EP1409235A1 - Use of foamed adhesives to make paper cores or tubes - Google Patents

Use of foamed adhesives to make paper cores or tubes

Info

Publication number
EP1409235A1
EP1409235A1 EP00941631A EP00941631A EP1409235A1 EP 1409235 A1 EP1409235 A1 EP 1409235A1 EP 00941631 A EP00941631 A EP 00941631A EP 00941631 A EP00941631 A EP 00941631A EP 1409235 A1 EP1409235 A1 EP 1409235A1
Authority
EP
European Patent Office
Prior art keywords
adhesive
core
foamed
adhesives
paper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00941631A
Other languages
German (de)
French (fr)
Inventor
Peter D. Pierce
David W. Lydzinski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Starch and Chemical Investment Holding Corp
Original Assignee
National Starch and Chemical Investment Holding Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Starch and Chemical Investment Holding Corp filed Critical National Starch and Chemical Investment Holding Corp
Publication of EP1409235A1 publication Critical patent/EP1409235A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/08Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers using foamed adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31CMAKING WOUND ARTICLES, e.g. WOUND TUBES, OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31C3/00Making tubes or pipes by feeding obliquely to the winding mandrel centre line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31CMAKING WOUND ARTICLES, e.g. WOUND TUBES, OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31C99/00Subject matter not provided for in other groups of this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H75/00Storing webs, tapes, or filamentary material, e.g. on reels
    • B65H75/50Methods of making reels, bobbins, cop tubes, or the like by working an unspecified material, or several materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/20Presence of organic materials
    • C09J2400/28Presence of paper
    • C09J2400/283Presence of paper in the substrate

