EP1413510A1 - Method for turning over a concrete body and method for the production of a concrete vessel hull - Google Patents

Method for turning over a concrete body and method for the production of a concrete vessel hull Download PDF

Info

Publication number
EP1413510A1
EP1413510A1 EP20030078324 EP03078324A EP1413510A1 EP 1413510 A1 EP1413510 A1 EP 1413510A1 EP 20030078324 EP20030078324 EP 20030078324 EP 03078324 A EP03078324 A EP 03078324A EP 1413510 A1 EP1413510 A1 EP 1413510A1
Authority
EP
European Patent Office
Prior art keywords
concrete body
concrete
arms
vessel hull
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20030078324
Other languages
German (de)
French (fr)
Inventor
Jan Zeeman
Klaas Koffeman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABC Arkenbouw BV
Original Assignee
ABC Arkenbouw BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABC Arkenbouw BV filed Critical ABC Arkenbouw BV
Publication of EP1413510A1 publication Critical patent/EP1413510A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B5/00Hulls characterised by their construction of non-metallic material
    • B63B5/14Hulls characterised by their construction of non-metallic material made predominantly of concrete, e.g. reinforced
    • B63B5/16Hulls characterised by their construction of non-metallic material made predominantly of concrete, e.g. reinforced monolithic

