US20040079648A1 - Method of depositing an oxidation and fatigue resistant MCrAIY-coating - Google Patents

Method of depositing an oxidation and fatigue resistant MCrAIY-coating Download PDF

Info

Publication number
US20040079648A1
US20040079648A1 US10/684,528 US68452803A US2004079648A1 US 20040079648 A1 US20040079648 A1 US 20040079648A1 US 68452803 A US68452803 A US 68452803A US 2004079648 A1 US2004079648 A1 US 2004079648A1
Authority
US
United States
Prior art keywords
coating
mcraly
layer
deposited
coatings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/684,528
Inventor
Abdus Khan
Hans-Peter Bossmann
Thomas Duda
Alexander Schnell
Karl-Johan Stefansson
Christoph Toennes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Switzerland GmbH
Original Assignee
Alstom Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Schweiz AG filed Critical Alstom Schweiz AG
Assigned to ALSTOM (SWITZERLAND) LTD. reassignment ALSTOM (SWITZERLAND) LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TOENNES, CHRISTOPH, STEFANSSON, KARL-JOHAN, BOSSMANN, HANS-PETER, SCHNELL, ALEXANDER, KHAN, ABDUS SUTTAR, DUDA, THOMAS
Publication of US20040079648A1 publication Critical patent/US20040079648A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • C25D15/02Combined electrolytic and electrophoretic processes with charged materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades

Definitions

  • This invention relates according to claim 1 to a protection of gas turbine blades and vanes against oxidation and thermal mechanical fatigue by using MCrAlY overlay coatings deposited by an electroplated process.
  • MCrAlY overlay coatings are used for protection of turbine blades and vanes.
  • MCrAlY protective overlay coatings are widely known in the prior art. They are a family of high temperature coatings, wherein M is selected from one or a combination of iron, nickel and cobalt.
  • U.S. Pat. No. 3,528,861 or U.S. Pat. No. 4,585,481 are disclosing such kind of oxidation resistant coatings.
  • U.S. Pat. No. 4,152,223 as well discloses such method of coating and the coating itself.
  • ⁇ / ⁇ -MCrAlY-coating there is another class of overlay MCrAlY coatings which are based on a ⁇ / ⁇ ′-gamma/gamma prime-structure, which is for example disclosed in U.S. Pat. No. 4,546,052 or U.S. Pat. No. 4,973,445.
  • ⁇ / ⁇ ′-coatings have a negligible thermal expansion mismatch with alloy of the underlying turbine article and are likely to have a better thermal mechanical properties.
  • U.S. Pat. No. 4,313,760 discloses a superalloy coating composition with good oxidation, corrosion and fatigue resistance. Additional examples MCrAlY coatings are known from U.S. Pat. No. B1-6,280,857, U.S. Pat. No. B1-6,221,181, U.S. Pat. No. 5,455,119, U.S. Pat. No. 5,154,885, U.S. Pat. No. 5,035,958 or U.S. Pat. No. B1-6,207,297. They all deal primarily with improving the oxidation resistance of MCrAlY coatings.
  • Thermal barrier coatings are used to provide thermal insulation of the components in various types of engines e.g. in turbine engines.
  • Thermal Barrier Coatings are known from different patents.
  • U.S. Pat. No. 4,055,705, U.S. Pat. No. 4,248,940, U.S. Pat. No. 4,321,311 or U.S. Pat. No. 4,676,994 disclose a TBC-coating for the use in the turbine blades and vanes.
  • the ceramics used are yttria stabilized zirconia and applied by plasma spray (U.S. Pat. No. 4,055,705, U.S. Pat. No. 4,248,940) or by electron beam process (U.S. Pat. No. 4,321,311, U.S. Pat. No. 4,676,994) on top of the MCrAlY bond coat.
  • One approach of improving the fatigue resistance of coatings is by modification of the composition of the coatings and secondly by the use of a thin coating or possibly a combination of both.
  • U.S. Pat. No. 4,346,137 and U.S. Pat. No. 4,758,480 described a method of improving the fatigue resistance of overlay coatings by a modification of composition.
  • the platinum was added to MCrAlY coatings, which reduces the thermal expansion mismatch between the coatings and the substrate, hence also reduces the propensity of the coatings to cracking. This results in a significant improvement of the TMF life of the coatings.
  • the U.S. Pat. No. 4,758,480 discloses a class of protected coatings for superalloys in which the coating compositions are based on the composition of the underlying substrate.
  • the coatings By tailoring the coatings to the substrate composition, diffusional stability results and other mechanical properties of the coating such as coefficient of thermal expansion and modulas, are brought closer to the substrate.
  • the coatings thus obtained have not only increased oxidation resistance and diffusional stability but also exhibit a substantially higher TMF life.
  • U.S. Pat. No. 5,558,758, U.S. Pat. No. 5,824,205 and U.S. Pat. No. 5,833,829 described the deposition of MCrAlY coatings by electroplated process.
  • the process involves a deposition of the coating precursor, CrAIM2 powder in a M1 bath where M2 is one or more of Si, Ti, Hf, Ga, Nb, Mn, Pt and rare earth elements and M1 consists of Ni, Co, Fe alone or in combination.
  • the as-deposited coating is heat-treated to obtain the final coating structure.
  • the objective is to find a MCrAlY-bond or overlay coating with good oxidation and fatigue resistance.
