EP1406734B1 - Procede et dispositif pour produire des turbulences et repartir ces dernieres - Google Patents

Procede et dispositif pour produire des turbulences et repartir ces dernieres Download PDF

Info

Publication number
EP1406734B1
EP1406734B1 EP02742624A EP02742624A EP1406734B1 EP 1406734 B1 EP1406734 B1 EP 1406734B1 EP 02742624 A EP02742624 A EP 02742624A EP 02742624 A EP02742624 A EP 02742624A EP 1406734 B1 EP1406734 B1 EP 1406734B1
Authority
EP
European Patent Office
Prior art keywords
nozzles
jets
section
flow
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02742624A
Other languages
German (de)
English (en)
Other versions
EP1406734A1 (fr
Inventor
Alexandra Sarah Frei
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lindenport SA
Original Assignee
Lindenport SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lindenport SA filed Critical Lindenport SA
Publication of EP1406734A1 publication Critical patent/EP1406734A1/fr
Application granted granted Critical
Publication of EP1406734B1 publication Critical patent/EP1406734B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/08Cleaning containers, e.g. tanks
    • B08B9/093Cleaning containers, e.g. tanks by the force of jets or sprays
    • B08B9/0933Removing sludge or the like from tank bottoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/21Jet mixers, i.e. mixers using high-speed fluid streams with submerged injectors, e.g. nozzles, for injecting high-pressure jets into a large volume or into mixing chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F2025/91Direction of flow or arrangement of feed and discharge openings
    • B01F2025/916Turbulent flow, i.e. every point of the flow moves in a random direction and intermixes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/56Mixing liquids with solids by introducing solids in liquids, e.g. dispersing or dissolving

