtained is passed through the catalytic oxidizing chamber.
  • the air temperature rises to 170-220 °C and this results in increase of air volume by 1.6-1.8 times. This allows either to reduce proportionally air consumption and pipeline cross-section with the same piston specific power of the engine or to increase it without air consumption raise. Nevertheless, it does not provide achievement of high powers necessary for up-to-date transport and propulsion systems with simultaneous providing of efficiency.
  • the purpose of the present invention is to create a method for operating of PPE providing high output power with high efficiency of operating, i.e. to increase piston specific power of the PPE and to decrease specific fuel consumption simultaneously.
  • the next purpose of the present invention is to create a new PPE for providing realization of a new operating method. Creating a new power plant including a pneumatic piston engine providing the realization of the method stated above is also the purpose of the present invention.
  • a method for operating of a pneumatic piston engine including supply of compressed air to the working chamber of a cylinder and subsequent exhaust of air out of the working chamber while the piston is in the region of bottom dead center, wherein
  • the preferable mode of operating is a short-term (pulse) supply of compressed air while the means for supply of compressed air closes while the piston is in the position of 5° after TDC by angle of rotation of the crank of the crankshaft.
  • the present invention provides the achievement of positive technical effect: a higher efficiency of transformation of compressed air energy to energy of engine shaft rotation, as compared with the known background art.
  • the specific fuel consumption reduces, and a possibility to increase considerably the pressure of compressed air being supplied to the PPE appears as well, that results in significant raise of specific power of the PPE as compared with the PPE being known by the background art having the same engine parameters.
  • the present invention solves a task of creating a new method for operating and an arrangement of the pneumatic piston engine providing increase of efficiency of operating of the engine.
  • thermo stress is absent in pneumatic engines, contrary to the ICEs, and this allows to raise the pressure of compressed air being supplied to the working chamber of the PPE considerably within the limits of strength of material of the engine - up to that in the ICE and even higher.
  • a more preferable one is the method of operating of the pneumatic piston engine according to the invention, which includes additionally at least one subsequent stage of operating of the pneumatic piston engine, thus forming a multi-stage method of operating, wherein:
  • Pass-by allows to use high potential energy of compressed air without substantial enlargement of the length of the piston stroke that is extremely essential in the case of limited dimensions of engine.
  • a pneumatic piston engine in which working fluid is compressed air (gas) and which contains a cylinder, wherein a piston is kinematically joined via a crank to a crankshaft, and a working chamber, which is provided with a means for supply of compressed air and a means for exhaust of air while the piston is in the region of BDC, - the means for supply of compressed air is arranged with capability to provide the start of supply while the piston is in the region within the range from 40° before TDC to 25° after TDC by angle of rotation of the crank of the crankshaft depending on the engine speed, and with the capability to provide the ending of supply of compressed air while the piston is in the region within the range from 0° to 90° after TDC by angle of rotation of the crank of the crankshaft.
  • a more preferable one is the pneumatic piston engine according to the invention, which contains at least one consequently joined additional cylinder thus forming a multi-stage engine, herein
  • the means for exhaust of air when the piston is in the region of BDC is arranged with possibility to reuse the exhausted air.
  • said means for pass-by of air from the working chamber of the preceding cylinder to the working chamber of the subsequent additional cylinder can be arranged as a by-pass channel with a non-return valve in it, herein the inlet port of the by-pass channel is connected with a by-pass port of the working chamber of the preceding cylinder, the by-pass port being located above the region of bottom dead center of the piston, and the outlet port of the by-pass channel is connected with an inlet port of the working chamber of the subsequent additional cylinder.
  • a power plant intended for realization of the method according to the present invention preferably contains a pneumatic piston engine according to the invention and a source of compressed air. This allows to provide high output power in a PPE-based system providing simultaneously low specific fuel consumption.
  • a part of power generated in a pneumatic piston engine is directed to the drive of source of compressed air.
  • a power plant intended for realization of the method according to the present invention contains a multi-stage pneumatic piston engine according to the invention, herein the bore of each subsequent cylinder and the diameter of its piston are larger than those in case of the preceding cylinder.
