EP1411235B1 - Two cycle hot gas engine with two movable parts - Google Patents

Two cycle hot gas engine with two movable parts Download PDF

Info

Publication number
EP1411235B1
EP1411235B1 EP03023220A EP03023220A EP1411235B1 EP 1411235 B1 EP1411235 B1 EP 1411235B1 EP 03023220 A EP03023220 A EP 03023220A EP 03023220 A EP03023220 A EP 03023220A EP 1411235 B1 EP1411235 B1 EP 1411235B1
Authority
EP
European Patent Office
Prior art keywords
gas
piston
hot gas
gas engine
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03023220A
Other languages
German (de)
French (fr)
Other versions
EP1411235A1 (en
Inventor
Gimsa Andreas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enerlyt Potsdam GmbH Energie Umwelt Planung und Analytik
Original Assignee
Enerlyt Potsdam GmbH Energie Umwelt Planung und Analytik
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE2002148785 external-priority patent/DE10248785B4/en
Application filed by Enerlyt Potsdam GmbH Energie Umwelt Planung und Analytik filed Critical Enerlyt Potsdam GmbH Energie Umwelt Planung und Analytik
Publication of EP1411235A1 publication Critical patent/EP1411235A1/en
Application granted granted Critical
Publication of EP1411235B1 publication Critical patent/EP1411235B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/0435Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines the engine being of the free piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/044Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines having at least two working members, e.g. pistons, delivering power output
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2275/00Controls
    • F02G2275/20Controls for preventing piston over stroke

Definitions

  • the invention is in the field of hot gas engines.
  • the patent DE 199 38 023 discloses for the first time a hot gas engine with one another running one another Piston, wherein the stroke range of the inner working piston in the middle in the stroke range of the outer bulb lies.
  • the patent DE 100 16 707 discloses for the first time such a motor as Free piston version.
  • Hot gas engine If the construction of a hot gas engine allows it for the realization of one or more Hot gas cycles (circular processes) can be dispensed with a transmission, can be Use pressure fluctuations of the motor to drive diaphragms or piezo ceramics.
  • patent DE 102 40 750 describes such a gearless hot gas engine.
  • the movement of the double outer bulb 2 also influences when the inner bulb is stationary the working gas total volume.
  • the double inner piston 3 reaches during operation a higher speed than the double outer bulb 2.
  • the double inner piston 3 rushes, driven by the changing working gas pressure, the Double outer bulb 2 ahead.
  • the double inner piston 3 generates with its movement Pressure change of the buffer gas in the spaces 6.1, 6.2 and thus forces the outer bulb in the same direction. Due to the interaction of its magnets 2.7 with external Magnet 1.2, the stop of the double outer bulb 2 is prevented to the cylinder wall.
  • Fig.1 shows the basic structure of the engine with its essential components.
  • the two gas cycles work with 180 ° phase shift.
  • the piston rod 3.3 can be made hollow to to connect the buffer gas spaces 6.1 and 6.2.
  • the buffer gas volume is constant and independent of the piston positions.
  • a defined pressure loss can be set in it upon movement of the double inner piston 3, a pressure change in the buffer gas spaces 6.1 and 6.2.
  • the inner pistons 3.1 and 3.2 can be maintained while maintaining the necessary piston sealing surfaces also perform cup-shaped, so that the cup openings facing the magnet 2.7 are. Thus, the buffer gas pressure is brought to a lower level.
  • a double outer piston 2 is arranged axially movable and in this a double inner piston 3 is arranged axially movable.
  • the cylinder body 1 includes two outer Stirnbegrenzungswin and a parallel thereto middle partition so that two equal spaces are formed in its interior.
  • the middle partition wall of the cylinder body 1 contains a central bore at least to record a sliding seal 1.1.
  • the double outer bulb 2 connects via a hollow piston rod 2.3 two outer pistons 2.1 and 2.2 with each other and the hollow Piston rod 2.3 is pressure-tight guided by the sliding seal 1.1.
  • the double inner piston 3 connects via a piston rod 3.3 two inner pistons 3.1 and 3.2 with each other and the piston rod 3.3 is pressure-tight guided by the sliding seals 2.4, which are located in the hollow piston rod 2.3.
  • the front boundary surfaces of the cylinder body 1 contain magnets 1.2, with magnets 2.7 interact in the front boundary surfaces of the double outer bulb 2 on repulsion (springs are also possible).
  • the outer bulb 2.1 contains in its side facing away from the magnets front boundary surface Openings 2.5, which connect the gas space 4.2 with the gas space 4.3.
  • the outer bulb 2.2 contains in its side facing away from the magnets front boundary surface openings 2.6, the Connect the gas space 5.1 with the gas space 5.2.
  • the outer bulb 2.1 may alternatively to the aforementioned openings 2.5 this in his the Magnet facing end boundary surface, which then the gas space 4.1 with the Connect gas chamber 6.1.
  • the gas space 4.2 is thereby the buffer space.
  • the outer bulb 2.2 may alternatively to the aforementioned openings 2.6 this in his the Magnet facing end boundary surface containing, then the gas space 6.2 with the Connect gas chamber 5.3.
  • the gas space 5.2 is thereby the buffer space.
  • the gas space 4.1 is a heater 8, a regenerator 9 and a radiator 10 with the Gas space 4.3 connected, the gas space 5.1 is a cooler 11, a regenerator 12 and a heater 13 connected to the gas space 5.3.
  • heaters and coolers can be interchanged with each other: Instead of the heater 8 or 13, a radiator is arranged or instead of the radiator 10 or 11, a heater is arranged.
  • the rooms which serve as buffer gas rooms, can be used to modify the engine. This task is achieved by converting the two buffer gas spaces into working gas spaces.
  • Fig. 3 shows the basic structure of the engine. There are two double pistons, the outer one Piston 200 and the inner piston 300 in a cylinder body 100.
  • the cylinder body encloses the outer piston 200, which in turn includes the inner piston 300.
  • the first working gas cycle takes place in the following rooms: 401, 402, 403, 404 and interiors of 800, 900, 1000 and interiors of connecting pipelines.
  • the second working gas cycle expires in the following rooms: 501, 502, 503, 504 and interiors of 1100, 1200, 1300 and interiors of connecting pipelines.
  • the inventive arrangement of a hot gas engine is characterized in that the Gas space 403 is connected to the gas space 404 and that the gas space 501 with the gas space 504 is connected.
  • the first gas connection to one of the two working gas cycles and the second gas connection is connected to the second working gas cycle. Both Working gas cycles are sealed against each other.
  • the mutual connection openings can be parallel to the central axis running bores (channels 208 and 209) of the hollow piston rod 203 run.
  • the reciprocal gas connection may be in the inner perimeter covers of the dual outer envelope 200 be realized.
  • Another possibility is at least one of the channels in the piston rod 303 of the double inner piston 300 form.
  • thermal decoupling of heater and cylinder can be for both cycles ever Arrange pulse tube meaningfully so that the central axis of the pulse tube perpendicular to the central axis the cylinder body 100 of the engine is.
  • a mechanical power dissipation from the double outer piston 200 through the cylinder wall is required to the outside (Fig. 6)
  • the attachment of a piston rod 210 takes place the double outer piston 200.
  • the piston rod is to perform a linear lifting movement passed through the cylinder wall pressure-tight to the outside. This is a seal 103 required, which lies in the described arrangement on the cold engine side.
  • the Piston rod for force transmission to the outside and for stroke limitation of the double outer piston 200 with the center of a diaphragm, with a connecting rod attached to a crankshaft hinges or mechanically connected to the bobbin of a linear generator.
  • Fig. 7 shows a motor that does not require any magnets.
  • the working gas chambers 404 and 504 are converted to buffer gas spaces 404P and 504P. This serves with the Movement of the double inner piston 300 compressed buffer gas of the impulse transmission the double outer bulb 200.
  • the gas spring acting in them so set that can be dispensed with magnets.
  • a defined damping can be eg via the external heat-transferring components.
  • Fig. 4 shows schematically the arrangement of the heat-transferring components: heater, regenerator and coolers for each working gas cycle. It can be the heater 800 with the heater 1300 for operation with a burner summarize by heating both as a series lying spirals of a heater base body are formed. Another meaningful Arrangement is the connection of the two coolers 1000 and 1100. These can be For example, in the design as a tube bundle heat exchanger for both cycles on the gas side and water side summarize.
  • Fig. 5 illustrates the flow of state changes and the system function.
  • both pistons are on the left side.
  • the working gas of the first cycle is under high pressure before expansion (eg 15 bar).
  • the volume is on the Room 403 compressed.
  • the working gas of the second cycle is under compression low pressure (eg 5 bar).
  • the volume is high and is in rooms 502, 503 and 504.
  • the double outer bulb remains 200 in its left position.
  • the movement of the double inner piston 300 of left to right comes about through the pressure difference on the sides of the piston. simultaneously there is a supply of heat from the heater of the first cycle and heat dissipation the cooler of the second cycle. At the end of the movement has the pressure of both cycles approximated. It is now for example 10 bar in both cycles.
  • the left magnet 207 may contact the left magnet after reduced pressure in the first cycle 102 repel.
  • the kinetic energy of the double inner piston 300 is given as an impulse transferred to the double outer bulb 200.
  • the right magnet pushes 304 in the Movement from B to C via the right magnet 207 the double outer bulb 200 on the right side.
  • the volume of the first cycle remains constantly high and that of the second cycle constantly low. As a result of the displacement movement both regenerators be flowed through, the pressure falls in the first (for example, to 5 bar) and increases the pressure in second cycle (for example to 15 bar).
  • the double outer bulb remains 200 in its right position.
  • the movement of the double inner piston 300 from right to left comes about by the pressure difference on the piston sides.
  • the pressure of both Cycles approximated again. It is now for example 10 bar in both cycles.
  • the right solenoid 207 may move from the right after reduced pressure in the second cycle Repel magnets 102.
  • the kinetic energy of the double inner piston 300 is given as an impulse transferred to the double outer bulb 200.
  • the left magnet 304 pushes the movement from D to A via the left magnet 207 the double outer bulb 200th on the left side.
  • the volume of the first cycle remains constantly low and that of the second cycle constantly high.
  • both regenerators be flowed through, the pressure in the first increases (for example, to 15 bar) and the pressure drops in the second cycle (for example to 5 bar).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)