  • Another object of the present invention to find a method of depositing a MCrAlY-coating on a turbine component with uniformity.
  • Yet another object of the invention is to deposit a thin MCrAlY-coating on a large industrial gas turbine blade or vane with a good thickness control of the deposited layer.
  • Another object is to deposit the MCrAlY-coatings on a component with a good microstructural conformity and metallurgical integrity.
  • the cost of the application of a coating by an electroplated process is considerably lower than by a conventional plasma spray coating.
  • the electroplated process has a thickness control of ⁇ 20 ⁇ m or better, whereas conventional plasma spray coating processes have thickness scatters of ⁇ 75 ⁇ m or even more.
  • a coating with a layer thickness in a range of 25-400 ⁇ m can be applied.
  • a thinner coating increase the TMF life of the coating.
  • the used electroplated process has no line of sight limitation and can coat complex contour surfaces without any difficulty.
  • the coating thus manufactured contains very little oxygen impurity.
  • the deposited coating is heat-treated in vacuum, argon, hydrogen at 1140° C. for 2 to 12 hours.
  • a layer of a ceramic thermal barrier coating such as yttria-stabilzed zirconia (YSZ) with suitable composition can be applied.
  • TBC ceramic thermal barrier coating
  • YSZ yttria-stabilzed zirconia
  • FIG. 1 shows a gas turbine blade as an example
  • FIG. 2 one embodiment of a MCrAlY-bond-coating on the external surface of the gas turbine blade according to the present invention.
  • FIG. 1 shows as an example such an article 1 as blades or vanes comprising a blade 2 against which hot combustion gases are directed during operation of the gas turbine engine, a cavity, not visible in FIG. 1, and cooling holes 4 , which are on the external surface 5 of the component 1 as well as on the platform 3 of the component. Through the cooling holes 4 cooling air is ducted during operation of the engine to cool the external surface 5 .
  • the external surface 5 is subjected to severe attack by oxidation, corrosion and erosion due to the hot combustion gases.
  • the article 1 consists of a nickel or cobalt base super alloy such as disclosed, by way of an example, in U.S. Pat. No. 5,759,301.
  • the article 1 can be single crystal (SX), directionally solidified (DS) or polycrystalline. While the advantages of this invention is described with reference to a turbine blade or vane as shown in FIG. 1, the invention is generally applicable to any component on which a coating system may be used to protect the component from its environment.
  • the TMF-life of the SE329-coating was compared with plasma sprayed coatings described by U.S. Pat. No. 6,221,181.
  • the TMF life of the electroplated coating was at least 2 times higher than the life of the plasma sprayed coatings. It is to be stated that the thickness of the electroplated SE329 was 220 ⁇ 20 ⁇ m, the baseline plasma spray coating was nominal 300 ⁇ m thick with a plasma spray coating thickness scatter of at least ⁇ 75 ⁇ m. Thus, a coating with a layer thickness in a range of 25-400 ⁇ m can be applied. A thinner coating increase the TMF life of the coating.
  • the cost of the application of a coating by an electroplated process is a third of a conventional plasma spray coating cost.
  • the used electroplated process has no line of sight limitation and can coat complex contour surfaces without any difficulty.
  • the coating thus manufactured contains very little oxygen impurity.
  • the oxygen impurity is known to adversely affect the fatigue life of coatings.
  • the deposited coating is heat-treated in vacuum, argon, hydrogen at 1140° C. for 2 to 12 hours.
  • TMF life of the coatings for example, improved TMF life of SE329 was probably due to a combination of a) a leaner coating b) the coating composition, c) the microstructure and heat-treatment and d) low oxygen content of the coating.
  • the SE329 coating was successfully manufactured by an electroplated process on low pressure turbine blades. The deposited coating on the blade was uniformly distributed over external surfaces including the airfoil-platform transition area, fillet, leading and trailing edge.
  • Fe is added (wt.-%) 0.01 to 3% in order to enhance the ductility of the coatings while the additions of 0.5-2.5% Si, 0.2-1.5% Hf, 0.01-0.2% Zr or 0-2% Ta either alone or in combination are provided for increased oxidation resistance of the deposited coating.
  • the layer of MCrAlY-coating 6 was deposited on the external surface of the article 1 .
  • the layer 6 was deposited as bond coating with a layer of a ceramic coating 7 such a ceramic thermal barrier coating (TBC) on top of the bond layer 6 .
  • TBC ceramic thermal barrier coating
  • YSZ yttria-stabilzed zirconia
  • suitable composition being about 4 to 20 wt.-%, though other ceramic materials could be used, such as yttria, non-stabilzed zirconia, or ceria (CeO 2 ), scandia (Sc 2 O 3 ) or other oxides.
  • the ceramic layer 7 is deposited to a thickness that is sufficient to provide the required thermal protection for the underlying substrate, generally in the order of about 300-600 ⁇ m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Electrochemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

