EP1411210A1 - Méthode de déposition d'un revêtement de type MCrAlY résistant à la fatigue et à l'oxydation - Google Patents

Méthode de déposition d'un revêtement de type MCrAlY résistant à la fatigue et à l'oxydation Download PDF

Info

Publication number
EP1411210A1
EP1411210A1 EP20020405881 EP02405881A EP1411210A1 EP 1411210 A1 EP1411210 A1 EP 1411210A1 EP 20020405881 EP20020405881 EP 20020405881 EP 02405881 A EP02405881 A EP 02405881A EP 1411210 A1 EP1411210 A1 EP 1411210A1
Authority
EP
European Patent Office
Prior art keywords
coating
mcraly
layer
deposited
coatings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP20020405881
Other languages
German (de)
English (en)
Inventor
Hans-Peter Bossmann
Thomas Duda
Abdus S. Khan
Alexander Schnell
Karl-Johan Stefansson
Chirstoph Toennes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Priority to EP20020405881 priority Critical patent/EP1411210A1/fr
Priority to US10/684,528 priority patent/US20040079648A1/en
Publication of EP1411210A1 publication Critical patent/EP1411210A1/fr
Ceased legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • C25D15/02Combined electrolytic and electrophoretic processes with charged materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades

Definitions

  • This invention relates according to claim 1 to a protection of gas turbine blades and vanes against oxidation and thermal mechanical fatigue by using MCrAlY overlay coatings deposited by an electroplated process.
  • MCrAlY overlay coatings are used for protection of turbine blades and vanes.
  • MCrAlY protective overlay coatings are widely known in the prior art. They are a family of high temperature coatings, wherein M is selected from one or a combination of iron, nickel and cobalt.
  • US-A-3,528,861 or US-A-4,585,481 are disclosing such kind of oxidation resistant coatings.
  • US-A-4, 152,223 as well discloses such method of coating and the coating itself.
  • ⁇ / ⁇ -MCrAlY-coating there is another class of overlay MCrAlY coatings which are based on a ⁇ / ⁇ '-gamma/gamma prime-structure, which is for example disclosed in US-A-4,546,052 or US-A-4,973,445.
  • ⁇ / ⁇ '-coatings have a negligible thermal expansion mismatch with alloy of the underlying turbine article and are likely to have a better thermal mechanical properties.
  • US-A-4,313,760 discloses a superalloy coating composition with good oxidation, corrosion and fatigue resistance. Additional examples MCrAlY coatings are known from US-B1-6,280,857, US-B1-6,221,181, US-A-5,455,119, US-A-5,154,885, US-A-5, 035,958 or US-B1-6,207,297. They all deal primarily with improving the oxidation resistance of MCrAlY coatings.
  • Thermal barrier coatings are used to provide thermal insulation of the components in various types of engines e.g. in turbine engines.
  • Thermal Barrier Coatings are known from different patents.
  • US-A-4,055,705, US-A-4,248,940, US-A-4,321,311 or US-A-4,676,994 disclose a TBC-coating for the use in the turbine blades and vanes.
  • the ceramics used are yttria stabilized zirconia and applied by plasma spray (US-A-4, 055,705, US-A-4, 248,940) or by electron beam process (US-A-4, 321,311, US-A-4, 676,994) on top of the MCrAlY bond coat.
  • the coatings on turbine blades or vanes can fail by one or more of the following degradation modes. These are oxidation, corrosion, TMF (Thermal Mechanical Fatigue) and a combination of TMF and oxidation. Coatings failure in a turbine engine solely by oxidation is not a typical scenario. Further, in advanced turbine engines, incidences of corrosion are not common due to higher engine operating temperature and use of cleaner fuels. What is commonly observed is that the MCrAlY coatings are cracked by TMF. Subsequently the cracks allow oxygen diffuse or penetrate into the substrate. Since the substrate is not oxidation resistant the advancing oxygen (through the cracks) causes the oxidation of the underlying substrate and triggers the failure of the components. It is therefore important that the coatings be resistant to fatigue as well as oxidation since fatigue cracking appears to be one of the primary triggering mechanisms of the failure of the coatings.
  • TMF Thermal Mechanical Fatigue