Description

Die Erfindung liegt auf dem Gebiet von Heißgasmotoren.The invention is in the field of hot gas engines.

Hintergrundbackground

Das Patent DE 199 38 023 offenbart erstmalig einen Heißgasmotor mit ineinander laufenden Kolben, bei dem der Hubbereich des inneren Arbeitskolbens mittig im Hubbereich des Außenkolbens liegt. Das Patent DE 100 16 707 offenbart erstmalig einen derartigen Motor als Freikolbenversion.The patent DE 199 38 023 discloses for the first time a hot gas engine with one another running one another Piston, wherein the stroke range of the inner working piston in the middle in the stroke range of the outer bulb lies. The patent DE 100 16 707 discloses for the first time such a motor as Free piston version.

Sofern der Aufbau eines Heißgasmotor es zulässt, dass für die Realisierung eines oder mehrerer Heißgas-Zyklen (Kreisprozesse) auf ein Getriebe verzichtet werden kann, lassen sich die Druckschwankungen des Motors zum Antrieb von Membranen oder Piezo-Keramiken nutzen. Das Patent DE 102 40 750 beschreibt beispielsweise einen derartigen getriebelosen Heißgasmotor.If the construction of a hot gas engine allows it for the realization of one or more Hot gas cycles (circular processes) can be dispensed with a transmission, can be Use pressure fluctuations of the motor to drive diaphragms or piezo ceramics. For example, patent DE 102 40 750 describes such a gearless hot gas engine.

Erfindunginvention

Aufgabe der Erfindung ist es, einen verbesserten Zwei-Zyklen-Heißgasmotor, der mit nur zwei bewegten Teilen arbeitet, zu offenbaren. Es wird darüber hinaus eine Möglichkeit vorgeschlagen, das Verdichtungsverhältnis dieses Motors zu vergrößern.The object of the invention is to provide an improved two-cycle hot gas engine with only two moving parts works to reveal. It also suggests a possibility to increase the compression ratio of this engine.

Diese Aufgabe wird erfindungsgemäß durch einen 2-Zyklen-Heißgasmotor nach dem unabhängigen Anspruch 1 gelöst.This object is achieved by a 2-cycle hot gas engine according to the independent Claim 1 solved.

Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der abhängigen Unteransprüche.Advantageous embodiments of the invention are the subject of the dependent subclaims.

Ausführungsbeispieleembodiments

Die Erfindung wird im folgenden unter Bezugnahme auf Fig. 1 bis 7 näher erläutert.The invention will be explained in more detail below with reference to FIGS. 1 to 7.

Die Bewegung des Doppel-Außenkolbens 2 beeinflusst auch bei still stehendem Innenkolben das Arbeitsgasgesamtvolumen. Der Doppel-Innenkolben 3 erreicht während des Betriebes eine höhere Geschwindigkeit, als der Doppel-Außenkolben 2.The movement of the double outer bulb 2 also influences when the inner bulb is stationary the working gas total volume. The double inner piston 3 reaches during operation a higher speed than the double outer bulb 2.

Der Doppel-Innenkolben 3 eilt, angetrieben durch den wechselnden Arbeitsgasdruck, dem Doppel-Außenkolben 2 voraus. Der Doppel-Innenkolben 3 erzeugt mit seiner Bewegung eine Druckänderung des Puffergases in den Räumen 6.1, 6.2 und zwingt damit den Außenkolben in die gleiche Richtung. Durch die Wechselwirkung seiner Magnete 2.7 mit außenliegenden Magneten 1.2 wird der Anschlag des Doppel-Außenkolbens 2 an die Zylinderwand verhindert.The double inner piston 3 rushes, driven by the changing working gas pressure, the Double outer bulb 2 ahead. The double inner piston 3 generates with its movement Pressure change of the buffer gas in the spaces 6.1, 6.2 and thus forces the outer bulb in the same direction. Due to the interaction of its magnets 2.7 with external Magnet 1.2, the stop of the double outer bulb 2 is prevented to the cylinder wall.

