EP1407133B1 - Kraftstoffeinspritzventil für brennkraftmaschinen - Google Patents

Kraftstoffeinspritzventil für brennkraftmaschinen Download PDF

Info

Publication number
EP1407133B1
EP1407133B1 EP02754314A EP02754314A EP1407133B1 EP 1407133 B1 EP1407133 B1 EP 1407133B1 EP 02754314 A EP02754314 A EP 02754314A EP 02754314 A EP02754314 A EP 02754314A EP 1407133 B1 EP1407133 B1 EP 1407133B1
Authority
EP
European Patent Office
Prior art keywords
fuel injection
recess
injection valve
chamber
flank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02754314A
Other languages
English (en)
French (fr)
Other versions
EP1407133A1 (de
Inventor
Michael Lindner
Juergen Bauer
Martin Zimmer
Claus Westphal
Alexander Redlich
Ruediger Bohnsack
Peter Rehbein
Juergen Hackenberg
Georg Ketteler
Marcus Rinke
Jochen Straehle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1407133A1 publication Critical patent/EP1407133A1/de
Application granted granted Critical
Publication of EP1407133B1 publication Critical patent/EP1407133B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/168Assembling; Disassembling; Manufacturing; Adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • F02M61/12Other injectors with elongated valve bodies, i.e. of needle-valve type characterised by the provision of guiding or centring means for valve bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/02Fuel-injection apparatus having means for reducing wear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/16Sealing of fuel injection apparatus not otherwise provided for