  • FIG. 2 Indicator diagrams in Fig. 2, Fig. 3, Fig. 4 show the operating of PPE for a particular case of engine speed 2.12 s -1 .
  • the mechanism of operating of the PPE according to the invention is true for operating of a PPE for other engine speeds too.
  • a one-stage one-sided supply pneumatic piston engine shown in Fig. 1 contains the following construction elements: 1 - PPE, 2 - cylinder, 3 - piston, 4 - crank, 5 - crankshaft, 6 - working chamber (over-cylinder space), 7 - means for supply of compressed air (inlet valve), 8 - means for exhaust of air (outlet valve), 9 - under-cylinder space.
  • a PPE shown in Fig. 1 consists of a cylinder 2 containing a piston 3 kinematically joined via a crank 4 to crankshaft 5, and a working chamber 6 (over-cylinder space).
  • the working chamber 6 contains a means 7 for supply of compressed air to the working chamber arranged as an inlet valve and a means 8 for exhaust of air, while the piston is in the region of bottom dead center, arranged as an outlet valve.
  • the under-cylinder space 9 is bridged to atmosphere.
  • the means 7 for supply of compressed air may be joined to an external source of compressed air.
  • the device according to the invention operates as follows.
  • FIG. 2 The operating of a PPE is illustrated by the indicator diagrams given in Fig. 2 and Fig. 3.
  • the diagrams show the change of pressure (p) of compressed air (gas) in the cylinder 2 of the engine 1 depending on the position of the piston 3 by angle of rotation ( ⁇ °) of the crank 4 of the crankshaft 5.
  • the means 7 for supply of compressed air closes and supply of compressed air stops by the moment when pressure in the working chamber reaches the value of p max that corresponds to the piston position of 5° after top dead center by angle of rotation of the crank 4 of the crankshaft 5.
  • the piston 3 goes on moving downwards doing work, the power stroke of the piston proceeds. While the piston 3 passes the region of bottom dead center, when pressure in the chamber drops to a value of few atmospheres (1.5-3 atm), the means 8 for exhaust of air to atmosphere opens (point c ), pressure in the working chamber drops to a value equal to the atmospheric pressure p atm (point d ) and the piston 3 goes upward freely.
  • a free back stroke of the piston proceeds (segment d-a ).
  • the means 8 for exhaust of air closes again and the means 7 for supply of compressed air starts to open, and the working cycle of the engine repeats.
  • the piston covers a distance corresponding to rotation of the crank of the crankshaft by an angle of approximately 7°.
  • supply of compressed air to the working chamber of the engine proceeds during extremely short part of the piston stroke (segment a-b ), "in a pulse mode" so to say.
  • the means 7 for supply of compressed air p max closes when the piston is in the position of 90° after top dead center by angle of rotation of the crank of the crankshaft (point b' ). By that time the piston covers a distance equal to a half of the piston stroke (segment b-b' ).
  • the exhaust of air also occurs in the region of bottom dead center (point c ), the pressure in the chamber drops to the atmospheric pressure (point d ), and a free back stroke of the piston occurs (segment d-a ).
  • the indicator diagram for PPE operating according to the method known from background art where supply of compressed air p max proceeds during all power stroke of the piston and ends in the region of bottom dead center (point c in Fig. 4), is given. During all period of supply of compressed air pressure in the working chamber keeps at the level of p max .
  • the area of the indicator diagram illustrates the work produced by compressed air in the engine cylinder during one working cycle (the more the area the more the power supplied in the cylinder). It is seen from Fig. 2 that the area of the indicator diagram of operating of the engine according to the invention, in the case of preferable mode is smaller by a factor of 3.84 comparing with the case of the engine operating according to the method known from the background art (Fig. 4).
  • power supplied in the engine cylinder is smaller by a factor of 3.84 than in the case of known PPE.
  • Comparison of diagrams in Fig. 3 and Fig. 4 shows that by the second mode of operating of PPE according to the invention, the power supplied in the cylinder is smaller by a factor of 1.5 than in the case of the known method for operating of PPE.
  • the preferable mode of operating is the first mode described above, with a short-term supply of compressed air when closing of the means for supply of compressed air is carried out at the angle of rotation of the crankshaft of 5° after top dead center.
  • the supply of compressed air to the working chamber of the PPE according to the invention when the angle of rotation of the crank of the crankshaft exceeding 90°, is inexpedient.
  • a multi-stage PPE Operating of a multi-stage PPE according to the present invention is illustrated by an example of a two-stage one-sided supply PPE, which consists of the following construction components (Fig. 5 and Fig. 6): 10 - two-stage pneumatic piston engine, 11 - first-stage cylinder (preceding), 12 - second-stage cylinder (additional and/or subsequent), 13 - means for supply of compressed air to the working chamber of the first-stage cylinder (inlet valve), 14 - working chamber of the first-stage cylinder, 15 - means for exhaust of air out of the working chamber of the first-stage cylinder (outlet valve), 16 - piston of the first-stage cylinder; 17 - by-pass channel, 18 - non-return valve, 19 - by-pass outlet, 20 - inlet port of the working chamber of the second-stage cylinder, 21 - working chamber of the second-stage cylinder; 22 - piston of the second-stage cylinder, 23 - means for exhaust of air out of