Von Punkt A zu B Fig.2 ist für den ersten Gaszyklus die isochore Wärmezufuhr vom Regenerator und für den zweiten Gaszyklus die isochore Wärmeabfuhr zum Regenerator dargestellt. Die anschließende für den ersten Zyklus isotherme Erhitzung und für den zweiten Zyklus isotherme Kühlung verläuft von Punkt B zu C. Das Arbeitsgasvolumen steigt für den ersten und fällt für den zweiten Zyklus. Von Punkt C zu D findet für den ersten Zyklus die isochore Wärmeabfuhr an den Regenerator und für den zweiten Zyklus die isochore Wärmezufuhr vom Regenerator statt. Bei fallendem Arbeitsgasvolumen für den ersten Zyklus verläuft die isotherme Kühlung und steigendem Arbeitsgasvolumen für den zweiten Zyklus die isotherme Erhitzung von Punkt D zu A Fig.2.From point A to B Figure 2 is for the first gas cycle, the isochoric heat from the regenerator and for the second gas cycle the isochoric heat removal to the regenerator is shown. The subsequent isothermal heating for the first cycle and for the second cycle Isothermal cooling runs from point B to C. The working gas volume increases for the first and falls for the second cycle. From point C to D, the isochore takes place for the first cycle Heat dissipation to the regenerator and for the second cycle the isochoric heat supply from Regenerator instead. With decreasing working gas volume for the first cycle, the isothermal runs Cooling and increasing working gas volume for the second cycle the isothermal Heating from point D to A Fig.2.

Fig.1 zeigt den Grundaufbau des Motors mit seinen wesentlichen Bauteilen. Die beiden Gaszyklen arbeiten mit 180° Phasenversatz. Die Kolbenstange 3.3 kann hohl ausgeführt sein, um die Puffergasräume 6.1 und 6.2 zu verbinden. In diesem Fall ist das Puffergas- volumen konstant und unabhängig von den Kolbenstellungen. Über eine Querschnitts- reduzierung der Öffnung in der Kolbenstange 3.3 lässt sich in ihr ein definierter Druckverlust einstellen, um bei Bewegung des Doppel-Innenkolbens 3 eine Druckänderung in den Puffergasräume 6.1 und 6.2 zu erzielen.Fig.1 shows the basic structure of the engine with its essential components. The two gas cycles work with 180 ° phase shift. The piston rod 3.3 can be made hollow to to connect the buffer gas spaces 6.1 and 6.2. In this case, the buffer gas volume is constant and independent of the piston positions. About a cross-sectional reduction of Opening in the piston rod 3.3, a defined pressure loss can be set in it upon movement of the double inner piston 3, a pressure change in the buffer gas spaces 6.1 and 6.2.

Die Innenkolben 3.1 und 3.2 lassen sich unter Beibehaltung der notwendigen Kolbendichtflächen auch becherförmig ausführen, so, dass die Becheröffnungen den Magneten 2.7 zugewandt sind. Damit wird der Puffergasdruck auf ein geringeres Niveau gebracht.The inner pistons 3.1 and 3.2 can be maintained while maintaining the necessary piston sealing surfaces also perform cup-shaped, so that the cup openings facing the magnet 2.7 are. Thus, the buffer gas pressure is brought to a lower level.

Der Aufbau des Motors lässt sich wie folgt beschreiben:The structure of the engine can be described as follows:

In einem Zylindergrundkörper 1 ist ein Doppel-Außenkolben 2 axial beweglich angeordnet und in diesem ist ein Doppel-Innenkolben 3 axial beweglich angeordnet.In a cylinder body 1, a double outer piston 2 is arranged axially movable and in this a double inner piston 3 is arranged axially movable.

Der Zylindergrundkörper 1 enthält zwei äußere Stirnbegrenzungswände und eine dazu parallele mittlere Trennwand, so dass in seinem Innenraum zwei gleiche Räume gebildet werden. The cylinder body 1 includes two outer Stirnbegrenzungswände and a parallel thereto middle partition so that two equal spaces are formed in its interior.

Die mittlere Trennwand des Zylindergrundkörpers 1 enthält eine zentrale Bohrung um mindestens eine Gleitdichtung 1.1 aufnehmen zu können. Der Doppel-Außenkolben 2 verbindet über eine hohle Kolbenstange 2.3 zwei Außenkolben 2.1 und 2.2 miteinander und die hohle Kolbenstange 2.3 ist druckdicht durch die Gleitdichtung 1.1 geführt.The middle partition wall of the cylinder body 1 contains a central bore at least to record a sliding seal 1.1. The double outer bulb 2 connects via a hollow piston rod 2.3 two outer pistons 2.1 and 2.2 with each other and the hollow Piston rod 2.3 is pressure-tight guided by the sliding seal 1.1.

Der Doppel-Innenkolben 3 verbindet über eine Kolbenstange 3.3 zwei Innenkolben 3.1 und 3.2 miteinander und die Kolbenstange 3.3 ist druckdicht durch die Gleitdichtungen 2.4 geführt, die sich in der hohlen Kolbenstange 2.3 befinden.The double inner piston 3 connects via a piston rod 3.3 two inner pistons 3.1 and 3.2 with each other and the piston rod 3.3 is pressure-tight guided by the sliding seals 2.4, which are located in the hollow piston rod 2.3.

Die Stirnbegrenzungsflächen des Zylindergrundkörpers 1 enthalten Magnete 1.2, die mit Magneten 2.7 in den Stirnbegrenzungsflächen des Doppel-Außenkolbens 2 auf Abstoßung wechselwirken (möglich sind auch Federn).The front boundary surfaces of the cylinder body 1 contain magnets 1.2, with magnets 2.7 interact in the front boundary surfaces of the double outer bulb 2 on repulsion (springs are also possible).

Der Außenkolben 2.1 enthält in seiner den Magneten abgewandten Stirnbegrenzungsfläche Öffnungen 2.5, die den Gasraum 4.2 mit dem Gasraum 4.3 verbinden. Der Außenkolben 2.2 enthält in seiner den Magneten abgewandten Stirnbegrenzungsfläche Öffnungen 2.6, die den Gasraum 5.1 mit dem Gasraum 5.2 verbinden.The outer bulb 2.1 contains in its side facing away from the magnets front boundary surface Openings 2.5, which connect the gas space 4.2 with the gas space 4.3. The outer bulb 2.2 contains in its side facing away from the magnets front boundary surface openings 2.6, the Connect the gas space 5.1 with the gas space 5.2.