Definitions

  • the present invention relates to a method for turning over a concrete body that is U-shaped in cross-section, from a first position in which the free ends of the arms of the U-shape point downwards into a second position in which the free ends of the arms of the U-shape point upwards.
  • U-shaped concrete bodies with arms pointing downwards The advantage of pouring U-shaped concrete bodies with arms pointing downwards is that pouring can then be carried out essentially in one operation, or at least uninterrupted in succession. This is because in such a position there are no locations in which air inclusions and construction joints can occur. If a U-shaped concrete body is poured with the arms pointing upwards, in general it is necessary first to pour the body linking the arms, usually first allowing this body to set so as only then to be able to pour the arms pointing upwards, it usually also being necessary first to erect further formwork parts before pouring the arms. If the U-shape is poured with the arms pointing downwards the entire formwork can first be erected and the entire formwork then filled by pouring in concrete, essentially without interruption.
  • a further advantage of pouring a U-shaped concrete body with the arms pointing downwards is that positioning of the reinforcing bars, in particular binding the reinforcing bars to one another at the location of the transition from the arms to the body linking the arms, is easier. Specifically, said transition is more easily accessible to personnel if the arms are pointing downwards. Staff then do not have to work crawling over the ground or crouching down or bending over but can work standing in the normal manner, optionally on an elevation.
  • the aim of the present invention is, now, to provide a method for turning over such a U-shaped concrete body, which method can be performed with relatively little effort, in particular exertion of force, and, moreover, gives rise to relatively little risk of injury to personnel if turning over does not proceed well.
  • Said aim is achieved according to the invention by a method for turning over a concrete body that is U-shaped in cross-section, from a first position in which the free ends of the arms of the U-shape point downwards into a second position in which the free ends of the arms of the U-shape point upwards, wherein the method, for a concrete body in the first position, comprises the following steps:
  • the force required to exert rotational moment can be relatively low and can even be of the order of magnitude of the force that can be exerted by a person.
  • the fluid layer starts to flow to the low side and will then support the rotational moment and even render further exertion of said rotational moment superfluous.
  • the concrete body will continue to move a little beyond this point, but because the body, comprising a heavy mass, linking the arms to one another has reached a position below the centre of gravity in the second position, the concrete body will finally come to rest in the water with its arms pointing upwards.
  • a fluid layer is understood to be, in particular, a layer of material that is capable of flow under the influence of gravity.
  • the fluid layer will in particular be a fluid, such as water, but can also be made up of a granular material that is capable of flowing well or possibly of marbles.
  • the fluid layer could also be made up of a material that is not too viscous.
  • the concrete body encloses a hollow cavity that is open towards the bottom and that, when the concrete body is in a tank to be filled with water, remains filled with air and thus provides the concrete body with buoyancy.
  • floats are provided between the arms of the U-shape.
  • floats are understood to be, in particular, bodies which have a relative density lower than that of water, such as hollow bodies filled with air, foam blocks, etc.
  • Such floats including in the case where these are foam blocks, will already be able to be provided between the arms of the U-shape before the concrete body is turned into the position with the arms pointing upwards.
  • foam bodies it is furthermore possible to provide these already as permanent formwork when casting the concrete body.
  • the so-called tanks containing a fluid layer therein can optionally be put on top of the concrete body in the first position and fixed to said concrete body. However, is it more preferential to provide the tanks within the legs of the U-shape, in which case they also act as a float, since the tanks will not be completely filled with a fluid layer.
  • the concrete body is secured against floating off, in a manner permitting rotation about the axis of rotation. After all, otherwise there is a risk that the concrete body floats off again as a consequence of the force exerted, rather than being made to rotate.
  • the at least one tank is removed after the concrete body has been turned into the second position.