Definitions

  • Cores are a paper or paperboard construction around which material is wound.
  • the material can be tissue or towel, carpet, textile, plastic film, paper or any other material that is would around a core.
  • a tube is a container that is used to transport or store various dry foods, refrigerated foods or dough, oils and other liquids; and is also used for various other industrial applications.
  • Cores or tubes can be made using single or multiple plies of substrates.
  • Top speed capability the amount of time required to go from initial start up to full speed, scrap rate, and the quality of finished cores and tubes are all affected by the adhesive chosen.
  • Convolute winding uses a web of paper that is as wide as the resulting core is long. A mandrel spins and winds the paper onto itself forming the core. The adhesive is continuously applied to the ply material as the core is wound.
  • Spiral winding comprises continuous winding of 2 or more plies around a mandrel at an angle causing the length of the core to grow as the plies are wound.
  • the adhesive is continuously applied to the ply material as the core or tube is wound.
  • Aqueous adhesives and aqueous foamed adhesives, are known to be useful for adhering paper.
  • Aqueous adhesives are also used in paper core manufacture, however the aqueous nature of the adhesive in this application presents numerous problems.
  • Water based adhesives must dissipate water before a bond can be formed.
  • the water dissipates due to evaporation and/or absorption into the substrates (plies), and in the process the adhesive becomes tacky. Therefore an adhesive with the least amount of water is the most desired.
  • a water based adhesive must comprise enough water so when applied, the adhesive is sufficiently wet at the time of contact to ensure that both plies, that are to be bonded together, are wetted by the adhesive. This dichotomy, of the adhesive being wet enough to affect the surfaces of the plies, but not too wet such that the bond takes a long time to form, raises concerns for the core and tube construction industry.
  • dog ears refers to ply separation during the core cutting stage; the ply typically folds back upon itself resembling a dog's ear.
  • the absorptive characteristics of the ply material also have a significant impact on the adhesive performance when aqueous adhesives are used. If the ply material is too absorbent, the adhesive penetrates the ply material and precures (becomes dry) before the ply is wound on the mandrel. If the ply material is made of an nonabsorbent material, the coated ply is likely to be too wet when it comes in contact with another ply, thus causing slippage.
  • foamed adhesives do not penetrate porous surfaces to the same extent as nonfoamed adhesives and therefore open time increases and the tendency to precure decreases.
  • a foamed adhesive contains less water than an unfoamed adhesive. With less water to dissipate, a bond forms more quickly upon compression reducing the possibility of ply slippage and/or "dog ears". Also, the possibility of producing soft and/or soggy cores or tubes is reduced.
  • the foamed adhesives of the present invention allow tube/core manufacturers to use less adhesive and therefore add less moisture to the core construction.
  • the reduced adhesive content per a given volume allows high speeds to be obtained without adjustments to application amount.
  • these adhesives will not permeate the surface of a substrate, therefore allowing acceptable core/tube production.
  • foaming waterbased adhesives provides an unexpected benefit in the construction of paper cores or tubes.
  • the present invention is directed to adhesives formulated with up to 40% foam by weight added and the use of these adhesives in paper cores and tubes.
  • the present invention is directed to aqueous adhesives formulated with up to 40% by weight foam for use in paper cores and tubes.
  • the present invention is also directed to a method of making paper cores and tubes using a foamed adhesive.
  • the adhesives of the present invention include any conventional aqueous adhesive usable for paper core/tube manufacture.
  • adhesives that may be foamed include polyvinylacetate homopolymer or copolymer emulsions (neat or formulated with other components), polyvinyl alcohol, dextrins, starches, acrylates, silicates, filled systems and crosslinkables.