Der Außenkolben 2.1 kann alternativ zu den vorgenannten Öffnungen 2.5 diese in seiner den Magneten zugewandten Stirnbegrenzungsfläche enthalten, die dann den Gasraum 4.1 mit dem Gasraum 6.1 verbinden. Der Gasraum 4.2 wird dadurch zum Pufferraum.The outer bulb 2.1 may alternatively to the aforementioned openings 2.5 this in his the Magnet facing end boundary surface, which then the gas space 4.1 with the Connect gas chamber 6.1. The gas space 4.2 is thereby the buffer space.

Der Außenkolben 2.2 kann alternativ zu den vorgenannten Öffnungen 2.6 diese in seiner den Magneten zugewandten Stirnbegrenzungsfläche enthalten, die dann den Gasraum 6.2 mit dem Gasraum 5.3 verbinden. Der Gasraum 5.2 wird dadurch zum Pufferraum.The outer bulb 2.2 may alternatively to the aforementioned openings 2.6 this in his the Magnet facing end boundary surface containing, then the gas space 6.2 with the Connect gas chamber 5.3. The gas space 5.2 is thereby the buffer space.

Der Gasraum 4.1 ist über einen Erhitzer 8, einen Regenerator 9 und einen Kühler 10 mit dem Gasraum 4.3 verbunden, der Gasraum 5.1 ist über einen Kühler 11, einen Regenerator 12 und einen Erhitzer 13 mit dem Gasraum 5.3 verbunden.The gas space 4.1 is a heater 8, a regenerator 9 and a radiator 10 with the Gas space 4.3 connected, the gas space 5.1 is a cooler 11, a regenerator 12 and a heater 13 connected to the gas space 5.3.

In einer ebenfalls sinnvollen Anordnung lassen sich Erhitzer und Kühler gegeneinander vertauschen: An Stelle des Erhitzers 8 oder 13 ist ein Kühler angeordnet oder an Stelle des Kühlers 10 oder 11 ist ein Erhitzer angeordnet. In a likewise useful arrangement, heaters and coolers can be interchanged with each other: Instead of the heater 8 or 13, a radiator is arranged or instead of the radiator 10 or 11, a heater is arranged.

Zur Vergrößerung des Verdichtungsverhältnisses und zur Begrenzung der Druckamplitude in den Räumen, die als Puffergasräume dienen, lässt sich der Motor abwandeln. Diese Aufgabe wird dadurch gelöst, dass die beiden Puffergasräume in Arbeitsgasräume umgewandelt werden.To increase the compression ratio and to limit the pressure amplitude in The rooms, which serve as buffer gas rooms, can be used to modify the engine. This task is achieved by converting the two buffer gas spaces into working gas spaces.

Fig. 3 zeigt den Grundaufbau des Motors. Es befinden sich zwei Doppel-Kolben, der äußere Kolben 200 und der innere Kolben 300 in einem Zylindergrundkörper 100. Der Zylindergrundkörper umschließt den äußere Kolben 200, der seinerseits den inneren Kolben 300 beinhaltet.Fig. 3 shows the basic structure of the engine. There are two double pistons, the outer one Piston 200 and the inner piston 300 in a cylinder body 100. The cylinder body encloses the outer piston 200, which in turn includes the inner piston 300.

In den Stirnflächen des Zylinders und der Kolben befinden sich zylindrische Magnete, die auf Abstoßung angeordnet sind.In the faces of the cylinder and the pistons are cylindrical magnets on Repulsion are arranged.

Der erste Arbeitsgaszyklus läuft in folgenden Räumen ab: 401, 402, 403, 404 sowie Innenräume von 800, 900, 1000 und Innenräume verbindender Rohrleitungen. Der zweite Arbeitsgaszyklus läuft in folgenden Räumen ab: 501, 502, 503, 504 sowie Innenräume von 1100, 1200, 1300 und Innenräume verbindender Rohrleitungen.The first working gas cycle takes place in the following rooms: 401, 402, 403, 404 and interiors of 800, 900, 1000 and interiors of connecting pipelines. The second working gas cycle expires in the following rooms: 501, 502, 503, 504 and interiors of 1100, 1200, 1300 and interiors of connecting pipelines.

Die erfindungsgemäße Anordnung eines Heißgasmotors ist dadurch gekennzeichnet, dass der Gasraum 403 mit dem Gasraum 404 verbunden ist und dass der Gasraum 501 mit dem Gasraum 504 verbunden ist. Hierbei ist die erste Gasverbindung an einen der beiden Arbeitsgaszyklen und die zweite Gasverbindung an den zweiten Arbeitsgaszyklus angeschlossen. Beide Arbeitsgaszyklen sind gegeneinander abgedichtet.The inventive arrangement of a hot gas engine is characterized in that the Gas space 403 is connected to the gas space 404 and that the gas space 501 with the gas space 504 is connected. Here, the first gas connection to one of the two working gas cycles and the second gas connection is connected to the second working gas cycle. Both Working gas cycles are sealed against each other.

Die wechselseitigen Verbindungsöffnungen lassen sich als umlaufende, zur Mittelachse parallel verlaufende Bohrungen (Kanäle 208 und 209) der hohlen Kolbenstange 203 ausführen. Die wechselseitige Gasverbindung kann in den inneren Begrenzungsdeckeln des Doppel-Außenkolbens 200 realisiert werden.The mutual connection openings can be parallel to the central axis running bores (channels 208 and 209) of the hollow piston rod 203 run. The reciprocal gas connection may be in the inner perimeter covers of the dual outer envelope 200 be realized.

Eine andere Möglichkeit besteht darin, mindestens einen der Kanäle in der Kolbenstange 303 des Doppel-Innenkolbens 300 auszubilden.Another possibility is at least one of the channels in the piston rod 303 of the double inner piston 300 form.

Zur thermischen Entkopplung von Erhitzer und Zylinder lässt sich für beide Zyklen je ein Pulsrohr sinnvoll so anordnen, dass die Mittelachse des Pulsrohres senkrecht auf der Mittelachse des Zylindergrundkörpers 100 des Motors steht. For thermal decoupling of heater and cylinder can be for both cycles ever Arrange pulse tube meaningfully so that the central axis of the pulse tube perpendicular to the central axis the cylinder body 100 of the engine is.

Falls eine mechanische Kraftableitung vom Doppel-Außenkolben 200 durch die Zylinderwand nach außen benötigt wird (Fig. 6), erfolgt die Befestigung einer Kolbenstange 210 an dem Doppel-Außenkolben 200. Die Kolbenstange wird zur Ausführung einer linearen Hubbewegung durch die Zylinderwand druckdicht nach außen geführt. Hierzu wird eine Dichtung 103 benötigt, die in der beschriebenen Anordnung auf der kalten Motorseite liegt.If a mechanical power dissipation from the double outer piston 200 through the cylinder wall is required to the outside (Fig. 6), the attachment of a piston rod 210 takes place the double outer piston 200. The piston rod is to perform a linear lifting movement passed through the cylinder wall pressure-tight to the outside. This is a seal 103 required, which lies in the described arrangement on the cold engine side.