  • the invention furthermore also relates to a method for the production of a concrete vessel hull for a vessel, such as a houseboat, wherein the vessel hull is a concrete body of U-shaped cross-section, wherein the vessel hull is poured upside down in a dock and wherein after the vessel hull has set the vessel hull is turned over using the method according to the invention.
  • Step (c) can then be carried out by allowing the dock to fill with water.
  • the invention also relates to a method for the production of a vessel, such as a houseboat, wherein a concrete vessel hull is produced using the method for the production thereof according to the invention and wherein, after the vessel hull has been turned over, construction of the houseboat is completed while the vessel hull is floating in the water.
  • the formwork in the case of pouring a concrete body, work will in general first be started with the production of formwork.
  • the formwork can take the form as is shown diagrammatically in Figure 1.
  • the formwork consists of an inner formwork 2 and an outer formwork 3. If the concrete body to be made will finally have a vessel-like shape with, as it were, a base and a surrounding wall extending around the entire periphery of the base, the outer formwork 3 will then also have a closed contour in the peripheral direction. The same then also applies for the inner formwork, at least for the vertical wall sections thereof.
  • the formwork 2, 3 is erected on the bottom of a dock 1.
  • a tank 4 containing a layer 5 of water a few centimetres deep is placed inside the inner formwork. A minimum depth of 1 to 10 cm must be considered for the depth of the layer of water.
  • the tank 4, as such, is closed all round and for the rest is filled with air or optionally another gas.
  • the tank 4 can thus act as a float in a later stage of the method. It is pointed out that the tank 4 does not already have to be placed in the inner formwork immediately before pouring; this can optionally be done at a later stage.
  • Figure 2 shows a subsequent stage, in which concrete 6 has been poured into the formwork 2, 3.
  • the concrete body 6 has a U-shape with two arms 11 and a base 12, that is for the time being located at the top.
  • the free ends of the arms 11 are indicated by 13 and in the so-called first position shown in Figure 2 these point downwards.
  • FIG 3 shows a further stage in the method according to the invention.
  • the outer formwork 3 has been removed, although this could also still be present, and the dock 1 has then been filled with water 8.
  • This has the effect that the poured concrete body 6 is made to float, the tanks 4 providing the buoyancy.
  • the tank 4 is not yet needed for buoyancy if at least the arms 11 are linked to one another at their end faces running parallel to the plane of the drawing by an end wall and a single space that is open towards the bottom is thus delimited between the arms 11.
  • a force is then exerted on the concrete body 6, which force F produces a rotational moment about the median extending transversely to the plane of the drawing and passing through the centre of gravity 7.
  • the force F can be exerted, for example, by placing a weight on top of the body 6, by allowing a mass to drop onto the latter, or in some other way. It is also not a requirement that the force F is directed vertically downwards; what is important is that a rotational moment is produced about an axis of rotation that is transverse to the plane of the drawing. Incidentally, this axis of rotation does not necessarily have to be a median passing through the centre of gravity 7.
  • the force F can, for example, also act in the horizontal direction.
  • the concrete body 6 is secured against floating off in a manner that incidentally does permit rotation about the axis of rotation. This can be effected, for example, by securing the concrete body 6 to the dock 1 at the two end faces running parallel to the plane of the drawing by means of an anchor chain.
  • Figure 4 shows a further intermediate stage in turning the concrete body 6.
  • the rotational moment is indicated by arrow M and it can clearly be seen that the layer of water 5 has collected in the bottom left comer of the tank 4 and thus produces a tilting moment that supports tilting or is subsequently entirely responsible for tilting.
  • the concrete body 6 Once the concrete body 6 has been made to move in this way, it will continue to turn into the second position shown in Figure 5 and initially will turn beyond this position so as, after some time, to come to rest in the position shown in Figure 5, with or without restraint.
  • the position shown in Figure 5 is a stable position. The reason for this is that the major proportion of the mass of the concrete body 6 is below the centre of gravity 7.
  • a superstructure 9 can then be erected on the concrete body 6 in the dock 1 or optionally outside the dock 1 in open water or in the water in some other way.
  • a houseboat or barge with a concrete vessel hull 6 can, for example, be built in this way.

Abstract

The present invention relates a method for turning over a concrete body that is U-shaped in cross-section, from a first position in which the free ends of the arms of the U-shape point downwards into a second position in which the free ends of the arms of the U-shape point upwards. The method, for a concrete body in the first position, comprises the following steps:
  • (a) providing the concrete body with at least one essentially closed tank extending over the width of the U-shape, containing a freely fluid layer, such as a layer of water;
  • (b) making the concrete body float in water;
  • (c) after steps (a) and (b) exerting a rotational moment about an axis of rotation extending transversely to the U-shape on the concrete body such that the fluid layer is displaced in the direction supporting the rotational moment.
The invention furthermore relates to a method for the production of a vessel, such as a houseboat, using the method for turning over a concrete body.

Description

  • The present invention relates to a method for turning over a concrete body that is U-shaped in cross-section, from a first position in which the free ends of the arms of the U-shape point downwards into a second position in which the free ends of the arms of the U-shape point upwards.
  • When pouring concrete bodies that are U-shaped in cross-section, such as concrete vessel hulls for, for example, houseboats, it is preferable if the arms of the U-shape point downwards when pouring. However, if this position is not the use position in which the concrete body is ultimately used, the corollary of this is that after pouring the concrete body the concrete body has to be turned over.
  • The advantage of pouring U-shaped concrete bodies with arms pointing downwards is that pouring can then be carried out essentially in one operation, or at least uninterrupted in succession. This is because in such a position there are no locations in which air inclusions and construction joints can occur. If a U-shaped concrete body is poured with the arms pointing upwards, in general it is necessary first to pour the body linking the arms, usually first allowing this body to set so as only then to be able to pour the arms pointing upwards, it usually also being necessary first to erect further formwork parts before pouring the arms. If the U-shape is poured with the arms pointing downwards the entire formwork can first be erected and the entire formwork then filled by pouring in concrete, essentially without interruption. A further advantage of pouring a U-shaped concrete body with the arms pointing downwards is that positioning of the reinforcing bars, in particular binding the reinforcing bars to one another at the location of the transition from the arms to the body linking the arms, is easier. Specifically, said transition is more easily accessible to personnel if the arms are pointing downwards. Staff then do not have to work crawling over the ground or crouching down or bending over but can work standing in the normal manner, optionally on an elevation.
  • As already indicated, pouring a U-shaped concrete body with the arms pointing downwards has the disadvantage, if this concrete body must have the arms pointing upwards in the use position, that the concrete body formed still has to be turned over. Especially in the case of large concrete bodies this demands a particularly large effort and deployment of personnel and machines and it must be realised that if everything does not go well the risks of injury are high.
  • The aim of the present invention is, now, to provide a method for turning over such a U-shaped concrete body, which method can be performed with relatively little effort, in particular exertion of force, and, moreover, gives rise to relatively little risk of injury to personnel if turning over does not proceed well.
  • Said aim is achieved according to the invention by a method for turning over a concrete body that is U-shaped in cross-section, from a first position in which the free ends of the arms of the U-shape point downwards into a second position in which the free ends of the arms of the U-shape point upwards, wherein the method, for a concrete body in the first position, comprises the following steps:
    • (a) providing the concrete body with at least one essentially closed tank extending over the width of the U-shape, containing a freely fluid layer, such as a layer of water;
    • (b) making the concrete body float in water;
    • (c) after steps (a) and (b) exerting a rotational moment about an axis of rotation extending transversely to the U-shape on the concrete body such that the fluid layer is displaced in the direction supporting the rotational moment.
  • The force required to exert rotational moment can be relatively low and can even be of the order of magnitude of the force that can be exerted by a person. As soon as the concrete body has tilted a little, the fluid layer starts to flow to the low side and will then support the rotational moment and even render further exertion of said rotational moment superfluous. After it has turned through 180° about the axis of rotation, the concrete body will continue to move a little beyond this point, but because the body, comprising a heavy mass, linking the arms to one another has reached a position below the centre of gravity in the second position, the concrete body will finally come to rest in the water with its arms pointing upwards.
  • A fluid layer is understood to be, in particular, a layer of material that is capable of flow under the influence of gravity. The fluid layer will in particular be a fluid, such as water, but can also be made up of a granular material that is capable of flowing well or possibly of marbles. The fluid layer could also be made up of a material that is not too viscous. Per se, it is very readily conceivable that the concrete body encloses a hollow cavity that is open towards the bottom and that, when the concrete body is in a tank to be filled with water, remains filled with air and thus provides the concrete body with buoyancy. When, however, one of the arms of the concrete body then emerges from the water surface during turning over, the air will flow out of this hollow cavity and be replaced by water, as a consequence of which the concrete body will sink. If the rotational moment is not large enough and the tank in which the concrete body is floating is insufficiently deep, the result of this will be that the concrete body does not achieve its turned-over second position because it makes contact with the bottom of the tank prematurely. In order to provide the concrete body with permanent buoyancy it is therefore preferable according to the invention if one or more floats are provided between the arms of the U-shape. In this context floats are understood to be, in particular, bodies which have a relative density lower than that of water, such as hollow bodies filled with air, foam blocks, etc. Such floats, including in the case where these are foam blocks, will already be able to be provided between the arms of the U-shape before the concrete body is turned into the position with the arms pointing upwards. In the case of foam bodies it is furthermore possible to provide these already as permanent formwork when casting the concrete body.
  • The so-called tanks containing a fluid layer therein can optionally be put on top of the concrete body in the first position and fixed to said concrete body. However, is it more preferential to provide the tanks within the legs of the U-shape, in which case they also act as a float, since the tanks will not be completely filled with a fluid layer.
  • In order to be able to exert a force on the concrete body for the purpose of generating the required rotational moment, it is preferable according to the invention if the concrete body is secured against floating off, in a manner permitting rotation about the axis of rotation. After all, otherwise there is a risk that the concrete body floats off again as a consequence of the force exerted, rather than being made to rotate.
  • According to the invention it is furthermore advantageous if the at least one tank is removed after the concrete body has been turned into the second position.
  • The invention furthermore also relates to a method for the production of a concrete vessel hull for a vessel, such as a houseboat, wherein the vessel hull is a concrete body of U-shaped cross-section, wherein the vessel hull is poured upside down in a dock and wherein after the vessel hull has set the vessel hull is turned over using the method according to the invention. Step (c) can then be carried out by allowing the dock to fill with water.
  • Finally, the invention also relates to a method for the production of a vessel, such as a houseboat, wherein a concrete vessel hull is produced using the method for the production thereof according to the invention and wherein, after the vessel hull has been turned over, construction of the houseboat is completed while the vessel hull is floating in the water.
  • The present invention will be explained in more detail below with reference to an illustrative embodiment shown stepwise diagrammatically in the drawings. In the drawings Figures 1 to 6 show successive stages of the method according to the invention.
  • As is shown in Figure 1, in the case of pouring a concrete body, work will in general first be started with the production of formwork. In the case of a body that is U-shaped in cross-section and that is cast upside down, the formwork can take the form as is shown diagrammatically in Figure 1. The formwork consists of an inner formwork 2 and an outer formwork 3. If the concrete body to be made will finally have a vessel-like shape with, as it were, a base and a surrounding wall extending around the entire periphery of the base, the outer formwork 3 will then also have a closed contour in the peripheral direction. The same then also applies for the inner formwork, at least for the vertical wall sections thereof. In the illustrative embodiment given, the formwork 2, 3 is erected on the bottom of a dock 1. A tank 4 containing a layer 5 of water a few centimetres deep is placed inside the inner formwork. A minimum depth of 1 to 10 cm must be considered for the depth of the layer of water. The tank 4, as such, is closed all round and for the rest is filled with air or optionally another gas. The tank 4 can thus act as a float in a later stage of the method. It is pointed out that the tank 4 does not already have to be placed in the inner formwork immediately before pouring; this can optionally be done at a later stage.
  • Figure 2 shows a subsequent stage, in which concrete 6 has been poured into the formwork 2, 3. Viewed in cross-section, the concrete body 6 has a U-shape with two arms 11 and a base 12, that is for the time being located at the top. The free ends of the arms 11 are indicated by 13 and in the so-called first position shown in Figure 2 these point downwards.
  • Figure 3 shows a further stage in the method according to the invention. The outer formwork 3 has been removed, although this could also still be present, and the dock 1 has then been filled with water 8. This has the effect that the poured concrete body 6 is made to float, the tanks 4 providing the buoyancy. However, it is pointed out that in the so-called first position of the concrete body 6, shown in Figure 3, the tank 4 is not yet needed for buoyancy if at least the arms 11 are linked to one another at their end faces running parallel to the plane of the drawing by an end wall and a single space that is open towards the bottom is thus delimited between the arms 11.
  • As is indicated in Figure 3 by arrow F, a force is then exerted on the concrete body 6, which force F produces a rotational moment about the median extending transversely to the plane of the drawing and passing through the centre of gravity 7. The force F can be exerted, for example, by placing a weight on top of the body 6, by allowing a mass to drop onto the latter, or in some other way. It is also not a requirement that the force F is directed vertically downwards; what is important is that a rotational moment is produced about an axis of rotation that is transverse to the plane of the drawing. Incidentally, this axis of rotation does not necessarily have to be a median passing through the centre of gravity 7. As will be clear to those skilled in the art, the force F can, for example, also act in the horizontal direction. In the latter case it will be advantageous, in order to prevent the concrete body 6 floating off, if the concrete body 6 is secured against floating off in a manner that incidentally does permit rotation about the axis of rotation. This can be effected, for example, by securing the concrete body 6 to the dock 1 at the two end faces running parallel to the plane of the drawing by means of an anchor chain.
  • Figure 4 shows a further intermediate stage in turning the concrete body 6. The rotational moment is indicated by arrow M and it can clearly be seen that the layer of water 5 has collected in the bottom left comer of the tank 4 and thus produces a tilting moment that supports tilting or is subsequently entirely responsible for tilting. Once the concrete body 6 has been made to move in this way, it will continue to turn into the second position shown in Figure 5 and initially will turn beyond this position so as, after some time, to come to rest in the position shown in Figure 5, with or without restraint. In contrast to the position shown in Figure 3, the position shown in Figure 5 is a stable position. The reason for this is that the major proportion of the mass of the concrete body 6 is below the centre of gravity 7. Insofar as this has not already been done, the inner formwork and the tank 4 containing the layer 5 of water therein can now be removed. A superstructure 9 can then be erected on the concrete body 6 in the dock 1 or optionally outside the dock 1 in open water or in the water in some other way. A houseboat or barge with a concrete vessel hull 6 can, for example, be built in this way.