  • One approach of improving the fatigue resistance of coatings is by modification of the composition of the coatings and secondly by the use of a thin coating or possibly a combination of both.
  • US-A-4,346,137 and US-A-4,758,480 described a method of improving the fatigue resistance of overlay coatings by a modification of composition.
  • the platinum was added to MCrAlY coatings, which reduces the thermal expansion mismatch between the coatings and the substrate, hence also reduces the propensity of the coatings to cracking. This results in a significant improvement of the TMF life of the coatings.
  • the US-A-4,758,480 discloses a class of protected coatings for superalloys in which the coating compositions are based on the composition of the underlying substrate.
  • the coatings By tailoring the coatings to the substrate composition, diffusional stability results and other mechanical properties of the coating such as coefficient of thermal expansion and modulas, are brought closer to the substrate.
  • the coatings thus obtained have not only increased oxidation resistance and diffusional stability but also exhibit a substantially higher TMF life.
  • US-A-5,558,758, US-A-5,824,205 and US-A-5,833,829 described the deposition of MCrAlY coatings by electroplated process.
  • the process involves a deposition of the coating precursor, CrAlM2 powder in a M1 bath where M2 is one or more of Si, Ti, Hf, Ga, Nb, Mn, Pt and rare earth elements and M1 consists of Ni, Co, Fe alone or in combination.
  • the as-deposited coating is heat-treated to obtain the final coating structure.
  • the objective is to find a MCrAlY-bond or overlay coating with good oxidation and fatigue resistance.
  • Another object of the present invention to find a method of depositing a MCrAlY-coating on a turbine component with uniformity.
  • Yet another object of the invention is to deposit a thin MCrAlY-coating on a large industrial gas turbine blade or vane with a good thickness control of the deposited layer.
  • Another object is to deposit the MCrAlY-coatings on a component with a good microstructural conformity and metallurgical integrity.
  • the cost of the application of a coating by an electroplated process is considerably lower than by a conventional plasma spray coating.
  • the electroplated process has a thickness control of ⁇ 20 ⁇ m or better, whereas conventional plasma spray coating processes have thickness scatters of ⁇ 75 ⁇ m or even more.
  • a coating with a layer thickness in a range of 25-400 ⁇ m can be applied.
  • a thinner coating increase the TMF life of the coating.
  • the used electroplated process has no line of sight limitation and can coat complex contour surfaces without any difficulty.
  • the coating thus manufactured contains very little oxygen impurity.
  • the deposited coating is heat-treated in vacuum, argon, hydrogen at 1140°C for 2 to 12 hours.
  • a layer of a ceramic thermal barrier coating such as yttria-stabilzed zirconia (YSZ) with suitable composition can be applied.
  • TBC ceramic thermal barrier coating
  • YSZ yttria-stabilzed zirconia
  • the present invention is generally applicable to components that operate within environments characterised by relatively high temperature, and are therefore subjected to severe thermal stresses and thermal cycling.
  • Notable examples of such components include the high and low pressure nozzles and blades, shrouds, combustor liners and augmentor hardware of gas turbine engines.
  • Fig. 1 shows as an example such an article 1 as blades or vanes comprising a blade 2 against which hot combustion gases are directed during operation of the gas turbine engine, a cavity, not visible in Figure 1, and cooling holes 4, which are on the external surface 5 of the component 1 as well as on the platform 3 of the component. Through the cooling holes 4 cooling air is ducted during operation of the engine to cool the external surface 5.
  • the external surface 5 is subjected to severe attack by oxidation, corrosion and erosion due to the hot combustion gases.
  • the article 1 consists of a nickel or cobalt base super alloy such as disclosed, by way of an example, in US-A-5,759,301.