Im Zusammenhang mit einer außerhalb des Zylindergrundkörpers realisierten Hubbegrenzung des Doppel- Außenkolbens 200 kann auf die Magnete 102 verzichtet werden. Dazu ist die Kolbenstange zur Kraftfortleitung nach außen und zur Hubbegrenzung des Doppel-Außenkolbens 200 mit dem Mittelpunkt einer Membran, mit einem Pleuel, der an eine Kurbelwelle anlenkt oder mit dem Spulenkörper eines Lineargenerators mechanisch verbunden.In connection with a stroke limitation realized outside the cylinder main body of the double outer bulb 200 can be dispensed with the magnets 102. This is the Piston rod for force transmission to the outside and for stroke limitation of the double outer piston 200 with the center of a diaphragm, with a connecting rod attached to a crankshaft hinges or mechanically connected to the bobbin of a linear generator.

Fig. 7 zeigt einen Motor, der völlig ohne Magnete auskommt. Die Arbeitsgasräume 404 und 504 werden dazu in Puffergasräume 404P und 504P umgewandelt. Damit dient das mit der Bewegung des Doppel-Innenkolbens 300 komprimierte Puffergas der Impulsübertragung auf den Doppel-Außenkolben 200.Fig. 7 shows a motor that does not require any magnets. The working gas chambers 404 and 504 are converted to buffer gas spaces 404P and 504P. This serves with the Movement of the double inner piston 300 compressed buffer gas of the impulse transmission the double outer bulb 200.

Ebenso lässt sich unter Beibehaltung der Arbeitsgasräume 404 und 504 und der Verbindungskanäle 208 und 209 über den Querschnitt dieser Kanäle, die in ihnen wirkende Gasfeder so einstellen, dass auf Magnete verzichtet werden kann. Eine definierte Dämpfung lässt sich bspw. über die externen wärmeübertragenden Bauteile einstellen.Likewise, while maintaining the working gas chambers 404 and 504 and the connecting channels 208 and 209 on the cross section of these channels, the gas spring acting in them so set that can be dispensed with magnets. A defined damping can be eg via the external heat-transferring components.

Fig. 4 zeigt schematisch die Anordnung der wärmeübertragenden Bauteile: Erhitzer, Regenerator und Kühler für jeden Arbeitsgaszyklus. Es lässt sich der Erhitzer 800 mit dem Erhitzer 1300 für den Betrieb mit einem Brenner zusammenfassen, indem beide Erhitzer als hintereinander liegende Spiralen eines Erhitzergrundkörpers ausgebildet werden. Eine weitere sinnvolle Anordnung ist die Verbindung der beiden Kühler 1000 und 1100. Diese lassen sich bspw. bei der Ausführung als Rohrbündelwärmeübertrager für beide Zyklen gasseitig trennen und wasserseitig zusammenfassen.Fig. 4 shows schematically the arrangement of the heat-transferring components: heater, regenerator and coolers for each working gas cycle. It can be the heater 800 with the heater 1300 for operation with a burner summarize by heating both as a series lying spirals of a heater base body are formed. Another meaningful Arrangement is the connection of the two coolers 1000 and 1100. These can be For example, in the design as a tube bundle heat exchanger for both cycles on the gas side and water side summarize.

Fig. 5 veranschaulicht den Ablauf der Zustandsänderungen und die Systemfunktion.Fig. 5 illustrates the flow of state changes and the system function.

In Stellung A befinden sich beide Kolben auf der linken Seite. Das Arbeitsgas des ersten Zyklus steht vor der Expansion unter hohem Druck (bspw. 15 bar). Das Volumen ist auf den Raum 403 komprimiert. Das Arbeitsgas des zweiten Zyklus steht vor der Kompression unter niedrigem Druck (bspw. 5 bar). Das Volumen ist hoch und befindet sich in den Räumen 502, 503 und 504.In position A, both pistons are on the left side. The working gas of the first cycle is under high pressure before expansion (eg 15 bar). The volume is on the Room 403 compressed. The working gas of the second cycle is under compression low pressure (eg 5 bar). The volume is high and is in rooms 502, 503 and 504.

Bei der Bewegung des Doppel-Innenkolbens 300 von A nach B verharrt der Doppel-Außenkolben 200 in seiner linken Stellung. Die Bewegung des Doppel-Innenkolbens 300 von links nach rechts kommt durch die Druckdifferenz über die Kolbenseiten zustande. Gleichzeitig erfolgt eine Wärmezufuhr vom Erhitzer des ersten Zyklus und eine Wärmeabfuhr an den Kühler des zweiten Zyklus. Am Ende der Bewegung hat sich der Druck beider Zyklen angenähert. Er beträgt jetzt bspw. 10 bar in beiden Zyklen.During the movement of the double inner piston 300 from A to B, the double outer bulb remains 200 in its left position. The movement of the double inner piston 300 of left to right comes about through the pressure difference on the sides of the piston. simultaneously there is a supply of heat from the heater of the first cycle and heat dissipation the cooler of the second cycle. At the end of the movement has the pressure of both cycles approximated. It is now for example 10 bar in both cycles.

Der linke Magnet 207 kann sich nach reduziertem Druck im ersten Zyklus vom linken Magneten 102 abstoßen. Die kinetische Energie des Doppel-Innenkolbens 300 wird als Impuls auf den Doppel-Außenkolben 200 übertragen. Dabei schiebt der rechte Magnet 304 bei der Bewegung von B nach C über den rechten Magneten 207 den Doppel-Außenkolben 200 auf die rechte Seite. Das Volumen des ersten Zyklus bleibt dabei konstant hoch und das vom zweiten Zyklus konstant niedrig. Da durch die Verschiebebewegung beide Regeneratoren durchströmt werden, fällt der Druck im ersten (bspw. auf 5 bar) und steigt der Druck im zweiten Zyklus (bspw. auf 15 bar).The left magnet 207 may contact the left magnet after reduced pressure in the first cycle 102 repel. The kinetic energy of the double inner piston 300 is given as an impulse transferred to the double outer bulb 200. In this case, the right magnet pushes 304 in the Movement from B to C via the right magnet 207 the double outer bulb 200 on the right side. The volume of the first cycle remains constantly high and that of the second cycle constantly low. As a result of the displacement movement both regenerators be flowed through, the pressure falls in the first (for example, to 5 bar) and increases the pressure in second cycle (for example to 15 bar).

Bei der Bewegung des Doppel-Innenkolbens 300 von C nach D verharrt der Doppel-Außenkolben 200 in seiner rechten Stellung. Die Bewegung des Doppel-Innenkolbens 300 von rechts nach links kommt durch die Druckdifferenz über die Kolbenseiten zustande. Gleichzeitig erfolgt eine Wärmeabfuhr an den Kühler des ersten Zyklus und eine Wärmezufuhr vom Erhitzer des zweiten Zyklus. Am Ende der Bewegung hat sich der Druck beider Zyklen wieder angenähert. Er beträgt jetzt bspw. 10 bar in beiden Zyklen.During the movement of the double inner piston 300 from C to D, the double outer bulb remains 200 in its right position. The movement of the double inner piston 300 from right to left comes about by the pressure difference on the piston sides. At the same time there is a heat dissipation to the radiator of the first cycle and a heat supply from the heater of the second cycle. At the end of the movement, the pressure of both Cycles approximated again. It is now for example 10 bar in both cycles.