Definitions

  • the invention relates to a fuel injection valve for internal combustion engines according to the preamble of claim 1.
  • a fuel injection valve is for example from the Scriptures DE 198 20 264 A1 known.
  • the fuel injection valve has a housing in which a valve needle is arranged to be longitudinally displaceable in a bore.
  • the valve needle is guided in a guide portion of the bore sealingly in this.
  • a first fuel-filled space adjoins this and at the other end of the guide portion a second fuel-filled space. Due to the sealing guide, only highly throttled fuel can flow from one fuel-filled space into the other through the annular gap formed between the piston-shaped component and the wall of the bore, the fuel forming a lubricating film in the annular gap.
  • the valve needle in the bore moves in the longitudinal direction. This can lead to wear between the valve needle and the wall of the bore.
  • various measures such as structures and coatings of the valve needle, are known.
  • A1 groove-like grooves are shown on the guide portion of the valve needle, which are formed there in various depths and widths and in various arrangements.
  • the first and the second fuel-filled space the fuel injection valve in its function and the pressures occurring therein are unequal and that the valve needle moves, for example, in the two longitudinal directions each with different speeds.
  • the lubricating film between the guide portion of the valve needle and der.Wand the bore is not always optimally formed.
  • a fuel injection pump in which a pump piston is driven by a camshaft and thereby compressing fuel in a pressure chamber.
  • the camshaft is mounted in lubricating oil, which also lubricates the pump piston.
  • grooves are provided on the pump piston to prevent the oil from rising on the pump piston into the pressure chamber.
  • the fuel injection valve for internal combustion engines has the advantage that between the guide portion of the valve needle and the wall of the bore always an optimum fuel lubricating film is formed, which minimizes the friction of the valve needle in the bore.
  • at least approximately in the tangential direction runs at the guide portion of the valve needle at least one recess which extends at least over part of the component circumference.
  • the recess has an asymmetrical cross-section, so that the different conditions, as they prevail in the one or the other longitudinal direction in the movement of the valve needle, is taken into account.
  • the recess has a V-shaped cross-section viewed in the longitudinal direction of the valve needle, wherein one flank of the cross-section is shorter than the other flank.
  • the valve needle can be achieved an optimization of the lubricating properties in the annular gap between the valve needle and the wall of the bore.
  • a plurality of recesses are formed on the valve needle, each having a V-shaped cross section, wherein the shorter edge of a recess to the other alternately facing the first and the second space.
  • the transition from the surface of the guide portion of the valve needle to the shorter edge of the recess is sharp-edged, while the transition of the surface of the valve needle to the longer edge of the V-shaped recess is rounded. This refinement of the transitions makes it possible to achieve further optimization of the lubricating properties.
  • flanks of the V-shaped recess have a length of 0.03 mm to 1 mm. This microstructuring allows the lubrication properties to be adapted to high-precision valve needle guides such as those used in fuel injectors used in auto-ignition internal combustion engines.
  • FIG. 1 an inventive fuel injection valve is shown having a housing 1.
  • the housing 1 comprises a valve body 2 and a valve holding body 4, which abut each other and are pressed against each other by a device not shown in the drawing.
  • a bore 3 is formed, which is closed at its combustion chamber end by a substantially conical valve seat 9.
  • at least one injection opening 11 is formed, which connects the bore 3 with the combustion chamber of the internal combustion engine.
  • a valve needle 5 is arranged, which valve needle 5 has a longitudinal axis 6 and in a guide portion 103 of the bore 3 with a guide portion 105 is guided sealing.
  • the valve needle 5 tapers the valve seat 9 to form a pressure shoulder 13 and merges at its combustion chamber end into a substantially conical valve sealing surface 7, which interacts with the valve seat 9.
  • the interaction takes place here in such a way that upon contact of the valve sealing surface 7 on the valve seat 9, the injection port 11 is closed against the bore 3, while lifted from the valve seat 9 valve sealing surface 7, the injection port 11 is released.
  • a first fuel-filled space 19 is arranged at the level of the pressure shoulder 13, which is designed as a pressure chamber in the valve body 2 and continues as a valve needle 5 surrounding the annular channel to the valve seat 9.
  • the pressure chamber 19 can be filled with fuel at high pressure via a feed channel 25 extending in the valve body 2 and in the valve holding body 4.
  • the bore 3 is adjacent to a second fuel-filled space 15 formed in the valve holding body 4, which space is designed as a leakage oil space in this exemplary embodiment.
  • the leakage oil chamber 15 is in this case permanently connected to a leakage oil system, which is not shown in the drawing and which ensures that the leakage oil chamber 15 is always depressurized. At least temporarily, therefore, there is a large pressure difference between the first chamber formed as a pressure chamber 19 and formed as a leakage oil chamber second space 15. Between the valve needle 5 and the wall of the bore 3 remains an annular gap 17 through which a certain, strongly throttled fuel flow from the pressure chamber 19th takes place in the leakage oil chamber 15.
  • FIG. 2 shows an enlargement of the section designated II, wherein in FIG. 2 Both the valve body 2 and the valve needle 5 and its guide portion 105 are shown in section.
  • the recess 30 has a V-shaped cross section, which is formed by a first flank 38 and a second flank 40.
  • the first flank 38 is in this case shorter than the second flank 40, so that the first flank 38 with the longitudinal axis 6 of the valve needle 5 includes a larger angle than the second flank 40.
  • the first flank 38 and the second flank 40 meet in a crest line 34, at which the recess 30 has the greatest depth t.
  • the apex line 34 may hereby be sharp-edged or rounded.
  • the first flank 38 has an extension a and the second flank 40 an extension b, wherein the recesses 30 have a distance d from each other.
  • the ratio of a to b can be varied in large ranges to adapt the lubricating properties of the recesses 30 to the surfaces of the bore wall 3 and the valve needle 5 or the size of the annular gap 17.
  • a first Transition edge 32 is formed, as well as at the transition of the guide portion 105 to the second flank 40, a second transition edge 36.
  • the pressure chamber 19 facing first transition edge 32 is formed as a sharp-edged transition, which is not rounded.
  • the second transition edge 36 is rounded. This makes it possible, as can be demonstrated both in the simulation and in the experiment, to optimize the lubricating properties of the recess 30.
  • FIG. 3 a further embodiment of the recesses 30 according to the invention is shown.
  • the recesses 30 correspond in their dimensions and in the formation of the first flank 38 and the second flank 40 to the recesses in FIG. 2
  • the adjacent recesses 30 have a different orientation. That is, in the one recess 30, the first short edge 38 faces the pressure chamber 19 and faces away from the pressure chamber 19 in the adjacent recess 30.
  • Such an alternating arrangement of the recesses 30 is particularly advantageous when the pressure difference from the first space 19 to the second space 15 is not very large.
  • the first transition edge 32 is formed here sharp-edged, while the second transition edge 36 is rounded.
  • the dimensions a and b of the first flank 38 and the second flank 40 can be varied within wide limits. It can also be provided to set the axial extent a of the first flank 38 equal to 0, so that the first flank 38 is arranged in a radial plane of the longitudinal axis 6 of the valve needle 5. It can also be provided that the flanks 38 and 40 are not straight, but assume a convex or concave curvature, which may be advantageous in certain circumstances.
  • the dimensions of the recesses 30 are as follows: The axial extent of the flanks 38 and 40 in the direction of the longitudinal axis 6 of the valve needle 5 is 0.03 to 1 mm, preferably 0.02 to 0.1 mm. The depth t of the recesses 30 is less than 0.1 mm, preferably 0.001 to 0.04 mm. The distance d of the recesses 40 from each other is 0.05 to 1 mm.
  • the recesses 30 are not formed as annular grooves that cover the entire circumference of the piston-shaped component, which is designed here as a valve needle 5, surrounded, but only a portion of the circumference. Furthermore, it can be provided that the depth t of the recesses 30 varies with the circumference.
  • FIG. 4 represented where a cross section through the valve needle 5 along the line IV-IV of FIG. 1 is shown.
  • the recess 30 has here at one point a depth of 0, wherein the depth of the recess 30 increases over the circumference until it assumes a maximum value on the opposite side of the valve needle 5. Another example is in FIG.
  • FIG. 5 represented where the recess 30 in cross section has a crescent-shaped contour, so that the depth t in this case also ranges from 0 to a maximum value.
  • FIG. 6 shows a further embodiment of the recess 30, wherein the recess 30 extends here only over about 1/4 of the circumference. However, it has a constant depth t. If a plurality of recesses 30 are provided on the valve needle 5 and cover them in each case only part of the circumference of the guide section 105 of the valve needle 5, then these recesses 30 can be distributed over the circumference of the guide section 105.
  • FIG. 7 shows the cross section of the guide portion 105 of the valve needle 5 at a designed as an annular groove recess 30 which has the same depth t over the entire circumference.
  • the described forms of the recesses 30 may be formed both on the piston-shaped component 5 or its guide portion 105 or on the inner wall of the bore 3. It can also be provided to form such structuring of the recesses on both surfaces, that is to say both on the inside of the bore 3 and on the guide surface 105 of the piston-shaped component 5. It may likewise be provided that the recesses 30 designed as grooves do not exactly fit in tangential direction of the piston-shaped component 5, but in a more or less large angle to the longitudinal axis of the piston-shaped component 5, for example 5 ° to 10 °.
  • recesses 30 In addition to the formation of recesses 30 according to the invention on valve needles of fuel injection valves, it can also be provided to form such recesses on other piston-shaped components which are guided in a bore and in which the friction in the bore is to be reduced. In particular, it is advantageous to form such recesses when the first and the second spaces filled with fuel or another liquid have a significantly different pressure from each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

    Stand der Technik
  • Die Erfindung geht von einem Kraftstoffeinspritzventil für Brennkraftmaschinen nach der Gattung des Patentanspruchs 1 aus. Eine solche Kraftstoffeinspritzventil ist beispielsweise aus der Schrift DE 198 20 264 A1 bekannt. Das Kraftstoffeinspritzventil weist ein Gehäuse auf, in dem in einer Bohrung eine Ventilnadel längsverschiebbar angeordnet ist. Die Ventilnadel wird in einem Führungsabschnitt der Bohrung dichtend in dieser geführt. An einem Ende des Führungsabschnitts schließt sich an diesen ein erster kraftstoffgefüllter Raum an und an das andere Ende des Führungsabschnitts ein zweiter kraftstoffgefüllter Raum. Aufgrund der dichtenden Führung kann nur stark gedrosselt Kraftstoff durch den zwischen dem kolbenförmigen Bauteil und der Wand der Bohrung ausgebildeten Ringspalt von einem kraftstoffgefüllten Raum in den anderen fließen, wobei der Kraftstoff im Ringspalt einen Schmierfilm bildet.
  • In dem Kraftstoffeinspritzventil für Brennkraftmaschinen bewegt sich die Ventilnadel in der Bohrung in Längsrichtung. Hierdurch kann es zu einem Verschleiß zwischen der Ventilnadel und der Wand der Bohrung kommen. Um den Verschleiß zu minimieren, insbesondere dann, wenn zwischen dem ersten und dem zweiten kraftstoffgefüllten Raum eine Druckdifferenz herrscht, sind verschiedene Maßnahmen, wie beispielsweise Strukturierungen und Beschichtungen der Ventilnadel, bekannt. In der DE 198 20 264 A1 sind rillenartige Nuten am Führungsabschnitt der Ventilnadel gezeigt, die dort in verschiedenen Tiefen und Breiten und in verschiedenen Anordnungen ausgebildet sind. Hierbei wird jedoch nicht berücksichtigt, dass der erste und der zweite kraftstoffgefüllte Raum des Kraftstoffeinspritzventils in seiner Funktion und den darin auftretenden Drücken ungleich sind und dass sich die Ventilnadel beispielsweise in die beiden Längsrichtungen jeweils mit unterschiedlicher Geschwindigkeit bewegt. Hierdurch ist der Schmierfilm zwischen dem Führungsabschnitt der Ventilnadel und der.Wand der Bohrung nicht immer optimal ausgebildet.
  • Aus der EP 0 534 771 A1 ist eine Kraftstoffeinspritzpumpe bekannt, bei der ein Pumpkolben von einer Nockenwelle angetrieben wird und dabei Kraftstoff in einem Druckraum komprimiert. Die Nockenwelle ist in Schmieröl gelagert, welches auch den Pumpkolben schmiert. Um zu verhindern, dass sich das Schmieröl mit dem Kraftstoff mischt, sind am Pumpkolben Nuten vorgesehen, die das Aufsteigen des Schmieröls am Pumpkolben in den Druckraum verhindern sollen.
  • Vorteile der Erfindung
  • Das erfindungsgemäße Kraftstoffeinspritzventil für Brennkraftmaschinen weist demgegenüber den Vorteil auf, dass zwischen dem Führungsabschnitt der Ventilnadel und der Wand der Bohrung stets ein optimaler Kraftstoffschmierfilm gebildet wird, der die Reibung der Ventilnadel in der Bohrung minimiert. Zu diesem Zweck verläuft am Führungsabschnitt der Ventilnadel zumindest näherungsweise in tangentialer Richtung zumindest eine Ausnehmung, die sich zumindest über einen Teil des Bauteilumfangs erstreckt. In Längsrichtung der Ventilnadel weist die Ausnehmung einen asymmetrischen Querschnitt auf, so dass den unterschiedlichen Bedingungen, wie sie bei der Bewegung der Ventilnadel in die eine beziehungsweise die andere Längsrichtung herrschen, Rechnung getragen wird.
  • In einer vorteilhaften Ausgestaltung des Gegenstandes der Erfindung weist die Ausnehmung einen in Längsrichtung der Ventilnadel gesehen V-förmigen Querschnitt auf, wobei eine Flanke des Querschnittes kürzer ist als die andere Flanke. Je nach Orientierung der Flanken bezüglich der Längsrichtung der Ventilnadel kann eine Optimierung der Schmiereigenschaften im Ringspalt zwischen der Ventilnadel und der Wand der Bohrung erreicht werden.
  • In einer weiteren vorteilhaften Ausgestaltung sind an der Ventilnadel mehrere Ausnehmungen ausgebildet, die jeweils einen V-förmigen Querschnitt aufweisen, wobei die kürzere Flanke von einer Ausnehmung zur anderen abwechselnd dem ersten und dem zweiten Raum zugewandt sind. Diese Anordnung hat sich bei bestimmten Konfigurationen bezüglich des Drucks und des Betriebs in der Brennkraftmaschine als vorteilhaft erwiesen.
  • In einer weiteren vorteilhaften Ausgestaltung ist der Übergang von der Oberfläche des Führungsabschnitts der Ventilnadel zur kürzeren Flanke der Ausnehmung scharfkantig ausgebildet, während der Übergang der Oberfläche der Ventilnadel zur längeren Flanke der V-förmigen Ausnehmung gerundet ist. Durch diese Ausgestaltung der Übergänge lässt sich eine weitere Optimierung der Schmiereigenschaften erreichen.
  • In einer vorteilhaften Ausgestaltung weisen die Flanken der V-förmigen Ausnehmung einen Länge von 0,03 mm bis 1 mm auf. Diese Mikrostrukturierung erlaubt eine Anpassung der Schmiereigenschaften an hochpräzise Führungen der Ventilnadel, wie sie beispielsweise in Kraftstoffeinspritzventilen verwendet werden, die für selbstzündende Brennkraftmaschinen Verwendung finden.
  • Weitere Vorteile und vorteilhafte Ausgestaltungen des Gegenstandes der Erfindung sind in den Ansprüchen, der Beschreibung und der Zeichnung entnehmbar.
  • Zeichnung
  • In der Zeichnung ist ein Ausführungsbeispiel des erfindungsgemäßen Kraftstoffeinspritzventils dargestellt. Es zeigt
    • Figur 1 ein Kraftstoffeinspritzventil für Brennkraftmaschinen im Längsschnitt,
    • Figur 2 eine Vergrößerung von Figur 1 im mit II bezeichneten Ausschnitt,
    • Figur 3 denselben Ausschnitt wie Figur 2 eines weiteren Ausführungsbeispiels und
    • Figur 4, 5, 6, und 7 einen Querschnitt der in Figur 1 gezeigten Ventilnadel entlang der Linie IV-IV verschiedener Ausführungsbeispiele.
    Beschreibung des Ausführungsbeispiels
  • In Figur 1 ist ein erfindungsgemäßes Kraftstoffeinspritzventil dargestellt, das ein Gehäuse 1 aufweist. Das Gehäuse 1 umfasst einen Ventilkörper 2 und einen Ventilhaltekörper 4, die aneinander anliegen und durch eine in der Zeichnung nicht dargestellte Vorrichtung gegeneinander gepresst werden. Im Ventilkörper 2 ist eine Bohrung 3 ausgebildet, die an ihrem brennraumseitigen Ende durch einen im wesentlichen konischen Ventilsitz 9 verschlossen ist. Im Ventilsitz 9 ist wenigstens eine Einspritzöffnung 11 ausgebildet, die die Bohrung 3 mit dem Brennraum der Brennkraftmaschine verbindet. In der Bohrung 3 ist eine Ventilnadel 5 angeordnet, welche Ventilnadel 5 eine Längsachse 6 aufweist und in einem Führungsbereich 103 der Bohrung 3 mit einem Führungsabschnitt 105 dichtend geführt ist. Die Ventilnadel 5 verjüngt sich dem Ventilsitz 9 zu unter Bildung einer Druckschulter 13 und geht an ihrem brennraumseitigen Ende in eine im wesentlichen konische Ventildichtfläche 7 über, die mit dem Ventilsitz 9 zusammenwirkt. Das Zusammenwirken geschieht hierbei in der Weise, dass bei Anlage der Ventildichtfläche 7 am Ventilsitz 9 die Einspritzöffnung 11 gegen die Bohrung 3 verschlossen wird, während bei vom Ventilsitz 9 abgehobene Ventildichtfläche 7 die Einspritzöffnung 11 freigegeben wird. Durch eine radiale Erweiterung der Bohrung 3 ist auf Höhe der Druckschulter 13 ein erster kraftstoffgefüllter Raum 19 angeordnet, der als Druckraum im Ventilkörper 2 ausgebildet ist und der sich als ein die Ventilnadel 5 umgebender Ringkanal bis zum Ventilsitz 9 fortsetzt. Der Druckraum 19 ist hierbei über einen im Ventilkörper 2 und im Ventilhaltekörper 4 verlaufenden Zulaufkanal 25 mit Kraftstoff unter hohem Druck befüllbar.
  • Am brennraumabgewandten Ende grenzt die Bohrung 3 an einen im Ventilhaltekörper 4 ausgebildeten zweiten kraftstoffgefüllten Raum 15, der in diesem Ausführungsbeispiel als Leckölraum ausgebildet ist. Der Leckölraum 15 ist hierbei ständig mit einem Leckölsystem verbunden, das in der Zeichnung nicht dargestellt ist und das gewährleistet, dass der Leckölraum 15 stets druckentlastet ist. Zumindest zeitweilig besteht also ein großer Druckunterschied zwischen dem als Druckraum ausgebildeten ersten Raum 19 und dem als Leckölraum ausgebildeten zweiten Raum 15. Zwischen der Ventilnadel 5 und der Wand der Bohrung 3 verbleibt ein Ringspalt 17, durch den ein gewisser, stark gedrosselter Kraftstoffstrom vom Druckraum 19 in den Leckölraum 15 stattfindet. Dadurch bildet sich im Ringspalt 17 ein Kraftstoff-Schmierfilm, auf dem die Ventilnadel 5 gleitet. Im Druckraum 19 kann hierbei ein Kraftstoffdruck von 150 MPa und mehr erreicht werden, während im Leckölraum 15 stets ein Druck herrscht, der im wesentlichen dem Atmosphärendruck entspricht.
  • Im Führungsabschnitt 105 der Ventilnadel 5 sind Ausnehmungen 30 angeordnet, die als Ringnuten den gesamten Umfang der Ventilnadel 5 umfassen. Figur 2 zeigt eine Vergrößerung des mit II bezeichneten Ausschnitts, wobei in Figur 2 sowohl der Ventilkörper 2 als auch die Ventilnadel 5 bzw. deren Führungsabschnitt 105 geschnitten dargestellt sind. Wie in Figur 2 zu sehen weist die Ausnehmung 30 einen V-förmigen Querschnitt auf, der durch eine erste Flanke 38 und eine zweite Flanke 40 gebildet wird. Die erste Flanke 38 ist hierbei kürzer als die zweite Flanke 40, so dass die erste Flanke 38 mit der Längsachse 6 der Ventilnadel 5 einen größeren Winkel einschließt als die zweite Flanke 40. Die erste Flanke 38 und die zweite Flanke 40 treffen sich in einer Scheitellinie 34, an der die Ausnehmung 30 die größte Tiefe t aufweist. Die Scheitellinie 34 kann hierbei scharfkantig ausgeführt sein oder auch abgerundet.
  • In Richtung der Längsachse 6 weist die erste Flanke 38 eine Ausdehnung a und die zweite Flanke 40 eine Ausdehnung b auf, wobei die Ausnehmungen 30 einen Abstand d voneinander aufweisen. Das Verhältnis von a zu b kann in großen Bereichen variiert werden, um die Schmiereigenschaften der Ausnehmungen 30 an die Oberflächen der Bohrungswand 3 und der Ventilnadel 5 anzupassen oder an die Größe des Ringspalts 17. Am Übergang des Führungsabschnitts 105 zur ersten Flanke 38 ist eine erste Übergangskante 32 ausgebildet, ebenso am Übergang des Führungsabschnitts 105 zur zweiten Flanke 40 eine zweite Übergangskante 36. Um die Schmiereigenschaften der Ausnehmungen 30 zu optimieren, ist die dem Druckraum 19 zugewandte erste Übergangskante 32 als scharfkantiger Übergang ausgebildet, der nicht gerundet wird. Im Gegensatz dazu ist die zweite Übergangskante 36 gerundet ausgebildet. Hierdurch lassen sich, was sowohl in der Simulation als auch im Versuch nachweisbar ist, die Schmiereigenschaften der Ausnehmung 30 optimieren.
  • In Figur 3 ist ein weiteres Ausführungsbeispiel der erfindungsgemäßen Ausnehmungen 30 dargestellt. Die Ausnehmungen 30 entsprechen in ihren Abmessungen und in der Ausbildung der ersten Flanke 38 und der zweiten Flanke 40 den Ausnehmungen in Figur 2, jedoch weisen die benachbarten Ausnehmungen 30 eine unterschiedliche Orientierung auf. Das heißt, in der einen Ausnehmung 30 ist die erste kurze Flanke 38 dem Druckraum 19 zugewandt und in der benachbarten Ausnehmung 30 dem Druckraum 19 abgewandt. Eine solche alternierende Anordnung der Ausnehmungen 30 ist insbesondere dann von Vorteil, wenn der Druckunterschied vom ersten Raum 19 zum zweiten Raum 15 nicht sehr groß ist. Die erste Übergangskante 32 ist auch hier scharfkantig ausgebildet, während die zweite Übergangskante 36 gerundet ausgeführt ist.
  • Wie bereits erwähnt können die Abmessungen a und b der ersten Flanke 38 bzw. der zweiten Flanke 40 in weiten Grenzen variiert werden. Es kann auch vorgesehen sein, die axiale Erstreckung a der ersten Flanke 38 gleich 0 zu setzen, so dass die erste Flanke 38 in einer Radialebene der Längsachse 6 der Ventilnadel 5 angeordnet ist. Es kann auch vorgesehen sein, dass die Flanken 38 bzw. 40 nicht gerade ausgeführt sind, sondern eine konvexe oder konkave Krümmung annehmen, was unter bestimmten Umständen vorteilhaft sein kann.
  • Die Abmessungen der Ausnehmungen 30 sind folgendermaßen: Die axialen Erstreckungen der Flanken 38 bzw. 40 in Richtung der Längsachse 6 der Ventilnadel 5 beträgt 0,03 bis 1 mm, vorzugsweise 0,02 bis 0,1 mm. Die Tiefe t der Ausnehmungen 30 ist hierbei kleiner als 0,1 mm, vorzugsweise 0,001 bis 0,04 mm. Der Abstand d der Ausnehmungen 40 voneinander beträgt 0,05 bis 1 mm.
  • Es kann auch vorgesehen sein, dass die Ausnehmungen 30 nicht als Ringnuten ausgebildet sind, die den gesamten Umfang des kolbenförmigen Bauteils, das hier als Ventilnadel 5 ausgebildet ist, umgeben, sondern nur einen Teil des Umfangs. Weiter kann es vorgesehen sein, dass die Tiefe t der Ausnehmungen 30 mit dem Umfang variiert. Ein entsprechendes Ausführungsbeispiel ist in Figur 4 dargestellt, wo ein Querschnitt durch die Ventilnadel 5 entlang der Linie IV-IV der Figur 1 gezeigt ist. Die Ausnehmung 30 weist hier an einem Punkt eine Tiefe von 0 auf, wobei sich die Tiefe der Ausnehmung 30 über den Umfang erhöht, bis sie an der gegenüberliegenden Seite der Ventilnadel 5 einen Maximalwert annimmt. Ein weiteres Beispiel ist in Figur 5 dargestellt, wo die Ausnehmung 30 im Querschnitt eine sichelförmige Kontur aufweist, so dass die Tiefe t in diesem Fall ebenfalls von 0 bis zu einem Maximalwert reicht. Figur 6 zeigt ein weiteres Ausführungsbeispiel der Ausnehmung 30, wobei sich die Ausnehmung 30 hier nur über etwa 1/4 des Umfangs erstreckt. Sie weist jedoch eine konstante Tiefe t auf. Sind mehrere Ausnehmungen 30 an der Ventilnadel 5 vorgesehen und bedecken diese jeweils nur einen Teil des Umfangs des Führungsabschnitts 105 der Ventilnadel 5, so können diese Ausnehmungen 30 über den Umfang des Führungsabschnitts 105 verteilt angeordnet sein. Figur 7 zeigt den Querschnitt des Führungsabschnitts 105 der Ventilnadel 5 bei einer als Ringnut ausgeführten Ausnehmung 30, die über den gesamten Umfang dieselbe Tiefe t aufweist.
  • Die beschriebenen Formen der Ausnehmungen 30 können sowohl auf dem kolbenförmigen Bauteil 5 beziehungsweise dessen Führungsabschnitt 105 oder auch an der Innenwand der Bohrung 3 ausgebildet sein. Es kann auch vorgesehen sein, derartige Strukturierungen der Ausnehmungen an beiden Flächen auszubilden, also sowohl an der Innenseite der Bohrung 3 als auch an der Führungsfläche 105 des kolbenförmigen Bauteils 5. Ebenso kann es vorgesehen sein, dass die als Nuten ausgebildeten Ausnehmungen 30 nicht exakt in tangentialer Richtung des kolbenförmigen Bauteils 5 verlaufen, sondern in einem mehr oder weniger großen Winkel zur Längsachse des kolbenförmigen Bauteils 5, beispielsweise 5° bis 10°.
  • Neben der Ausbildung von erfindungsgemäßen Ausnehmungen 30 an Ventilnadeln von Kraftstoffeinspritzventilen kann es auch vorgesehen sein, derartige Ausnehmungen an sonstigen kolbenförmigen Bauteilen auszubilden, die in einer Bohrung geführt sind und bei denen die Reibung in der Bohrung reduziert werden soll. Insbesondere ist es vorteilhaft, derartige Ausnehmungen dann auszubilden, wenn der erste und der zweite mit Kraftstoff oder einer sonstigen Flüssigkeit gefüllte Raum einen voneinander deutlich verschiedenen Druck aufweisen.

Claims (11)

  1. Kraftstoffeinspritzventil für eine Brennkraftmaschine mit einem Gehäuse (1), in dem in einer Bohrung (3) eine Ventilnadel (5) längsverschiebbar angeordnet ist, die mit einem Führungsabschnitt (105) in der Bohrung (3) dichtend geführt ist, wobei der Führungsabschnitt (105) an einem Ende an einen ersten kraftstoffgefüllten Raum (19) angrenzt und an seinem anderen Ende an einen zweiten kraftstoffgefüllten Raum (15), wobei im Führungsabschnitt (105) der Ventilnadel (5) wenigstens eine zumindest näherungsweise in Umfangsrichtung verlaufende Ausnehmung (30) ausgebildet ist, die sich zumindest über einen Teil des Umfangs der Ventilnadel (5) erstreckt, dadurch gekennzeichnet, dass die in Längsrichtung der Ventilnadel (5) gesehen einen asymmetrischen Querschnitt aufweist.
  2. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass die wenigstens eine Ausnehmung (30) einen V-förmigen Querschnitt aufweist, wodurch eine erste Flanke (38) und eine zweite Flanke (40) gebildet werden, wobei die erste Flanke (38) kürzer als die zweite Flanke (40) ist.
  3. Kraftstoffeinspritzventil nach Anspruch 2, dadurch gekennzeichnet, dass mehrere Ausnehmungen (30) an dem kolbenförmigen Bauteil (5) ausgebildet sind, wobei in der Aufeinanderfolge je zweiter Ausnehmungen die längeren Flanken (40) und die kürzeren Flanken (38) der Ausnehmung (30) einander benachbart sind.
  4. Kraftstoffeinspritzventil nach Anspruch 2, dadurch gekennzeichnet, dass der Übergang von der Oberfläche des kolbenförmigen Bauteils (5) zur kürzeren Flanke (38) der Ausnehmung (30) scharfkantig ausgebildet ist, während der Übergang der Oberfläche des kolbenförmigen Bauteils (5) zur längeren Flanke (40) gerundet ist.
  5. Kraftstoffeinspritzventil nach einem der Ansprüche 2, 3 oder 4, dadurch gekennzeichnet, dass die Flanken (38; 40) in Längsrichtung des kolbenförmigen Bauteils (5) eine Ausdehnung von 0,03 mm bis 1 mm aufweisen.
  6. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass die Tiefe der Ausnehmung (30) über den Umfang des kolbenförmigen Bauteils (5) variiert.
  7. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass die Tiefe (t) der wenigstens einen Ausnehmung weniger als 0,1 mm beträgt.
  8. Kraftstoffeinspritzventil nach Anspruch 7, dadurch gekennzeichnet, dass die Tiefe .(t) der Ausnehmung 0,001 bis 0,04 mm beträgt.
  9. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass im ersten Raum (19) zumindest zeitweise ein höherer Druck herrscht als im zweiten Raum (15).
  10. Kraftstoffeinspritzventil nach Anspruch 9, dadurch gekennzeichnet, dass der Druckunterschied vom ersten Raum (19) zum zweiten Raum (15) zumindest zeitweise mehr als 50 MPa beträgt.
  11. Kraftstoffversorgungseinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der erste Raum ein mit Kraftstoff unter hohem Druck befüllbarer Druckraum (19) ist und der zweite Raum ein mit einer Lecköleinrichtung verbundener Leckölraum (15).
EP02754314A 2001-07-07 2002-07-04 Kraftstoffeinspritzventil für brennkraftmaschinen Expired - Lifetime EP1407133B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10133166 2001-07-07
DE10133166A DE10133166A1 (de) 2001-07-07 2001-07-07 Kraftstoffeinspritzventil für Brennkraftmaschinen
PCT/DE2002/002443 WO2003004865A1 (de) 2001-07-07 2002-07-04 Kraftstoffeinspritzventil für brennkraftmaschinen