Definitions

  • the invention is in the field of crude oil tank cleaning and is concerned with a method and a device for recovering thickened, Sedimented crude oil by liquefaction of sediment with non-sedimented Crude oil.
  • the method is also suitable for mixing processes in fluids, for example, in larger to large chemical reactors.
  • the invention relates to the process mentioned under group 2.
  • This method by means of a plurality of nozzles becomes a main flow direction enforced, which has the purpose of eroding the sediment solve and suspend. Secondary, not in the mainstream direction oriented nozzles cause additional shear surfaces through which the turbulence is still increased.
  • the invention also relates to the application of the method in chemical reactors, in large mixing tanks and everywhere where big ones Voluminas must be intimately mixed.
  • Each submerged jet causes by the resistance in the medium, in which he immersed, turbulence and end of its range is all introduced Energy in motion and divided into turbulent flows.
  • These turbulent currents are from the perspective of large Voluminas considered locally, so small-scale. It but these are small-scale turbulences, which have a strong eroding effect and the aim of the invention is to maximize the number of small-scale Create turbulence and distribute it over a large volume.
  • large volumes are, for example, 8000 m3 on an area of 2000 m2 and a height meant by 4 m, as the example.
  • With a storage tank of 50 m diameter and a liquid column of 3-4 m is the case.
  • Such volumes can also be over Shearing surfaces in parts by volume are weakly decoupled. The problem exists So in the optimal distribution of the energy introduced over a desired Volume.
  • the hydrokinetic energy for such large voluminas lies in the Magnitude of several thousand hp. About 30% are from the pumps up to the nozzles, ie consumed within the device, the rest, for example 2000 PS is introduced into the medium via the nozzles. In the example that is still discussed will, over 300 nozzles are aligned so that a maximum local turbulence arises, the main flow acts as a transport mechanism for the local turbulence, which is distributed over the desired volume. The effect is a flowing fluidized bed of high turbulence, so a targeted aligned Chaos.
  • a submerged jet depends on the pressure and the flow rate.
  • a pressure behind the nozzles of about 2 forms bar and a nozzle cross section of approx. 200 mm2 a beam between 5-7 m.
  • a nozzle of 110 mm2. If you order the nozzles with the bigger one Flow rate in a first plane into a main flow direction to be achieved, For example, 90 nozzles and a further number of nozzles with a smaller flow rate in a second level, for example.
  • nozzles additionally in a 120, for example Grad angle opposite to the main flow direction, as shown in FIG 1 and directed one more 90 nozzles with any flow in a third level down to the main flow direction down, so first form locally in the sphere of influence the nozzles turbulence, which then transported away in the main flow direction become.
  • FIG. 1 shows an example of an ensemble of a plurality of lances 5 arranged annularly in the container 10, each of which has 4 nozzles, namely: 1 nozzle for the jet 1 with 200 mm 2 in the main flow direction, its jet 1 with a rich one Dash is drawn; 2 nozzles for the beam 2 with 110 mm2 at 120 degrees angle in a separate plane obliquely to the rear, the beams 2 are marked with a thin line; 1 nozzle for the beam 3 perpendicular to the plane of the paper, which points downwards in the medium in the z-direction, is not visible.
  • the rays drawn out beyond the edge of the vessel 10 collide against the vessel wall during operation and are reflected turbulently.
  • the approximate length of the rays are essentially drawn, they can be 5-7 meters long in practice.
  • a scattered lance 5 with the three beams 1 main beam, 2 secondary beams drawn for clarity from the composite out. How it is physically constructed will be discussed in a later figure.
  • the Figure now shows a well-covered field of submerged jets, the Main direction beam extends approximately to the next lance downstream. Now shows the figure but also three hatched areas, which are representative of all spaces stand between the rays. These areas represent a kind of 'backwater', so rather quiet zones measuring about 9-15 m2.
  • the procedure shows an extraordinary speed. It succeeds in a short time one to introduce large amounts of energy into the fluid volume. For example, in can be in recirculation within 24-30 hours the amount of energy of 2000 PSh (1472 kWh) in 7-10'000. Bring in a ton of liquid, taking it after 20-30 Heated hours.
  • Such processes of intimate mixing are also in the chemical process technology desired, while allowing unwanted heat through Can lead away cooling.
  • Larger chemical reactors can use this Process are operated with a very high mixing effect, wherein the device, which is discussed below, is very easy to clean and also in the handling fits perfectly into the milieu of the chemical process technology.
  • Figure 2 shows the same ensemble as Figure 1 but in a different form of orientation.
  • the nozzles to achieve the main flow direction of each of the lances are not aligned with the next but next downstream lance.
  • a stronger, beam crossing takes place, without the energy-distributing superordinate flow being omitted.
  • the silent zones marked by hatching remain essentially the same size; It is therefore clear that the mere alignment of the lances, these backwater-like areas can not be worked intensively. So it needs to distribute a targeted transport of the turbulence generated over the entire space to be processed.
  • Figure 3 shows the effect of the submerged beams in the vertical section to the two discussed above Figures 1 and 2, that is viewed from the side.
  • the most intensive local turbulence formation takes place at the shear surfaces of the opposite beam direction, shown here as an imaginary shear surface 20.
  • the submerged jet itself or its energy ultimately dissolves into turbulences due to the resistance of the surrounding medium, the turbulence formation at the macroscopic shear surfaces is considerably stronger. This process tries to show Figure 3 in the picture.
