EP1407255A2 - Sensor for detecting particles and method for controlling the function thereof - Google Patents

Sensor for detecting particles and method for controlling the function thereof

Info

Publication number
EP1407255A2
EP1407255A2 EP02754270A EP02754270A EP1407255A2 EP 1407255 A2 EP1407255 A2 EP 1407255A2 EP 02754270 A EP02754270 A EP 02754270A EP 02754270 A EP02754270 A EP 02754270A EP 1407255 A2 EP1407255 A2 EP 1407255A2
Authority
EP
European Patent Office
Prior art keywords
sensor
electrodes
measuring electrodes
particles
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02754270A
Other languages
German (de)
French (fr)
Inventor
Joachim Berger
Thomas Schulte
Ralf Wirth
Bernd Schumann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1407255A2 publication Critical patent/EP1407255A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0656Investigating concentration of particle suspensions using electric, e.g. electrostatic methods or magnetic methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0606Investigating concentration of particle suspensions by collecting particles on a support
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/05Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a particulate sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0046Investigating dispersion of solids in gas, e.g. smoke

Definitions

  • the invention is based on a sensor for detecting particles in a gas stream, in particular soot particles in an exhaust gas stream, in accordance with the type defined in the preamble of claim 1 and a method for checking the function of the sensor in accordance with the type defined in the preamble of claim 10 ,
  • the sensor for the detection of particles in a gas stream, in particular of soot particles in exhaust gas, with the features according to the preamble of claim 1, in which the measuring electrodes are at least partially covered by a collecting sleeve, has the advantage that particles contained in a gas stream by means of the Catching sleeve can be captured so that they can not be affected by currents in the gas stream after deposition on the substrate. Furthermore, the collecting sleeve protects the electrodes from the abrasive effects of the gas flows. The collecting sleeve also serves to calm the gas flow and thus to preferentially deposit particles on the substrate.
  • the sensor according to the invention can be designed, for example, to be arranged in an exhaust line of a motor vehicle with a diesel engine or also for use in the field of domestic engineering in the case of an oil heater.
  • the measuring electrodes are designed as interdigital comb electrodes.
  • Comb electrodes offer favorable measuring behavior and can be easily printed on a plate-shaped substrate, for example.
  • the measuring electrodes are advantageously partially covered by a dielectric. It is thus possible to use the measuring electrodes as a capacitor and to determine the goodness of the electrodes by measuring the capacitance of this capacitor. If no or a significantly changed capacitance is measured compared to an initial value, it can be concluded from this that at least one of the two electrodes has been partially or completely detached from the substrate and the sensor is therefore unusable.
  • a plate capacitor can be formed on the measuring electrodes.
  • a plate capacitor which serves to check the function of the sensor in accordance with the above statements and whose plates are formed parallel to the preferably plate-shaped substrate, can be used to implement capacities which are easily accessible for measurement.
  • the capacitance of the plate capacitor can be, for example, in the range between 100 pF and 200 pF.
  • the plate capacitor is expediently formed with a dielectric, it being possible for the dielectric to be formed, for example, from aluminum oxide.
  • the plates of the plate capacitor and the dielectric are arranged one above the other on the plate-shaped substrate.
  • the plate capacitor is covered with a protective layer.
  • a dielectric arranged over the comb area of the comb electrodes can be covered with a protective layer.
  • it can have a heating element for this purpose.
  • the substrate is made of a highly insulating material, for example a ceramic such as aluminum oxide.
  • the capture sleeve can be, for example, mt on the substrate.
  • the catch sleeve is advantageously made from a sheet with resilient properties.
  • the capture sleeve can also be made of the material from which the substrate is made. In this case, the catch sleeve can be firmly connected to the substrate. It is then also made from a ceramic, for example.
  • the shape of the catch sleeve is fundamentally not tied to specific requirements, but in a preferred embodiment it is box-shaped, with at least one side of such a box tapering in a wedge shape.
  • the substrate can be inserted into an opening in the box.
  • the invention also relates to a method for checking the function of the sensor.
  • a capacitor is assigned to the measuring electrodes, the capacitance of this capacitor being determined.
  • the measurement setup consisting of electrodes and capacitor is regarded as an RC element with a measurement behavior typical of an RC element.
  • the capacitance is advantageously measured at frequencies greater than 5 kHz, for example at 500 kHz.
  • the particle concentration in the medium to be measured can be inferred from the resistance between the measuring electrodes. This can be done by determining the temporal change in the resistance component of the RC element.
  • the resistance is determined here, for example, at frequencies below 5 kHz.
  • the sensor is preferably baked out in order to free it of attached particles. After baking, it can then be determined whether the measuring arrangement of the sensor has a behavior typical of an RC element. If this is the case, the quality of the insulation resistance between the electrodes can be concluded. If the determined quality is too low, the sensor must be replaced. This can be determined by a control unit to which the sensor is connected. If necessary, the sensor can also be be heated for a longer period of time in order to remove soot deposits that are still present.
  • the insulation resistance measured after the sensor has been baked out can advantageously be used as a correction variable for the operation of the sensor.
  • this can only be done provided that the electrodes themselves are fully functional. As described above, this can be determined via a capacitance measurement.
  • FIG. 1 shows a schematic, perspective illustration of a soot sensor
  • FIG. 2 shows a sensor element of the soot sensor according to FIG. 1,
  • FIG. 3 shows a schematic, perspective view of an alternative embodiment of a sensor
  • FIG. 4 shows a sensor element of the sensor according to FIG. 3.
  • FIGS. 1 and 2 show a sensor for the detection of particles in a gas stream, which is used for installation in an exhaust line of a motor vehicle and is preferably arranged after a soot filter of a motor vehicle with a diesel internal combustion engine.
  • the sensor 1 comprises a plate-like carrier layer 2 made of a highly insulating material, for example made of a ceramic such as aluminum oxide.
  • a heating element 3 is integrated into the carrier layer, which can be connected to a suitable voltage source via contacts 4 and 5 and is used to burn off the sensor 1 from any deposited particles, such as soot particles.
  • a second plate-like layer 6 made of aluminum oxide is arranged on the carrier layer, on which a structure of two interdigital comb electrodes 7 and 8 is printed, which can be connected to a measuring and control unit via contacts 9 and 10.
  • the two comb electrodes 7 and 8 are partially covered by a dielectric 11, so that the comb electrodes 7 and 8 can serve as electrodes of a capacitor with a measurable capacitance.
  • the dielectric 11 is in turn provided with a protective layer 12 so that it is separated from the surrounding medium, so that degeneration of the dielectric 11 is excluded.
  • the sensor 1 is provided with a collecting sleeve 13, which is designed in the shape of a box, in a position above the comb electrodes 7 and 8. area is provided with an opening 14 and serves to calm a gas stream flowing in the exhaust line, so that soot particles or other particles contained in the gas stream are preferably deposited in the area of the comb electrodes 7 and 8.
  • the catch sleeve 13 in question consists of several ceramic layers and is integrated in the ceramic material of the second layer 6 or the carrier layer 2. The two layers 2 and 6 protrude from the catch sleeve.
  • FIGS. 3 and 4 show an alternative embodiment of a soot sensor 20 for installation in an exhaust system of a motor vehicle.
  • the senor 20 comprises a carrier layer 2 with an integrated heating element 3 and a second layer 6, on which two interdigital comb electrodes 7 and 8 are printed, which can be connected to a measuring and control unit via contacts 9 and 10 are and used to determine a soot concentration in an exhaust gas flowing in the exhaust line by resistance measurement.
  • the electrode 8 is connected to a first electrode plate 16.
  • the comb electrode 7 is connected to a second electrode plate 17 at the end facing away from the contact 10.
  • the electrode plates 16 and 17 form a plate capacitor which is provided with a dielectric 18 arranged between the two plates 16 and 17.
  • the first electrode plate 16 is further provided with a protective layer 19, so that the capacitor consisting of the plates 16 and 17 and the dielectric 18 is protected from the environment.
  • the electrode plates 16 and 17, the dielectric 18 and the protective layer 19 lie outside the area of the interdigital comb structure of the two electrodes 7 and 8 and are arranged one above the other on the layer 6.
  • the sensor 20 is provided with a catch sleeve 21 with an inlet opening 22.
  • the catch sleeve 21 consists of sheet metal and is clamped onto the structure consisting of the layers 2 and 6.
  • soot or other electrically conductive particles are deposited on the second layer 6, the electrical resistance between the two comb electrodes 7 and 8 is reduced. Measuring the impedance between the two electrodes 7 and 8 results in a so-called RC Link typical behavior. This means that the soot or particle concentration in the exhaust gas in question can be determined on the basis of the change over time in the resistance component of the RC element.
  • the deposited particles are burned off after a certain time by means of the heating element 3 integrated in the layer 2. If sensor 1 or 20 is in working order, called baking the resistance between electrodes 7 and 8 go to infinity.
  • the resistance is preferably measured at low frequencies, for example at a frequency of 100 kHz. It should only be possible to measure the capacitance of the electrodes 7 and 8 serving as a capacitor for the sensor 1 and of the capacitor consisting of the electrode plates 16 and 17 for the sensor 20. This measurement takes place at high frequencies, for example at a frequency of 500 kHz.
  • the capacitance of the respective capacitor is in the range between 100 pF and 200 pF.
  • the quality of the insulation resistance between the two comb electrodes 7 and 8 can be concluded. If the insulation resistance is too low, the sensor is considered to have aged too much. It needs to be replaced. This condition is detected by the measuring and control unit.
  • the bakeout time can be extended.
  • the insulation resistance can change due to the deposition of conductive corrosion products.
  • This variable can be used as a correction variable when operating the sensor 1 or 20. For this, however, it must be ensured that the electrodes 7 and 8 are fully functional. This information is obtained by measuring the capacitance of the respective capacitor. This can be done using the method already described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