Publications (2)

Publication Number Publication Date
EP1407133A1 EP1407133A1 (de) 2004-04-14
EP1407133B1 true EP1407133B1 (de) 2010-10-13

Family

ID=7691084

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02754314A Expired - Lifetime EP1407133B1 (de) 2001-07-07 2002-07-04 Kraftstoffeinspritzventil für brennkraftmaschinen

Country Status (9)

Country Link
US (1) US7143965B2 (de)
EP (1) EP1407133B1 (de)
JP (1) JP4204462B2 (de)
KR (1) KR20030036754A (de)
CN (1) CN1308592C (de)
BR (1) BR0205718A (de)
DE (2) DE10133166A1 (de)
PL (1) PL201527B1 (de)
WO (1) WO2003004865A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7575062B2 (en) 2006-06-09 2009-08-18 Halliburton Energy Services, Inc. Methods and devices for treating multiple-interval well bores

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4007202B2 (ja) * 2003-01-23 2007-11-14 株式会社デンソー 軸部材の摺動構造およびインジェクタ
KR101307563B1 (ko) * 2003-07-16 2013-09-12 베르트질레 슈바이츠 악티엔게젤샤프트 실린더부 내의 고압 피스톤용 피스톤
JP4066959B2 (ja) * 2004-01-27 2008-03-26 株式会社デンソー 燃料噴射装置
JP4591593B2 (ja) * 2008-02-13 2010-12-01 株式会社デンソー 燃料噴射弁
DE102008032133B4 (de) * 2008-07-08 2015-08-20 Continental Automotive Gmbh Kraftstoffeinspritzvorrichtung
DE102015215321A1 (de) * 2015-08-11 2017-02-16 Robert Bosch Gmbh Kraftstoffinjektor
CN105927442A (zh) * 2016-05-03 2016-09-07 广西欧讯科技服务有限责任公司 一种可检修的轴针式喷油器
DE102016225776A1 (de) * 2016-12-21 2018-06-21 Robert Bosch Gmbh Ventil zum Zumessen eines Fluids
CN109695516A (zh) * 2017-10-24 2019-04-30 东方技术股份有限公司 改善了润滑特性的气体燃料汽车用喷射器
DE102020121777A1 (de) * 2020-08-19 2022-02-24 Vermes Microdispensing GmbH Ventilstößelstange
CN112879191A (zh) * 2021-01-15 2021-06-01 江苏大学 一种用于高压喷油器的表面织构导向密封针阀

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1930603U (de) 1963-07-19 1966-01-05 Fiat Spa Kraftstoffeinspritzpumpe fuer kolbenmotoren.
FR2067883A5 (de) * 1969-11-20 1971-08-20 Peugeot
US3722801A (en) * 1970-09-11 1973-03-27 Stanadyne Inc Fuel injector
US3721163A (en) * 1970-09-23 1973-03-20 Wellworthy Ltd Pistons
JP2878500B2 (ja) 1991-09-27 1999-04-05 株式会社ゼクセル 燃料噴射ポンプ
US5544816A (en) * 1994-08-18 1996-08-13 Siemens Automotive L.P. Housing for coil of solenoid-operated fuel injector
US5678767A (en) * 1996-03-14 1997-10-21 Siemens Automotive Corporation Fuel injector with contaminant deflector
DE19631066A1 (de) * 1996-08-01 1998-02-05 Bosch Gmbh Robert Brennstoffeinspritzventil
DE19638201B4 (de) * 1996-09-19 2005-05-04 Robert Bosch Gmbh Brennstoffeinspritzventil
US5921475A (en) * 1997-08-07 1999-07-13 Ford Motor Company Automotive fuel injector
DE19820264A1 (de) 1998-05-07 1999-11-11 Mtu Friedrichshafen Gmbh Hochdruck-Kolbenzylindereinheit
DE19843344A1 (de) 1998-09-22 2000-03-23 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen
DE19927899A1 (de) * 1999-06-18 2000-12-21 Bosch Gmbh Robert Brennstoffeinspritzventil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7575062B2 (en) 2006-06-09 2009-08-18 Halliburton Energy Services, Inc. Methods and devices for treating multiple-interval well bores

Also Published As

Publication number Publication date
PL370638A1 (en) 2005-05-30
BR0205718A (pt) 2003-07-22
KR20030036754A (ko) 2003-05-09
JP4204462B2 (ja) 2009-01-07
CN1464941A (zh) 2003-12-31
PL201527B1 (pl) 2009-04-30
DE10133166A1 (de) 2003-01-16
EP1407133A1 (de) 2004-04-14
DE50214714D1 (de) 2010-11-25
CN1308592C (zh) 2007-04-04
JP2004521264A (ja) 2004-07-15
US20040079818A1 (en) 2004-04-29
US7143965B2 (en) 2006-12-05
WO2003004865A1 (de) 2003-01-16

Similar Documents

Publication Publication Date Title
DE4039520B4 (de) Kraftstoff-Einspritzventil
EP1407133B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE19820513A1 (de) Kraftstoffeinspritzdüse für eine Brennkraftmaschine
DE10355030A1 (de) Ventil, insbesondere für eine Hochdruckpumpe einer Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
DE102006000035A1 (de) Fluideinspritzventil
EP1297252A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1546547B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP0302068A1 (de) Rückschlagventil.
DE19709170C2 (de) Abdichtung für hin- und hergehende Maschinenteile, insbesondere Ventilschaftabdichtung
EP1509693B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
WO2004109093A1 (de) Rückschlagventil, insbesondere für eine hochdruckpumpe einer kraftstoffeinspritzeinrichtung für eine brennkraftmaschine
WO2005059353A1 (de) Ventilkörper mit mehrfachkegelgeometrie am ventilsitz
EP2824311A1 (de) Kolbenelementanordnung, und Einspritzdüse mit einer Kolbenelementanordnung
DE3201218A1 (de) Kraftstoff-einspritzduese fuer brennkraftmaschinen
DE102018114701A1 (de) Hydrodynamisch wirksamer Dichtring und Drehdurchführung mit einem solchen Dichtring
EP1356203B1 (de) Vorrichtung zur kraftstoff-hochdruckversorgung einer brennkraftmaschine
EP1736662B1 (de) Rückschlagventil, insbesondere für eine Hochdruckpumpe einer Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
EP1422418B1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
EP0106183A1 (de) Kraftstoff-Einspritzdüse für Brennkraftmaschinen
AT512893B1 (de) Bauelement mit ineinandermündenden Hochdruckbohrungen
EP1003964B1 (de) Kraftstoffeinspritzventil
DE102010030424A1 (de) Steuerventil
DE60320235T2 (de) Einspritzdüse mit verbesserter Einspritzung und Verfahren zu deren Herstellung
DE19901057A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE10318989A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040209

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RINKE, MARCUS

Inventor name: REDLICH, ALEXANDER

Inventor name: HACKENBERG, JUERGEN

Inventor name: KETTELER, GEORG

Inventor name: STRAEHLE, JOCHEN

Inventor name: LINDNER, MICHAEL

Inventor name: REHBEIN, PETER

Inventor name: BOHNSACK, RUEDIGER

Inventor name: BAUER, JUERGEN

Inventor name: WESTPHAL, CLAUS

Inventor name: ZIMMER, MARTIN

17Q First examination report despatched

Effective date: 20080207

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50214714

Country of ref document: DE

Date of ref document: 20101125

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110714

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110729

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50214714

Country of ref document: DE

Effective date: 20110714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110704

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130201

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50214714

Country of ref document: DE

Effective date: 20130201