  • Preferred are the formulated polyvinyl acetate homopolymer emulsions.
  • a standard polyvinylacetate-based adhesive would not generate consistent foam until the defoamer component was substantially reduced or totally removed from the formula. Since defoamers are typically compounded into the adhesive formulation, adhesive formulated for the present invention should not have any defoamer, or at the minimum as reduced amount.
  • foaming agents such as surfactant or soaps
  • foaming agents such as surfactant or soaps
  • removal of defoamers and/or adding wetting agents from adhesives can be by methods familiar to one of ordinary skill in the art.
  • foamed adhesives of the present invention up to 40% by weight foam is added to the conventional adhesive.
  • Foam may be added to the adhesive by methods familiar to one of skill in the art, including mechanical stirring or agitation, introduction of gases, or by chemical reactions. Gases that may be used to introduce foam include air, nitrogen or oxygen.
  • the preferred method of introducing foam into the adhesives of the present invention is via mechanical agitation in situ with gas introduction.
  • the foamed adhesives of the present invention are applied during the conventional corewinding or tubewinding process used to manufacture paper cores or tubes. Specifically, the foamed adhesives are used in place of conventional adhesives in a conventional corewinding process.
  • a paper core or tube comprising one or more plies of paper or paperboard are bonded together with an adhesive which has been foamed to 40% by weight.
  • the foamed adhesives of the present invention contain less water by volume than unfoamed adhesives.
  • the volume of the adhesive increases allowing less adhesive to be used resulting in faster drying times, a reduction in the amount of adhesive used, and a reduced cure time for the finished core of tube construction.
  • Water in the waterborne adhesive swells the paper fiber in the core or tube construction. As the freshly made core/tube dissipates the water it normally shrinks from its original dimension. As a result, many core/tube processes include a built in "cure time" prior to cutting the construction to its final dimension. The use of the adhesives of the present invention, reduce the dimension change of the final core or tube and minimize the cure time.
  • foamed adhesives of the present invention do not penetrate porous surfaces to the same extent as nonfoamed adhesives. This increases open time and decreases the tendency of the adhesive to precure prior to contact with the addition plies. Further, since the foamed adhesive contains less water by volume than an unfoamed adhesive, there is less water to dissipate, and the bond between the plies forms more quickly reducing the possibility of ply slippage and/or "dog ears". Also, this reduction in the amount of water prevents the production of wet or soggy cores/tubes, which when filled or subjected to further processing, may come apart. In addition, the foamed adhesives of the present invention allow a much wider operating window of adhesive application amount during changes in production speed. Typically, the production speed of corewinding equipment cannot change without adjustments to the amount of adhesive applied. By using the foamed adhesives of the present invention, corewinding equipment can be run up to 100% maximum line speed with no adjustments to application amount.
  • the corewinding machine had a maximum speed of 350 core FPM (100%).
  • the glue roll to doctor blade gap was 0.012".
  • the adhesive formulations were foamed with air using a foam generator Model 2MT available from E. T. Oaks Corporation.
  • ethylene vinyl acetate based adhesive was evaluated; the control was pure adhesive which was compared to a sample foamed to 20% and 40% air by weight.
  • the adhesive comprised 92% EVA, 4.5% polyvinyl alcohol, and 3.5% water. This adhesive was a high solids, fast setting formula with a viscosity of 1500 cPs. The following was observed:
  • EXAMPLE 3 A polyvinyl acetate emulsion with a viscosity of 1500 cPs and available under the tradename PRODUCER® from National Starch and Chemical Company was evaluated; the control was pure adhesive which was compared to a sample foamed to 40% air.

Abstract

The use of adhesives formulated with up to 40 % foam in paper cores and tubes for the tisse, towel, carpet, textile, plastic film, paper, food and industrial storage industries.

Description

USE OF FOAMED ADHESIVES TO MAKE PAPER CORES OR TUBES
BACKGROUND OF THE INVENTION
Cores are a paper or paperboard construction around which material is wound. The material can be tissue or towel, carpet, textile, plastic film, paper or any other material that is would around a core. A tube is a container that is used to transport or store various dry foods, refrigerated foods or dough, oils and other liquids; and is also used for various other industrial applications. Cores or tubes can be made using single or multiple plies of substrates. When making paper cores or tubes the selection and application of the adhesive can have a significant impact on the efficiency of the process. Top speed capability, the amount of time required to go from initial start up to full speed, scrap rate, and the quality of finished cores and tubes are all affected by the adhesive chosen. There are two basic methods for making a core. Convolute winding uses a web of paper that is as wide as the resulting core is long. A mandrel spins and winds the paper onto itself forming the core. The adhesive is continuously applied to the ply material as the core is wound.
Spiral winding comprises continuous winding of 2 or more plies around a mandrel at an angle causing the length of the core to grow as the plies are wound. The adhesive is continuously applied to the ply material as the core or tube is wound.
Aqueous adhesives, and aqueous foamed adhesives, are known to be useful for adhering paper. Japanese Patent Application 56-30050. Aqueous adhesives are also used in paper core manufacture, however the aqueous nature of the adhesive in this application presents numerous problems.
Water based adhesives must dissipate water before a bond can be formed. The water dissipates due to evaporation and/or absorption into the substrates (plies), and in the process the adhesive becomes tacky. Therefore an adhesive with the least amount of water is the most desired. However, a water based adhesive must comprise enough water so when applied, the adhesive is sufficiently wet at the time of contact to ensure that both plies, that are to be bonded together, are wetted by the adhesive. This dichotomy, of the adhesive being wet enough to affect the surfaces of the plies, but not too wet such that the bond takes a long time to form, raises concerns for the core and tube construction industry. In core and tube construction, as the winder speed is increased, the amount of time for water to dissipate decreases. Without adjustments by the operator of the machinery to reduce the amount of adhesive applied, the wet adhesive layer can cause ply slippage and shutdown, or "dog ears" at the cut off saw. The term "dog ears" refers to ply separation during the core cutting stage; the ply typically folds back upon itself resembling a dog's ear.
The absorptive characteristics of the ply material also have a significant impact on the adhesive performance when aqueous adhesives are used. If the ply material is too absorbent, the adhesive penetrates the ply material and precures (becomes dry) before the ply is wound on the mandrel. If the ply material is made of an nonabsorbent material, the coated ply is likely to be too wet when it comes in contact with another ply, thus causing slippage.
With conventional high speed corewinding equipment, adjustment must be made to the adhesive application amount when production speeds are changed. For example, at high speeds, too much adhesive can be applied, resulting in soft or soggy cores (due to excessive moisture from adhesive) and ply slippage. If the adhesive amount is reduced to compensate for the increased line speeds, problems occur when machine speeds are later reduced as required by the production method. These problems arise due to less adhesive open time (bonding time). If the adhesive is left open to the air for too long, it will dry out or penetrate, and adhesion to another ply cannot occur.
It has been found, in accordance with the present invention, that introduction of foam into adhesives formulated for paper cores or tubes, overcomes some of the problems discussed above. Introduction of foam into the adhesive widens the adhesive operating window and improves the efficiency of the core making process.
Specifically, foamed adhesives do not penetrate porous surfaces to the same extent as nonfoamed adhesives and therefore open time increases and the tendency to precure decreases. In addition, in any given film thickness, a foamed adhesive contains less water than an unfoamed adhesive. With less water to dissipate, a bond forms more quickly upon compression reducing the possibility of ply slippage and/or "dog ears". Also, the possibility of producing soft and/or soggy cores or tubes is reduced.
The foamed adhesives of the present invention allow tube/core manufacturers to use less adhesive and therefore add less moisture to the core construction. The reduced adhesive content per a given volume allows high speeds to be obtained without adjustments to application amount. In addition, at slow speeds, these adhesives will not permeate the surface of a substrate, therefore allowing acceptable core/tube production. SUMMARY OF THE INVENTION
It has been found, in accordance with the present invention, that foaming waterbased adhesives provides an unexpected benefit in the construction of paper cores or tubes. The present invention is directed to adhesives formulated with up to 40% foam by weight added and the use of these adhesives in paper cores and tubes.
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to aqueous adhesives formulated with up to 40% by weight foam for use in paper cores and tubes. The present invention is also directed to a method of making paper cores and tubes using a foamed adhesive.
The adhesives of the present invention include any conventional aqueous adhesive usable for paper core/tube manufacture. Examples of adhesives that may be foamed include polyvinylacetate homopolymer or copolymer emulsions (neat or formulated with other components), polyvinyl alcohol, dextrins, starches, acrylates, silicates, filled systems and crosslinkables. Preferred are the formulated polyvinyl acetate homopolymer emulsions. Depending on the conventional adhesive chosen, it may be necessary to modify the adhesive formulation prior to foaming. Specifically, it may be necessary to reduce or remove any defoamers which were originally added to the formulation to inhibit foam generation. For example, a standard polyvinylacetate-based adhesive would not generate consistent foam until the defoamer component was substantially reduced or totally removed from the formula. Since defoamers are typically compounded into the adhesive formulation, adhesive formulated for the present invention should not have any defoamer, or at the minimum as reduced amount.
It may also be necessary to add one or more foaming agents, such as surfactant or soaps to the adhesive composition prior to foaming. Removal of defoamers and/or adding wetting agents from adhesives can be by methods familiar to one of ordinary skill in the art.
To prepare the foamed adhesives of the present invention, up to 40% by weight foam is added to the conventional adhesive. Foam may be added to the adhesive by methods familiar to one of skill in the art, including mechanical stirring or agitation, introduction of gases, or by chemical reactions. Gases that may be used to introduce foam include air, nitrogen or oxygen. The preferred method of introducing foam into the adhesives of the present invention is via mechanical agitation in situ with gas introduction.
The foamed adhesives of the present invention are applied during the conventional corewinding or tubewinding process used to manufacture paper cores or tubes. Specifically, the foamed adhesives are used in place of conventional adhesives in a conventional corewinding process. In a preferred embodiment, a paper core or tube comprising one or more plies of paper or paperboard are bonded together with an adhesive which has been foamed to 40% by weight.
The foamed adhesives of the present invention contain less water by volume than unfoamed adhesives. In addition, because of the presence of foam, the volume of the adhesive increases allowing less adhesive to be used resulting in faster drying times, a reduction in the amount of adhesive used, and a reduced cure time for the finished core of tube construction. Water in the waterborne adhesive swells the paper fiber in the core or tube construction. As the freshly made core/tube dissipates the water it normally shrinks from its original dimension. As a result, many core/tube processes include a built in "cure time" prior to cutting the construction to its final dimension. The use of the adhesives of the present invention, reduce the dimension change of the final core or tube and minimize the cure time. Another advantage of the foamed adhesives of the present invention is that they do not penetrate porous surfaces to the same extent as nonfoamed adhesives. This increases open time and decreases the tendency of the adhesive to precure prior to contact with the addition plies. Further, since the foamed adhesive contains less water by volume than an unfoamed adhesive, there is less water to dissipate, and the bond between the plies forms more quickly reducing the possibility of ply slippage and/or "dog ears". Also, this reduction in the amount of water prevents the production of wet or soggy cores/tubes, which when filled or subjected to further processing, may come apart. In addition, the foamed adhesives of the present invention allow a much wider operating window of adhesive application amount during changes in production speed. Typically, the production speed of corewinding equipment cannot change without adjustments to the amount of adhesive applied. By using the foamed adhesives of the present invention, corewinding equipment can be run up to 100% maximum line speed with no adjustments to application amount.
The following examples are merely illustrative and not intended to limit the scope of the present invention in any manner.
EXAMPLES
In the following examples, different adhesive formulations, foamed and unfoamed, were evaluated on conventional core winding machinery. The core stock used in all tests was "30# Blue Chip Core Stock", 3.27" wide,
0.010" thick, from US Paper Mills. The corewinding machine had a maximum speed of 350 core FPM (100%). The glue roll to doctor blade gap was 0.012".
The adhesive formulations were foamed with air using a foam generator Model 2MT available from E. T. Oaks Corporation.
EXAMPLE 1
An ethylene vinyl acetate based adhesive was evaluated; the control was pure adhesive which was compared to a sample foamed to 20% and 40% air by weight. The adhesive comprised 92% EVA, 4.5% polyvinyl alcohol, and 3.5% water. This adhesive was a high solids, fast setting formula with a viscosity of 1500 cPs. The following was observed:
TABLE I
In the above tests, 100% winder speed was achieved with all samples.
Although easy winding and 100% fiber tear was obtained with all samples, the unfoamed samples produced a soggy core due to the increased amount of glue on the web and a reduced drying time as the machine speed increased. By contrast the foamed adhesives of the present invention have less water by volume, therefore reducing drying time and producing a firm core. EXAMPLE 2
A medium solids, repulpable EVA adhesive, specifically designed for corewinding, and available under the tradename CORETITE® from National
Starch and Chemical Company was evaluated; the control was pure adhesive which was compared to a sample foamed to 40% air by weight. The following was observed:
With the control, the wind started with ease. It was observed that the amount of adhesive applied increased as the winder speed increased. As the machine speed was increased to over 60%, the increase of the wet adhesive caused the plies to slip, resulting in a stoppage of the corewinder machine.
With the foamed sample, the wind started with ease, and the adhesive coated the applicator roll evenly. At initial start up speed, the cores were firm and there were no "dog ears". As the winder speed increased, there was no need for adhesive adjustment up to 100% machine speed. Up to 100% machine speed, acceptable cores, without dog ears were produced. These results indicate that introduction of foam into the sample allows for wider range of winder speeds without adhesive adjustment.
EXAMPLE 3 A polyvinyl acetate emulsion with a viscosity of 1500 cPs and available under the tradename PRODUCER® from National Starch and Chemical Company was evaluated; the control was pure adhesive which was compared to a sample foamed to 40% air.
With the control, the wind started with ease and core quality was good at the start of the process. Core quality remained good at 50% and 80% machine speeds even though the adhesive application rate was increasing as the speed increased. It was observed that the amount of adhesive on the web increased as the machine speed increased. The machine was run up to 90% speed and produced cores that were too soggy to withstand the downstream tissue converting process. When the machine was run at 100% speed (350 fpm) the core would not hold together because of the excessive amount of glue. Specifically, when the speed was increased to 100% the plies slipped causing the machine to stop.
With the foamed sample, wind started with ease and core quality at the early stage of the process was acceptable. As the winder speed was increased up to 100% (350 fpm) the core quality remained acceptable with stiffer cores and no dog ears observed after the cutting stage.
In the above evaluation 100% winder speed was achieved with the foamed sample. These results indicate that introduction of foam into the adhesive sample allows for a wider range of winder speeds to be achieved.

Claims

WHAT IS CLAIMED IS:
1. A paper core or tube comprising an adhesive which has been foamed to up to 40% by weight.
2. A method for preparing a paper core or tube, the improvement comprising applying an adhesive foamed to up to 40% by weight.
3. A paper core or tube comprising one or more paper or paperboard materials bonded together with an adhesive which has been foamed to up to 40% by weight.
4. A paper core or tube according to Claim 1 or 3 wherein the tube or core is used in the tissue, towel, carpet, textile, plastic film, paper, food and industrial storage industries.
EP00941631A 2000-06-21 2000-06-21 Use of foamed adhesives to make paper cores or tubes Withdrawn EP1409235A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2000/017146 WO2001098069A1 (en) 2000-06-21 2000-06-21 Use of foamed adhesives to make paper cores or tubes

Publications (1)

Publication Number Publication Date
EP1409235A1 true EP1409235A1 (en) 2004-04-21

Family

ID=21741529

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00941631A Withdrawn EP1409235A1 (en) 2000-06-21 2000-06-21 Use of foamed adhesives to make paper cores or tubes

Country Status (3)

Country Link
EP (1) EP1409235A1 (en)
AU (1) AU2000256317A1 (en)
WO (1) WO2001098069A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7201815B2 (en) 2003-09-02 2007-04-10 H.B. Fuller Licensing & Financing Inc. Paper laminates manufactured using foamed adhesive systems
FR2966159B1 (en) 2010-10-13 2013-10-18 Bostik Sa AQUEOUS GLUE FOR CARBONATE SUBSTRATE WITH IMPROVED TAPPING
CN103215003B (en) * 2013-04-19 2014-12-10 厦门朝富人造革有限公司 Thermoplastic polyurethane foaming resin mucilage glue as well as preparation method and use thereof, and product

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1002731A1 (en) * 1998-11-20 2000-05-24 Sonoco Products Company Composite container having foamed adhesive

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5311933A (en) * 1976-07-20 1978-02-02 Kuraray Co Ltd Remoistening adhesive paper
JPS5311934A (en) * 1976-07-20 1978-02-02 Kuraray Co Ltd Remoistening adhesive paper and its production
JPS57143370A (en) * 1981-03-02 1982-09-04 Daido Kasei Kogyo Kk Water-based adhesive for paper
DE3421360A1 (en) * 1984-06-08 1985-12-12 Reich Spezialmaschinen GmbH, 7440 Nürtingen Process for bonding workpieces using a cyanoacrylate adhesive
JPH05140521A (en) * 1991-11-19 1993-06-08 Honshu Paper Co Ltd Starch paste
US5833592A (en) * 1996-07-17 1998-11-10 Sonoco Products Company Method and apparatus for enhancing seam unifority in spirally wound tubes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1002731A1 (en) * 1998-11-20 2000-05-24 Sonoco Products Company Composite container having foamed adhesive

Also Published As

Publication number Publication date
WO2001098069A1 (en) 2001-12-27
AU2000256317A1 (en) 2002-01-02

Similar Documents

Publication Publication Date Title
RU2635615C2 (en) Hydrophobically dressed fiber material and method for producing layer of dressed material
JP4694691B2 (en) Paper or paperboard laminate and method for producing the laminate
US5190798A (en) Paper-plastic film, fiberglass-reinforced sealing tape
US4606951A (en) Water-resisting and oil-resisting laminated sheet
US5075360A (en) High-speed starch-based corrugating adhesive containing a carrier phase comprised of starch, modified starch or dextrin and polyvinyl alcohol
US3951890A (en) Tail control and transfer adhesives for rolled paper products
US5296535A (en) Remoistenable adhesive composition
US20050271839A1 (en) Use of foamed adhesives to make paper cores or tubes
SE1150753A1 (en) Process for providing a surface with an oxygen barrier and preparing a substrate according to the method
US3994396A (en) Tail control and transfer adhesives for rolled paper products
US5466493A (en) Non-skid surface composition for paper products
EP1409235A1 (en) Use of foamed adhesives to make paper cores or tubes
CN104921644B (en) Wet tissue and manufacturing method thereof
JP2009270114A (en) Use of auxiliary fixing body
CN109162149A (en) A kind of production method of the super-hydrophobic compound corrugated case based on nano-titanium dioxide
US20030034117A1 (en) Radio frequence drying for use in core and tubewinding operations
WO2005095712A1 (en) Wallpaper
AU2016425095B2 (en) Contamination-preventing agent composition and contamination preventing method
JPH0214135A (en) Foaming impregnating and peeling coating of fibrous base body
JP6176704B2 (en) Toilet roll manufacturing method and toilet roll
JP2000108231A (en) Waterproof corrugated fiberboard case
JP5490428B2 (en) Impregnated coating type washi tape base material
JP3628460B2 (en) Waterproof paper
JPH09255923A (en) Pressure-sensitive adhesive tape
JPH0813385A (en) Production of water-dispersible substrate

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030508

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB

R17P Request for examination filed (corrected)

Effective date: 20030508

17Q First examination report despatched

Effective date: 20091228

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100429