Der rechte Magnet 207 kann sich nach reduziertem Druck im zweiten Zyklus vom rechten Magneten 102 abstoßen. Die kinetische Energie des Doppel-Innenkolbens 300 wird als Impuls auf den Doppel-Außenkolben 200 übertragen. Dabei schiebt der linke Magnet 304 bei der Bewegung von D nach A über den linken Magneten 207 den Doppel-Außenkolben 200 auf die linke Seite. Das Volumen des ersten Zyklus bleibt dabei konstant niedrig und das vom zweiten Zyklus konstant hoch. Da durch die Verschiebebewegung beide Regeneratoren durchströmt werden, steigt der Druck im ersten (bspw. auf 15 bar) und fällt der Druck im zweiten Zyklus (bspw. auf 5 bar). The right solenoid 207 may move from the right after reduced pressure in the second cycle Repel magnets 102. The kinetic energy of the double inner piston 300 is given as an impulse transferred to the double outer bulb 200. At this time, the left magnet 304 pushes the movement from D to A via the left magnet 207 the double outer bulb 200th on the left side. The volume of the first cycle remains constantly low and that of the second cycle constantly high. As a result of the displacement movement both regenerators be flowed through, the pressure in the first increases (for example, to 15 bar) and the pressure drops in the second cycle (for example to 5 bar).

Die in der vorstehenden Beschreibung, den Ansprüchen und den Figuren offenbarten Merkmale der Erfindung können sowohl einzeln als auch in beliebiger Kombination für die Verwirklichung der Erfindung in ihren verschiedenen Ausführungsformen von Bedeutung sein. The features disclosed in the foregoing description, claims and figures The invention can be used both individually and in any combination for the realization of the invention in its various embodiments of importance.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
ZylindergrundkörperCylinder body
1.11.1
Dichtung zur Trennung beider GaszyklenSeal for separating both gas cycles
1.21.2
Magnet zur Abstoßung von 2.7Magnet for rejection of 2.7
22
Doppel-AußenkolbenDual external piston
2.12.1
Außenkolben erster GaszyklusOuter bulb first gas cycle
2.22.2
Außenkolben zweiter GaszyklusOuter piston second gas cycle
2.32.3
Kolbenstange von 2Piston rod of 2
2.42.4
Dichtung in 2.3Seal in 2.3
2.52.5
Gasverbindungsöffnung in 2.1Gas connection opening in 2.1
2.62.6
Gasverbindungsöffnung in 2.2Gas connection opening in 2.2
2.72.7
Magnet zur Abstoßung von 1.2Magnet for rejection of 1.2
33
Doppel-InnenkolbenDouble inner piston
3.13.1
Innenkolben erster GaszyklusInner piston first gas cycle
3.23.2
Innenkolben zweiter GaszyklusInner piston second gas cycle
3.33.3
Kolbenstange von 3Piston rod of 3
44
Arbeitsgas erster GaszyklusWorking gas first gas cycle
4.14.1
Gasraum 4.1Gas space 4.1
4.24.2
Gasraum 4.2Gas room 4.2
4.34.3
Gasraum 4.3Gas space 4.3
55
Arbeitsgas zweiter GaszyklusWorking gas second gas cycle
5.15.1
Gasraum 5.1Gas room 5.1
5.25.2
Gasraum 5.2Gas room 5.2
5.35.3
Gasraum 5.3Gas room 5.3
6.16.1
Puffergasraum 1Buffer gas space 1
6.26.2
Puffergasraum 2Buffer gas space 2
77
GasverbindungsleitungGas interconnector
88th
Erhitzer von 4Heater of 4
99
Regenerator von 4Regenerator of 4
1010
Kühler von 4Cooler of 4
1111
Kühler von 5Cooler of 5
1212
Regenerator von 5Regenerator of 5
1313
Erhitzer von 5 Heater of 5
100100
ZylindergrundkörperCylinder body
101101
Dichtung zur Trennung beider GaszyklenSeal for separating both gas cycles
102102
Magneten zur Abstoßung von den Magneten 207Magnets for repulsion from the magnets 207
103103
Kolbenstangendichtung im Zylindergrundkörper (für Kolbenstange 210)Piston rod seal in the cylinder body (for piston rod 210)
200200
Doppel-AußenkolbenDual external piston
201201
Außenkolben erster GaszyklusOuter bulb first gas cycle
202202
Außenkolben zweiter GaszyklusOuter piston second gas cycle
203203
Kolbenstange des Doppel-AußenkolbensPiston rod of the double outer bulb
204204
Dichtungen in der Kolbenstange 203Seals in the piston rod 203
205205
Gasverbindungsöffnungen im Doppel-Außenkolben 200, erster GaszyklusGas connection openings in the double outer bulb 200, first gas cycle
206206
Gasverbindungsöffinungen im Doppel-Außenkolben 200, zweiter GaszyklusGas connection openings in double outer bulb 200, second gas cycle
207207
Magnet zur Abstoßung vom Magneten 102 im Zylindergrundkörper und von 304Magnet for repulsion from the magnet 102 in the cylinder main body and 304
208208
Arbeitsgasverbindungskanal zwischen Gasraum 501 und Gasraum 504Working gas connection channel between gas space 501 and gas space 504
209209
Arbeitsgasverbindungskanal zwischen Gasraum 403 und Gasraum 404Working gas connection duct between gas space 403 and gas space 404
210210
Kolbenstange des Außenkolbens zur Kraftableitung aus der MaschinePiston rod of the outer bulb for power delivery from the machine
300300
Doppel-InnenkolbenDouble inner piston
301301
Innenkolben erster GaszyklusInner piston first gas cycle
302302
Innenkolben zweiter GaszyklusInner piston second gas cycle
303303
Kolbenstange des Doppel-InnenkolbensPiston rod of the double inner piston
304304
Magnet des Doppel-Innenkolbens zur Abstoßung vom Magneten 207Magnet of the double inner piston for repulsion from the magnet 207
400400
Arbeitsgas erster GaszyklusWorking gas first gas cycle
401401
Gasraum 401Gas room 401
402402
Gasraum 402 (über 205 verbunden mit 401)Gas room 402 (over 205 connected to 401)
403403
Gasraum 403 (über 800, 900, 1000 verbunden mit 401)Gas room 403 (over 800, 900, 1000 connected with 401)
404404
Gasraum 404 (über 209 verbunden mit 403)Gas room 404 (over 209 connected with 403)
404P404P
Puffergasraum an Stelle von 404Buffer gas space instead of 404
500500
Arbeitsgas zweiter GaszyklusWorking gas second gas cycle
501501
Gasraum 501Gas room 501
502502
Gasraum 502 (über 206 verbunden mit 503)Gas room 502 (over 206 connected with 503)
503503
Gasraum 503 (über 1100, 1200, 1300 verbunden mit 501)Gas room 503 (over 1100, 1200, 1300 connected with 501)
504504
Gasraum 504 (über 208 verbunden mit 501)Gas room 504 (over 208 connected to 501)
504P504p
Puffergasraum an Stelle von 504 Buffer gas space instead of 504
701701
Kühleranschluss erster Gaszyklus an den ZylindergrundkörperRadiator connection of the first gas cycle to the cylinder body
702702
Erhitzeranschluss erster Gaszyklus an den ZylindergrundkörperHeater connection first gas cycle to the cylinder body
703703
Erhitzeranschluss zweiter Gaszyklus an den ZylindergrundkörperHeater connection second gas cycle to the cylinder body
704704
Kühleranschluss zweiter Gaszyklus an den ZylindergrundkörperRadiator connection of the second gas cycle to the cylinder body
800800
Erhitzer erster GaszyklusHeater first gas cycle
801801
Pulsrohr zur thermischen Entkopplung von Erhitzer 800 und ZylindergrundkörperPulse tube for thermal decoupling of heater 800 and cylinder body
900900
Regenerator erster GaszyklusRegenerator first gas cycle
10001000
Kühler erster GaszyklusCooler first gas cycle
10011001
Wasseranschluss von Kühler 1000Water connection of radiator 1000
11001100
Kühler zweiter GaszyklusCooler second gas cycle
11011101
Wasseranschluss von Kühler 1100Water connection of radiator 1100
12001200
Regenerator zweiter GaszyklusRegenerator second gas cycle
13001300
Erhitzer zweiter GaszyklusHeater second gas cycle
13011301
Pulsrohr zur thermischen Entkopplung von Erhitzer 1300 und ZylindergrundkörperPulse tube for thermal decoupling of heater 1300 and cylinder body