  • the thick arrows drawn 1 represent rays of higher flow, ie greater mass movement, the thinner arrows represent 2 rays of lesser mass movement, for example. Only half of the parent flow driving rays.
  • the purposeful co-existence provides only the desired effect.
  • FIG. 3 shows in a likewise schematic representation the recirculation of the material to be mixed.
  • a layer 30 above the zone in which the turbulence formation and distribution takes place so much is withdrawn from the supernatant medium by means of a pump 31 via a suction port 32, as is fed via the supply lines 33 and 33 'and 33 "into the micro-vortex bed,
  • the flow conditions in the supernatant medium are much less intense and even cause some shielding of the main flow upwards, depending on the arrangement of the suction points with respect to the flowing turbulent layer
  • Liquid friction to the upwardly propagated effect, namely to join the flow direction is disturbed or dampened, but the vertical effects are still aided by the heating up of the medium by internal friction, which causes convection upwards By and large, all of these phenomena contribute Mixing be i, but none as intense as the formation of turbulence generators and the carryover of the local turbulence over the desired volume, which is determined
  • the suction for the recirculation also in places near or in the turbulence or micro-vortex bed respectively. But it is important to ensure that the sucked turbulent medium on the way to the pump has calmed down a bit.
  • the device for carrying out the method consists of an ensemble of a plurality of cooperating lances, ie an arrangement effecting a flow system, such as an example of such shown in Figure 4 , with nozzles of different flow rates or equal flow rates with correspondingly more nozzles, according to Procedures are oriented to each other. Also, the nozzles may have orientations that cause only one component opposite or in the main direction.
  • the lance shank of the lance 5 can be seen with a nozzle for the jet 1 generating the main flow and the nozzles for the jet 2 forming a counterflow component. At the lower end of the lance in FIG. 5, the nozzle for the fourth jet 3 is arranged.
  • a diffuser 9 At the upper end of a diffuser 9 is arranged, here schematically drawn as a manifold, it is attached via a flange 8 as a hose connection, a supply hose 6 for the fluid.
  • the lance is inserted through a quiver 15 shown in section in the lid 11 of the container 10 and oriented to the plurality of other lances, which are arranged in the same lid, and moored.
  • Such lances are very efficient in manufacture, assembly and operation.
  • a preferred embodiment a lance has a neutral nozzle arranged in its axis, a nozzle arranged transversely to the longitudinal axis of the lance for the main flow direction, So a nozzle with a large cross-section, at a distance to the side of the feed to two further nozzles transversely to the longitudinal axis of the lance in the 120 degree angle, As Figure 5 shows, to the nozzle for the main flow direction, wherein the cross section both nozzles together at least one third smaller than the cross section the nozzle for the main flow direction.
  • the mainstream can also be with several nozzles are accomplished; it is only important that the total cross-section in the main direction is greater than in the opposite direction, which is also one any directional component is concerned.
  • Figure 5 shows schematically in the form of 6 pictograms A, B, C, D, E, F some arrangements of nozzles on a lance, the nozzles, although drawn next to each other, being arranged in different planes or along the lance shaft.
  • the nozzles for the main flow direction or their cross-section are drawn upwards in the picture and designated H, the nozzles for the counter-direction flow or whose cross-section is denoted by G.
  • H the nozzles for the counter-direction flow or whose cross-section is denoted by G.
  • Each of these planes can have one or more nozzles. Shown here is just the principle.
  • Pictogram A shows, for example, 3 nozzles each with 100 mm2 cross section and a nozzle in Counter direction with 100 mm2, for example, in the plane of the topmost main flow direction nozzle arranged.
  • Pictogram B shows, similar to Figure 5, an overall cross-section in the main flow direction and 2/3 total cross-section in each 120 degrees angle, which in the opposite direction produces a component similar to the one pictogram A, whereby a different local turbulence formation arises.
  • Pictogram C indicates Ratio of 3: 2, ie in the opposite direction 2/3 of the effect.
  • Pictogram D shows a Variant in the purely computationally no much larger flow in the main direction flow should arise, but it still forms a slight flow against the counterflow.
  • Pictogram F shows the completeness half and as discussed in detail above that instead of 2 or 3 nozzles with a cross section of, for example, 100 mm 2 in the main flow direction one Nozzle with 200 mm2 or even 300 mm2 can be used. This is insofar important because larger mass flows usually have a greater impact. Thus, one has to weigh in each case whether more individual beams with smaller mass flows, So smaller cross section, or less individual rays with larger Mass cross section to be used.
  • this method and apparatus can be used for processes, which require an intimate mixing of large volumes.
  • crude oil tanks of any size so up to 100 m diameter and more or chemical reactors of a few meters in diameter or larger Mixing tanks and the like.
  • the lid would be a corresponding Amount according to the invention to each other oriented and dimensioned injectors have to be easily replaceable and can be cleaned well.
  • cleaning the injectors should not be a problem.
  • such an injector can be designed in such a way that it has as few as possible undercuts, in which substances can deposit.
  • the washing process should allow that through the flow In the injector and the intensive mixing outside the substances of the preceding Preparation completely flushed out.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Nozzles (AREA)
  • Cleaning In General (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Claims (18)