A method of depositing a layer (6) of highly oxidation and fatigue resistant MCrAlY-coating by an electroplated process has been described. A relative thin coating on an industrial gas turbine component was applied with a thickness control of ±20 μm of the thickness of the applied layer (6) on gas turbine articles (1). The said MCrAlY coatings comprise an addition of (wt.-%) 0.01 to 3% Fe. In addition to Fe the MCrAlY coatings may contain 0.5-2.5% Si, 0-1.5% Hf, 0.01-0.2% Zr and 0-2% Ta, alone or in combination.

Description

    FIELD OF INVENTION
  • This invention relates according to [0001] claim 1 to a protection of gas turbine blades and vanes against oxidation and thermal mechanical fatigue by using MCrAlY overlay coatings deposited by an electroplated process.
  • STATE OF THE ART
  • The turbine blades and vanes designed for use at high temperature are usually coated with environmentally resistant coatings. For example, MCrAlY overlay coatings are used for protection of turbine blades and vanes. MCrAlY protective overlay coatings are widely known in the prior art. They are a family of high temperature coatings, wherein M is selected from one or a combination of iron, nickel and cobalt. As an example U.S. Pat. No. 3,528,861 or U.S. Pat. No. 4,585,481 are disclosing such kind of oxidation resistant coatings. U.S. Pat. No. 4,152,223 as well discloses such method of coating and the coating itself. Besides the γ/β-MCrAlY-coating, there is another class of overlay MCrAlY coatings which are based on a γ/γ′-gamma/gamma prime-structure, which is for example disclosed in U.S. Pat. No. 4,546,052 or U.S. Pat. No. 4,973,445. The advantages of γ/γ′-coatings is that they have a negligible thermal expansion mismatch with alloy of the underlying turbine article and are likely to have a better thermal mechanical properties. [0002]
  • Among γ/γ′- and γ/β-coatings, the field of γ/β-coatings have been an active area of research and a series of patents has been issued. E.g. a NiCrAlY coating is described in U.S. Pat. No. 3,754,903 and a CoCrAlY coating in U.S. Pat. No. 3,676,058. U.S. Pat. No. 4,346,137 discloses an improved high temperature fatigue resistance NiCoCrAlY coating. U.S. Pat. No. 4,419,416, U.S. Pat. No. 4,585,481, RE-32,121 and U.S. Pat. No. 4,743,514 describe MCrAlY coatings containing Si and Hf. U.S. Pat. No. 4,313,760 discloses a superalloy coating composition with good oxidation, corrosion and fatigue resistance. Additional examples MCrAlY coatings are known from U.S. Pat. No. B1-6,280,857, U.S. Pat. No. B1-6,221,181, U.S. Pat. No. 5,455,119, U.S. Pat. No. 5,154,885, U.S. Pat. No. 5,035,958 or U.S. Pat. No. B1-6,207,297. They all deal primarily with improving the oxidation resistance of MCrAlY coatings. [0003]
  • Thermal barrier coatings are used to provide thermal insulation of the components in various types of engines e.g. in turbine engines. Furthermore, in the state of the art Thermal Barrier Coatings (TBC) are known from different patents. U.S. Pat. No. 4,055,705, U.S. Pat. No. 4,248,940, U.S. Pat. No. 4,321,311 or U.S. Pat. No. 4,676,994 disclose a TBC-coating for the use in the turbine blades and vanes. The ceramics used are yttria stabilized zirconia and applied by plasma spray (U.S. Pat. No. 4,055,705, U.S. Pat. No. 4,248,940) or by electron beam process (U.S. Pat. No. 4,321,311, U.S. Pat. No. 4,676,994) on top of the MCrAlY bond coat. [0004]
  • One major disadvantage of γ/γ′-type of MCrAlY coatings is that due to the low aluminum content they do not form a continuous alumina film at temperatures below 1000° C. what leads to a problem with the bonding adherence with the TBC. Therefore U.S. Pat. No. 5,894,053 developed a process of forming a roughened surface by applying particulate materials on the surface using binder, principally soldering powder. In recent years, there has been a significant thrust in developing low thermal conductivity ceramics, U.S. Pat. No. B1-6,365,236, U.S. Pat No. B1-6,299,971 and U.S. Pat. No. B1-6,284,323 and a continuation of efforts in improving the mechanical TBC adhesion by surface roughening. U.S. Ser. No. A1-2002/0,009,609, U.S. Ser. No. A1-2002/0,004,143, U.S. Ser. No. A1-2002/0,004,142, U.S. Pat. No. 6,136,453 or U.S. Pat. No. B1-6,210,812 disclose some examples. [0005]
  • It is generally known in the industry that the coatings on turbine blades or vanes can fail by one or more of the following degradation modes. These are oxidation, corrosion, TMF (Thermal Mechanical Fatigue) and a combination of TMF and oxidation. Coatings failure in a turbine engine solely by oxidation is not a typical scenario. Further, in advanced turbine engines, incidences of corrosion are not common due to higher engine operating temperature and use of cleaner fuels. What is commonly observed is that the MCrAlY coatings are cracked by TMF. Subsequently the cracks allow oxygen diffuse or penetrate into the substrate. Since the substrate is not oxidation resistant the advancing oxygen (through the cracks) causes the oxidation of the underlying substrate and triggers the failure of the components. It is therefore important that the coatings be resistant to fatigue as well as oxidation since fatigue cracking appears to be one of the primary triggering mechanisms of the failure of the coatings. [0006]
  • One approach of improving the fatigue resistance of coatings is by modification of the composition of the coatings and secondly by the use of a thin coating or possibly a combination of both. [0007]
  • U.S. Pat. No. 4,346,137 and U.S. Pat. No. 4,758,480 described a method of improving the fatigue resistance of overlay coatings by a modification of composition. In U.S. Pat. No. 4,346,137, the platinum was added to MCrAlY coatings, which reduces the thermal expansion mismatch between the coatings and the substrate, hence also reduces the propensity of the coatings to cracking. This results in a significant improvement of the TMF life of the coatings. On the other hand, the U.S. Pat. No. 4,758,480 discloses a class of protected coatings for superalloys in which the coating compositions are based on the composition of the underlying substrate. By tailoring the coatings to the substrate composition, diffusional stability results and other mechanical properties of the coating such as coefficient of thermal expansion and modulas, are brought closer to the substrate. The coatings thus obtained have not only increased oxidation resistance and diffusional stability but also exhibit a substantially higher TMF life. [0008]
  • The increase of coating thickness decreases TMF life of coatings. The problem is then to find a method that allows a deposition of thin protective coatings on complex turbine airfoils. A literature search shows that the MCrAlY overlay coatings are generally deposited by plasma spray process (i.e. APS, VPS, LPPS or HVOF). Although not widely used, there is also other manufacturing process; examples are electron beam physical vapor deposition (EB-PVD) and sputtering. However, there are limitations of these processes; a) difficult or unable to deposit a thin coating uniformly, b) poor thickness control and c) a line of sight limitation. Since airfoils contain many complex contoured surface i.e. airfoil to platform transition area, leading edge etc., the line of sight limitation present a difficulty in getting a good uniform coverage of coatings with microstructural integrity. [0009]
  • Interestingly, in a series of patents, U.S. Pat. No. 5,558,758, U.S. Pat. No. 5,824,205 and U.S. Pat. No. 5,833,829 described the deposition of MCrAlY coatings by electroplated process. The process involves a deposition of the coating precursor, CrAIM2 powder in a M1 bath where M2 is one or more of Si, Ti, Hf, Ga, Nb, Mn, Pt and rare earth elements and M1 consists of Ni, Co, Fe alone or in combination. The as-deposited coating is heat-treated to obtain the final coating structure. [0010]
  • SUMMARY OF THE INVENTION