The invention relates to a sensor for detecting particles in a gaseous stream, in particular soot particles in an exhaust gas stream. Said sensor comprises at least two measuring electrodes (7, 8), which are located on a substrate (6) consisting of an insulating material. The measuring electrodes (7,8) are at least partially covered by a retaining shell (13; 21).

Description

Sensor zur Detektion von Teilchen und Verfahren zu dessen FunktionskontrolleParticle detection sensor and method for checking its function
Stand der TechnikState of the art
Die Erfindung geht von einem Sensor zur Detektion von Teilchen in einem Gasstrom, insbesondere von Rußpartikeln in einem Abgasstrom, gemäß der im Oberbegriff des Patentanspruches 1 näher definierten Art sowie von einem Verfahren zur Funktionskontrolle des Sensors gemäß der im Oberbegriff des Patentanspruches 10 näher definierten Art aus.The invention is based on a sensor for detecting particles in a gas stream, in particular soot particles in an exhaust gas stream, in accordance with the type defined in the preamble of claim 1 and a method for checking the function of the sensor in accordance with the type defined in the preamble of claim 10 ,
Es ist aus der Praxis bekannt, mittels zweier Elektroden, die auf einer Keramik angeordnet sind, eine Konzentration von Teilchen, wie beispielsweise Ruß- oder Staubpartikeln, in einem Abgas zu messen. Dies kann beispielsweise durch eine Messung des elektrischen Widerstandes des die beiden Elektroden trennenden keramischen Werkstoffs erfolgen. Vorteile der ErfindungIt is known from practice to use two electrodes, which are arranged on a ceramic, to measure a concentration of particles, such as soot or dust particles, in an exhaust gas. This can be done, for example, by measuring the electrical resistance of the ceramic material separating the two electrodes. Advantages of the invention
Der Sensor zur Detektion von Teilchen in einem Gasstrom, insbesondere von Rußpartikeln in Abgas, mit den Merkmalen nach dem Oberbegriff des Patentanspruches 1, bei dem die Meßelektroden zumindest teilweise von einer Fanghülse überdeckt sind, hat den Vorteil, daß in einem Gasstrom enthaltene Teilchen mittels der Fanghülse derart eingefangen werden können, daß sie durch in dem Gasstrom herrschende Strömungen nach der Ablagerung auf dem Substrat nicht beeinträchtigt werden können. Des weiteren schützt die Fanghülse die Elektroden vor abrasiven Wirkungen der Strömungen des Gases. Die Fanghülse dient auch der Beruhigung des Gasstroms und damit zur bevorzugten Ablagerung von Teilchen auf dem Substrat.The sensor for the detection of particles in a gas stream, in particular of soot particles in exhaust gas, with the features according to the preamble of claim 1, in which the measuring electrodes are at least partially covered by a collecting sleeve, has the advantage that particles contained in a gas stream by means of the Catching sleeve can be captured so that they can not be affected by currents in the gas stream after deposition on the substrate. Furthermore, the collecting sleeve protects the electrodes from the abrasive effects of the gas flows. The collecting sleeve also serves to calm the gas flow and thus to preferentially deposit particles on the substrate.
Der Sensor nach der Erfindung kann beispielsweise zur Anordnung in einem Abgasstrang eines Kraftfahrzeuges mit einem Dieselmotor oder auch zum Einsatz im Bereich der Haustechnik bei einer Ölheizung ausgelegt sein.The sensor according to the invention can be designed, for example, to be arranged in an exhaust line of a motor vehicle with a diesel engine or also for use in the field of domestic engineering in the case of an oil heater.
Nach einer bevorzugten Ausführungsform des Sensors nach der Erfindung sind die Meßelektrodεn als interdigitale Kammelektroden ausgebildet. Kammelektroden bieten ein günstiges Meßverhalten und können auf einfache Weise auf ein beispielsweise plattenförmiges Substrat aufgedruckt werden.According to a preferred embodiment of the sensor according to the invention, the measuring electrodes are designed as interdigital comb electrodes. Comb electrodes offer favorable measuring behavior and can be easily printed on a plate-shaped substrate, for example.
Zur Funktionsüberprüfung des Sensors sind die Meßelektroden vorteilhaft teilweise von einem Dielektrikum überdeckt. Es ist so möglich, die Meßelektroden als Kondensator zu nutzen und über eine Messung der Kapazität dieses Kondensators die Gute der Elektroden zu ermitteln. Wenn keine oder eine gegenüber einem Ausgangswert deutlich veränderte Kapazität gemessen wird, so kann hieraus geschlossen werden, daß zumindest eine der beiden Elektroden teilweise oder vollständig von dem Substrat abgelost ist und der Sensor somit unbrauchbar ist.To check the function of the sensor, the measuring electrodes are advantageously partially covered by a dielectric. It is thus possible to use the measuring electrodes as a capacitor and to determine the goodness of the electrodes by measuring the capacitance of this capacitor. If no or a significantly changed capacitance is measured compared to an initial value, it can be concluded from this that at least one of the two electrodes has been partially or completely detached from the substrate and the sensor is therefore unusable.
Nach einer vorteilhaften Ausfuhrungsform des Sensors kann an den Meßelektroden ein Plattenkondensator ausgebildet sein. Mittels eines derartigen Plattenkondensators, der entsprechend den vorstehenden Ausfuhrungen zur Funktions- kontrolle des Sensors dient und dessen Platten parallel zu dem vorzugsweise plattenformigen Substrat ausgebildet sind, sind Kapazitäten realisierbar, die einer Messung leicht zugänglich sind. Die Kapazitäten des Plattenkondensators können beispielsweise im Bereich zwischen 100 pF und 200 pF liegen.According to an advantageous embodiment of the sensor, a plate capacitor can be formed on the measuring electrodes. Such a plate capacitor, which serves to check the function of the sensor in accordance with the above statements and whose plates are formed parallel to the preferably plate-shaped substrate, can be used to implement capacities which are easily accessible for measurement. The capacitance of the plate capacitor can be, for example, in the range between 100 pF and 200 pF.
Der Plattenkondensator ist zweckmaßigerweise mit einem Dielektrikum ausgebildet, wobei das Dielektrikum beispielsweise aus Aluminiumoxid gebildet sein kann. Bei dieser Ausfuhrungsform sind die Platten des Plattenkondensators und das Dielektrikum übereinander liegend auf dem plattenformigen Substrat angeordnet.The plate capacitor is expediently formed with a dielectric, it being possible for the dielectric to be formed, for example, from aluminum oxide. In this embodiment, the plates of the plate capacitor and the dielectric are arranged one above the other on the plate-shaped substrate.
Des weiteren ist es vorteilhaft, wenn der Plattenkondensator mit einer Schutzschicht abgedeckt ist. Entsprechend kann ein über dem Kammbereich der Kammelektroden angeordnetes Dielektrikum mit einer Schutzschicht abgedeckt sein. Um den Sensor von Teilchenablagerungen befreien zu können, kann dieser in einer vorteilhaften Weiterbildung zu diesem Zweck ein Heizelement aufweisen.Furthermore, it is advantageous if the plate capacitor is covered with a protective layer. Correspondingly, a dielectric arranged over the comb area of the comb electrodes can be covered with a protective layer. In order to be able to free the sensor from particle deposits, in an advantageous further development it can have a heating element for this purpose.
Bezüglich der Materialauswahl ist es vorteilhaft, wenn das Substrat aus einem hochisolierenden Werkstoff, beispielsweise einer Keramik wie Aluminiumoxid, gefertigt ist .With regard to the choice of material, it is advantageous if the substrate is made of a highly insulating material, for example a ceramic such as aluminum oxide.
Die Fanghülse kann beispielsweise auf das Substrat aufgekle mt sein. In einem solchen Fall ist die Fanghülse vorteilhaft aus einem Blech mit federelastischen Eigenschaften gefertigt .The capture sleeve can be, for example, mt on the substrate. In such a case, the catch sleeve is advantageously made from a sheet with resilient properties.
Die Fanghülse kann aber auch aus dem Werkstoff gefertigt sein, aus dem das Substrat besteht. In diesem Falle kann die Fanghülse mit dem Substrat in fester Verbindung stehen. Sie ist dann beispielsweise ebenfalls aus einer Keramik gefertigt .The capture sleeve can also be made of the material from which the substrate is made. In this case, the catch sleeve can be firmly connected to the substrate. It is then also made from a ceramic, for example.
Die Form der Fanghülse ist grundsätzlich nicht an bestimmte Vorgaben gebunden, sie ist aber bei einer bevorzugten Ausführungsform schachteiförmig, wobei zumindest eine Seite einer solchen Schachtel keilförmig zulaufen kann. Das Substrat kann in einer Öffnung der Schachtel eingeschoben sein.The shape of the catch sleeve is fundamentally not tied to specific requirements, but in a preferred embodiment it is box-shaped, with at least one side of such a box tapering in a wedge shape. The substrate can be inserted into an opening in the box.
Die Erfindung hat auch ein Verfahren zur Funktionskontrolle des Sensors zum Gegenstand. Bei diesem Verfahren ist den Meßelektroden ein Kondensator zugeordnet, wobei die Kapazität dieses Kondensators ermittelt wird. Bei dem Verfahren wird der aus Elektroden und Kondensator bestehende Meßaufbau als RC-Glied mit einem für ein RC- Glied typischen Meßverhalten angesehen. Die Messung der Kapazität erfolgt hierbei vorteilhaft bei Frequenzen größer als 5 kHz, beispielsweise bei 500 kHz.The invention also relates to a method for checking the function of the sensor. In this method, a capacitor is assigned to the measuring electrodes, the capacitance of this capacitor being determined. In the method, the measurement setup consisting of electrodes and capacitor is regarded as an RC element with a measurement behavior typical of an RC element. The capacitance is advantageously measured at frequencies greater than 5 kHz, for example at 500 kHz.
Zweckmäßigerweise wird bei Abweichung der Kapazität vom Sollwert, welcher dem Wert von einwandfrei arbeitenden Elektroden entspricht, eine Fehlermeldung generiert.If the capacitance deviates from the target value, which corresponds to the value of electrodes working properly, an error message is expediently generated.
Über den zwischen den Meßelektroden herrschenden Widerstand kann auf die Teilchenkonzentration in dem zu messenden Medium geschlossen werden. Dies kann durch die Ermittlung der zeitlichen Änderung des Widerstandsanteils des RC-Gliedes erfolgen. Der Widerstand wird hier beispielsweise bei Frequenzen kleiner 5 kHz ermittelt.The particle concentration in the medium to be measured can be inferred from the resistance between the measuring electrodes. This can be done by determining the temporal change in the resistance component of the RC element. The resistance is determined here, for example, at frequencies below 5 kHz.
Alternativ oder in Ergänzung hierzu ist es auch möglich, die Impedanz zu messen, um noch genauere Informationen hinsichtlich der Spezifizierung der Rußtypen zu gewinnen.Alternatively or in addition to this, it is also possible to measure the impedance in order to obtain more precise information regarding the specification of the soot types.
Der Sensor wird bevorzugt ausgeheizt, um ihn von angelagerten Teilchen zu befreien. Nach dem Ausheizen kann dann ermittelt werden, ob die Meßanordnung des Sensors ein für ein RC-Glied typisches Verhalten aufweist. Ist dies der Fall, kann auf die Güte des Isolationswiderstandes zwischen den Elektroden geschlossen werden. Wenn die ermittelte Güte zu gering ist, ist der Sensor zu ersetzen. Dies kann von einer Steuereinheit, mit der der Sensor verbunden ist, ermittelt werden. Gegebenenfalls kann der Sensor auch über einen län- geren Zeitraum ausgeheizt werden, um noch vorhandene Rußablagerungen zu entfernen.The sensor is preferably baked out in order to free it of attached particles. After baking, it can then be determined whether the measuring arrangement of the sensor has a behavior typical of an RC element. If this is the case, the quality of the insulation resistance between the electrodes can be concluded. If the determined quality is too low, the sensor must be replaced. This can be determined by a control unit to which the sensor is connected. If necessary, the sensor can also be be heated for a longer period of time in order to remove soot deposits that are still present.
Vorteilhaft kann der nach dem Ausheizen des Sensors gemessene Isolationswiderstand als Korrekturgröße für den Betrieb des Sensors herangezogen werden. Dies kann natürlich nur unter der Voraussetzung erfolgen, daß die Elektroden an sich voll funktionsfähig sind. Dies kann, wie oben beschrieben, über eine Kapazitätsmessung ermittelt werden.The insulation resistance measured after the sensor has been baked out can advantageously be used as a correction variable for the operation of the sensor. Of course, this can only be done provided that the electrodes themselves are fully functional. As described above, this can be determined via a capacitance measurement.
Weitere Vorteile und vorteilhafte Weiterbildungen des Gegenstandes nach der Erfindung ergeben sich aus der Beschreibung, der Zeichnung und den Patentansprüchen.Further advantages and advantageous developments of the object according to the invention result from the description, the drawing and the patent claims.
Zeichnungdrawing
Zwei Ausführungsbeispiele des Sensors nach der Erfindung sind in der Zeichnung schematisch vereinfacht dargestellt und werden in der nachfolgenden Beschreibung näher erläutert. Es zeigenTwo embodiments of the sensor according to the invention are shown schematically simplified in the drawing and are explained in more detail in the following description. Show it
Figur 1 eine schematische, perspektivische Darstellung eines Rußsensors,FIG. 1 shows a schematic, perspective illustration of a soot sensor,
Figur 2 ein Sensorelement des Rußsensors nach Figur 1,FIG. 2 shows a sensor element of the soot sensor according to FIG. 1,
Figur 3 eine schematische, perspektivische Ansicht einer alternativen Ausführungsform eines Sensors, undFIG. 3 shows a schematic, perspective view of an alternative embodiment of a sensor, and
Figur 4 ein Sensorelement des Sensors nach Figur 3.FIG. 4 shows a sensor element of the sensor according to FIG. 3.
Beschreibung der Ausführungsbeispiele In den Figuren 1 und 2 ist ein Sensor zur Detektion von Teilchen in einem Gasstrom dargestellt, der zum Einbau in einen Abgasstrang eines Kraftfahrzeuges dient und bevorzugt nach einem Rußfilter eines Kraftfahrzeuges mit einem Dieselverbrennungsmotor angeordnet ist.Description of the embodiments FIGS. 1 and 2 show a sensor for the detection of particles in a gas stream, which is used for installation in an exhaust line of a motor vehicle and is preferably arranged after a soot filter of a motor vehicle with a diesel internal combustion engine.
Der Sensor 1 umfaßt eine plattenartige Trägerschicht 2 aus einem hochisolierenden Werkstoff, beispielsweise aus einer Keramik wie Aluminiumoxid. In die Trägerschicht ist ein Heizelement 3 integriert, das über Kontaktierungen 4 und 5 mit einer geeigneten Spannungsquelle verbindbar ist und zum Freibrennen des Sensors 1 von gegebenenfalls abgelagerten Teilchen, wie Rußpartikeln, dient.The sensor 1 comprises a plate-like carrier layer 2 made of a highly insulating material, for example made of a ceramic such as aluminum oxide. A heating element 3 is integrated into the carrier layer, which can be connected to a suitable voltage source via contacts 4 and 5 and is used to burn off the sensor 1 from any deposited particles, such as soot particles.
Auf der Trägerschicht ist eine zweite plattenartige Schicht 6 aus Aluminiumoxid angeordnet, auf welcher eine Struktur aus zwei interdigitalen Kammelektroden 7 und 8 aufgedruckt ist, die über Kontaktierungen 9 und 10 mit einer Meß- und Steuereinheit verbindbar sind.A second plate-like layer 6 made of aluminum oxide is arranged on the carrier layer, on which a structure of two interdigital comb electrodes 7 and 8 is printed, which can be connected to a measuring and control unit via contacts 9 and 10.
Im Kammbereich sind die beiden Kammelektroden 7 und 8 teilweise von einem Dielektrikum 11 überdeckt, so daß die Kammelektroden 7 und 8 als Elektroden eines Kondensators mit meßbarer Kapazität dienen können. Das Dielektrikum 11 ist wiederum mit einer Schutzschicht 12 versehen, so daß es gegenüber dem umgebenden Medium abgetrennt ist, womit eine Degeneration des Dielektrikums 11 ausgeschlossen ist .In the comb area, the two comb electrodes 7 and 8 are partially covered by a dielectric 11, so that the comb electrodes 7 and 8 can serve as electrodes of a capacitor with a measurable capacitance. The dielectric 11 is in turn provided with a protective layer 12 so that it is separated from the surrounding medium, so that degeneration of the dielectric 11 is excluded.