  1. Procédé pour la distribution d'énergie hydrocinétique dans de grands volumes de fluides, en produisant dans le fluide une pluralité de turbulences locales (21), de telle manière qu'une pluralité de jets submergés (1) de même orientation dans l'environnement d'au moins un premier plan et une pluralité de jets submergés (2) de même orientation dans un environnement d'au moins un second ou un troisième plan situé au-dessus et/ou en dessous soient dirigés les uns vers les autres, les plans étant écartés de telle manière qu'il se crée entre les jets (1, 2) de direction opposée une surface de cisaillement (20) créant des turbulences, et que les turbulences (21) ainsi formées soient déplacées dans une même direction par le fait que les jets submergés (1) dans l'environnement de l'un des plans, pour obtenir un courant supérieur, ont un plus fort débit que ceux des environnements des autres plans au nombre d'un au moins ou deux, de telle sorte que les turbulences (21) formées soient déplacées par le courant supérieur dans une même direction.
  2. Procédé selon la revendication 1, caractérisé en ce qu'il se crée une pluralité d'environnements de plans avec des jets submergés (1, 2) et des surfaces de cisaillement (20) créant des turbulences formées entre les plans, un environnement au moins d'un plan avec des jets submergés (1) possédant, pour produire un courant supérieur, un débit plus important que les plans contenant les jets (2) de tous les autres environnements impliqués en tout, afin de déplacer les turbulences formées (21) dans une même direction sous l'action du courant supérieur.
  3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce qu'il se crée une pluralité d'environnements de plans avec des jets submergés (1, 2) et des surfaces de cisaillement (20) créant des turbulences formées entre les plans, les jets (1) dans l'environnement du premier ou du second plan au nombre d'un au moins étant orientés dans le sens opposé aux composants des jets (2) des environnements du plan ou de tous les autres plans, et les jets (1) de l'environnement du premier ou du second plan au nombre d'un au moins ayant un plus fort débit que les composants des jets opposés (2) afin de déplacer les turbulences (21) formées dans une même direction.
  4. Procédé selon la revendication 1 ou 2, caractérisé en ce qu'il se crée une pluralité d'environnements de plans avec des jets submergés (1, 2) et des surfaces de cisaillement (20) créant des turbulences formées entre les plans, les jets d'une partie de la pluralité d'environnements des plans étant orientés dans une direction et les jets d'une autre partie de la pluralité d'environnements des plans dans la direction opposée, et les jets (1) de l'une des deux parties produisant, pour obtenir un courant supérieur, un plus fort débit que les jets (2) de l'autre partie.
  5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le fluide destiné à produire les jets submergés (1, 2, 3) ayant des débits différents est prélevé dans le même fluide.
  6. Procédé selon la revendication 5, caractérisé en ce que le fluide destiné à produire les jets submergés (1, 2, 3) ayant des débits différents est prélevé dans le même fluide, sauf à l'extérieur et au-dessus du lit de turbulences circulant.
  7. Procédé selon la revendication 6, caractérisé en ce que le fluide destiné à produire les jets submergés (1, 2, 3) ayant des débits différents est prélevé dans le même fluide, mais à l'intérieur du lit de turbulences circulant.
  8. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le courant supérieur est un courant fermé sur lui-même.
  9. Dispositif pour la mise en oeuvre du procédé selon l'une quelconque des revendications 1 à 8, composé d'une pluralité d'éléments tubulaires (5) avec une entrée de fluide d'un côté et un arrangement de buses (G, H) pour la sortie du fluide de l'autre côté, caractérisé en ce qu'au moins une buse (H) de chaque élément (5) a une plus grande section que les autres buses (G) orientées dans une autre direction, dont les sections additionnées sont plus petites que la buse (H) de plus grande section, les éléments (5) étant disposés de telle manière que les buses (H) ayant la plus grande section soient orientées de la même manière.
  10. Dispositif pour la mise en oeuvre du procédé selon l'une quelconque des revendications 1 à 8, composé d'une pluralité d'éléments tubulaires (5) avec une entrée de fluide d'un côté et un arrangement de buses (G, H) pour la sortie du fluide de l'autre côté, de telle manière qu'il y ait au moins assez de buses (H) orientées de la même manière sur chaque élément (5) pour que leurs sections additionnées soient plus grandes que les autres buses (G) orientées dans une autre direction, dont les sections additionnées sont plus petites, et en ce que les buses (H) destinées à avoir la même orientation sont amenées dans une même orientation.
  11. Dispositif selon la revendication 9 ou 10, caractérisé en ce que la section active des buses (H) servant à former un courant et devant être amenées dans une même orientation est plus grande que la section active des buses (G) disposées selon une autre orientation.
  12. Élément tubulaire (5) destiné à être utilisé dans le dispositif selon la revendication 9, caractérisé en ce qu'il possède des buses (G, H) de section différente, en ce que la buse (H) ayant la plus grande section est orientée dans une direction et les autres buses (G) sont orientées dans une autre direction et leurs sections ou sections actives additionnées sont plus petites que la buse (H) ayant la plus grande section.
  13. Élément tubulaire (5) destiné à être utilisé dans le dispositif selon la revendication 10, caractérisé en ce qu'il possède des buses (G, H) de même section, disposées de telle sorte qu'au moins deux buses (H) ayant la même section soient orientées dans une direction et la section active des buses (G) orientées dans une autre direction soit plus petite que les deux buses au moins (H) ayant la plus grande section commune.
  14. Élément tubulaire (5) destiné à être utilisé dans le dispositif selon la revendication 9, caractérisé en ce qu'il possède des buses (G, H) de section égale ou différente, disposées de telle sorte qu'au moins une orientation des buses a une plus grande section active (H) que la section active de toutes les autres buses (G) qui ne sont pas orientées dans la même direction.
  15. Mise en oeuvre du procédé selon les revendications 1 à 8 pour mélanger et/ou nettoyer des réservoirs de stockage.
  16. Mise en oeuvre du procédé selon les revendications 1 à 8 pour la fluidification de sédiments dans les réservoirs de pétrole brut.
  17. Mise en oeuvre du procédé selon les revendications 1 à 8 pour le brassage intensif de composants fluides dans des cuves de mélange.
  18. Mise en oeuvre du procédé selon les revendications 1 à 8 pour le traitement par brassage intensif d'une matière fluide dans des réacteurs chimiques.
EP02742624A 2001-07-19 2002-07-10 Procede et dispositif pour produire des turbulences et repartir ces dernieres Expired - Lifetime EP1406734B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH134001 2001-07-19
CH13402001 2001-07-19
PCT/CH2002/000376 WO2003008118A1 (fr) 2001-07-19 2002-07-10 Procede et dispositif pour produire des turbulences et repartir ces dernieres

Publications (2)

Publication Number Publication Date
EP1406734A1 EP1406734A1 (fr) 2004-04-14
EP1406734B1 true EP1406734B1 (fr) 2005-12-21

Family

ID=4565395

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02742624A Expired - Lifetime EP1406734B1 (fr) 2001-07-19 2002-07-10 Procede et dispositif pour produire des turbulences et repartir ces dernieres

Country Status (11)

Country Link
US (1) US7117878B2 (fr)
EP (1) EP1406734B1 (fr)
AU (1) AU2002344909B2 (fr)
CA (1) CA2452384C (fr)
DE (1) DE50205361D1 (fr)
DK (1) DK1406734T3 (fr)
ES (1) ES2255620T3 (fr)
HK (1) HK1067330A1 (fr)
NZ (1) NZ530937A (fr)
WO (1) WO2003008118A1 (fr)
ZA (1) ZA200400094B (fr)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1978015A (en) 1930-06-30 1934-10-23 Peter M Erdman Apparatus and method of cleaning tanks containing fluid
US2574958A (en) 1950-08-09 1951-11-13 Granville M Carr Float supported tank cleaning device
US3586294A (en) * 1969-02-20 1971-06-22 James J Strong Method and apparatus for creating a suspension of fine particles in a liquid
JPS60202781A (ja) * 1984-03-24 1985-10-14 鹿島エンジニアリング株式会社 原油タンク内のスラツジ堆積防止及び除去方法
CA2253554C (fr) * 1996-05-03 2009-06-30 Lindenport Sa Procede et appareillage permettant de liquefier des sediments de petrole brut epaissi
US6041793A (en) * 1997-03-18 2000-03-28 Miyasaki; Mace T. Method and apparatus for reducing oil cargo sludge in tankers
FR2766469B3 (fr) 1997-07-28 1999-12-03 Jean Claude Useldinger Procede de prevention de la sedimentation dans les reservoirs de stockage de petrole brut et installation pour la mise en oeuvre de ce procede
FR2771654B1 (fr) 1997-11-28 2000-01-07 Ortec Ind Procede et appareillage a fonctions multiples pour la maintenance des liquides metastables