  • Two-stage PPE consists of a first-stage cylinder 11 and a second-stage cylinder 12.
  • the first-stage cylinder 11, as well as the cylinder 2 of a one-stage engine 1 according to Fig. 1 is supplied with a means 13 for supply of compressed air p max to a working chamber 14 of the engine arranged as an inlet valve and with a means 15 for exhaust of air out of the working chamber 14 to atmosphere, while its piston 16 passes the region of bottom dead center, arranged as an outlet valve. It is possible to join the inlet valve 13 to an external source of compressed air.
  • the first-stage cylinder 11 is connected to the second-stage cylinder 12 via a by-pass channel 17 provided with a non-return valve 18 in it.
  • the inlet port of the by-pass channel 17 is joined to a by-pass outlet 19 of the cylinder 11, the by-pass outlet 19 being located in the working chamber 14 above the region of bottom dead center of the piston 16.
  • the outlet port of the by-pass channel 17 is joined to an inlet port 20 of a working chamber 21 of the second-stage cylinder 12.
  • the second-stage cylinder 12 is supplied with a means 23 for exhaust of air, arranged as an outlet port located in the working chamber above the region of bottom dead center of the piston 22.
  • the outlet port 23 and under-cylinder spaces 24 and 25 of both cylinders are bridged to the atmosphere.
  • the pistons 16 and 22 of cylinders of both stages are kinematically joined to cranks 26 and 27 of the common crankshaft 28.
  • a means 29 for exhaust of air, while the piston is in the region of bottom dead center is placed, arranged as an outlet (exhaust) valve.
  • a multi-stage engine operates as follows.
  • Compressed air under pressure of p max is fed to the working chamber 14 of the cylinders 11 through the inlet valve 13 (Fig. 5), as well as in the case of one-stage engine 1 according to Fig. 1, during a minor part of piston stroke.
  • the by-pass channel 17 turns out to be opened into the working chamber 14 of the cylinder 11 for a short time.
  • the compressed air under residual pressure of p res passes into the by-pass channel 17, and opens the non-return valve 18, and then the air passes to the working chamber 21 of the second-stage cylinder 12.
  • the pressure levels in the working chambers of both cylinders equalize and thus turn to be equal to a value of p res ' which value is less than p res , and the non-return valve 18 closes preventing from the air escape out of the working chamber 21.
  • piston 16 of cylinder 11 makes its back stroke (Fig. 6). While piston 16 passes the region of bottom dead center, the outlet valve 15 for exhaust of air out of cylinder 11 to the atmosphere opens; and the piston 16 makes a free stroke upwards.
  • the piston 22 of the second-stage cylinder makes its working stroke. Herein the non-return valve 18 is closed.
  • the piston 22 While moving upwards, the piston 22 passes by the outlet port 23, the working chamber of the cylinder 12 turns to be isolated from the atmosphere; and the piston 22, during its further movement upwards, compresses the air (which initial pressure is equal to atmospheric pressure p atm ) in this chamber. This reduces the efficiency of the entire system of two-stage engine. To avoid these losses the cylinder 12 is provided with means 29 (which is similar to the outlet valve 15) for exhausting the oddments of compressed air to the atmosphere when the piston 22 is in the region of bottom dead center. This provides free upwards motion of the piston 22. The means 29 closes before the following pass-by of air from the cylinder 11.
  • PPE PPE
  • N iE p i ⁇ D 2 ⁇ n ⁇ S ⁇ i 4
  • V 1 ⁇ D 2 4 ⁇ H (m 3 )
  • V s [ V 1 ⁇ i ] ⁇ n (m 3 /s) where n is engine speed 2.12 s -1 .
  • the pneumatic piston engine according to the invention may be arranged using known technologies and applying known up-to-date materials and equipment.
  • pneumatic piston engines according to the invention alongside with air also other gases, which properties allow to compress it to necessary degree and provide safety of engine operating and ecological cleanliness of engine operating, can be used.
  • the pneumatic piston engine according to the invention may be used as a motor-car engine and a main marine engine, as well as a railway transport engine.
  • ICEs which have reached their power limit and do not meet the ecology criteria are used in these fields.
  • the present invention allows to construct powerful, economic and ecologically more clean transport engines of various classes. On the basis of the present invention, power plants may be realized too.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • High-Pressure Fuel Injection Pump Control (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Fluid-Driven Valves (AREA)
  • Valve Device For Special Equipments (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Actuator (AREA)
  • Reciprocating Pumps (AREA)
  • Compressor (AREA)