Im Bereich der Kammelektroden 7 und 8 ist der Sensor 1 mit einer Fanghülse 13 versehen, die schachteiförmig ausgebildet ist, in einem oberhalb der Kammεlektroden 7 und 8 lie- genden Bereich mit einer Öffnung 14 versehen ist und zur Beruhigung eines in dem Abgasstrang strömenden Gasstroms dient, so daß sich Rußpartikel bzw. sonstige in dem Gasstrom enthaltene Teilchen bevorzugt im Bereich der Kammelektroden 7 und 8 ablagert. Die vorliegende Fanghülse 13 besteht aus mehreren keramischen Schichten und ist in den keramischen Werkstoff der zweiten Schicht 6 bzw. der Trägerschicht 2 integriert. Die beiden Schichten 2 und 6 ragen aus der Fanghülse heraus.In the area of the comb electrodes 7 and 8, the sensor 1 is provided with a collecting sleeve 13, which is designed in the shape of a box, in a position above the comb electrodes 7 and 8. area is provided with an opening 14 and serves to calm a gas stream flowing in the exhaust line, so that soot particles or other particles contained in the gas stream are preferably deposited in the area of the comb electrodes 7 and 8. The catch sleeve 13 in question consists of several ceramic layers and is integrated in the ceramic material of the second layer 6 or the carrier layer 2. The two layers 2 and 6 protrude from the catch sleeve.
In den Figuren 3 und 4 ist eine alternative Ausführungsfor eines Rußsensors 20 zum Einbau in einen Abgasstrang eines Kraftfahrzeuges dargestellt.FIGS. 3 and 4 show an alternative embodiment of a soot sensor 20 for installation in an exhaust system of a motor vehicle.
Entsprechend dem Ausführungsbeispiel nach den Figuren 1 und 2 umfaßt der Sensor 20 eine Trägerschicht 2 mit integriertem Heizelement 3 sowie eine zweite Schicht 6, auf der zwei interdigitale Kammelektroden 7 und 8 aufgedruckt sind, die über Kontaktierungen 9 und 10 mit einer Meß- und Steuereinheit verbindbar sind und zur Bestimmung einer Rußkonzentration in einem in dem Abgasstrang strömenden Abgas durch Widerstandsmessung dienen.According to the exemplary embodiment according to FIGS. 1 and 2, the sensor 20 comprises a carrier layer 2 with an integrated heating element 3 and a second layer 6, on which two interdigital comb electrodes 7 and 8 are printed, which can be connected to a measuring and control unit via contacts 9 and 10 are and used to determine a soot concentration in an exhaust gas flowing in the exhaust line by resistance measurement.
An dem der Kontaktierung 9 abgewandten Ende ist die Elektrode 8 mit einer ersten Elektrodenplatte 16 verbunden. Die Kammelektrode 7 ist an dem der Kontaktierung 10 abgewandten Ende mit einer zweiten Elektrodenplatte 17 verbunden. Die Elektrodenplatten 16 und 17 bilden einen Plattenkondensator, der mit einem zwischen den beiden Platten 16 und 17 angeordneten Dielektrikum 18 versehen ist. Die erste Elektrodenplatte 16 ist des weiteren mit einer Schutzschicht 19 versehen, so daß der aus den Platten 16 und 17 und dem Dielektrikum 18 bestehende Kondensator gegenüber der Umgebung geschützt ist. Die Elektrodenplatten lβ und 17, das Dielektrikum 18 und die Schutzschicht 19 liegen außerhalb des Bereiches der interdigitalen Kammstruktur der beiden Elektroden 7 und 8 und sind übereinan- derliegend auf der Schicht 6 angeordnet.At the end facing away from the contact 9, the electrode 8 is connected to a first electrode plate 16. The comb electrode 7 is connected to a second electrode plate 17 at the end facing away from the contact 10. The electrode plates 16 and 17 form a plate capacitor which is provided with a dielectric 18 arranged between the two plates 16 and 17. The first electrode plate 16 is further provided with a protective layer 19, so that the capacitor consisting of the plates 16 and 17 and the dielectric 18 is protected from the environment. The electrode plates 16 and 17, the dielectric 18 and the protective layer 19 lie outside the area of the interdigital comb structure of the two electrodes 7 and 8 and are arranged one above the other on the layer 6.
Der Sensor 20 ist mit einer Fanghülse 21 mit einer Eintrittsöffnung 22 versehen. Die Fanghülse 21 besteht aus Blech und ist auf die aus den Schichten 2 und 6 bestehende Struktur aufgeklemmt.The sensor 20 is provided with a catch sleeve 21 with an inlet opening 22. The catch sleeve 21 consists of sheet metal and is clamped onto the structure consisting of the layers 2 and 6.
Die Rußsensoren nach den Figuren 1 und 2 bzw. 3 und 4 arbeiten in nachfolgend beschriebener Weise.The soot sensors according to FIGS. 1 and 2 or 3 and 4 operate in the manner described below.
Wenn sich auf der zweiten Schicht 6 Ruß bzw. sonstige, elektrisch leitende Teilchen ablagern, so reduziert sich der elektrische Widerstand zwischen den beiden Kammelektroden 7 und 8. Durch Messung der Impedanz zwischen den beiden Elektroden 7 und 8 ergibt sich ein für ein sogenanntes RC- Glied typisches Verhalten. Dies bedeutet, daß die Ruß- bzw. Teilchenkonzentration in dem betreffenden Abgas anhand der zeitlichen Änderung des Widerstandsanteils des RC-Gliedes bestimmt werden kann.If soot or other electrically conductive particles are deposited on the second layer 6, the electrical resistance between the two comb electrodes 7 and 8 is reduced. Measuring the impedance between the two electrodes 7 and 8 results in a so-called RC Link typical behavior. This means that the soot or particle concentration in the exhaust gas in question can be determined on the basis of the change over time in the resistance component of the RC element.
Zur Regeneration des Sensors 1 bzw. 20 werden die angelagerten Teilchen nach gewisser Zeit mittels des in die Schicht 2 integrierten Heizelements 3 abgebrannt. Bei funktionstüchtigem Sensor 1 bzw. 20 sollte nach diesem söge- nannten Ausheizen der Widerstand zwischen den Elektroden 7 und 8 gegen Unendlich gehen.To regenerate the sensor 1 or 20, the deposited particles are burned off after a certain time by means of the heating element 3 integrated in the layer 2. If sensor 1 or 20 is in working order, called baking the resistance between electrodes 7 and 8 go to infinity.
Die Messung des Widerstands erfolgt bevorzugt bei niedrigen Frequenzen, beispielsweise bei einer Frequenz von 100 kHz. Es sollte nur noch die Kapazität der als Kondensator dienenden Elektroden 7 und 8 bei dem Sensor 1 bzw. des aus den Elektrodenplatten 16 und 17 bestehenden Kondensators bei dem Sensor 20 gemessen werden können. Diese Messung erfolgt bei hohen Frequenzen, beispielsweise bei einer Frequenz von 500 kHz. Die Kapazität des jeweiligen Kondensators liegt in dem Bereich zwischen 100 pF und 200 pF.The resistance is preferably measured at low frequencies, for example at a frequency of 100 kHz. It should only be possible to measure the capacitance of the electrodes 7 and 8 serving as a capacitor for the sensor 1 and of the capacitor consisting of the electrode plates 16 and 17 for the sensor 20. This measurement takes place at high frequencies, for example at a frequency of 500 kHz. The capacitance of the respective capacitor is in the range between 100 pF and 200 pF.
Wird nach dem Abbrennen der Teilchen in dem Kammbereich der interdigitalen Kammelektroden 7 und 8 keine oder eine deutlich geänderte Kapazität gemessen, so kann hieraus geschlossen werden, daß zumindest eine der beiden Kammelektroden 7 bzw. 8 zerstört ist. In diesem Falle wird an einer Meß- und Steuereinheit eine Fehlermeldung generiert.If no or a significantly changed capacitance is measured in the comb area of the interdigital comb electrodes 7 and 8 after the particles have burned off, it can be concluded that at least one of the two comb electrodes 7 and 8 has been destroyed. In this case, an error message is generated on a measuring and control unit.
Wird nach dem Ausheizen des Sensors ein für ein RC-Glied typisches Verhalten gemessen, so kann auf die Güte des Isolationswiderstandes zwischen den beiden Kammelektroden 7 und 8 geschlossen werden. Wenn der Isolationswiderstand zu gering ist, wird der Sensor als zu stark gealtert gewertet. Er muß ersetzt werden. Dieser Zustand wird von der Meß- und Steuereinheit detektiert.If a behavior typical of an RC element is measured after the sensor has been baked out, the quality of the insulation resistance between the two comb electrodes 7 and 8 can be concluded. If the insulation resistance is too low, the sensor is considered to have aged too much. It needs to be replaced. This condition is detected by the measuring and control unit.
Alternativ zum Austausch des Sensors kann auch die Ausheizzeit verlängert werden. Gegebenen alls kann sich der Isolationswiderstand durch Ablagerung leitfähiger Korrosionsprodukte verändern. Diese Größe kann als Korrekturgröße beim Betrieb des Sensors 1 bzw. 20 eingehen. Hierzu muß jedoch gewährleistet sein, daß die Elektroden 7 und 8 voll funktionsfähig sind. Diese Information wird durch Messung der Kapazität des jeweiligen Kondensators gewonnen. Dies kann nach dem oben bereits beschriebenen Verfahren erfolgen. As an alternative to replacing the sensor, the bakeout time can be extended. The insulation resistance can change due to the deposition of conductive corrosion products. This variable can be used as a correction variable when operating the sensor 1 or 20. For this, however, it must be ensured that the electrodes 7 and 8 are fully functional. This information is obtained by measuring the capacitance of the respective capacitor. This can be done using the method already described above.

Claims

Ansprüche Expectations
1. Sensor zur Detektion von Teilchen in einem Gasstrom, insbesondere von Rußpartikeln in einem Abgasstrom, mit mindestens zwei Meßelektroden (7, 8), die auf einem Substrat (6) aus einem isolierenden Werkstoff angeordnet sind, dadurch gekennzeichnet, daß die Meßelektroden1. Sensor for the detection of particles in a gas stream, in particular of soot particles in an exhaust gas stream, with at least two measuring electrodes (7, 8) which are arranged on a substrate (6) made of an insulating material, characterized in that the measuring electrodes
(7, 8) zumindest teilweise von einer Fanghülse (13; 21) überdeckt sind.(7, 8) are at least partially covered by a catch sleeve (13; 21).
2. Sensor nach Anspruch 1, dadurch gekennzeichnet, daß die Meßelektroden als interdigitale Kammelektroden (7, 8) ausgebildet sind.2. Sensor according to claim 1, characterized in that the measuring electrodes are designed as interdigital comb electrodes (7, 8).
3. Sensor nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Meßelektroden (7, 8) teilweise von einem Dielektrikum (11) überdeckt sind.3. Sensor according to claim 1 or 2, characterized in that the measuring electrodes (7, 8) are partially covered by a dielectric (11).
4. Sensor nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß an den Meßelektroden (7, 8) ein Plattenkondensator (16, 17) ausgebildet ist. 4. Sensor according to one of claims 1 to 3, characterized in that a plate capacitor (16, 17) is formed on the measuring electrodes (7, 8).
5. Sensor nach Anspruch 4, dadurch gekennzeichnet, daß der Plattenkondensator (16, 17) mit einem Dielektrikum (18) ausgebildet ist.5. Sensor according to claim 4, characterized in that the plate capacitor (16, 17) is formed with a dielectric (18).
6. Sensor nach einem der Ansprüche 1 bis 5, gekennzeichnet durch ein Heizelement (3) .6. Sensor according to one of claims 1 to 5, characterized by a heating element (3).
7. Sensor nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das Substrat (6) aus Aluminiumoxid gefertigt ist.7. Sensor according to one of claims 1 to 6, characterized in that the substrate (6) is made of aluminum oxide.
8. Sensor nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Fanghülse (21) auf das Substrat (6) aufgeklemmt ist.8. Sensor according to one of claims 1 to 7, characterized in that the catch sleeve (21) is clamped onto the substrate (6).
9. Sensor nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Fanghülse (13) aus dem Werkstoff des Substrats (6) gefertigt ist.9. Sensor according to one of claims 1 to 7, characterized in that the catch sleeve (13) is made of the material of the substrate (6).
10. Verfahren zur Funktionskontrolle eines Sensors (1; 20) zur Detektion von Teilchen, insbesondere von Ruß r welcher Sensor mindestens zwei Meßelektroden (6, 7) aufweist, dadurch gekennzeichnet, daß den Meßelektroden10. Method for checking the function of a sensor (1; 20) for the detection of particles, in particular soot r, which sensor has at least two measuring electrodes (6, 7), characterized in that the measuring electrodes
(6, 7) ein Kondensator zugeordnet ist und die Kapazität dieses Kondensators ermittelt wird.(6, 7) a capacitor is assigned and the capacitance of this capacitor is determined.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß bei Abweichung der Kapazität vom Sollwert eine Fehlermeldung generiert wird. 11. The method according to claim 10, characterized in that an error message is generated when the capacity deviates from the target value.
12. Verfahren nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß der Sensor (1; 20) ausgeheizt wird.12. The method according to claim 9 or 10, characterized in that the sensor (1; 20) is heated.
13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß nach dem Ausheizen des Sensors (1; 20) der Isolationswiderstand zwischen den Meßelektroden (6, 7) gemessen wird.13. The method according to claim 12, characterized in that after the heating of the sensor (1; 20), the insulation resistance between the measuring electrodes (6, 7) is measured.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß der nach dem Ausheizen des Sensors gemessene Isolationswiderstand als Korrekturgröße für den Betrieb des Sensors (1; 20) herangezogen wird. 14. The method according to claim 13, characterized in that the insulation resistance measured after heating the sensor is used as a correction variable for the operation of the sensor (1; 20).
EP02754270A 2001-07-10 2002-06-26 Sensor for detecting particles and method for controlling the function thereof Withdrawn EP1407255A2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10133384A DE10133384A1 (en) 2001-07-10 2001-07-10 Particle detection sensor and method for checking its function
DE10133384 2001-07-10
PCT/DE2002/002324 WO2003006976A2 (en) 2001-07-10 2002-06-26 Sensor for detecting particles and method for controlling the function thereof

Publications (1)

Publication Number Publication Date
EP1407255A2 true EP1407255A2 (en) 2004-04-14

Family

ID=7691210

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02754270A Withdrawn EP1407255A2 (en) 2001-07-10 2002-06-26 Sensor for detecting particles and method for controlling the function thereof

Country Status (3)

Country Link
EP (1) EP1407255A2 (en)
DE (1) DE10133384A1 (en)
WO (1) WO2003006976A2 (en)

Families Citing this family (133)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10247977A1 (en) * 2002-10-15 2004-04-29 Robert Bosch Gmbh Method and system for checking the functionality of a particle detector
DE10319664A1 (en) * 2003-05-02 2004-11-18 Robert Bosch Gmbh Particle detection sensor
DE10353860B4 (en) 2003-11-18 2023-03-30 Robert Bosch Gmbh Sensor for detecting particles in a gas stream and method for its manufacture
US20050142035A1 (en) * 2003-12-31 2005-06-30 Ulrich Bonne Micro-discharge sensor system
DE102004007038A1 (en) * 2004-02-12 2005-09-01 Daimlerchrysler Ag Method for monitoring the state of a carbon filter especially for a diesel engine has parts of electrodes near to or on the inner walls of the filter to monitor changes in resistance or impedance
DE102004007634A1 (en) * 2004-02-17 2005-09-08 Siemens Ag Method and device for monitoring the particle concentration in a gas stream
DE102004028997A1 (en) 2004-06-16 2006-01-05 Robert Bosch Gmbh Method for influencing the soot accumulation on sensors
DE102004029523A1 (en) * 2004-06-18 2006-01-12 Robert Bosch Gmbh Method, particle sensor and particle sensor system for measuring particles
DE102004029524B4 (en) * 2004-06-18 2007-12-06 Robert Bosch Gmbh Method and device for the defined regeneration of sooty surfaces
DE102004036388A1 (en) * 2004-07-27 2006-03-23 Robert Bosch Gmbh Method for operating an internal combustion engine, in which the loading of an exhaust gas flow with soot particles is detected
DE102004064268B3 (en) * 2004-09-28 2021-01-07 Robert Bosch Gmbh Sensor device for detecting particles present in the exhaust gas of an internal combustion engine and for detecting the exhaust gas temperature
DE102004046882B4 (en) 2004-09-28 2014-02-06 Robert Bosch Gmbh Method for operating an internal combustion engine, and associated computer program, electrical storage medium and control and / or regulating device for detecting a state variable in the exhaust gas of the internal combustion engine
DE112005003886B3 (en) * 2004-11-25 2019-12-24 Avl List Gmbh Method for determining the particle emissions in the exhaust gas flow of an internal combustion engine
DE102004059650B4 (en) * 2004-12-10 2006-09-28 Robert Bosch Gmbh Resistive particle sensors with measuring electrodes
DE102006002112B4 (en) 2005-01-21 2019-05-02 Robert Bosch Gmbh Method for determining the concentration of particles in gas mixtures
WO2006077198A1 (en) * 2005-01-21 2006-07-27 Robert Bosch Gmbh Measuring arrangement and method for determining the concentration of particles in gas mixtures
DE102005016395B4 (en) * 2005-04-18 2012-08-23 Andreas Hauser Rußimpedanzsensor
DE102005029219A1 (en) * 2005-06-22 2006-12-28 Heraeus Sensor Technology Gmbh Soot deposit measuring method, for use in motor vehicle exhaust area, involves determining separations of soot in inter digital condenser structure or heating conductor by change of electrical or thermal measured value of structure
DE102005063641B3 (en) 2005-06-22 2019-01-24 Heraeus Sensor Technology Gmbh soot sensor
DE102005040790A1 (en) 2005-08-29 2007-03-01 Robert Bosch Gmbh Integrated particle sensor operation, e.g. resistive particle sensor, for use in motor vehicle, involves determining exhaust gas flow rate in sensor, and considering cross sensitivity of sensor in comparison with different gas flows
DE102006006112B4 (en) * 2006-02-10 2024-01-11 Robert Bosch Gmbh Particle sensor
DE102006015385A1 (en) * 2006-04-03 2007-10-04 Robert Bosch Gmbh Sensor for detecting e.g. sooty particle in fluid, has blowing unit with blowing opening for directing local flow of fluid such that local flow of fluid for each electrode section is provided parallel to main extension direction
DE102006018956A1 (en) 2006-04-24 2007-10-25 Robert Bosch Gmbh Particle`s mass or mass flow determining method for internal-combustion engine, involves arranging sensor in exhaust tract of engine, and comparing measured signal change of sensor with predicted signal change of sensor
DE102006022383B4 (en) 2006-05-12 2022-03-31 Robert Bosch Gmbh Process for signal evaluation of a particle sensor
DE102006029990A1 (en) * 2006-06-29 2008-01-03 Robert Bosch Gmbh Particle filter diagnosis method for internal combustion engine of motor vehicle, involves determining particle filter-efficiency factor based on upstream-particle flow that arises upstream before particle filter and downstream after filter
DE102006032741B4 (en) * 2006-07-14 2023-02-02 Robert Bosch Gmbh Sensor element for a particle sensor
DE102006040351A1 (en) * 2006-08-29 2008-03-06 Robert Bosch Gmbh Sensor for the resistive determination of concentrations of conductive particles in gas mixtures
DE102006041478A1 (en) 2006-09-05 2008-03-06 Robert Bosch Gmbh Method for determining a soot concentration in the exhaust gas of an internal combustion engine
DE102006042361A1 (en) * 2006-09-08 2008-03-27 Robert Bosch Gmbh Sensor for detecting particles comprising a test device for checking the nature of an insulating layer
DE102006055520A1 (en) * 2006-11-24 2008-05-29 Robert Bosch Gmbh Device and method for checking the functionality or plausibility of a sensor based on an interdigital electrode system sensor and a sensor for detecting particles in a gas stream and its use
DE102007009873B4 (en) 2007-03-01 2021-05-20 Robert Bosch Gmbh Method for detecting the occurrence of cross-sensitivities in an exhaust gas sensor
DE102007009841A1 (en) 2007-03-01 2008-09-04 Robert Bosch Gmbh Method for determination of loading condition of particle filter for exhaust gas treatment system in internal combustion engines, involves correcting stimulation of characteristics values by signals for pressure difference
DE102007011048A1 (en) 2007-03-07 2008-09-11 Robert Bosch Gmbh Sensor e.g. soot particle sensor, function testing device, has evaluation device comparing and/or correlating measurement results of current measuring device with measurement result of ionization current measuring device
DE102007012701B4 (en) 2007-03-16 2016-05-19 Robert Bosch Gmbh Method for monitoring the function of an oxidation catalyst
DE102007014761B4 (en) 2007-03-28 2022-05-12 Robert Bosch Gmbh Method for operating a collecting particle sensor and device for carrying out the method
DE102007021910A1 (en) 2007-05-10 2008-11-20 Robert Bosch Gmbh Sensor for detecting particles in a gas stream
DE102007021912A1 (en) 2007-05-10 2008-11-13 Robert Bosch Gmbh Sensor and method for detecting particles in a gas stream
DE102007021913A1 (en) 2007-05-10 2008-11-20 Robert Bosch Gmbh Method and sensor for detecting particles in a gas stream and their use
DE102007022590A1 (en) 2007-05-14 2008-11-27 Robert Bosch Gmbh Method for operating a particle sensor arranged downstream of a particle filter and apparatus for carrying out the method
DE102007027182A1 (en) 2007-06-13 2008-12-18 Robert Bosch Gmbh Method for regenerating particle filter in exhaust system of internal combustion engine of vehicle, involves sending or receiving data in vehicle by using integrated communication unit of another vehicle
DE102007033215A1 (en) 2007-07-17 2009-01-22 Robert Bosch Gmbh Sensor, method and their use for detecting the size distribution of particles in a gas stream
DE102007033213A1 (en) * 2007-07-17 2009-01-22 Robert Bosch Gmbh Sensor element and sensor for the detection of conductive particles in a gas stream and method for their preparation and their use
DE102007038680A1 (en) 2007-08-15 2009-02-26 Heraeus Sensor Technology Gmbh Soot sensor with smooth, pure Al2O3 surface
DE102007039566A1 (en) 2007-08-22 2009-02-26 Robert Bosch Gmbh Sensor element for detecting particle in gas flow, has electrodes forming interdigital electrode system, where one electrode enlarge range of electrical field within range of electrode system
ES2376758T3 (en) 2007-08-30 2012-03-16 Robert Bosch Gmbh Exhaust gas sensor
DE102007046097B4 (en) * 2007-09-26 2020-03-26 Robert Bosch Gmbh Method for self-diagnosis of a sensor element for the detection of particles in a gas stream
DE102007046099A1 (en) * 2007-09-26 2009-04-02 Robert Bosch Gmbh Sensor element for detection of sooty particles emitted from vehicle, has supply lines comprising measuring electrode supply line insulation, which surrounds supply lines and is arranged over and/or adjacent and below supply lines
DE102007046096A1 (en) * 2007-09-26 2009-04-02 Robert Bosch Gmbh Method for the self-diagnosis of a particle sensor, suitable particle sensors for carrying out the method and their use
DE102007047078A1 (en) * 2007-10-01 2009-04-02 Robert Bosch Gmbh Sensor element for use in e.g. garage for emission investigation, has protective layers designed congruently to surfaces of electrodes of system, where upper surfaces of electrodes face surfaces of electrodes are arranged on isolation layer
DE102007060939A1 (en) 2007-12-18 2009-06-25 Robert Bosch Gmbh Particle i.e. soot particle, sensor operating method for e.g. determining soot particle content in diesel engine, involves applying different voltages and/or voltage forms to electrodes during collecting and measuring phases
DE102008004210A1 (en) 2008-01-14 2009-07-16 Robert Bosch Gmbh Particle sensor temperature measuring method for determining soot concentration in exhaust tract of diesel engine of vehicle, involves determining temperature-dependent impedance of carrier layer between sensor and heating element
JP5219710B2 (en) * 2008-09-25 2013-06-26 日本碍子株式会社 Particulate matter detection device and manufacturing method thereof
DE102009000027A1 (en) 2009-01-05 2010-07-08 Robert Bosch Gmbh Method for producing low electric conductivity region adjacent to electric conductive structure in e.g. gas sensor, involves partially transforming substance into set of substances, where one of substances is received by structure
DE102009000077B4 (en) 2009-01-08 2011-04-07 Robert Bosch Gmbh Particle sensor with reference measuring cell and method for the detection of conductive particles
DE102009000318A1 (en) * 2009-01-20 2010-07-22 Robert Bosch Gmbh particle sensor
JP5164896B2 (en) * 2009-03-12 2013-03-21 日本碍子株式会社 Particulate matter detector
JP2010210534A (en) * 2009-03-12 2010-09-24 Ngk Insulators Ltd Particulate matter detector
DE102009028239A1 (en) 2009-08-05 2011-02-10 Robert Bosch Gmbh Method and device for self-diagnosis of a particle sensor
DE102009028283B4 (en) 2009-08-06 2023-07-27 Robert Bosch Gmbh Method and device for self-diagnosis of a particle sensor
DE102009028319A1 (en) 2009-08-07 2011-02-10 Robert Bosch Gmbh Particle sensor operating method for function monitoring of diesel particle filters in diesel internal combustion engine of vehicle, involves executing regeneration phases after obtaining triggering threshold or expected threshold
DE102009046315A1 (en) 2009-11-03 2011-05-05 Robert Bosch Gmbh Method for operating particle sensor for on-board diagnostics of diesel internal combustion engine, involves directly heating soot particles with heating element, and determining change in conductivity of soot particles or sooth path
DE102009046418A1 (en) 2009-11-05 2011-05-12 Robert Bosch Gmbh Method for determining soot charge of diesel particulate filter in exhaust section of diesel engine of e.g. ship, involves temporally heating filter ceramic, and deriving soot charge from temperature increase during heating of ceramic
DE102009046457A1 (en) 2009-11-06 2011-05-12 Robert Bosch Gmbh particle sensor
DE102009058260A1 (en) * 2009-12-14 2011-06-16 Continental Automotive Gmbh soot sensor
US8736284B2 (en) * 2010-01-08 2014-05-27 Toyota Jidosha Kabushiki Kaisha Particulate matter detection device
DE102010001380A1 (en) 2010-01-29 2011-08-04 Robert Bosch GmbH, 70469 Method for determining exhaust gas temperature in exhaust gas passage of combustion engine, involves determining exhaust gas temperature under consideration of temporal change of measured temperature and exhaust gas mass flow
DE102010002691A1 (en) 2010-03-09 2011-09-15 Robert Bosch Gmbh Method and device for diagnosing a particulate filter
DE102010011637A1 (en) * 2010-03-16 2011-09-22 Continental Automotive Gmbh Flow guide device for e.g. resistive soot sensor, utilized in exhaust gas system of internal combustion engine of motor car, has flow guide structure arranged at outer side of tube, where partial gas flow is guided to aperture via structure
DE102010003198A1 (en) 2010-03-24 2011-09-29 Robert Bosch Gmbh Method for monitoring exhaust gas sensor in exhaust duct of internal combustion engine, particularly for monitoring resistive or capacitive particle sensor, involves determining modeled temperature of exhaust gas sensor
DE102010027975A1 (en) 2010-04-20 2011-10-20 Robert Bosch Gmbh Method and device for self-diagnosis of an exhaust gas probe
DE102010029066A1 (en) 2010-05-18 2011-11-24 Robert Bosch Gmbh Method for monitoring resistive particle sensor on shunt circuit of internal combustion engine, involves stopping time modification at shunt circuit when time modification of measurement signal falls below or above preset tolerance range
DE102010030634A1 (en) 2010-06-29 2011-12-29 Robert Bosch Gmbh Method and device for operating a particle sensor
DE102010038613A1 (en) 2010-07-29 2012-02-02 Robert Bosch Gmbh Method for regenerating sensor utilized for detecting particles in exhaust line of e.g. diesel engine, of motor car, involves heating electrodes during time period to temperature, and maintaining temperature for another time period
DE102011002502B4 (en) 2010-08-02 2023-06-07 Robert Bosch Gmbh Method for diagnosing an exhaust gas sensor and device for carrying out the method
JP5408070B2 (en) * 2010-08-06 2014-02-05 株式会社デンソー Sensor control device
JP5348089B2 (en) 2010-08-06 2013-11-20 株式会社デンソー Sensor control device
JP5531849B2 (en) * 2010-08-06 2014-06-25 株式会社デンソー Sensor control device
JP5542006B2 (en) * 2010-08-26 2014-07-09 日本碍子株式会社 Particulate matter detector
JP2012058015A (en) * 2010-09-07 2012-03-22 Ngk Insulators Ltd Particulate substance detector
DE112010005859B4 (en) 2010-09-08 2018-08-02 Toyota Jidosha Kabushiki Kaisha PM detection device
DE102011002434A1 (en) 2011-01-04 2012-07-05 Robert Bosch Gmbh Method for evaluating filtering effect of particulate filter in exhaust gas passage of diesel engine in motor car, involves evaluating filtering effect of particulate filter from soot mass, soot concentration or filtering efficiency
JP5240679B2 (en) 2011-01-20 2013-07-17 株式会社デンソー Detection device
WO2012104994A1 (en) * 2011-02-01 2012-08-09 トヨタ自動車株式会社 Control device for internal combustion engine
DE102011004119A1 (en) 2011-02-15 2012-08-16 Robert Bosch Gmbh Method for checking plausibility of output signal of exhaust sensor arranged in exhaust passage of internal combustion engine, involves determining operating parameters of internal combustion engine by control unit
DE102011004540A1 (en) 2011-02-22 2012-08-23 Robert Bosch Gmbh Sensor for detecting substances
DE102011006921A1 (en) * 2011-04-07 2012-10-11 Robert Bosch Gmbh Method for monitoring a catalyst
DE102011006923A1 (en) 2011-04-07 2012-10-11 Robert Bosch Gmbh Device for diagnosing function of collecting particle sensor to determine particle contents in exhaust gas of diesel engine, has particle sensor soot coated with functional layer for converting long chain hydrocarbons
DE102011086148A1 (en) 2011-11-11 2013-05-16 Robert Bosch Gmbh Method for operating resistive sensor in exhaust duct of internal combustion engine e.g. petrol engine, involves determining dew point end in exhaust duct from measured change in conductivity of resistive sensor
DE102012201594A1 (en) 2012-02-03 2013-08-08 Robert Bosch Gmbh Method for signal conditioning for a collecting particle sensor
DE102012210525A1 (en) 2012-06-21 2013-12-24 Robert Bosch Gmbh Method for functional control of a sensor for detecting particles and sensor for detecting particles
DE102012212588A1 (en) 2012-07-18 2014-01-23 Robert Bosch Gmbh Method for diagnosing operability of exhaust gas sensor, involves comparing integral of heating power/temperature characteristic value with preset limit if integral of exhaust gas flow characteristic value is more than preset limit
DE102012214974A1 (en) 2012-08-23 2014-02-27 Robert Bosch Gmbh Method for operating collecting particle sensor for determining soot particle content in diesel engine's exhaust gas, involves executing partial regeneration additional to regeneration by temperature that is reduced compared to regeneration
CN103076500B (en) * 2012-12-31 2015-02-18 中国电子科技集团公司第四十九研究所 Conductivity sensor in cofiring structure and manufacturing method thereof
DE102013202980A1 (en) 2013-02-22 2014-08-28 Robert Bosch Gmbh Method and device for regeneration of a particle sensor
DE102013209872A1 (en) 2013-05-28 2014-12-04 Robert Bosch Gmbh Method and device for operating a particle sensor
DE102013216899A1 (en) 2013-08-26 2015-02-26 Robert Bosch Gmbh Method and apparatus for operating a collecting particulate sensor
DE102013222022A1 (en) 2013-10-30 2015-04-30 Robert Bosch Gmbh Method and device for detecting a water passage by means of distance sensors
DE102013223429A1 (en) 2013-11-18 2015-05-21 Robert Bosch Gmbh Method and device for detecting a water passage by means of exhaust gas sensors
DE102013223630A1 (en) 2013-11-20 2015-05-21 Robert Bosch Gmbh Method and device for operating a particle sensor
DE102013226175A1 (en) 2013-12-17 2015-07-02 Robert Bosch Gmbh Method and device for operating exhaust gas sensors
DE102014200167A1 (en) 2014-01-09 2015-07-09 Robert Bosch Gmbh Method and device for detecting a water passage
DE102014220398A1 (en) * 2014-10-08 2016-04-14 Robert Bosch Gmbh Method for checking the function of a sensor for the detection of particles
DE102014226332A1 (en) 2014-12-17 2016-06-23 Robert Bosch Gmbh Device for detecting particles in an exhaust gas of an internal combustion engine
US9803524B2 (en) 2015-02-03 2017-10-31 Ford Global Technologies, Llc Methods and systems for increasing particulate matter deposition in an exhaust particulate matter sensor
DE102015214398A1 (en) 2015-07-29 2017-02-02 Robert Bosch Gmbh Method for operating a sensor for detecting particles in an exhaust line of an internal combustion engine
DE102015220395A1 (en) * 2015-10-20 2017-04-20 Bayerische Motoren Werke Aktiengesellschaft soot sensor
KR101776734B1 (en) * 2016-04-18 2017-09-08 현대자동차 주식회사 Particulate matter sensor unit
DE102016217775A1 (en) 2016-09-16 2018-03-22 Robert Bosch Gmbh Sensor element for detecting particles of a measuring gas in a measuring gas chamber
DE102016220832A1 (en) 2016-10-24 2018-04-26 Robert Bosch Gmbh Sensor element for detecting particles of a measuring gas in a measuring gas chamber
DE102016220835A1 (en) 2016-10-24 2018-04-26 Robert Bosch Gmbh Sensor element for detecting particles of a measuring gas in a measuring gas chamber
DE102016221370A1 (en) 2016-10-28 2018-05-03 Robert Bosch Gmbh Method for producing a sensor element for detecting particles in a fluid medium
DE102016223069A1 (en) 2016-11-23 2018-05-24 Robert Bosch Gmbh Method for operating a sensor element for detecting particles of a measuring gas in a measuring gas space
DE102016225420A1 (en) 2016-12-19 2018-06-21 Robert Bosch Gmbh Sensor for detecting at least one property of a sample gas
DE102016225868A1 (en) 2016-12-21 2018-06-21 Robert Bosch Gmbh Sensor element for detecting particles of a measuring gas in a measuring gas chamber
DE102017205064A1 (en) 2016-12-28 2018-06-28 Robert Bosch Gmbh Sensor element for detecting at least one property of a sample gas in a sample gas space
DE102016226275A1 (en) 2016-12-28 2018-06-28 Robert Bosch Gmbh Sensor element for detecting particles of a measuring gas in a measuring gas chamber
DE102017208552A1 (en) 2017-05-19 2018-11-22 Robert Bosch Gmbh Resistive particle sensor
DE102017208611A1 (en) 2017-05-22 2018-11-22 Robert Bosch Gmbh Exhaust gas sensor for detecting particles in an exhaust gas and method for producing an exhaust gas sensor
DE102017209392A1 (en) 2017-06-02 2018-12-06 Robert Bosch Gmbh Sensor element for detecting particles of a measuring gas in a measuring gas chamber
DE102017210625A1 (en) 2017-06-23 2018-12-27 Robert Bosch Gmbh Resistive particle sensor
DE102017212787A1 (en) 2017-07-25 2019-01-31 Robert Bosch Gmbh Sensor element for detecting particles in a particle-laden sample gas and method for its operation
DE102017212786A1 (en) 2017-07-25 2019-01-31 Robert Bosch Gmbh Sensor arrangement for detecting particles of a measuring gas in a measuring gas chamber and method for producing a sensor arrangement
DE102018212863A1 (en) 2017-09-26 2019-03-28 Robert Bosch Gmbh Sensor arrangement for detecting particles of a measuring gas in a measuring gas space and method for detecting particles of a measuring gas in a measuring gas space
CN107907746B (en) * 2017-10-25 2020-03-20 营口康辉石化有限公司 Method for testing polymer melt resistivity
DE102017219429A1 (en) 2017-10-30 2019-05-02 Robert Bosch Gmbh Sensor element for detecting particles of a measuring gas in a measuring gas chamber
DE102018207793A1 (en) 2017-12-19 2019-06-19 Robert Bosch Gmbh Method for detecting particles of a measuring gas in a measuring gas space and sensor arrangement for detecting particles of a measuring gas in a measuring gas space
DE102018207789A1 (en) 2017-12-19 2019-06-19 Robert Bosch Gmbh Sensor arrangement for detecting particles of a measuring gas in a measuring gas space and method for detecting particles of a measuring gas in a measuring gas space
DE102018207784A1 (en) 2017-12-19 2019-06-19 Robert Bosch Gmbh Sensor arrangement for detecting particles of a measuring gas in a measuring gas space and method for detecting particles of a measuring gas in a measuring gas space
DE102018209907A1 (en) 2018-06-19 2019-12-19 Robert Bosch Gmbh Resistive particle sensor
DE102018219625A1 (en) 2018-11-16 2020-05-20 Robert Bosch Gmbh Method for evaluating the functionality of a sensor for the detection of soot
EP3705871A1 (en) 2019-03-08 2020-09-09 Heraeus Nexensos GmbH Sensor or sensor element, sensor system, method for their preparation and their use
DE102019211483A1 (en) 2019-08-01 2021-02-04 Robert Bosch Gmbh Sensor element for detecting particles of a measurement gas in a measurement gas space
DE102020215456A1 (en) 2020-12-08 2022-06-09 Robert Bosch Gesellschaft mit beschränkter Haftung Method for checking the function of a sensor for detecting soot particles in an exhaust gas

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4171486A (en) * 1977-08-31 1979-10-16 Emhart Industries, Inc. Ionization smoke detector with controlled sensitivity
DE2836002C2 (en) * 1978-08-17 1986-09-11 Robert Bosch Gmbh, 7000 Stuttgart Sensor for monitoring the absence of soot in exhaust gases
DE3304548A1 (en) * 1983-02-10 1984-08-16 Robert Bosch Gmbh, 7000 Stuttgart METHOD AND DEVICE FOR MEASURING THE CONTENT OF CONDUCTIVE PARTICLES IN GASES
JPS60123757A (en) * 1983-12-07 1985-07-02 Ngk Spark Plug Co Ltd Smoke sensor
JPS61186846A (en) * 1985-02-14 1986-08-20 Nec Corp Conductive dust sensor
DE4401570A1 (en) * 1994-01-20 1995-07-27 Rwe Energie Ag Device for the measurement of state variables in gases with at least one semiconductor gas sensor
DE19808663C2 (en) * 1998-03-02 2001-05-23 Epcos Ag Fire detection system and operating procedures for this system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03006976A3 *

Also Published As

Publication number Publication date
DE10133384A1 (en) 2003-01-30
WO2003006976A2 (en) 2003-01-23
WO2003006976A3 (en) 2003-08-07

Similar Documents

Publication Publication Date Title
EP1407255A2 (en) Sensor for detecting particles and method for controlling the function thereof
EP1623217B1 (en) Sensor for detecting particles
DE102004059650B4 (en) Resistive particle sensors with measuring electrodes
EP2145177B1 (en) Sensor and method for detecting particles in a gas flow
DE102006055520A1 (en) Device and method for checking the functionality or plausibility of a sensor based on an interdigital electrode system sensor and a sensor for detecting particles in a gas stream and its use
EP1792170A1 (en) Sensor element for particle sensors and method for operating the sensor element
EP1844316A1 (en) Sensor element for particle sensors and method for operating the same
DE102007046096A1 (en) Method for the self-diagnosis of a particle sensor, suitable particle sensors for carrying out the method and their use
DE102008031648A1 (en) Method and device for operating a particle sensor
DE102009028283A1 (en) Method for on-board-diagnosis of particulate sensor for determining particulate content in gas stream in exhaust channel of diesel engine to e.g. monitor soot emission of engine, involves evaluating changes in output signal of sensor
EP2171437B1 (en) Sensor unit for the detection of conductive particles in a flow of gas and methods for the production and use thereof
DE102012217428A1 (en) Sensor for the detection of particles
EP3204750B1 (en) Method for controlling the function of a sensor for detecting particles, computer program, elektronic storage medium and electronic control device
DE102011013544B4 (en) Method and device for operating a particle sensor
DE102007046099A1 (en) Sensor element for detection of sooty particles emitted from vehicle, has supply lines comprising measuring electrode supply line insulation, which surrounds supply lines and is arranged over and/or adjacent and below supply lines
DE102008004210A1 (en) Particle sensor temperature measuring method for determining soot concentration in exhaust tract of diesel engine of vehicle, involves determining temperature-dependent impedance of carrier layer between sensor and heating element
WO2008028715A1 (en) Sensor for detecting particles, comprising a test device for checking the nature of an insulating layer
DE10209755B4 (en) Method and arrangement for monitoring the operation of a particulate filter arranged in the exhaust gas of a diesel internal combustion engine
DE102007039566A1 (en) Sensor element for detecting particle in gas flow, has electrodes forming interdigital electrode system, where one electrode enlarge range of electrical field within range of electrode system
DE102013216899A1 (en) Method and apparatus for operating a collecting particulate sensor
DE102013216227A1 (en) Capacitive self-diagnosis of the electrode system of a particle sensor
DE102020212231A1 (en) Method for monitoring a sensor arranged in an exhaust gas area of an internal combustion engine
DE102013206092A1 (en) Method for evaluating the measured values of a soot sensor
DE102017207781A1 (en) Sensor element for detecting particles of a measuring gas in a measuring gas chamber
WO2019120790A1 (en) Sensor assembly for detecting particles of a measurement gas in a measurement gas chamber, and method for detecting particles of a measurement gas in a measurement gas chamber

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040210

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20070723

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100105