Also Published As

Publication number Publication date
EP1406734A1 (fr) 2004-04-14
ZA200400094B (en) 2005-03-30
DK1406734T3 (da) 2006-04-24
AU2002344909B2 (en) 2007-08-02
ES2255620T3 (es) 2006-07-01
CA2452384C (fr) 2010-01-19
WO2003008118A1 (fr) 2003-01-30
HK1067330A1 (en) 2005-04-08
CA2452384A1 (fr) 2003-01-30
NZ530937A (en) 2005-05-27
DE50205361D1 (de) 2006-01-26
US20040182426A1 (en) 2004-09-23
US7117878B2 (en) 2006-10-10

Similar Documents

Publication Publication Date Title
DE4433744C2 (de) Vorrichtung zum Vermischen von Medien zur Erzeugung flüssiger Systeme
DE69731841T2 (de) Fraktale kaskade als alternative zu interfluid-turbulenz
DE2933176C2 (de) Verfahren und ultraschallvorrichtung zur kontinuierlichen homogenisierung oder emulgierung von fluessigkeiten.
DE60123967T2 (de) Vortex reduzierender anschluss
EP1945337B1 (fr) Chambre de turbulence
DE2633126C2 (de) Vorrichtung zum Beseitigen von Schaum, der auf der Oberfläche einer Flüssigkeit auftritt
WO2001080985A1 (fr) Element de melange statique
DE2739626A1 (de) Fluidmischanlage, insbesondere fuer fluessigkeiten
DE4200802C2 (de) Vorrichtung zur Reinigung von Abwasser
DE2322336A1 (de) Verfahren und vorrichtung zur behandlung von abgasen von strahltriebwerken
CH677616A5 (fr)
DE2612905A1 (de) Vorrichtung zum abzweigen von reinigungselementen
EP1406734B1 (fr) Procede et dispositif pour produire des turbulences et repartir ces dernieres
EP1467018A1 (fr) Dispositif et procédé de mélange d'un liquide dans une suspension
DE2159963A1 (de) Kugel-Behälter und Einrichtung zur Steuerung von Kavitation in Flüssigkeiten
EP1203888A1 (fr) Dispositif pour influencer l'ecoulement d'un fluide
DE2616395A1 (de) Vorrichtung zum einleiten eines gases in eine fluessigkeit
DE102004026477A1 (de) Mischvorrichtung für Fluide
DE19525920C2 (de) Vorrichtung zum mechanischen Reinigen von Gasen und Flüssigkeiten
DE3109646A1 (de) Verfahren zur herstellung von loesungen und vorrichtung zur durchfuehrung des verfahrens
DE4200720C2 (de) Verfahren und Vorrichtung zum Vermischen einer ersten Flüssigkeit und/oder eines dispersen Feststoffes mit einer zweiten Flüssigkeit
WO2009097878A1 (fr) Système mélangeur et procédé approprié
AT504955B1 (de) Diffusor für einen injektor in einer flotationszelle und verfahren zum zuführen einer fasersuspension in die flotationszelle
DE2740765A1 (de) Einrichtung zum homogenisieren eines stroemenden mehrphasengemisches
DE2111173A1 (de) Gaswaescher

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031229

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20040813

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1067330

Country of ref document: HK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051221

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051221

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051221

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051221

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50205361

Country of ref document: DE

Date of ref document: 20060126

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: FREI PATENTANWALTSBUERO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060321

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060321

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060315

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060522

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20060400911

Country of ref document: GR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2255620

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731

ET Fr: translation filed
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1067330

Country of ref document: HK

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051221

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20140623

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20140721

Year of fee payment: 13

Ref country code: DE

Payment date: 20140721

Year of fee payment: 13

Ref country code: DK

Payment date: 20140721

Year of fee payment: 13

Ref country code: GR

Payment date: 20140717

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20140728

Year of fee payment: 13

Ref country code: GB

Payment date: 20140721

Year of fee payment: 13

Ref country code: TR

Payment date: 20140704

Year of fee payment: 13

Ref country code: FR

Payment date: 20140721

Year of fee payment: 13

Ref country code: AT

Payment date: 20140626

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140731

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20140722

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50205361

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20150731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 313393

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150710

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150710

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20150801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160202

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150710

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150710

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150710

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150801

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160202

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 20060400911

Country of ref document: GR

Effective date: 20160202

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20160826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150710