  • The objective is to find a MCrAlY-bond or overlay coating with good oxidation and fatigue resistance. Another object of the present invention to find a method of depositing a MCrAlY-coating on a turbine component with uniformity. Yet another object of the invention is to deposit a thin MCrAlY-coating on a large industrial gas turbine blade or vane with a good thickness control of the deposited layer. Another object is to deposit the MCrAlY-coatings on a component with a good microstructural conformity and metallurgical integrity. [0011]
  • According to the invention a method of deposition a MCrAlY-coating by means of an electroplated process was found according to features of the [0012] claim 1 or 2.
  • It is noted that the cost of the application of a coating by an electroplated process is considerably lower than by a conventional plasma spray coating. In addition, the electroplated process has a thickness control of ±20 μm or better, whereas conventional plasma spray coating processes have thickness scatters of ±75 μm or even more. Thus, a coating with a layer thickness in a range of 25-400 μm can be applied. A thinner coating increase the TMF life of the coating. The used electroplated process has no line of sight limitation and can coat complex contour surfaces without any difficulty. In addition the coating thus manufactured contains very little oxygen impurity. The deposited coating is heat-treated in vacuum, argon, hydrogen at 1140° C. for 2 to 12 hours. [0013]
  • An addition of (wt.-%) 0.01 to 3% Fe is provided for increased ductility. An addition of (wt.-%) 0.5-2.5% Si, 0.2-1.5% Hf, 0.01-0.2% Zr or 0-2% Ta either alone or in combination for increased scale adhesion of the deposited coating. [0014]
  • On top of the applied layers a layer of a ceramic thermal barrier coating (TBC) such as yttria-stabilzed zirconia (YSZ) with suitable composition can be applied.[0015]
  • BRIEF DESCRIPTION OF DRAWINGS
  • Preferred embodiments of the invention are illustrated in the accompanying drawings, in which [0016]
  • FIG. 1 shows a gas turbine blade as an example and [0017]
  • FIG. 2 one embodiment of a MCrAlY-bond-coating on the external surface of the gas turbine blade according to the present invention.[0018]
  • The drawings show only parts important for the invention. [0019]
  • DETAILED DESCRIPTION OF INVENTION
  • The present invention is generally applicable to components that operate within environments characterised by relatively high temperature, and are therefore subjected to severe thermal stresses and thermal cycling. Notable examples of such components include the high and low pressure nozzles and blades, shrouds, combustor liners and augmentor hardware of gas turbine engines. FIG. 1 shows as an example such an [0020] article 1 as blades or vanes comprising a blade 2 against which hot combustion gases are directed during operation of the gas turbine engine, a cavity, not visible in FIG. 1, and cooling holes 4, which are on the external surface 5 of the component 1 as well as on the platform 3 of the component. Through the cooling holes 4 cooling air is ducted during operation of the engine to cool the external surface 5. The external surface 5 is subjected to severe attack by oxidation, corrosion and erosion due to the hot combustion gases. In many cases the article 1 consists of a nickel or cobalt base super alloy such as disclosed, by way of an example, in U.S. Pat. No. 5,759,301. In principle, the article 1 can be single crystal (SX), directionally solidified (DS) or polycrystalline. While the advantages of this invention is described with reference to a turbine blade or vane as shown in FIG. 1, the invention is generally applicable to any component on which a coating system may be used to protect the component from its environment.
  • EXAMPLE OF THE INVENTION
  • As shown in Tab. 1 a series of MCrAlY-coatings were identified and deposited by electroplated process. [0021]
    TAB. 1
    Ni Co Cr Al Y Si Ta Comment
    SE329 Bal. 23 18 10 0.5 Uniform
    SE329-1 Bal. 21 21 11.5 0.3 *
    SE349 Bal. 30 13 11.5 0.3 1.2 0.5 *
    SE349-1 Bal. 24.6 15.3 9.4 0.4 1.2 0.4 *
    SE303 Bal. 19.5 9.1 0.27 Coating
    uniform
    SE29-1 Bal. 27.5 18.5 10.19 0.26 uniform
  • The phase and diffusional stability of the coatings in Table 1 were calculated using the DICTRA software package developed by Thermo-Calc Software, Sweden. The coatings were applied according to the procedure outlined in U.S. Pat. No. 5,558,758, U.S. Pat. No. 5,824,205 and U.S. Pat. No. 5,833,829. Both coating heat-treatment and compositional adjustments are often necessary for homogenization of composition-microstructure i.e. complete reactions of ‘CrAl’ particles with the matrix. The coatings deposited provided good oxidation resistance, for example, the SE329 formed α-alumina scale in the temperature range 800-1100° C. The TMF life of the coating was determined in a strain-controlled test, open cycle, 800-100° C. and 1000-100° C., with a dwell time at maximum temperature of 5 minute. The TMF-life of the SE329-coating was compared with plasma sprayed coatings described by U.S. Pat. No. 6,221,181. The TMF life of the electroplated coating was at least 2 times higher than the life of the plasma sprayed coatings. It is to be stated that the thickness of the electroplated SE329 was 220±20 μm, the baseline plasma spray coating was nominal 300 μm thick with a plasma spray coating thickness scatter of at least ±75 μm. Thus, a coating with a layer thickness in a range of 25-400 μm can be applied. A thinner coating increase the TMF life of the coating. It is noted that the cost of the application of a coating by an electroplated process is a third of a conventional plasma spray coating cost. The used electroplated process has no line of sight limitation and can coat complex contour surfaces without any difficulty. In addition the coating thus manufactured contains very little oxygen impurity. The oxygen impurity is known to adversely affect the fatigue life of coatings. The deposited coating is heat-treated in vacuum, argon, hydrogen at 1140° C. for 2 to 12 hours. [0022]
  • It is believed that the TMF life of the coatings, for example, improved TMF life of SE329 was probably due to a combination of a) a leaner coating b) the coating composition, c) the microstructure and heat-treatment and d) low oxygen content of the coating. The SE329 coating was successfully manufactured by an electroplated process on low pressure turbine blades. The deposited coating on the blade was uniformly distributed over external surfaces including the airfoil-platform transition area, fillet, leading and trailing edge. [0023]
  • Fe is added (wt.-%) 0.01 to 3% in order to enhance the ductility of the coatings while the additions of 0.5-2.5% Si, 0.2-1.5% Hf, 0.01-0.2% Zr or 0-2% Ta either alone or in combination are provided for increased oxidation resistance of the deposited coating. [0024]
  • As seen in FIG. 2 the layer of MCrAlY-[0025] coating 6 was deposited on the external surface of the article 1. The layer 6 was deposited as bond coating with a layer of a ceramic coating 7 such a ceramic thermal barrier coating (TBC) on top of the bond layer 6. As TBC yttria-stabilzed zirconia (YSZ) with suitable composition being about 4 to 20 wt.-%, though other ceramic materials could be used, such as yttria, non-stabilzed zirconia, or ceria (CeO2), scandia (Sc2O3) or other oxides. The ceramic layer 7 is deposited to a thickness that is sufficient to provide the required thermal protection for the underlying substrate, generally in the order of about 300-600 μm.
  • While our invention has been described by an example, it is apparent that other forms could be adopted by one skilled in the art. Accordingly, the scope of our invention is to be limited only by the attached claims. [0026]
  • REFERENCE NUMBERS
  • [0027] 1 Article
  • [0028] 2 Blade
  • [0029] 3 Platform
  • [0030] 4 Cooling holes
  • [0031] 5 External surface of article 1
  • [0032] 6 Layer of MCrAlY
  • [0033] 7 Layer of ceramic coating