Claims (20)

  1. A dual cycle hot gas engine comprising pistons which are movable inside one another, characterized in that a dual external piston (2) is arranged to be axially movable inside a basic cylinder member (1) and a dual internal piston (3) is arranged to be axially movable inside the dual external piston (2).
  2. The hot gas engine as claimed in claim 1, characterized in that the basic cylinder member (1) includes two outer end walls and a central partition in parallel with the same whereby two like spaces are formed in the interior of the basic cylinder member (1).
  3. The hot gas engine as claimed in any one of the preceding claims, characterized in that the central partition of the basic cylinder member (1) is formed with a central bore to be able to receive at least one sliding seal (1.1).
  4. The hot gas engine as claimed in any one of the preceding claims, characterized in that the dual external piston (2) interconnects two external pistons (2.1 and 2.2) by a hollow piston rod (2.3), and the hollow piston rod (2.3) is guided tightly through the sliding seal (1.1).
  5. The hot gas engine as claimed in any one of the preceding claims, characterized in that the dual internal piston (3) interconnects two internal pistons (3.1 and 3.2) by a piston rod (3.3), and the piston rod (3.3) is guided tightly through sliding seals (2.4) which are located in the hollow piston rod (2.3).
  6. The hot gas engine as claimed in any one of the preceding claims, characterized in that the end surfaces of the basic cylinder member (1) include magnets (1.2) for mutually repelling interaction with magnets (2.7) disposed in the end surfaces of the dual external piston (2) (springs are conceivable too).
  7. The hot gas engine as claimed in any one of the preceding claims, characterized in that the external piston (2.1) has apertures (2.5) in its end surface remote from the magnets which apertures connect the gas space (4.2) with the gas space (4.3).
  8. The hot gas engine as claimed in any one of the preceding claims, characterized in that the external piston (2.2) has apertures (2.6) in its end surface remote from the magnets which apertures connect the gas space (5.1) with the gas space (5.2).
  9. The hot gas engine as claimed in any one of the preceding claims, except claim 7, characterized in that the external piston (2.1) has apertures (2.5) in its end surface facing the magnets which apertures connect the gas space (4.1) with the gas space (6.1); gas space (4.2) becoming a buffer space.
  10. The hot gas engine as claimed in any one of the preceding claims, except claim 8, characterized in that the external piston (2.2) has apertures (2.6) in its end surface facing the magnets which apertures connect the gas space (6.2) with the gas space (5.3); gas space (5.2) becoming a buffer space.
  11. The hot gas engine as claimed in any one of the preceding claims, characterized in that the gas space (4.1) communicates with the gas space (4.3) via a heater (8), a regenerator (9), and a cooler (10), and that the gas space (5.1) communicates with the gas space (5.3) via a cooler (11), a regenerator (12), and a heater (13).
  12. The hot gas engine as claimed in any one of the preceding claims, characterized in that the heater (8 or 13) is replaced by a cooler, and the cooler (10 or 11) is replaced by a heater.
  13. The hot gas engine as claimed in any one of the preceding claims, characterized in that the piston rod (3.3) of the dual internal piston (3) is hollow, thus connecting the buffer gas space (6.1) with the buffer gas space (6.2).
  14. The hot gas engine as claimed in any one of the preceding claims, characterized in that gas space (403) communicates with gas space (404) and gas space (501) communicates with gas space (504).
  15. The hot gas engine as claimed in any one of the preceding claims, characterized in that the first gas connection is linked to one of the two working gas cycles, while the second gas connection is linked to the second working gas cycle.
  16. The hot gas engine as claimed in any one of the preceding claims, characterized in that the two gas connections are embodied by passages (208 and 209) in the hollow piston rod (203) of the dual external piston (200).
  17. The hot gas engine as claimed in any one of the preceding claims, characterized in that at least one of the passages is formed in the piston rod (303) of the dual internal piston (300).
  18. The hot gas engine as claimed in any one of the preceding claims, characterized in that a pulse tube each is provided for both cycles for thermic decoupling of heater and cylinder, the pulse tube being arranged so that its central axis extends at right angles to the central axis of the basic cylinder member (100) of the engine.
  19. The hot gas engine as claimed in any one of the preceding claims, characterized in that the dual external piston (200) is connected to a piston rod (210) to carry off force, and the piston rod is passed tightly through the cylinder wall to the outside.
  20. The hot gas engine as claimed in claim 19, characterized in that, to carry off force to the outside and to limit the stroke of the dual external piston (200), the piston rod (210) is mechanically connected to the center of a diaphragm, a connecting rod pivoted at a crankshaft, or the coil member of a linear generator.
EP03023220A 2002-10-15 2003-10-13 Two cycle hot gas engine with two movable parts Expired - Lifetime EP1411235B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE2002148785 DE10248785B4 (en) 2002-10-15 2002-10-15 Two-cycle hot gas engine with two moving parts
DE10248785 2002-10-15
DE10329977 2003-06-26
DE10329977A DE10329977B4 (en) 2002-10-15 2003-06-26 2-cycle hot gas engine with increased compression ratio

Publications (2)

Publication Number Publication Date
EP1411235A1 EP1411235A1 (en) 2004-04-21
EP1411235B1 true EP1411235B1 (en) 2005-07-13

Family

ID=32043976

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03023220A Expired - Lifetime EP1411235B1 (en) 2002-10-15 2003-10-13 Two cycle hot gas engine with two movable parts

Country Status (4)

Country Link
US (1) US6945044B2 (en)
EP (1) EP1411235B1 (en)
JP (1) JP2004138064A (en)
DE (1) DE10329977B4 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010054306A1 (en) * 2010-12-13 2012-06-14 Markus Metzger Heating and/or refrigeration apparatus of heat engine, has displaceable piston unit which is operatively connected between two working chambers, in order to change temperature effective displacement volumes in one of working chambers

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8312717B2 (en) * 2005-08-05 2012-11-20 Renewable Thermodynamics, Llc Externally heated engine
US7076941B1 (en) * 2005-08-05 2006-07-18 Renewable Thermodynamics Llc Externally heated engine
US8215112B2 (en) * 2007-11-28 2012-07-10 Tiax Llc Free piston stirling engine
JP5365352B2 (en) * 2009-06-08 2013-12-11 株式会社eスター Electric recovery engine
JP5463858B2 (en) * 2009-11-06 2014-04-09 トヨタ自動車株式会社 Stirling engine
CZ2010812A3 (en) * 2010-11-09 2012-07-04 Libiš@Jirí Double-acting displacer with separated warm and cold spaces and heat engine with such double-acting displacer
CN102062015B (en) * 2011-01-18 2013-09-18 黄锦峰 Novel stirling engine
CN103912405B (en) * 2014-04-30 2016-04-06 郭远军 A kind of parallel motion thermal power machine and work method thereof
CN114174661B (en) 2019-05-21 2024-08-30 通用电气公司 Closed cycle engine with bottoming cycle system
FR3120916B1 (en) * 2021-03-17 2023-03-17 Berthelemy Pierre Yves Cartridge for thermal machine with thermodynamic cycle and module for associated thermal machine

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL12811C (en) * 1900-01-01
GB179259A (en) * 1921-01-28 1922-04-28 Wilfred Swann Improvements in or relating to internal-combustion engines
US1530539A (en) * 1921-07-27 1925-03-24 Albert B Bernhard Internal-combustion engine
US1666941A (en) * 1926-10-15 1928-04-24 Martin Morris Internal-combustion engine
US2465139A (en) * 1943-04-06 1949-03-22 Hartford Nat Bank & Trust Co Hot gas engine with phase changer
US4404802A (en) * 1981-09-14 1983-09-20 Sunpower, Inc. Center-porting and bearing system for free-piston stirling engines
US4722188A (en) * 1985-10-22 1988-02-02 Otters John L Refractory insulation of hot end in stirling type thermal machines
AU4236593A (en) * 1992-05-06 1993-11-29 Balanced Engines, Inc. Balanced compound engine
US5488830A (en) * 1994-10-24 1996-02-06 Trw Inc. Orifice pulse tube with reservoir within compressor
JP3175534B2 (en) * 1995-06-05 2001-06-11 ダイキン工業株式会社 Stirling refrigerator
JP2003507618A (en) * 1999-08-11 2003-02-25 エネルリット ポツダム ゲーエムベーハー Hot gas engine with multiple pistons moving relative to each other
NL1015383C1 (en) * 2000-06-06 2001-12-10 Sander Pels Stirling engine and heat pump.
FR2819555B1 (en) * 2001-01-17 2003-05-30 Conservatoire Nat Arts ELECTROGEN GROUP WITH ALTERNATIVE LINEAR MOTION BASED ON STIRLING MOTOR, AND METHOD IMPLEMENTED IN THIS GENERATOR
DE10153772C1 (en) * 2001-10-24 2003-03-13 Enerlyt Potsdam Gmbh Energieba Two-cycle hot gas engine has expansion and compression pistons connected in series along common central axis
DE10240750C1 (en) * 2001-10-24 2003-10-09 Enerlyt Potsdam Gmbh En Umwelt Stirling motor for a heat engine has an expansion piston in a heatable cylinder component and a compression piston in a coolable cylinder component each fitting along a common center axis.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010054306A1 (en) * 2010-12-13 2012-06-14 Markus Metzger Heating and/or refrigeration apparatus of heat engine, has displaceable piston unit which is operatively connected between two working chambers, in order to change temperature effective displacement volumes in one of working chambers

Also Published As

Publication number Publication date
DE10329977A1 (en) 2005-03-03
DE10329977B4 (en) 2013-10-24
US6945044B2 (en) 2005-09-20
EP1411235A1 (en) 2004-04-21
JP2004138064A (en) 2004-05-13
US20040128994A1 (en) 2004-07-08

Similar Documents

Publication Publication Date Title
EP1917434B1 (en) 4-cycle stirling engine with two double piston units
DE102006040206B4 (en) Working gas pressure compensation system for dual-acting multi-cylinder hot-gas engine
EP1411235B1 (en) Two cycle hot gas engine with two movable parts
DE112010004335B4 (en) Gamma-type free-piston Stirling engines configuration
DE69706629T2 (en) Stirling cycle engine
DE102005039417A1 (en) Four-cycle Stirling engine for powering vehicle or machine has double piston units consisting of expansion piston fixed by piston rod to compression piston
DE4018943A1 (en) Piston engine for use in regenerative cycles - produces optimum time slope using rotating eccentric transmission
DE69007785T2 (en) STIRLING CYCLE DEVICE.
EP3942172B1 (en) Stirling engine
DE102008047275C5 (en) expander
DE4424319C1 (en) Hot gas engine
DE3220071A1 (en) THROUGH HEAT SUPPLY DIRECTLY OPERATED GAS COMPRESSOR
DE10153772C1 (en) Two-cycle hot gas engine has expansion and compression pistons connected in series along common central axis
DE10248785B4 (en) Two-cycle hot gas engine with two moving parts
DE2220454C3 (en) Hot gas piston machine with a compressor
DE4035139A1 (en) Eccentric shaft slide piece - has equalising ring with spars, and rotary cam
DE3934221A1 (en) Stirling engine with programmed control of electromagnet excitation - includes process computer for gas exchange by optimal control of free piston oscillation with phase shift
DE19904269C2 (en) Hot air engine
DE102015101726B4 (en) Stirling machine and arrangement for generating electrical energy
DE10209858B4 (en) Electromechanical energy converter
DE102014011241B3 (en) 2-cycle Stirling engine with two double-acting pistons
DE102004018782A1 (en) Two cycle hot gas engine has a working piston coaxial to a compression piston and linked by flexible means
DE3138683C2 (en) Heat pump
DE3732123A1 (en) Prime mover
DE4320356A1 (en) Displacement-type Stirling heat engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040209

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

AKX Designation fees paid

Designated state(s): FR GB

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050919

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060418

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070629

REG Reference to a national code

Ref country code: FR

Ref legal event code: RN

REG Reference to a national code

Ref country code: FR

Ref legal event code: FC

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20071016

Year of fee payment: 5

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: FR

Effective date: 20071024

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20071013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071013

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081031