Claims (12)

  1. Procédé de fonctionnement d'un moteur à pistons à air comprimé (1) avec amenée de l'air comprimé dans la chambre de travail (6) du cylindre (2) de moteur à pistons à air comprimé et échappement ultérieur de l'air de la chambre de travail (6) lors de la position du piston (3) dans la zone du point mort bas, caractérisé en ce que le début de l'amenée de l'air comprimé est réalisé au moment du passage par le piston (3) de la position, qui correspond à une valeur fixe de l'angle de rotation du bras de manivelle (4) du vilebrequin (5), choisie dans le créneau de 40° avant le point mort haut à 25° après le point mort haut, en fonction de la vitesse nominale de rotation du moteur, et la fin de l'amenée de l'air est réalisée lors du passage par le piston (3) de la position, qui correspond à une valeur fixe de l'angle de rotation du bras de manivelle (4) du vilebrequin (5), choisie dans le créneau de 0° à 90° après le point mort haut, en fonction de l'efficacité nécessaire, et avec cela ces valeurs, fixées pour chaque moteur, restent invariables pendant son fonctionnement.
  2. Procédé de fonctionnement d'un moteur à pistons à air comprimé selon la revendication 1, caractérisé en ce que ledit procédé inclut complémentairement au moins un étage suivant de fonctionnement du moteur à pistons à air comprimé, ce qui constitue un procédé de fonctionnement multi-étage du moteur à pistons à air comprimé (10) et avec cela
    on réalise un by-pass des restes d'air comprimé de la chambre de travail (14) de chaque étage précédent dans la chambre de travail (21) de chaque étage suivant pendant la course active du piston (16) de l'étage précédent et pendant que le piston n'est pas encore atteint la zone du point mort bas.
    on laisse sortir l'air de la chambre de travail (21) du dernier des étages successifs pendant la course active et lorsque le piston (22) n'est pas encore atteint la zone du point mort bas;
    on laisse sortir l'air de la chambre de travail (21) de chaque étage suivant lorsque le piston (22) se trouve dans la zone du point mort bas.
  3. Procédé de fonctionnement d'un moteur à pistons à air comprimé selon la revendication 1 ou 2, caractérisé en ce que l'échappement de l'air de la chambre de travail (14, 21) pour un étage au moins, à la position du piston (16, 22) dans la zone du point mort bas est réalisé dans l'atmosphère.
  4. Procédé de fonctionnement d'un moteur à pistons à air comprimé selon la revendication 1 ou 2, caractérisé en ce que l'échappement de l'air de la chambre de travail (14, 21) pour un étage au moins, à la position du piston (16, 22) dans la zone du point mort bas est réalisé avec possibilité de réutilisation.
  5. Procédé de fonctionnement d'un moteur à pistons à air comprimé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le fonctionnement de ce moteur (1, 10) est réalisé en régime de l'amenée de l'air comprimé dans le cylindre des deux côtés.
  6. Moteur à pistons à air comprimé (1), dont le fluide moteur est l'air comprimé et qui contient un cylindre (2) où se trouve un piston (3) lié cinématiquement par le bras de manivelle (4) avec le vilebrequin (5) et une chambre de travail (6) où se trouve un dispositif (7) d'amenée de l'air comprimé et un dispositif (8) pour laisser sortir l'air à la position du piston (3) dans la zone du point mort bas, caractérisé en ce que le dispositif (7) d'amenée de l'air comprimé est réalisé avec une possibilité d'assurer le début d'amenée à la position du piston (3), qui correspond à une valeur fixe de l'angle de rotation du bras de manivelle (4) du vilebrequin (5), choisie dans le créneau à partir de 40° avant le point mort haut jusqu'à 25° après le point mort haut, en fonction de la vitesse nominale de rotation du moteur et avec la possibilité d'assurer la fin de l'amenée de l'air comprimé à la position du piston (3), qui correspond à une valeur fixe de l'angle de rotation du bras de manivelle (4) du vilebrequin (5), choisie dans le créneau de 0° à 90° après le point mort haut, en fonction de l'efficacité nécessaire, et avec cela ces valeurs, définies pour chaque moteur concret, restent invariables pendant son fonctionnement.