Claims (14)

1. A method of depositing a layer of a MCrAlY-coating (6) on the surface (5) of an article (1), wherein the layer of the MCrAlY-coating (6) which comprises (wt.-%) 21-25% Co, 16-20% Cr, 8-12% Al, 0.01-0.5% Y, Rest Ni is deposited by an electroplated process.
2. The method according to claim 1, wherein a layer of the MCrAlY-coating (6) which comprises (wt.-%) 23% Co, 18% Cr, 10% Al, 0.5% Y, Rest Ni is deposited by the electroplated process.
3. The method according to claim 1 or 2, wherein a layer of the MCrAlY-coating (6) having a γ/β-microstructure is deposited.
4. The method according to claim 1 or 2, wherein the deposited coating is heat-treated in vacuum, argon, hydrogen at 1140° C. for 2 to 12 hours.
5. The method according to claim 1 or 2, wherein a layer of the MCrAlY-coating (6) comprising in addition (wt.-%) 0.01 to 3% Fe is deposited.
6. The method according to claim 1 or 2, wherein a layer of the MCrAlY-coating (6) comprising in addition (wt.-%) 0.5-2.5% Si, 0-1.5% Hf, 0.01-0.2% Zr either alone or in combination is deposited.
7. The method according to claim 1 or 2, wherein a layer of the MCrAlY-coating (6) comprising in addition (wt.-%) 0-2% Ta is deposited.
8. The method according to claim 1 or 2, wherein a layer of the MCrAlY-coating (6) is deposited with a thickness control of ±20 μm of the thickness of the deposited layer (6).
9. The method according to claim 7, wherein a layer of the MCrAlY-coating (6) having a thickness in the range of 25-400 μm is deposited.
10. The method according to claim 8, wherein a layer of the MCrAlY-coating (6) having a thickness in the range of 25-300 μm is deposited.
11. The method according to claim 9, wherein a layer of the MCrAlY-coating (6) having a thickness in the range of 25-100 μm is deposited.
12. The method according to claim 10, wherein a layer of the MCrAlY-coating (6) having a thickness in the range of 25-50 μm is deposited.
13. The method according to any of the claim 1 to 11, wherein a layer of the MCrAlY-coating (6) is deposited as overlay or bond coat under a layer of a ceramic coating (7).
14. The method according to any of the claims 1 to 12, wherein a gas turbine article (1) such as blades or vanes is coated.
US10/684,528 2002-10-15 2003-10-15 Method of depositing an oxidation and fatigue resistant MCrAIY-coating Abandoned US20040079648A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20020405881 EP1411210A1 (en) 2002-10-15 2002-10-15 Method of depositing an oxidation and fatigue resistant MCrAIY-coating
EP02405881.0 2002-10-15

Publications (1)

Publication Number Publication Date
US20040079648A1 true US20040079648A1 (en) 2004-04-29

Family

ID=32039263

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/684,528 Abandoned US20040079648A1 (en) 2002-10-15 2003-10-15 Method of depositing an oxidation and fatigue resistant MCrAIY-coating

Country Status (2)

Country Link
US (1) US20040079648A1 (en)
EP (1) EP1411210A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080038575A1 (en) * 2004-12-14 2008-02-14 Honeywell International, Inc. Method for applying environmental-resistant mcraly coatings on gas turbine components
US20130136948A1 (en) * 2010-06-02 2013-05-30 Friedhelm Schmitz Alloy, protective layer and component
US20130337286A1 (en) * 2010-11-02 2013-12-19 Friedhelm Schmitz Alloy, protective coating, and component
US8708659B2 (en) 2010-09-24 2014-04-29 United Technologies Corporation Turbine engine component having protective coating
CN103797141A (en) * 2011-09-12 2014-05-14 西门子公司 Alloy, protective layer and component
US20140220379A1 (en) * 2011-08-09 2014-08-07 Siemens Aktiengesellschaft Alloy, protective layer and component
RU2631552C2 (en) * 2013-05-17 2017-09-25 Сименс Акциенгезелльшафт Protective coating and component of gas turbine with such coating
WO2019182967A1 (en) * 2018-03-19 2019-09-26 Applied Materials, Inc. Methods for depositing coatings on aerospace components
US10704133B2 (en) 2017-10-10 2020-07-07 General Electric Company Coated article and method for making
CN111593394A (en) * 2020-07-15 2020-08-28 南昌航空大学 Preparation method and application of nickel-based alloy nickel-rhenium-aluminum oxide diffusion barrier
US11009339B2 (en) 2018-08-23 2021-05-18 Applied Materials, Inc. Measurement of thickness of thermal barrier coatings using 3D imaging and surface subtraction methods for objects with complex geometries
US11015252B2 (en) 2018-04-27 2021-05-25 Applied Materials, Inc. Protection of components from corrosion
US11395991B2 (en) * 2015-09-29 2022-07-26 Ketai (Beijing) Technology Co., Ltd. Metal-organic framework filter and preparation method thereof
US11466364B2 (en) 2019-09-06 2022-10-11 Applied Materials, Inc. Methods for forming protective coatings containing crystallized aluminum oxide
US11519066B2 (en) 2020-05-21 2022-12-06 Applied Materials, Inc. Nitride protective coatings on aerospace components and methods for making the same
US11694912B2 (en) 2017-08-18 2023-07-04 Applied Materials, Inc. High pressure and high temperature anneal chamber
US11697879B2 (en) 2019-06-14 2023-07-11 Applied Materials, Inc. Methods for depositing sacrificial coatings on aerospace components
US11732353B2 (en) 2019-04-26 2023-08-22 Applied Materials, Inc. Methods of protecting aerospace components against corrosion and oxidation
US11739429B2 (en) 2020-07-03 2023-08-29 Applied Materials, Inc. Methods for refurbishing aerospace components
US11794382B2 (en) 2019-05-16 2023-10-24 Applied Materials, Inc. Methods for depositing anti-coking protective coatings on aerospace components

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1837485B8 (en) 2006-03-24 2010-09-22 Siemens Aktiengesellschaft Component with a protective layer
EP1854899A1 (en) * 2006-01-17 2007-11-14 Siemens Aktiengesellschaft Alloy, protective layer and component
EP2119805A1 (en) * 2008-05-15 2009-11-18 Siemens Aktiengesellschaft Method for manufacturing an optimized adhesive layer through partial evaporation of the adhesive layer
EP2345748A1 (en) * 2010-01-14 2011-07-20 Siemens Aktiengesellschaft Alloy, protective layer and component
US8821125B2 (en) 2012-02-06 2014-09-02 Alstom Technology Ltd. Turbine blade having improved flutter capability and increased turbine stage output
CN104711458A (en) * 2015-03-02 2015-06-17 清华大学 Bonding layer material containing active element for thermal barrier coating
US10443389B2 (en) 2017-11-09 2019-10-15 Douglas James Dietrich Turbine blade having improved flutter capability and increased turbine stage output
CN110846704A (en) * 2019-11-28 2020-02-28 耒阳市汉客箱包有限公司 Surface treatment method for luggage hardware