  • the article 1 can be single crystal (SX), directionally solidified (DS) or polycrystalline. While the advantages of this invention is described with reference to a turbine blade or vane as shown in Fig. 1, the invention is generally applicable to any component on which a coating system may be used to protect the component from its environment.
  • phase and diffusional stability of the coatings in Table 1 were calculated using the DICTRA software package developed by Thermo-Calc Software, Sweden.
  • the coatings were applied according to the procedure outlined in US-A-5,558,758, US-A-5,824,205 and US-A-5,833,829. Both coating heat-treatment and compositional adjustments are often necessary for homogenization of composition-microstructure i.e. complete reactions of 'CrAl' particles with the matrix.
  • the coatings deposited provided good oxidation resistance, for example, the SE329 formed ⁇ -alumina scale in the temperature range 800-1100°C.
  • the TMF life of the coating was determined in a strain-controlled test, open cycle, 800-100°C and 1000-100°C, with a dwell time at maximum temperature of 5 minute.
  • the TMF-life of the SE329-coating was compared with plasma sprayed coatings described by US-A-6,221,181.
  • the TMF life of the electroplated coating was at least 2 times higher than the life of the plasma sprayed coatings.
  • the thickness of the electroplated SE329 was 220 ⁇ 20 ⁇ m
  • the baseline plasma spray coating was nominal 300 ⁇ m thick with a plasma spray coating thickness scatter of at least ⁇ 75 ⁇ m.
  • a coating with a layer thickness in a range of 25-400 ⁇ m can be applied.
  • a thinner coating increase the TMF life of the coating.
  • the cost of the application of a coating by an electroplated process is a third of a conventional plasma spray coating cost.
  • the used electroplated process has no line of sight limitation and can coat complex contour surfaces without any difficulty.
  • the coating thus manufactured contains very little oxygen impurity. The oxygen impurity is known to adversely affect the fatigue life of coatings.
  • the deposited coating is heat-treated in vacuum, argon, hydrogen at 1140°C for 2 to 12 hours.
  • TMF life of the coatings for example, improved TMF life of SE329 was probably due to a combination of a) a leaner coating b) the coating composition, c) the microstructure and heat-treatment and d) low oxygen content of the coating.
  • the SE329 coating was successfully manufactured by an electroplated process on low pressure turbine blades. The deposited coating on the blade was uniformly distributed over external surfaces including the airfoil-platform transition area, fillet, leading and trailing edge.
  • Fe is added (wt.-%) 0.01 to 3% in order to enhance the ductility of the coatings while the additions of 0.5-2.5% Si, 0.2-1.5% Hf, 0.01-0.2% Zr or 0-2% Ta either alone or in combination are provided for increased oxidation resistance of the deposited coating.
  • the layer of MCrAlY-coating 6 was deposited on the external surface of the article 1.
  • the layer 6 was deposited as bond coating with a layer of a ceramic coating 7 such a ceramic thermal barrier coating (TBC) on top of the bond layer 6.
  • TBC ceramic thermal barrier coating
  • YSZ yttria-stabilzed zirconia
  • suitable composition being about 4 to 20 wt.-%, though other ceramic materials could be used, such as yttria, non-stabilzed zirconia, or ceria (CeO 2 ), scandia (Sc 2 O 3 ) or other oxides.
  • the ceramic layer 7 is deposited to a thickness that is sufficient to provide the required thermal protection for the underlying substrate, generally in the order of about 300-600 ⁇ m.
EP20020405881 2002-10-15 2002-10-15 Méthode de déposition d'un revêtement de type MCrAlY résistant à la fatigue et à l'oxydation Ceased EP1411210A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20020405881 EP1411210A1 (fr) 2002-10-15 2002-10-15 Méthode de déposition d'un revêtement de type MCrAlY résistant à la fatigue et à l'oxydation
US10/684,528 US20040079648A1 (en) 2002-10-15 2003-10-15 Method of depositing an oxidation and fatigue resistant MCrAIY-coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20020405881 EP1411210A1 (fr) 2002-10-15 2002-10-15 Méthode de déposition d'un revêtement de type MCrAlY résistant à la fatigue et à l'oxydation