  7. Moteur à pistons à air comprimé selon la revendication 6, caractérisé en ce qu 'il contient au moins un cylindre supplémentaire raccordé en série (12), en formant ainsi un moteur à étages multiples (10), et avec cela
    dans le cylindre supplémentaire (12) se trouvent un piston (22) lié cinématiquement par le bras de manivelle (27) avec le vilebrequin (28) et une chambre de travail (21), qui a un dispositif (29) pour laisser sortir l'air à la position du piston (22) dans la zone du point mort bas;
    chaque cylindre précédent (11) du moteur à étages multiples (10) a un dispositif pour réaliser un by-pass de l'air de la chambre de travail (14) du cylindre précédent dans la chambre de travail (21) du cylindre supplémentaire suivant (12) à la position du piston (16) du cylindre précédent sans atteindre la zone du point mort bas;
    le dernier cylindre dans la série de cylindres supplémentaires (12) a un dispositif (23) pour laisser sortir l'air à la position du piston (22) sans atteindre la zone du point mort bas;
    les pistons (16, 22) de tous les cylindres (11, 12) sont cinématiquement liés avec un vilebrequin commun (28).
  8. Moteur à pistons à air comprimé selon les revendications 6 ou 7, caractérisé en ce qu' au moins dans l'un des cylindres (11, 12) le dispositif (15, 29) pour laisser sortir l'air à la position du piston (16, 22) dans la zone du point mort bas est réalisé avec la possibilité de réutilisation de l'air sortant.
  9. Moteur à pistons à air comprimé selon les revendications 7 ou 8, caractérisé en ce que ledit dispositif de by-pass de l'air de la chambre de travail (14) du cylindre précédent (11) dans la chambre de travail (21) du cylindre supplémentaire suivant (12) est réalisé sous forme d'un canal by-pass (17) dans lequel se trouve une soupape de non-retour (18), et avec cela l'entrée du canal by-pass (17) est lié avec un orifice by-pass (19) de la chambre de travail du cylindre précédent (11), l'orifice by-pass (19) se trouve au dessus de la zone du point mort bas du piston (16), et la sortie du canal by-pass (17) est liée avec l'orifice d'entrée (20) de la chambre de travail du cylindre supplémentaire (12).
  10. Moteur à pistons à air comprimé selon l'une quelconque des revendications 7 à 9, caractérisé en ce que le diamètre intérieur de chaque cylindre suivant et le diamètre extérieur de son piston sont plus grands que dans le cylindre précédent.
  11. Utilisation du procédé selon l'une quelconque des revendications 1 à 5 dans un ensemble fonctionnel moteur contenant un moteur à pistons à air comprimé selon l'une quelconque des revendications 6 à 9 et un compresseur d'air.
  12. Utilisation du procédé selon la revendication 11, caractérisée en ce qu 'une partie de puissance, générée dans le moteur à pistons à air comprimé, est transférée dans la commande du compresseur d'air.
EP02726100A 2001-08-08 2002-05-10 Procede de fonctionnement et d'agencement d'un moteur a pistons a air comprime Expired - Lifetime EP1415067B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EEP200100415A EE04286B1 (et) 2001-08-08 2001-08-08 Pneumokolbmootori töötamismeetod ja pneumokolbmootor ning nende kasutamine jõuseadmes
EE200100415 2001-08-08
PCT/EE2002/000004 WO2003006795A1 (fr) 2001-08-08 2002-05-10 Procede de fonctionnement et d'agencement d'un moteur a pistons a air comprime