Citations (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3528861A (en) * 1968-05-23 1970-09-15 United Aircraft Corp Method for coating the superalloys
US3676085A (en) * 1971-02-18 1972-07-11 United Aircraft Corp Cobalt base coating for the superalloys
US3754903A (en) * 1970-09-15 1973-08-28 United Aircraft Corp High temperature oxidation resistant coating alloy
US4055705A (en) * 1976-05-14 1977-10-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Thermal barrier coating system
US4152223A (en) * 1977-07-13 1979-05-01 United Technologies Corporation Plasma sprayed MCrAlY coating and coating method
US4248940A (en) * 1977-06-30 1981-02-03 United Technologies Corporation Thermal barrier coating for nickel and cobalt base super alloys
US4313760A (en) * 1979-05-29 1982-02-02 Howmet Turbine Components Corporation Superalloy coating composition
US4321311A (en) * 1980-01-07 1982-03-23 United Technologies Corporation Columnar grain ceramic thermal barrier coatings
US4346137A (en) * 1979-12-19 1982-08-24 United Technologies Corporation High temperature fatigue oxidation resistant coating on superalloy substrate
US4419416A (en) * 1981-08-05 1983-12-06 United Technologies Corporation Overlay coatings for superalloys
US4546052A (en) * 1983-07-22 1985-10-08 Bbc Aktiengesellschaft Brown, Boveri & Cie High-temperature protective layer
USRE32121E (en) * 1981-08-05 1986-04-22 United Technologies Corporation Overlay coatings for superalloys
US4585481A (en) * 1981-08-05 1986-04-29 United Technologies Corporation Overlays coating for superalloys
US4676994A (en) * 1983-06-15 1987-06-30 The Boc Group, Inc. Adherent ceramic coatings
US4743514A (en) * 1983-06-29 1988-05-10 Allied-Signal Inc. Oxidation resistant protective coating system for gas turbine components, and process for preparation of coated components
US4758480A (en) * 1987-12-22 1988-07-19 United Technologies Corporation Substrate tailored coatings
US4789441A (en) * 1984-10-05 1988-12-06 John Foster Metallic protective coatings and method of making
US4973445A (en) * 1987-11-28 1990-11-27 Asea Brown Boveri Aktiengesellschaft High-temperature protective coating
US5035958A (en) * 1983-12-27 1991-07-30 General Electric Company Nickel-base superalloys especially useful as compatible protective environmental coatings for advanced superaloys
US5154885A (en) * 1989-08-10 1992-10-13 Siemens Aktiengesellschaft Highly corrosion and/or oxidation-resistant protective coating containing rhenium
US5318091A (en) * 1991-11-22 1994-06-07 Borgo-Nova Spa Die coating
US5401307A (en) * 1990-08-10 1995-03-28 Siemens Aktiengesellschaft High temperature-resistant corrosion protection coating on a component, in particular a gas turbine component
US5455119A (en) * 1993-11-08 1995-10-03 Praxair S.T. Technology, Inc. Coating composition having good corrosion and oxidation resistance
US5558758A (en) * 1992-07-06 1996-09-24 Praxair S.T. Technology, Inc. Electrodeposited composite coatings
US5759301A (en) * 1996-06-17 1998-06-02 Abb Research Ltd. Monocrystalline nickel-base superalloy with Ti, Ta, and Hf carbides
US5824205A (en) * 1994-07-22 1998-10-20 Praxair S.T. Technology, Inc. Protective coating
US5833829A (en) * 1994-07-22 1998-11-10 Praxair S.T. Technology, Inc. Protective coating
US5894053A (en) * 1995-12-02 1999-04-13 Abb Research Ltd. Process for applying a metallic adhesion layer for ceramic thermal barrier coatings to metallic components
US6136453A (en) * 1998-11-24 2000-10-24 General Electric Company Roughened bond coat for a thermal barrier coating system and method for producing
US6165345A (en) * 1999-01-14 2000-12-26 Chromalloy Gas Turbine Corporation Electrochemical stripping of turbine blades
US6193762B1 (en) * 1991-06-17 2001-02-27 Cycam, Inc. Surface for use on an implantable device
US6207297B1 (en) * 1999-09-29 2001-03-27 Siemens Westinghouse Power Corporation Barrier layer for a MCrAlY basecoat superalloy combination
US6210812B1 (en) * 1999-05-03 2001-04-03 General Electric Company Thermal barrier coating system
US6221181B1 (en) * 1999-06-02 2001-04-24 Abb Research Ltd. Coating composition for high temperature protection
US6280857B1 (en) * 1997-10-30 2001-08-28 Alstom High temperature protective coating
US6284323B1 (en) * 1996-12-12 2001-09-04 United Technologies Corporation Thermal barrier coating systems and materials
US6299971B1 (en) * 1997-11-18 2001-10-09 United Technologies Corporation Ceramic coatings containing layered porosity
US20020004142A1 (en) * 1998-11-24 2002-01-10 Ritter Ann Melinda Roughened bond coat and method for producing using a slurry
US20020009609A1 (en) * 1998-11-24 2002-01-24 Ritter Ann Melinda Roughened bond coats for a thermal barrier coating system and method for producing
US6365236B1 (en) * 1999-12-20 2002-04-02 United Technologies Corporation Method for producing ceramic coatings containing layered porosity
US6376800B1 (en) * 1999-08-10 2002-04-23 Chromalloy Gas Turbine Corporation Maskant for use during laser welding or drilling
US6610419B1 (en) * 1998-04-29 2003-08-26 Siemens Akteingesellschaft Product with an anticorrosion protective layer and a method for producing an anticorrosion protective
US20040159552A1 (en) * 2002-12-06 2004-08-19 Alstom Technology Ltd. Method of depositing a local MCrAIY-coating