Publications (1)

Publication Number Publication Date
EP1411210A1 true EP1411210A1 (fr) 2004-04-21

Family

ID=32039263

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20020405881 Ceased EP1411210A1 (fr) 2002-10-15 2002-10-15 Méthode de déposition d'un revêtement de type MCrAlY résistant à la fatigue et à l'oxydation

Country Status (2)

Country Link
US (1) US20040079648A1 (fr)
EP (1) EP1411210A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1837485A1 (fr) * 2006-03-24 2007-09-26 Forschungszentrum Jülich Gmbh Une pièce avec un revêtement de protection
EP1854899A1 (fr) * 2006-01-17 2007-11-14 Siemens Aktiengesellschaft Alliage, couche de protection et composant
EP2119805A1 (fr) * 2008-05-15 2009-11-18 Siemens Aktiengesellschaft Procédé de fabrication d'une couche adhésive optimisée par l'évaporation partielle de la couche adhésive
EP2345748A1 (fr) * 2010-01-14 2011-07-20 Siemens Aktiengesellschaft Alliage, couche de protection et composant
WO2013162664A2 (fr) * 2012-02-06 2013-10-31 Alstom Technology Ltd. Aube de turbine présentant une capacité de flottement améliorée et un rendement d'étage de turbine amélioré
CN104711458A (zh) * 2015-03-02 2015-06-17 清华大学 一种用于热障涂层的含一种活性元素的粘结层材料
US10443389B2 (en) 2017-11-09 2019-10-15 Douglas James Dietrich Turbine blade having improved flutter capability and increased turbine stage output
CN110846704A (zh) * 2019-11-28 2020-02-28 耒阳市汉客箱包有限公司 一种箱包五金件表面处理方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7378132B2 (en) * 2004-12-14 2008-05-27 Honeywell International, Inc. Method for applying environmental-resistant MCrAlY coatings on gas turbine components
EP2392684A1 (fr) * 2010-06-02 2011-12-07 Siemens Aktiengesellschaft Alliage, couche de protection et composant
US8708659B2 (en) 2010-09-24 2014-04-29 United Technologies Corporation Turbine engine component having protective coating
CN103189545A (zh) * 2010-11-02 2013-07-03 西门子公司 合金、保护层和构件
EP2557201A1 (fr) * 2011-08-09 2013-02-13 Siemens Aktiengesellschaft Alliage, couche de protection et composant
EP2568054A1 (fr) * 2011-09-12 2013-03-13 Siemens Aktiengesellschaft Alliage, couche de protection et composant
DE102013209189A1 (de) * 2013-05-17 2014-11-20 Siemens Aktiengesellschaft Schutzbeschichtung und Gasturbinenkomponente mit der Schutzbeschichtung
CN105348198B (zh) * 2015-09-29 2018-10-26 中能科泰(北京)科技有限公司 金属有机骨架膜及其制备方法
US10276411B2 (en) 2017-08-18 2019-04-30 Applied Materials, Inc. High pressure and high temperature anneal chamber
US10704133B2 (en) 2017-10-10 2020-07-07 General Electric Company Coated article and method for making
EP3768874A4 (fr) 2018-03-19 2022-03-30 Applied Materials, Inc. Procédés de dépôt de revêtements sur des éléments aérospatiaux
WO2019209401A1 (fr) 2018-04-27 2019-10-31 Applied Materials, Inc. Protection d'éléments contre la corrosion
US11009339B2 (en) 2018-08-23 2021-05-18 Applied Materials, Inc. Measurement of thickness of thermal barrier coatings using 3D imaging and surface subtraction methods for objects with complex geometries
WO2020219332A1 (fr) 2019-04-26 2020-10-29 Applied Materials, Inc. Procédés de protection d'éléments aérospatiaux contre la corrosion et l'oxydation
US11794382B2 (en) 2019-05-16 2023-10-24 Applied Materials, Inc. Methods for depositing anti-coking protective coatings on aerospace components
US11697879B2 (en) 2019-06-14 2023-07-11 Applied Materials, Inc. Methods for depositing sacrificial coatings on aerospace components
US11466364B2 (en) 2019-09-06 2022-10-11 Applied Materials, Inc. Methods for forming protective coatings containing crystallized aluminum oxide
US11519066B2 (en) 2020-05-21 2022-12-06 Applied Materials, Inc. Nitride protective coatings on aerospace components and methods for making the same
WO2022005696A1 (fr) 2020-07-03 2022-01-06 Applied Materials, Inc. Procédés de remise à neuf de composants aérospatiaux
CN111593394B (zh) * 2020-07-15 2022-02-18 南昌航空大学 一种镍基合金镍铼-三氧化二铝扩散障的制备方法及其应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4419416A (en) * 1981-08-05 1983-12-06 United Technologies Corporation Overlay coatings for superalloys
EP0288156A1 (fr) * 1987-03-24 1988-10-26 BAJ Limited Revêtement
US4789441A (en) * 1984-10-05 1988-12-06 John Foster Metallic protective coatings and method of making
EP0816526A2 (fr) * 1996-06-27 1998-01-07 United Technologies Corporation Système de revêtement de barrière thermique isolant
EP0848077A1 (fr) * 1996-12-12 1998-06-17 United Technologies Corporation Systèmes et matériaux de revêtement comme barrière thermique
US5824205A (en) * 1994-07-22 1998-10-20 Praxair S.T. Technology, Inc. Protective coating
US5833829A (en) * 1994-07-22 1998-11-10 Praxair S.T. Technology, Inc. Protective coating
EP0992603A1 (fr) * 1998-10-01 2000-04-12 United Technologies Corporation Systèmes de revêtement de barrière thermique et matériaux
US6280857B1 (en) * 1997-10-30 2001-08-28 Alstom High temperature protective coating