Publications (2)

Publication Number Publication Date
EP1415067A1 EP1415067A1 (fr) 2004-05-06
EP1415067B1 true EP1415067B1 (fr) 2005-06-15

Family

ID=8161772

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02726100A Expired - Lifetime EP1415067B1 (fr) 2001-08-08 2002-05-10 Procede de fonctionnement et d'agencement d'un moteur a pistons a air comprime

Country Status (13)

Country Link
US (1) US20040231504A1 (fr)
EP (1) EP1415067B1 (fr)
JP (1) JP2004534173A (fr)
KR (1) KR20040018513A (fr)
CN (1) CN1539049A (fr)
AT (1) ATE298039T1 (fr)
CA (1) CA2450105C (fr)
DE (1) DE60204697T2 (fr)
DK (1) DK1415067T3 (fr)
EA (1) EA005059B1 (fr)
EE (1) EE04286B1 (fr)
ES (1) ES2242857T3 (fr)
WO (1) WO2003006795A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2880649A1 (fr) * 2005-01-07 2006-07-14 Raymond Louis Espitalie Dispositif hybride electro-pneumatique, generateur d'une energie motrice non polluante a deux temps
CN100381699C (zh) * 2006-05-11 2008-04-16 孟宪全 空气发动机
FR2965581B1 (fr) * 2010-10-04 2014-05-16 Motor Development Int Sa Moteur a chambre active incluse mono et/ou bi energie a air comprime et/ou a energie additionnelle
US20140217737A1 (en) 2011-09-02 2014-08-07 Eduardo Javier Egaña Castillo Wave-power electricity generation system
CN103244259B (zh) * 2013-05-29 2015-05-27 长城汽车股份有限公司 连通缸四冲程发动机及相应的汽车
WO2016164825A1 (fr) 2015-04-10 2016-10-13 The Centripetal Energy Company Ii Moteur à différentiels de pression

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE400623C (de) * 1923-11-21 1924-08-20 Carl Lang Einrichtung zum Betrieb mehrstufiger Druckluftmotoren mit vom Kolben gesteuertem Auslass
DE582620C (de) * 1926-10-14 1935-03-04 Karl Zur Nieden Druckluftmotor, bei dem der Auslass durch vom Kolben kurz vor Ende des Ausdehnungshubes ueberlaufene Schlitze der Zylinderwand gesteuert wird
FR1009307A (fr) * 1948-06-04 1952-05-28 Moteur destiné en particulier à fonctionner avec du gaz comprimé, de l'air comprimé ou des fluides analogues
GB700821A (en) * 1951-05-29 1953-12-09 Nat Res Dev Improvements in or relating to fluid pressure engines of the uniflow type
US3314337A (en) * 1964-01-31 1967-04-18 Dresser Ind Piston for an expansion engine
US3527141A (en) * 1968-08-01 1970-09-08 Jerry A Peoples Valving system for reciprocating engine
US3765180A (en) * 1972-08-03 1973-10-16 R Brown Compressed air engine

Also Published As

Publication number Publication date
ES2242857T3 (es) 2005-11-16
EE200100415A (et) 2002-12-16
DE60204697T2 (de) 2006-05-18
EE04286B1 (et) 2004-04-15
EP1415067A1 (fr) 2004-05-06
EA200400244A1 (ru) 2004-08-26
CA2450105C (fr) 2005-10-04
ATE298039T1 (de) 2005-07-15
JP2004534173A (ja) 2004-11-11
CN1539049A (zh) 2004-10-20
EA005059B1 (ru) 2004-10-28
US20040231504A1 (en) 2004-11-25
DK1415067T3 (da) 2005-09-19
DE60204697D1 (de) 2005-07-21
KR20040018513A (ko) 2004-03-03
CA2450105A1 (fr) 2003-01-23
WO2003006795A1 (fr) 2003-01-23

Similar Documents

Publication Publication Date Title
US6615586B1 (en) High-pressure gas-turbine plant using high-pressure piston-type compressor
JP5808128B2 (ja) ガス焚きエンジン
US20040261415A1 (en) Motor-driven compressor-alternator unit with additional compressed air injection operating with mono and multiple energy
GB2402169A (en) An engine with several operating modes including operation by compressed air
US9045982B2 (en) Self-pressure-regulating compressed air engine comprising an integrated active chamber
EP1415067B1 (fr) Procede de fonctionnement et d'agencement d'un moteur a pistons a air comprime
US20090199789A1 (en) On demand, stored, positive pressurized air injection for internal combustion engines combustion chambers
KR100635441B1 (ko) 2행정 디젤 엔진의 기동, 제동, 및 역전 방법, 및 그 장치
WO1999006682A2 (fr) Moteur combine a combustion interne et suralimente
US6554585B1 (en) Power generating assembly capable of dual-functionality
Kumar et al. Performance of a compressed air engine
US3447313A (en) Supercharged two stroke cycle internal combustion piston engine
CN1068396A (zh) 压缩机组
JPS6079125A (ja) 等温圧縮機を利用するクロ−ズドサイクル動力伝達方式
KR102329602B1 (ko) 액체공기를 이용한 선박의 운용시스템 및 그 운용장치
JP5908056B2 (ja) ガス焚きエンジン
RU2170831C1 (ru) Способ осуществления цикла, приближенного к циклу карно, в двигателе внутреннего сгорания и двигатель внутреннего сгорания
US2648189A (en) Internal-combustion engine and pneumatic transmission drive
EP0078317A1 (fr) Procede et systeme utilisant des electro-aimants et une pression hydraulique (ou gazeuse) pour amplifier l'energie electrique
Sujaykumar et al. Compressed Air Engine with Self Compression Arrangement System
CN201193565Y (zh) 新型对峙式混合动力发动机
RU2416740C2 (ru) Двигатель-компрессор для газообразных топлив и способ его работы
JP6038225B2 (ja) ガス焚きエンジン
RU2187038C1 (ru) Автомобильная газонаполнительная компрессорная станция
RO132875A2 (ro) Motor termohidrodinamic

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040205

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: LT LV

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050615

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60204697

Country of ref document: DE

Date of ref document: 20050721

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050915

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2242857

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051124

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20060602

Year of fee payment: 5

26N No opposition filed

Effective date: 20060316

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20061108

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20061130

Year of fee payment: 5

LTLA Lt: lapse of european patent or patent extension

Effective date: 20060510

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20070105

Year of fee payment: 5

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20070503

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20070510

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070730

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070426

Year of fee payment: 6

BERE Be: lapsed

Owner name: *BOGOMOLOV YURY

Effective date: 20070531

Owner name: *FELDMAN JURI

Effective date: 20070531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070507

Year of fee payment: 6

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071201

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070510

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20071201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070529

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060510

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050615

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080510

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081202

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080510

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20080512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080511