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8706951D0 (en) * 1987-03-24 1988-04-27 Baj Ltd Overlay coating
JP3258599B2 (en) * 1996-06-27 2002-02-18 ユナイテッド テクノロジーズ コーポレイション Insulation barrier coating system
US6117560A (en) * 1996-12-12 2000-09-12 United Technologies Corporation Thermal barrier coating systems and materials

Patent Citations (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3528861A (en) * 1968-05-23 1970-09-15 United Aircraft Corp Method for coating the superalloys
US3754903A (en) * 1970-09-15 1973-08-28 United Aircraft Corp High temperature oxidation resistant coating alloy
US3676085A (en) * 1971-02-18 1972-07-11 United Aircraft Corp Cobalt base coating for the superalloys
US4055705A (en) * 1976-05-14 1977-10-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Thermal barrier coating system
US4248940A (en) * 1977-06-30 1981-02-03 United Technologies Corporation Thermal barrier coating for nickel and cobalt base super alloys
US4152223A (en) * 1977-07-13 1979-05-01 United Technologies Corporation Plasma sprayed MCrAlY coating and coating method
US4313760A (en) * 1979-05-29 1982-02-02 Howmet Turbine Components Corporation Superalloy coating composition
US4346137A (en) * 1979-12-19 1982-08-24 United Technologies Corporation High temperature fatigue oxidation resistant coating on superalloy substrate
US4321311A (en) * 1980-01-07 1982-03-23 United Technologies Corporation Columnar grain ceramic thermal barrier coatings
US4585481A (en) * 1981-08-05 1986-04-29 United Technologies Corporation Overlays coating for superalloys
USRE32121E (en) * 1981-08-05 1986-04-22 United Technologies Corporation Overlay coatings for superalloys
US4419416A (en) * 1981-08-05 1983-12-06 United Technologies Corporation Overlay coatings for superalloys
US4676994A (en) * 1983-06-15 1987-06-30 The Boc Group, Inc. Adherent ceramic coatings
US4743514A (en) * 1983-06-29 1988-05-10 Allied-Signal Inc. Oxidation resistant protective coating system for gas turbine components, and process for preparation of coated components
US4546052A (en) * 1983-07-22 1985-10-08 Bbc Aktiengesellschaft Brown, Boveri & Cie High-temperature protective layer
US5035958A (en) * 1983-12-27 1991-07-30 General Electric Company Nickel-base superalloys especially useful as compatible protective environmental coatings for advanced superaloys
US4789441A (en) * 1984-10-05 1988-12-06 John Foster Metallic protective coatings and method of making
US4973445A (en) * 1987-11-28 1990-11-27 Asea Brown Boveri Aktiengesellschaft High-temperature protective coating
US4758480A (en) * 1987-12-22 1988-07-19 United Technologies Corporation Substrate tailored coatings
US5154885A (en) * 1989-08-10 1992-10-13 Siemens Aktiengesellschaft Highly corrosion and/or oxidation-resistant protective coating containing rhenium
US5401307A (en) * 1990-08-10 1995-03-28 Siemens Aktiengesellschaft High temperature-resistant corrosion protection coating on a component, in particular a gas turbine component
US6193762B1 (en) * 1991-06-17 2001-02-27 Cycam, Inc. Surface for use on an implantable device
US5318091A (en) * 1991-11-22 1994-06-07 Borgo-Nova Spa Die coating
US5558758A (en) * 1992-07-06 1996-09-24 Praxair S.T. Technology, Inc. Electrodeposited composite coatings
US5455119A (en) * 1993-11-08 1995-10-03 Praxair S.T. Technology, Inc. Coating composition having good corrosion and oxidation resistance
US5824205A (en) * 1994-07-22 1998-10-20 Praxair S.T. Technology, Inc. Protective coating
US5833829A (en) * 1994-07-22 1998-11-10 Praxair S.T. Technology, Inc. Protective coating
US5894053A (en) * 1995-12-02 1999-04-13 Abb Research Ltd. Process for applying a metallic adhesion layer for ceramic thermal barrier coatings to metallic components
US5759301A (en) * 1996-06-17 1998-06-02 Abb Research Ltd. Monocrystalline nickel-base superalloy with Ti, Ta, and Hf carbides
US6284323B1 (en) * 1996-12-12 2001-09-04 United Technologies Corporation Thermal barrier coating systems and materials
US6280857B1 (en) * 1997-10-30 2001-08-28 Alstom High temperature protective coating
US6299971B1 (en) * 1997-11-18 2001-10-09 United Technologies Corporation Ceramic coatings containing layered porosity
US6610419B1 (en) * 1998-04-29 2003-08-26 Siemens Akteingesellschaft Product with an anticorrosion protective layer and a method for producing an anticorrosion protective
US6136453A (en) * 1998-11-24 2000-10-24 General Electric Company Roughened bond coat for a thermal barrier coating system and method for producing
US20020009609A1 (en) * 1998-11-24 2002-01-24 Ritter Ann Melinda Roughened bond coats for a thermal barrier coating system and method for producing
US20020004142A1 (en) * 1998-11-24 2002-01-10 Ritter Ann Melinda Roughened bond coat and method for producing using a slurry
US6165345A (en) * 1999-01-14 2000-12-26 Chromalloy Gas Turbine Corporation Electrochemical stripping of turbine blades
US20020004143A1 (en) * 1999-05-03 2002-01-10 Hasz Wayne Charles Thermal barrier coating system
US6210812B1 (en) * 1999-05-03 2001-04-03 General Electric Company Thermal barrier coating system
US6221181B1 (en) * 1999-06-02 2001-04-24 Abb Research Ltd. Coating composition for high temperature protection
US6376800B1 (en) * 1999-08-10 2002-04-23 Chromalloy Gas Turbine Corporation Maskant for use during laser welding or drilling
US6207297B1 (en) * 1999-09-29 2001-03-27 Siemens Westinghouse Power Corporation Barrier layer for a MCrAlY basecoat superalloy combination
US6365236B1 (en) * 1999-12-20 2002-04-02 United Technologies Corporation Method for producing ceramic coatings containing layered porosity
US20040159552A1 (en) * 2002-12-06 2004-08-19 Alstom Technology Ltd. Method of depositing a local MCrAIY-coating