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3528861A (en) * 1968-05-23 1970-09-15 United Aircraft Corp Method for coating the superalloys
US3754903A (en) * 1970-09-15 1973-08-28 United Aircraft Corp High temperature oxidation resistant coating alloy
US3676085A (en) * 1971-02-18 1972-07-11 United Aircraft Corp Cobalt base coating for the superalloys
US4248940A (en) * 1977-06-30 1981-02-03 United Technologies Corporation Thermal barrier coating for nickel and cobalt base super alloys
US4055705A (en) * 1976-05-14 1977-10-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Thermal barrier coating system
US4152223A (en) * 1977-07-13 1979-05-01 United Technologies Corporation Plasma sprayed MCrAlY coating and coating method
US4313760A (en) * 1979-05-29 1982-02-02 Howmet Turbine Components Corporation Superalloy coating composition
US4346137A (en) * 1979-12-19 1982-08-24 United Technologies Corporation High temperature fatigue oxidation resistant coating on superalloy substrate
US4321311A (en) * 1980-01-07 1982-03-23 United Technologies Corporation Columnar grain ceramic thermal barrier coatings
USRE32121E (en) * 1981-08-05 1986-04-22 United Technologies Corporation Overlay coatings for superalloys
US4585481A (en) * 1981-08-05 1986-04-29 United Technologies Corporation Overlays coating for superalloys
US4676994A (en) * 1983-06-15 1987-06-30 The Boc Group, Inc. Adherent ceramic coatings
US4743514A (en) * 1983-06-29 1988-05-10 Allied-Signal Inc. Oxidation resistant protective coating system for gas turbine components, and process for preparation of coated components
EP0134821B1 (fr) * 1983-07-22 1987-07-15 BBC Aktiengesellschaft Brown, Boveri & Cie. Revêtement protecteur à haute température
US5035958A (en) * 1983-12-27 1991-07-30 General Electric Company Nickel-base superalloys especially useful as compatible protective environmental coatings for advanced superaloys
DE3740478C1 (de) * 1987-11-28 1989-01-19 Asea Brown Boveri Hochtemperatur-Schutzschicht
US4758480A (en) * 1987-12-22 1988-07-19 United Technologies Corporation Substrate tailored coatings
DE3926479A1 (de) * 1989-08-10 1991-02-14 Siemens Ag Rheniumhaltige schutzbeschichtung, mit grosser korrosions- und/oder oxidationsbestaendigkeit
US5401307A (en) * 1990-08-10 1995-03-28 Siemens Aktiengesellschaft High temperature-resistant corrosion protection coating on a component, in particular a gas turbine component
US5258098A (en) * 1991-06-17 1993-11-02 Cycam, Inc. Method of production of a surface adapted to promote adhesion
IT1250214B (it) * 1991-11-22 1995-04-03 Rivestimento al nitruro di titanio per conchiglie per pistoni.
GB9216706D0 (en) * 1992-08-06 1992-09-23 Baj Ltd Electrodeposited composite coatings
US5455119A (en) * 1993-11-08 1995-10-03 Praxair S.T. Technology, Inc. Coating composition having good corrosion and oxidation resistance
DE19545025A1 (de) * 1995-12-02 1997-06-05 Abb Research Ltd Verfahren zur Aufbringung einer metallischen Haftschicht für keramische Wärmedämmschichten auf metallische Bauteile
DE19624056A1 (de) * 1996-06-17 1997-12-18 Abb Research Ltd Nickel-Basis-Superlegierung
US6057047A (en) * 1997-11-18 2000-05-02 United Technologies Corporation Ceramic coatings containing layered porosity
WO1999055527A2 (fr) * 1998-04-29 1999-11-04 Siemens Aktiengesellschaft Produit pourvu d'une couche de protection anticorrosion, et procede de realisation d'une couche de protection anticorrosion
US6136453A (en) * 1998-11-24 2000-10-24 General Electric Company Roughened bond coat for a thermal barrier coating system and method for producing
US6264766B1 (en) * 1998-11-24 2001-07-24 General Electric Company Roughened bond coats for a thermal barrier coating system and method for producing
US6242050B1 (en) * 1998-11-24 2001-06-05 General Electric Company Method for producing a roughened bond coat using a slurry
US6165345A (en) * 1999-01-14 2000-12-26 Chromalloy Gas Turbine Corporation Electrochemical stripping of turbine blades
US6210812B1 (en) * 1999-05-03 2001-04-03 General Electric Company Thermal barrier coating system
WO2000075398A1 (fr) * 1999-06-02 2000-12-14 Abb Research Ltd. Composition d'enduction conferant une protection contre des temperatures elevees
US6107598A (en) * 1999-08-10 2000-08-22 Chromalloy Gas Turbine Corporation Maskant for use during laser welding or drilling
US6207297B1 (en) * 1999-09-29 2001-03-27 Siemens Westinghouse Power Corporation Barrier layer for a MCrAlY basecoat superalloy combination
US6365236B1 (en) * 1999-12-20 2002-04-02 United Technologies Corporation Method for producing ceramic coatings containing layered porosity
DE60231084D1 (de) * 2002-12-06 2009-03-19 Alstom Technology Ltd Verfahren zur selektiven Abscheidung einer MCrAlY-Beschichtung

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4419416A (en) * 1981-08-05 1983-12-06 United Technologies Corporation Overlay coatings for superalloys
US4789441A (en) * 1984-10-05 1988-12-06 John Foster Metallic protective coatings and method of making
EP0288156A1 (fr) * 1987-03-24 1988-10-26 BAJ Limited Revêtement
US5824205A (en) * 1994-07-22 1998-10-20 Praxair S.T. Technology, Inc. Protective coating
US5833829A (en) * 1994-07-22 1998-11-10 Praxair S.T. Technology, Inc. Protective coating
EP0816526A2 (fr) * 1996-06-27 1998-01-07 United Technologies Corporation Système de revêtement de barrière thermique isolant
EP0848077A1 (fr) * 1996-12-12 1998-06-17 United Technologies Corporation Systèmes et matériaux de revêtement comme barrière thermique
US6280857B1 (en) * 1997-10-30 2001-08-28 Alstom High temperature protective coating
EP0992603A1 (fr) * 1998-10-01 2000-04-12 United Technologies Corporation Systèmes de revêtement de barrière thermique et matériaux

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7695827B2 (en) 2004-12-30 2010-04-13 Siemens Aktiengesellschaft Component with a protective layer
EP1854899A1 (fr) * 2006-01-17 2007-11-14 Siemens Aktiengesellschaft Alliage, couche de protection et composant
EP1837485A1 (fr) * 2006-03-24 2007-09-26 Forschungszentrum Jülich Gmbh Une pièce avec un revêtement de protection
EP2119805A1 (fr) * 2008-05-15 2009-11-18 Siemens Aktiengesellschaft Procédé de fabrication d'une couche adhésive optimisée par l'évaporation partielle de la couche adhésive
WO2009138299A1 (fr) * 2008-05-15 2009-11-19 Siemens Aktiengesellschaft Procédé de réalisation d'une couche promotrice d'adhésion optimisée par évaporation partielle de la couche promotrice d'adhésion et système de revêtement
WO2011086046A3 (fr) * 2010-01-14 2011-10-13 Siemens Aktiengesellschaft Alliage, couche de protection et élément de construction
EP2345748A1 (fr) * 2010-01-14 2011-07-20 Siemens Aktiengesellschaft Alliage, couche de protection et composant
WO2013162664A2 (fr) * 2012-02-06 2013-10-31 Alstom Technology Ltd. Aube de turbine présentant une capacité de flottement améliorée et un rendement d'étage de turbine amélioré
WO2013162664A3 (fr) * 2012-02-06 2014-01-03 Alstom Technology Ltd. Aube de turbine présentant une capacité de flottement améliorée et un rendement d'étage de turbine amélioré
US8821125B2 (en) 2012-02-06 2014-09-02 Alstom Technology Ltd. Turbine blade having improved flutter capability and increased turbine stage output
CN104711458A (zh) * 2015-03-02 2015-06-17 清华大学 一种用于热障涂层的含一种活性元素的粘结层材料
US10443389B2 (en) 2017-11-09 2019-10-15 Douglas James Dietrich Turbine blade having improved flutter capability and increased turbine stage output
CN110846704A (zh) * 2019-11-28 2020-02-28 耒阳市汉客箱包有限公司 一种箱包五金件表面处理方法

Also Published As

Publication number Publication date
US20040079648A1 (en) 2004-04-29

Similar Documents

Publication Publication Date Title
EP1411210A1 (fr) Méthode de déposition d'un revêtement de type MCrAlY résistant à la fatigue et à l'oxydation
US6291084B1 (en) Nickel aluminide coating and coating systems formed therewith
EP1536040B1 (fr) Revêtements de liaison renforcés pour revêtements barrières thermiques
US6255001B1 (en) Bond coat for a thermal barrier coating system and method therefor
EP1463846B1 (fr) Couche de liaison mcraly et son procede de depot
EP1088909B1 (fr) Système de revêtement formant barrière thermique pour élément de moteur à turbine
EP1340833B1 (fr) Revêtement hybride formant barrière thermique et méthode pour sa fabrication
EP1686199B1 (fr) Système de barrière thermique
US20030157363A1 (en) Plasma sprayed thermal bond coat system
EP1652959A1 (fr) Procédé de fabrication des revêtements d'aluminide de nickel de phase gamma prime
US20060165893A1 (en) Thermal barrier coating protected by alumina and method for preparing same
EP1627862A1 (fr) Compositions céramiques pour des revêtements barrières thermiques présentant des propriétés mécaniques améliorées
WO2000009778A1 (fr) Systeme de revetement a barriere thermique multicouches
EP1411148A1 (fr) Procédé pour la déposition d'un couche de liaison à base de MCrAlY sur un article et l'article revêtu obtenu par ce procédé
EP0266299B1 (fr) Revêtement de barrière thermique
EP1908857A2 (fr) Procédé de formation d'un revêtement de barrière thermique
EP0985745B1 (fr) Couche de liaison pour système de revêtement de barrière thermique
EP1491657B1 (fr) Méthode d'application d'un système de couches
EP1491658A1 (fr) Méthode d'application d'un système de couches
EP1428982B1 (fr) Méthode pour déposer localement un revêtement de type MCrAlY
US6974637B2 (en) Ni-base superalloy having a thermal barrier coating system
EP1426458B1 (fr) Procédé pour le dépot local d'une couche de MCrAlY
EP1491650B1 (fr) Méthode d'application d'un système de couches
EP1491659B1 (fr) Méthode d'application d'un système de couches

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20040925

AKX Designation fees paid

Designated state(s): DE GB

17Q First examination report despatched

Effective date: 20071121

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20080421