Claims (8)

  1. Method for turning over a concrete body that is U-shaped in cross-section, from a first position in which the free ends of the arms of the U-shape point downwards into a second position in which the free ends of the arms of the U-shape point upwards, wherein the method, for a concrete body in the first position, comprises the following steps:
    (a) providing the concrete body with at least one essentially closed tank extending over the width of the U-shape, containing a freely fluid layer, such as a layer of water;
    (b) making the concrete body float in water;
    (c) after steps (a) and (b) exerting a rotational moment about an axis of rotation extending transversely to the U-shape on the concrete body such that the fluid layer is displaced in the direction supporting the rotational moment.
  2. Method according to Claim 1, wherein one or more floats are provided between the arms of the U-shape.
  3. Method according to Claim 2, wherein the floats comprise the tanks from step (a).
  4. Method according to one of Claims 1 - 3, wherein the concrete body is secured against floating off in a manner permitting rotation about the axis of rotation.
  5. Method according to one of the preceding claims, wherein the at least one tank is removed after the concrete body has been turned into the second position.
  6. Method for the production of a concrete vessel hull for a vessel, such as a houseboat, wherein the vessel hull is a concrete body of U-shaped cross-section, wherein the vessel hull is poured upside down in a dock and wherein after the vessel hull has set the vessel hull is turned over using the method according to one of the preceding claims.
  7. Method according to Claim 6, wherein step (c) is carried out by allowing the dock to fill with water.
  8. Method for the production of a vessel, such as a houseboat, wherein a concrete vessel hull is produced using the method according to one of Claims 6 - 7 and wherein, after the vessel hull has been turned over, construction of the houseboat is completed while the vessel hull is floating in the water.
EP20030078324 2002-10-22 2003-10-21 Method for turning over a concrete body and method for the production of a concrete vessel hull Withdrawn EP1413510A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL1021719A NL1021719C2 (en) 2002-10-22 2002-10-22 Method for turning over a concrete body, as well as method for manufacturing a concrete hull and method for manufacturing a vessel.
NL1021719 2002-10-22

Publications (1)

Publication Number Publication Date
EP1413510A1 true EP1413510A1 (en) 2004-04-28

Family

ID=32065075

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20030078324 Withdrawn EP1413510A1 (en) 2002-10-22 2003-10-21 Method for turning over a concrete body and method for the production of a concrete vessel hull

Country Status (3)

Country Link
US (1) US20040123552A1 (en)
EP (1) EP1413510A1 (en)
NL (1) NL1021719C2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2483965C1 (en) * 2011-12-27 2013-06-10 Владимир Максович Цырлин Method for construction of floating facility, predominantly river or sea vessel
KR102039591B1 (en) 2017-12-26 2019-11-01 삼성중공업 주식회사 Method of turnover for ship block

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2538275B (en) 2015-05-13 2018-01-31 Crondall Energy Consultants Ltd Floating production unit and method of installing a floating production unit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB108666A (en) * 1916-08-11 1917-11-22 Harald Alfsen Improvements in connection with the Building and Launching of Reinforced Concrete Boats.
FR485600A (en) * 1916-08-11 1918-01-23 Harald Alfsen Method of construction and launching of floating buildings
JPS565287A (en) * 1979-06-28 1981-01-20 Mitsubishi Heavy Ind Ltd Hull caisson method
AU554951B3 (en) * 1982-11-24 1986-10-21 Pacific Marina Developments Pty. Ltd. Improvements in or relating to pontoons
EP0460851A1 (en) * 1990-06-05 1991-12-11 Metro Machine Corporation Vessel hull and construction method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US920046A (en) * 1908-11-06 1909-04-27 Cemento Armato E Retinato Gabellini Soc Float of reinforced concrete.
US1258175A (en) * 1917-05-10 1918-03-05 Harald Alfsen Method of building and launching floating craft.
US1353107A (en) * 1918-05-15 1920-09-14 Williams Foreign Patents Ltd Mode of constructing reinforced-concrete ships, barges, floating structures, and thelike
US3091203A (en) * 1958-10-27 1963-05-28 Ernest M Usab Concrete floating wharf sturctures

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB108666A (en) * 1916-08-11 1917-11-22 Harald Alfsen Improvements in connection with the Building and Launching of Reinforced Concrete Boats.
FR485600A (en) * 1916-08-11 1918-01-23 Harald Alfsen Method of construction and launching of floating buildings
NL3133C (en) * 1916-08-11 1919-04-01 Harald Alfsen
DE339777C (en) * 1916-08-11 1921-08-08 Porsgrunds Cementstoeperi As Process for the manufacture of reinforced concrete ships capable of keel above
JPS565287A (en) * 1979-06-28 1981-01-20 Mitsubishi Heavy Ind Ltd Hull caisson method
AU554951B3 (en) * 1982-11-24 1986-10-21 Pacific Marina Developments Pty. Ltd. Improvements in or relating to pontoons
EP0460851A1 (en) * 1990-06-05 1991-12-11 Metro Machine Corporation Vessel hull and construction method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 005, no. 050 (M - 062) 9 April 1981 (1981-04-09) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2483965C1 (en) * 2011-12-27 2013-06-10 Владимир Максович Цырлин Method for construction of floating facility, predominantly river or sea vessel
WO2013100796A2 (en) * 2011-12-27 2013-07-04 РАХМАНОВ, Евгений Владимирович Method for building a floating craft, preferably a river or sea-going vessel
WO2013100796A3 (en) * 2011-12-27 2014-12-24 РАХМАНОВ, Евгений Владимирович Method for building a floating craft, preferably a river or sea-going vessel
KR102039591B1 (en) 2017-12-26 2019-11-01 삼성중공업 주식회사 Method of turnover for ship block

Also Published As

Publication number Publication date
US20040123552A1 (en) 2004-07-01
NL1021719C2 (en) 2004-05-11

Similar Documents

Publication Publication Date Title
JP7186406B2 (en) Floating structure and installation method of floating structure
EP2761176B1 (en) Floating wind turbine
KR101553426B1 (en) Supporting element for an offshore wind turbine, production method thereof and method for installing same
KR20200060766A (en) Float support structures for offshore wind turbines and methods for installing wind turbines with such support structures
JP2018507135A (en) Floating wind turbine platform construction, assembly and launch method
NO328838B1 (en) Device and method of wind generator
JP2009248792A (en) Spar-type floating body structure for wind power generation on ocean, manufacturing method of the same, and installation method of the same
FR3017595A1 (en) DEVICE FOR LIFTING RIVER OR MARITIME CRAFT
US3824942A (en) Offshore underwater storage tank
JPH05503124A (en) Method and apparatus for constructing artificial islands and islands thus obtained
CA2916763A1 (en) Platform for tidal turbines
US4127004A (en) Off-shore platforms and methods for installing the same
US20040258483A1 (en) Method and apparatus for the lifting of offshore installation jackets
NO323715B1 (en) Jacking platform and method of mounting and lifting a tank using the platform
EP1413510A1 (en) Method for turning over a concrete body and method for the production of a concrete vessel hull
NO135700B (en)
AU752766B2 (en) Method of dissolving water-soluble gas in sea for isolation into deep sea, device therefor, laying method for device
US4222682A (en) Platforms for sea-bottom exploitation
DK176278B1 (en) A method of raising a sea platform from a substructure and a floating body suitable for this
NO20092241L (en) Subsoil foundations, as well as methods for installing the foundation
JP2013123936A (en) Device and method for reinforcing support leg of self-elevating platform
KR100553664B1 (en) Ship construction method by underwater mounting
US4443131A (en) Method for constructing an offshore platform structure having a plurality of supporting legs inclined inwardly towards each other
EP3943666A1 (en) Method for the installation of an offshore maritime structure and offshore maritime structure
KR102539656B1 (en) Block joint maritime operation method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

AKX Designation fees paid
REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20041029