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080038575A1 (en) * 2004-12-14 2008-02-14 Honeywell International, Inc. Method for applying environmental-resistant mcraly coatings on gas turbine components
US7378132B2 (en) 2004-12-14 2008-05-27 Honeywell International, Inc. Method for applying environmental-resistant MCrAlY coatings on gas turbine components
US20130136948A1 (en) * 2010-06-02 2013-05-30 Friedhelm Schmitz Alloy, protective layer and component
US8708659B2 (en) 2010-09-24 2014-04-29 United Technologies Corporation Turbine engine component having protective coating
US20130337286A1 (en) * 2010-11-02 2013-12-19 Friedhelm Schmitz Alloy, protective coating, and component
US20140220379A1 (en) * 2011-08-09 2014-08-07 Siemens Aktiengesellschaft Alloy, protective layer and component
US11092034B2 (en) * 2011-08-09 2021-08-17 Siemens Energy Global Gmbh & Co, Kg Alloy, protective layer and component
CN103797141A (en) * 2011-09-12 2014-05-14 西门子公司 Alloy, protective layer and component
US20140220384A1 (en) * 2011-09-12 2014-08-07 Siemens Aktiengesellschaft Alloy, protective layer and component
US11092035B2 (en) * 2011-09-12 2021-08-17 Siemens Energy Global GmbH & Co. KG Alloy, protective layer and component
RU2631552C2 (en) * 2013-05-17 2017-09-25 Сименс Акциенгезелльшафт Protective coating and component of gas turbine with such coating
US11395991B2 (en) * 2015-09-29 2022-07-26 Ketai (Beijing) Technology Co., Ltd. Metal-organic framework filter and preparation method thereof
US11694912B2 (en) 2017-08-18 2023-07-04 Applied Materials, Inc. High pressure and high temperature anneal chamber
US10704133B2 (en) 2017-10-10 2020-07-07 General Electric Company Coated article and method for making
US11028480B2 (en) 2018-03-19 2021-06-08 Applied Materials, Inc. Methods of protecting metallic components against corrosion using chromium-containing thin films
US11560804B2 (en) 2018-03-19 2023-01-24 Applied Materials, Inc. Methods for depositing coatings on aerospace components
WO2019182967A1 (en) * 2018-03-19 2019-09-26 Applied Materials, Inc. Methods for depositing coatings on aerospace components
CN111936664A (en) * 2018-03-19 2020-11-13 应用材料公司 Method for depositing a coating on an aerospace component
US11603767B2 (en) 2018-03-19 2023-03-14 Applied Materials, Inc. Methods of protecting metallic components against corrosion using chromium-containing thin films
US11384648B2 (en) 2018-03-19 2022-07-12 Applied Materials, Inc. Methods for depositing coatings on aerospace components
US10633740B2 (en) 2018-03-19 2020-04-28 Applied Materials, Inc. Methods for depositing coatings on aerospace components
US11015252B2 (en) 2018-04-27 2021-05-25 Applied Materials, Inc. Protection of components from corrosion
US11753727B2 (en) 2018-04-27 2023-09-12 Applied Materials, Inc. Protection of components from corrosion
US11753726B2 (en) 2018-04-27 2023-09-12 Applied Materials, Inc. Protection of components from corrosion
US11761094B2 (en) 2018-04-27 2023-09-19 Applied Materials, Inc. Protection of components from corrosion
US11009339B2 (en) 2018-08-23 2021-05-18 Applied Materials, Inc. Measurement of thickness of thermal barrier coatings using 3D imaging and surface subtraction methods for objects with complex geometries
US11732353B2 (en) 2019-04-26 2023-08-22 Applied Materials, Inc. Methods of protecting aerospace components against corrosion and oxidation
US11794382B2 (en) 2019-05-16 2023-10-24 Applied Materials, Inc. Methods for depositing anti-coking protective coatings on aerospace components
US11697879B2 (en) 2019-06-14 2023-07-11 Applied Materials, Inc. Methods for depositing sacrificial coatings on aerospace components
US11466364B2 (en) 2019-09-06 2022-10-11 Applied Materials, Inc. Methods for forming protective coatings containing crystallized aluminum oxide
US11519066B2 (en) 2020-05-21 2022-12-06 Applied Materials, Inc. Nitride protective coatings on aerospace components and methods for making the same
US11739429B2 (en) 2020-07-03 2023-08-29 Applied Materials, Inc. Methods for refurbishing aerospace components
CN111593394A (en) * 2020-07-15 2020-08-28 南昌航空大学 Preparation method and application of nickel-based alloy nickel-rhenium-aluminum oxide diffusion barrier

Also Published As

Publication number Publication date
EP1411210A1 (en) 2004-04-21

Similar Documents

Publication Publication Date Title
US20040079648A1 (en) Method of depositing an oxidation and fatigue resistant MCrAIY-coating
US6291084B1 (en) Nickel aluminide coating and coating systems formed therewith
US7172820B2 (en) Strengthened bond coats for thermal barrier coatings
US6255001B1 (en) Bond coat for a thermal barrier coating system and method therefor
JP4191427B2 (en) Improved plasma sprayed thermal bond coat system
EP1463846B1 (en) Mcraly bond coating and method of depositing said mcraly bond coating
US6610420B2 (en) Thermal Barrier coating system of a turbine engine component
EP1340833B1 (en) Hybrid thermal barrier coating and method of making the same
US6548190B2 (en) Low thermal conductivity thermal barrier coating system and method therefor
EP1686199B1 (en) Thermal barrier coating system
EP1652959A1 (en) Method for depositing gamma-prime nickel aluminide coatings
EP1627862A1 (en) Ceramic compositions for thermal barrier coatings with improved mechanical properties
US20070231589A1 (en) Thermal barrier coatings and processes for applying same
US20030027013A1 (en) Thermal barrier coating
EP1411148A1 (en) Method of depositing a MCrALY-coating on an article and the coated article
EP1908857A2 (en) Method for forming a thermal barrier coating
EP0985745B1 (en) Bond coat for a thermal barrier coating system
US6974637B2 (en) Ni-base superalloy having a thermal barrier coating system
EP1428982B1 (en) A method of depositing a local MCrAIY-coating
EP1426458B1 (en) Method of locally depositing a MCrAlY coating
EP1491650B1 (en) A method of depositing a coating system
EP1491659B1 (en) A method of depositing a coating system

Legal Events

Date Code Title Description
AS Assignment

Owner name: ALSTOM (SWITZERLAND) LTD., SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KHAN, ABDUS SUTTAR;BOSSMANN, HANS-PETER;DUDA, THOMAS;AND OTHERS;REEL/FRAME:014616/0872;SIGNING DATES FROM 20030912 TO 20031002

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION