EP1404961B1 - Kraftstoffinjektor mit einspritzverlaufsformung durch schaltbare drosselelemente - Google Patents

Kraftstoffinjektor mit einspritzverlaufsformung durch schaltbare drosselelemente Download PDF

Info

Publication number
EP1404961B1
EP1404961B1 EP02748597A EP02748597A EP1404961B1 EP 1404961 B1 EP1404961 B1 EP 1404961B1 EP 02748597 A EP02748597 A EP 02748597A EP 02748597 A EP02748597 A EP 02748597A EP 1404961 B1 EP1404961 B1 EP 1404961B1
Authority
EP
European Patent Office
Prior art keywords
valve
throttle element
space
way valve
fuel injector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02748597A
Other languages
English (en)
French (fr)
Other versions
EP1404961A1 (de
Inventor
Friedrich Boecking
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1404961A1 publication Critical patent/EP1404961A1/de
Application granted granted Critical
Publication of EP1404961B1 publication Critical patent/EP1404961B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/12Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship providing a continuous cyclic delivery with variable pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/0033Lift valves, i.e. having a valve member that moves perpendicularly to the plane of the valve seat
    • F02M63/0036Lift valves, i.e. having a valve member that moves perpendicularly to the plane of the valve seat with spherical or partly spherical shaped valve member ends
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/0045Three-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/28Details of throttles in fuel-injection apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid
    • F02M63/0026Valves characterised by the valve actuating means electrical, e.g. using solenoid using piezoelectric or magnetostrictive actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/004Sliding valves, e.g. spool valves, i.e. whereby the closing member has a sliding movement along a seat for opening and closing

Definitions

  • Fuel injection systems on direct injection internal combustion engines are increasingly being implemented as storage injection systems. Via a high-pressure pump or a high pressure accumulator the fuel injector is supplied in injection sequence under extremely high pressure fuel, the fuel supply is almost free of pressure fluctuation at an extremely high pressure level. In addition to the supply of fuel at a high, nearly constant pressure level, the start of injection and the end of the injection are of great importance with regard to the emission of patties, depending on the progress of the combustion in the combustion chamber of an internal combustion engine.
  • an injection valve for an internal combustion engine which comprises a servo valve which controls hydraulically the opening and closing movement of the nozzle needle for the injection process.
  • the injection valve comprises a valve body and a valve element arranged movably therein, which presses in the closed position on a valve seat.
  • the connection between an inlet channel and an injection nozzle is interrupted, wherein the pressure in the control chamber is controlled by an actuator.
  • the valve element has a passage with a throttle leading to a groove in the valve element, the groove comprising a piston-shaped shoulder which substantially abuts the wall of a bore in the valve body when the servo valve is closed.
  • the bore extends radially at a distance from the upper edge of the groove relative to the position of the valve element with the servo valve closed, resulting in a direct connection between valve seat and groove, open from the channels to the injector with open servo valve.
  • EP 0 994 248 A2 relates to a fuel injector with injection curve shaping by way of a piezoelectric needle lift in the injector body which takes place on a piezoelectric path.
  • injection rates can be characterized by a ramp-up, a boot phase and an approximately trapezoidal phase.
  • a fuel injector includes an injector body containing an injection port.
  • a nozzle needle is movably disposed within the injector body and movable between an open position and a closed position.
  • a piezoelectric actuator is further arranged, which is movable between an on and a switched-off position.
  • the nozzle needle and the piezoelectric actuator are coupled to each other such that the movement of the piezoelectric actuator is translated within the injector body in a larger stroke movement of the nozzle needle.
  • the nozzle needle is stoppable between its open position and its closed position in a plurality of stroke positions, which allows influencing the injection quantity corresponding to the holding position of the nozzle needle in the injector body.
  • EP 1 081 372 A2 discloses a fuel injection device comprising a valve member for opening and closing an injection port, a high pressure passage for generating a base pressure force for moving the valve member in an injection port opening direction, an electromagnetic valve, first and second springs for generating biasing forces for moving the valve member in a closing direction of the injection port and a first and a second control chamber, which are accommodated in the fuel channels, composed.
  • the respective control chambers communicate with the high pressure passage when the electromagnetic valve is not driven.
  • the respective fuel pressure in the first and second control chambers moves the valve member in a closing direction of the injection port.
  • the respective control rooms are one after the other at different times with a Low pressure passage in communication to lower the fuel pressure therein when the electromagnetic valve is driven.
  • the valve member may be incrementally raised to achieve a variable fuel injection rate by driving the control chambers to change a balance of forces between base pressure and biasing force.
  • the solution according to the invention has the advantage of being able to develop injection molding by switching on or off flow restrictors or inlet throttling elements in combination with a multiway valve, e.g. a 3/3-way valve in a fuel injector represent.
  • a first outlet throttle element is always connected downstream of the outlet of the valve chamber of the multiway valve.
  • the valve chamber of the multi-way valve via a main flow channel and a parallel to the extending bypass duct with the nozzle needle actuating control chamber
  • another outlet throttle element can be accommodated both in the bypass duct and in the main flow duct.
  • the inlet throttle element can be arranged both opening into the valve chamber of the multi-way valve and open directly in the control room or in one of the valve chamber connecting to the control room channels, for example, the main flow channel opening.
  • the filling of the nozzle needle actuating control chamber with a control volume is always carried out by means of the inlet throttle, which can be arranged at different locations in the injector of the fuel injector. If the further outlet throttle element is embodied in a smaller throttle cross-section compared to the first outlet throttle element connected downstream of the valve space of the multiway valve, these two outlet throttle elements can be switched both in series and in parallel to form the injection curve. A particularly good shaping of the injection curve can be realized with the further outlet throttle element when the first outlet throttle element is connected in series.
  • the multi-way valve can be a 3/3-way valve, with injection curve shaping taking place, in particular, by the combination of the further outlet throttle element, either received according to a sub-variant in the main flow or another sub-variant in the bypass flow channel.
  • a first inlet throttle element always opens directly in the control chamber, which controls the nozzle needle / plunger movement in the injector body.
  • the further inlet throttle element of this solution variant is arranged so that it is connected when opening as a bypass to the first outlet throttle element. This allows a filling of the control chamber via two parallel switchable inlet throttle elements, which allows a fast needle closing speed. Injection progression is assisted by the fact that two outlet throttling elements can be connected in series or individually.
  • a fuel injector which is produced according to the two sketched general embodiments shown, is characterized by a particularly favorable and easy manufacturability.
  • FIG. 1 shows a variant embodiment with an outlet throttle element 25 connected downstream of a control chamber, a further outlet throttle element 16, in the bypass channel 11 and an inlet throttle 15 opening into the valve chamber 19 of a multiway valve 18.
  • An injector for injecting fuel into the combustion chamber of an internal combustion engine comprises an injector body 2, in which a control chamber 3 is formed.
  • the control chamber 3 is limited on the one hand by a control chamber ceiling 4 of the injector body 2 and on the other hand by an end face 6 of a nozzle needle / Stötelan für 5.
  • the control chamber 3 is bounded by a control chamber wall 7 of the injector body 2.
  • the control chamber 3 is connected via a first flow channel, the main flow channel 8 via a control-room-side mouth 9 and a valve-chamber-side mouth 10 with a valve chamber 19 of a multi-way valve. 18 in connection.
  • the multi-way valve 18 is preferably formed as a 3/3-way valve.
  • control chamber 3 communicates via a second flow channel 11, the bypass channel with the valve chamber 19 of the multi-way valve in connection.
  • the control-chamber-side mouth of the flow channel 11 is identified by reference numeral 12, while the valve-chamber-side mouth of the bypass channel 11 is identified by reference numeral 13.
  • Both the main flow channel 8 and the bypass channel 11 between the control chamber 3 and valve chamber 19 are flowed through in both flow directions 29 and 30 of fuel.
  • valve chamber 19 in which a closing body 20 of spherical configuration in the illustration according to FIG. 1 is accommodated, is connected via a first inlet throttle element 15 to a first high-pressure-side inlet 14.
  • a discharge throttle element 16 is arranged, which has a cross-sectional area 17 (A1).
  • a force acting on the closing body 20 transmission element 21 is shown, which is actuated via an actuator not shown here - whether it is a piezoelectric actuator or a solenoid valve.
  • an annular gap 22 is formed, from which a branch 23 extends in the direction of a drain 24.
  • a further outlet throttle element 25 is formed, which is designed in a cross-sectional area A 1 .
  • the valve body 20 of the multi-way valve 18 is by means of the transmission element 21 between a first seat 27 and another, the second seat 28 back and forth.
  • the first outlet throttle element is 16, which is taken in the illustration of Figure 1 in the bypass duct 11, provided with a cross-sectional area A 1 , which is dimensioned smaller than the cross-sectional area 26 A 2 of the further outlet throttle element.
  • FIG. 2 shows a variant not covered by the invention with a first outlet throttle element accommodated in the main flow channel and an inlet throttle element opening directly into the control chamber.
  • valve chamber 19 of the multi-way valve 18 and the control chamber 3 in the injector body 2 via two mutually parallel flow channels, ie the main flow channel 8 and the bypass channel 11 in connection.
  • the valve body 20 of the multi-way valve 18 is movable by means of a transmission element 21 between a first valve seat 27 and a second valve seat 28 above the main flow channel 8. From the annular gap 22, which actuates the transmission element 21 for controlling the valve body 20, branches off a drain 24 at the branch point 23, in which the further outlet throttle element 25 with cross-sectional area A 2 , reference numeral 26, is integrated.
  • the control chamber 3 is supplied with fuel directly by a permanently acting inlet throttle 15 from a first high-pressure-side inlet 14.
  • the first outlet throttle element 16 is integrated into the main flow channel 8.
  • FIG. 3 shows a variant embodiment according to FIG. 2, however, with a permanently acting inlet throttle 15 opening into the valve space.
  • This embodiment differs from that shown in Figure 2 only in that the permanently acting first inlet throttle element 15 of the first high-pressure side inlet 14 does not open directly into the control chamber 3 but laterally into the valve body 20 of the multi-way valve 18 surrounding the valve chamber 19 in the injector body 2.
  • the main flow channel Accordingly, as seen in relation to the control chamber 3, 8 is flowed through in the inlet direction 29 as well as in the drainage direction 30 by the control volume.
  • the control room-side mouths of the main flow channel 8 and the bypass channel 11 are identified analogously to the representation according to Figures 2 and 3 with the reference numerals 9 and 12, while the valve chamber side openings 10 and 13 of the main flow channel 8 and the bypass channel 11 analogous to the preceding figures with the reference numerals 10 and 13 are marked.
  • Figure 4 shows a not covered by the invention embodiment variant with a in the main flow channel between the valve chamber and the control chamber opening permanently acting inlet throttle element.
  • the first outlet throttle element 16 with its cross-sectional area 17 (A 1 ) is arranged directly behind the control chamber-side opening 9 in the control chamber ceiling 4.
  • the permanently acting inlet throttle element 15 is located in a second, further inlet position, which is identified by reference numeral 41.
  • the recorded in the main flow channel 8 first outlet throttle element 16 is - in relation to the control chamber 3 - flows in the inlet direction 29 and 30 in the flow direction, the permanently acting inlet throttle element 15 is to be seen in the first place as a Leckagenmengenbegrenzer because the actual inflow throttle function of the backward - in the inlet direction 29 - flowed through first outlet throttle element 17 is taken.
  • annular gap 22 above the valve chamber 19 of the multi-way valve 18, a branch 23 is assigned, which merges into a sequence 24, in which a further outlet throttle element 25 is integrated.
  • the cross-sectional area 26 A 2 of the further outlet throttle element 25 is dimensioned larger than the cross-sectional area A 1 17 of the first outlet throttle element 16, which is accommodated in this embodiment in the main flow channel 8 and can be flowed through in both directions 29 and 30 from the control volume.
  • FIG. 5 shows a further general embodiment of a fuel injector, with a control chamber which is acted upon by a permanently opening into this opening inlet throttle 15, wherein the valve chamber is followed by a discharge throttle and opens into the valve chamber another inlet throttle element 51.
  • valve chamber 19 of the multi-way valve 18 is followed by a further outlet throttle element 25 with a cross-sectional area 26 A 2 , which is in the process 24, which branches off from the annular gap 22 added.
  • control chamber 3 formed in the injector 2 of the injector 1 shown in Figures 5, 6, 7 and 8 is filled directly via a permanently acting first inlet throttle element 15, which in turn is acted upon by a first high-pressure side inlet 14.
  • a permanently acting first inlet throttle element 15 which in turn is acted upon by a first high-pressure side inlet 14.
  • the main flow channel 8 can be closed by the valve body 20 of the multi-way valve 18, which is spherical in the following variants, when it enters the second valve seat 28 or can be released again by actuation of the transmission element 21 by an actuator, not shown.
  • a first outlet throttle element 16 is received in the bypass duct 11 between the valve chamber 19 of the multi-way valve 18 and the control chamber 3.
  • the bypass duct 11 can be flowed through by the flow volume in relation to the control chamber 3 both in the inlet direction 29 and in the outlet direction 30.
  • the control-side end of the main flow channel is designated by reference numeral 9 and its valve-chamber-side opening is designated by reference numeral 10, while the control-chamber-side end of the bypass channel 11 is identified by reference numeral 12 and its ventihaum possiblyes end by reference numeral 13.
  • a further inlet throttle element 51 opens, which communicates with a further high-pressure-side inlet 50 stands in the valve room. If the valve body 20 of the multi-way valve 18 is placed in its first seat 27 according to this embodiment, the control chamber is rapidly filled via the parallel-acting inlet throttle elements 15 and 51, wherein in this circuit variant the control chamber via the bypass channel 11, the main flow channel 8 and the permanently acting first inlet throttle element 15 is acted upon.
  • the first outlet throttle element accommodated in the bypass duct 11 is flowed through in the rearward direction when the valve body 20 of the multiway valve 18 is seated in the first valve seat 27.
  • a rapid closing of the nozzle needle / needle arrangement 5 is effected by the control chamber 3 acting on the end face 6 of the nozzle needle / plunger arrangement additionally via a further inlet throttle element 51, which opens in this case in the valve chamber 19 of the multi-way valve 18, is filled and thus a faster pressure build-up in the control chamber 3 sets.
  • the further inlet throttle element 51 acts as a bypass to the first outlet throttle element 16 accommodated in the bypass channel 11, and in the case of valve body 20 driven into the first valve seat 27, a parallel connection of two inlet throttle elements 15 and 51 is brought about.
  • the ability to effect injection molding is achieved by virtue of the fact that, when the valve body 20 is placed in the second valve seat 20 - actuated accordingly by the actuator actuating the transmission element 21 - a pressure relief of the control chamber 3 is achieved via the outlet throttling elements connected in series, i. the first outlet throttle elements 16 accommodated in the bypass duct 11 and the further outlet throttle element 25 which can be connected in series therewith are arranged in the outlet 24 downstream of the valve chamber 19.
  • the injection course shaping can be characterized and set by the design of the throttle cross sections 17 and 26 of the first outlet throttle element 16 in the bypass channel 11 and the further outlet throttle element 25 in the course 24.
  • FIG. 6 shows a variant according to the illustration in FIG. 5 with another inlet throttle element opening into the bypass duct.
  • the control chamber 3 is filled in the injector body 2 via a permanently acting first inlet throttle element 15 directly via a first high-pressure side inlet 14.
  • a first outlet throttle element 16 is received in the bypass channel 11 in the embodiment shown in Figure 6.
  • the valve chamber of the multi-way valve is followed by a drain 24, which is another outlet throttle element 25, designed in cross-section 26 A second includes.
  • the further inlet throttle element 51 of another high-pressure side inlet 50 does not open in the valve chamber 19, but in the bypass channel 11 at a first distance 54 with respect to the first outlet throttle element 16 arranged in the bypass channel 11.
  • the distance 54 according to the embodiment variant in Figure 6 is dimensioned so that in the region of the discharge point of the further inlet throttle element 51 and the end of the first outlet throttle element 16 in the bypass channel 11, the flow can form again laminar.
  • valve body 20 placed in the valve chamber 19 in its first seat 27 there is a parallel connection of the first high-pressure side inlet 14 and the other high-pressure side inlet 50 and the intake throttle elements 15 and 51 received therein, so that also according to this embodiment of the control chamber 3 in parallel over two Inlets applied and thus a rapid pressure build-up can be realized, which leads to a fast needle closing.
  • the other high-pressure side inlet 50 is designed as a bypass to the first outlet throttle elements 16, which is arranged downstream of the control chamber 3.
  • control chamber 3 is always acted upon directly by a permanently acting first inlet throttle element 15 via a first high-pressure side inlet 14 with control volume.
  • the control chamber 19 is followed by a drain 24, in which a further outlet throttle element 25 is received, which is formed in a cross section 26 A 2 .
  • the first outlet throttle element 16 downstream of the control chamber is not accommodated in the bypass duct 11 but in the main flow duct 8, which can be opened or closed by the valve body 20 of the multiway valve 18 in the valve chamber 19.
  • the control chamber is filled 3 at in the main flow channel 8 occluding valve body 20 via the parallel-acting inlet throttle elements 15 and 51 and these acting high-pressure side inflows 14 and 50.
  • a pressure relief of the control chamber 3 takes place according to the embodiment of the injector shown in Figure 7 in the second valve seat Asked valve body 20 via the recorded in the outlet 24 further outlet throttle element.
  • the recorded in the main flow channel 8 first outlet throttle element 16 is, since the main flow channel 8 is closed at pressure relief of the control chamber 3, not effective, so that the pressure relief of the control chamber 3 via the bypass channel, 11 the valve chamber 19 and the further outlet throttle element 25 of the sequence 24 takes place.
  • FIG. 8 a slight modification of the embodiment according to FIG. 7 is shown.
  • the further high-pressure-side inlet 50 and the additional inlet throttle element 51 integrated in it do not open directly into the main flow channel 8 but into the valve chamber 19 of the multi-way valve.
  • the first outlet throttle element 16, designed in a first cross section A 1 17, is contained in the main flow channel 8.
  • the valve chamber 19 of the multi-way valve, the drain 24 is connected downstream, which comprises the furthertheredrosselement 25, designed in cross-section A 2 .
  • valve body 20 of the multi-way valve If the valve body 20 of the multi-way valve is placed in its first valve seat 27, pressurization of the control chamber 3 takes place on the one hand via the first first inflow throttle element 15 via the first high pressure side inlet 14 and via the further inflow throttle element 51 of another high pressure side inflow 50.
  • the control chamber is thus filled via the bypass duct 11 and the main flow channel 8, wherein the first outflow throttle element 16 accommodated in the main flow duct 8 according to the embodiment variant in FIG. 8 functions as the actual inlet throttle.
  • valve body 20 of the multi-way valve in the valve chamber 19 placed at its second seat 28 the main flow channel 8 is closed and a pressure relief of the control chamber 3 via the bypass channel 11 in the valve chamber 19 of the multi-way valve 18 downstream drain 24 is received.
  • the Einspritzverlauffarmungsstage the injector 1 is achieved in that according to the embodiments of Figures 5 and 6 at pressure relief of the control chamber 3, the first outlet throttle element 16 of the bypass channel 11 and the further outlet throttle element 25 of Outflow 24, which is connected downstream of the control chamber 19, act in series and according to the design of the throttle cross-sections A 1 17 and A 2 26 a Einspritzverlaufsformung be achieved, while in the embodiment shown in Figure 7 and 8 variants the pressure relief of the control chamber 3 when placed in the second valve seat 28 valve body 20 of the multi-way valve 18 via the bypass channel 11, the valve chamber 19 in which in these cases individually acting further outlet throttle element 25 in the process 24 takes place.
  • the control chamber 3 is filled in parallel via the permanently acting first inlet throttle element 15 and the first high pressure side inlet 14 and the further inlet throttle element 51 and the further high pressure side Inlet 50, which in the embodiments 5, 6, 7 and 8 at different locations, ie the valve chamber 19, the bypass channel 11, main flow channel 8 can open.

Abstract

Die Erfindung bezieht sich auf einen Kraftstoffinjektor zum Einspritzen von Kraftstoff in den Brennraum einer Verbrennungskraftmaschine. Im Injektorkörper (2) ist ein Mehrwegeventil (18) aufgenommen, welches einen von einem Ventilraum (19) umschlossenen Ventilkörper (20) umfasst. Bei Betätigung des Mehrwegeventiles (18) im Injektorkörper (2) wird ein Steuerraum (3) mit Druck beaufschlagt oder druckentlastet, wobei der Steuerraum (3) über mindestens ein Zulaufdrosselelement (15) druckbeaufschlagt wird und über mindestens ein Ablaufdrosselelement (16) druckentlastbar ist. Dem Ventilraum (19) des Mehrwegeventiles (18) ist ein weiteres Ablaufdrosselelement (25) ablaufseitig nachgeschaltet, wobei der Ventilraum (19) und der Steuerraum (3) über einen Hauptstromkanal (8) und einen Nebenstromkanal (11) miteinander in Verbindung stehen.

Description

    Technisches Gebiet
  • Kraftstoffeinspritzsysteme an direkt einspritzenden Verbrennungskraftmaschinen werden zunehmend als Speichereinspritzsysteme ausgeführt. Über eine Hochdruckpumpe oder einen Hochdruckspeicherraum wird den einzelnen Kraftstoffinjektoren in Einspritzsequenz unter extrem hohem Druck stehender Kraftstoff zugeleitet, wobei die Kraftstoffzufuhr nahezu druckschwankungsfrei auf einem extrem hohen Druckniveau erfolgt. Neben der Zufuhr von Kraftstoff auf einem hohen nahezu konstantem Druckniveau ist hinsichtlich der Pattikelemission der Einspritzbeginn sowie das Ende der Einspritzung abhängig vom Fortschritt der Verbrennung im Brennraum einer Verbrennungskraftmaschine von großer Bedeutung.
  • Stand der Technik
  • Aus DE 199 10 589 A1 ist ein Einspritzventil für eine Verbrennungskraftmaschine bekannt, welches ein Servoventil umfaßt, das hydraulisch der Öffnungs- und Schließbewegung der Düsennadel für den Einspritzvorgang steuert. Das Einspritzventil umfaßt einen Ventilkörper und ein darin beweglich angeordnetes Ventilelement, welches in Schließposition auf einen Ventilsitz drückt. Abhängig von dem in einem Steuerraum herrschenden Druck wird die Verbindung zwischen einem Einlaßkanal und einer Einspritzdüse unterbrochen wobei der Druck im Steuerraum von einem Aktor gesteuert wird. Das Ventilelement weist einen Kanal mit einer Drossel, der zu einer Nut im Ventilelement führt auf, wobei die Nut einen kolbenförmigen Absatz umfaßt, der im wesentlichen abdichtend an der Wand einer Bohrung im Ventilkörper anliegt, wenn das Servoventil geschlossen ist. Die Bohrung erweitert sich in einem Abstand von der Oberkante der Nut bezogen auf die Stellung des Ventilelementes bei geschlossenem Servoventil derart radial, das sich bei offenem Servoventil eine direkte Verbindung zwischen Ventilsitz und Nut ergibt, von der Kanäle zur Einspritzdüse fahren. Mit dieser Lösung läßt sich in der Anfangsphase der Einspritzung eine gedrosselte Verbindung zu der Einspritzdüse des Einspritzsystemes herstellen. Im weiteren Verlauf des Einspritzvorgangs wird dann, wenn sich das Servoventil weiter öffnet unter Umgehung der während der Anfangsphase der Einspritzung wirksamen Drossel eine direkte entdrosselte Verbindung zu der Einspritzdüse aufgebaut, so dass beim Übergang von der Anfangs- zur Hauptphase des Einspritzvorganges eine ungehinderte Einspritzung von Kraftstoff in den Brennraum der Verbrennungskraftmaschine erfolgen kann.
  • EP 0 994 248 A2 betrifft ein Kraftstoffinjektor mit Einspritzverlaufsformung durch auf piezoelektrischem Wege erfolgenden Düsennadelhub im Injektorkörper. Zur Vermeidung von unerwünschten Abgasemissionen sind zumindest drei verschiedene den Betriebsbereich einer Verbrennungskraftmaschine abdeckende Einspritzraten wünschenswert. Diese Einspritzraten lassen sich durch einen rampenförmigen Anstieg, eine Bootphase sowie eine annähernd trapezförmig verlaufende Phase charakterisieren. Bei der aus EP 0 994 248 A2 bekannten Lösung umfaßt ein Kraftstoffinjektor einen Injektorkörper, der eine Einspritzöffnung enthält. Eine Düsennadel ist innerhalb des Injektorkörpers bewegbar angeordnet und zwischen einer Öffnungsstellung und einer Schließposition bewegbar. Im Injektorkörper ist ferner ein Piezoaktor angeordnet, der zwischen einer eingeschalteten und einer ausgeschalteten Position bewegbar ist. Mittels eines Kopplungselementes sind die Düsennadel und der Piezoaktor miteinander derart verkoppelt, dass die Bewegung des Piezoaktors innerhalb des Injektorkörpers in eine größere Hubbewegung der Düsennadel übersetzt wird. Die Düsennadel ist zwischen ihrer Öffnungsstellung bzw. ihrer Schließposition in einer Vielzahl von Hubstellungen anhaltbar, was eine Beeinflussung der Einspritzmenge entsprechend der Halteposition der Düsennadel im Injektorkörper zuläßt. Mit dieser Lösung läßt sich die Einspritzung entsprechender Einspritzraten in den Brennraum und damit eine Formung des Einspritzverlaufes erzielen.
  • EP 1 081 372 A2 offenbart eine Kraftstoffeinspritzvorrichtung, welche sich aus einem Ventilglied zum Öffnen und Schließen einer Injektionsöffnung, einem Hochdruckkanal zum Erzeugen einer Basisdruckkraft zum Bewegen des Ventilgliedes in eine die Injektionsöffnung öffnende Richtung, einem elektromagnetischem Ventil, ersten und zweiten Federn zur Erzeugung von Vorspannungskräften zum Bewegen des Ventilgliedes in eine Schließrichtung der Injektionsöffnung und einem ersten und einem zweiten Steuerraum , welche in den Kraftstoffkanälen aufgenommen sind, zusammensetzt. Die jeweiligen Steuerräume stehen mit dem Hochdruckkanal in Verbindung, wenn das elektromagnetische-Ventil nicht angesteuert wird. Der jeweilige Kraftstoffdruck in dem ersten und dem zweiten Steuerraum bewegt das Ventilglied in einer Schließrichtung der Injektionsöffnung. Die jeweiligen Steuerräume stehen einer nach dem anderen zu verschiedenen Zeiten mit einem Niederdruckkanal in Verbindung, um den Kraftstoffdruck darin zu senken, wenn das elektromagnetische Ventil angesteuert ist. Das Ventilglied kann zum Erreichen einer variablen Kraftstoffinjektionsrate schrittweise angehoben werden durch Ansteuern der Steuerräume, um ein Kräftegleichgewicht zwischen Basisdruck und Vorspannungskraft zu verändern.
  • Darstellung der Erfindung
  • Die erfindungsgemäße Lösung bietet den Vorteil, die Fähigkeit zur Einspritzverlaufsformung durch ein Zu- bzw. ein Abschalten von Ablaufdrosselelementen bzw. Zulaufdrosselelementen in Kombination mit einem Mehrwegeventil z.B. eines 3/3-Wege-Ventiles in einem Kraftstoffinjektor darzustellen.
  • In einer ersten generellen Ausführungsvariante ist ein erstes Ablaufdrosselelement stets dem Ablauf des Ventilraumes des Mehrwegeventiles nachgeschaltet. Gemäß dieser Variante, bei der der Ventilraum des Mehrwegeventils über einen Hauptstromkanal und einen parallel der zu verlaufenden Nebenstromkanal mit dem die Düsennadel betätigenden Steuerraum in Verbindung stehen, kann ein weiteres Ablaufdrosselelement sowohl im Nebenstromkanal als auch im Hauptstromkanal untergebracht werden. Das Zulaufdrosselelement jedoch kann sowohl in den Ventilraum des Mehrwegeventils mündend angeordnet sein als auch direkt im Steuerraum münden oder in einen der den Ventilraum mit dem Steuerraum verbindenden Kanäle z.B. dem Hauptstromkanal mündend ausgebildet sein.
  • Die Befüllung des die Düsennadel betätigenden Steuerraum mit einem Steuervolumen erfolgt stets mittels der Zulaufdrossel, die an verschiedenen Stellen im Injektorkörper des Kraftstoffinjektors angeordnet sein kann. Wird das weitere Ablaufdrosselelement in einem kleineren Drosselquerschnitt, verglichen zu dem den Ventilraum des Mehrwegeventiles nachgeschalteten ersten Ablaufdrosselelementes ausgeführt, lassen sich diese beiden Ablaufdrosselelemente zur Einspritzverlaufsformung sowohl in Reihe als auch parallel zueinander schalten. Eine besonders gute Formung des Einspritzverlaufes läßt sich bei in Reihe geschaltetem ersten Ablaufdrosselelement mit dem weiteren Ablaufdrosselelement realisieren.
  • Neben der Reihen- bzw. Parallelschaltung von Ablaufdrosselelementen ist es gemäß einer weiteren generellen Ausführungsvariante des der Erfindung zugrundeliegenden Gedankens auch möglich, eine Einspritzverlaufsformung an einem Kraftstoffinjektor, der mit zwei Zulaufdrosselelementen und zwei Ablaufdrosselelementen ausgestattet ist, durch geeignete Schaltungskombination der Drosselelemente miteinander zu realisieren. Auch gemäß dieser generellen Ausführungsvariante bleibt eine der Ablaufdrosselelemente im Ventilraum des Mehrwegeventils stets nachgeschaltet. Bei dem Mehrwegeventil kann es sich wie vorstehend bereits erwähnt, um ein 3/3-Wege-Ventil handeln, wobei eine Einspritzverlaufsformung insbesondere durch die Kombination des weiteren Ablaufdrosselelementes, entweder aufgenommen gemäß einer Untervariante im Hauptstrom oder einer anderen Untervariante im Nebenstromkanal, erfolgt. Gemäß der skizzierten generellen Ausführungsvariante mündet ein erstes Zulaufdrosselelement stets direkt im Steuerraum, welcher die Düsennadel/Stößelbewegung im Injektorkörper steuert. Das weitere Zulaufdrosselelement dieser Lösungsvariante ist so angeordnet, dass es beim Öffnen als Bypass zum ersten Ablaufdrosselelement geschaltet ist. Damit kann eine Befüllung des Steuerraumes über zwei parallel schaltbare Zulaufdrosselelemente erfolgen, was eine schnelle Nadelschließgeschwindigkeit ermöglicht. Die Einspritzverlaufsformung wird dadurch unterstützt, dass zwei Ablaufdrosselelemente in Reihenschaltung oder einzeln wirkend schaltbar sind.
  • Mit dieser generellen Ausführungsvariante ist ein besonders schnelles Schließen der Düsennadel im Injektorkörper erzielbar.
  • Ein Kraftstoffinjektor, der gemäß der beiden dargestellten skizzierten generellen Ausführungsvarianten hergestellt wird, zeichnet sich durch eine besonders günstige und einfache Herstellbarkeit aus.
  • Zeichnung
  • Anhand der Zeichnung wird die Erfindung nachstehend eingehender beschrieben.
  • Es zeigt:
  • Figur 1
    eine Ausführungsvariante mit einer einem Steuerraum nachgeschalteten Ablaufdrossel, einer weiteren Ablaufdrossel im Nebenstromkanal und einer Zulaufdrossel im Ventilraum,
    Figur 2
    eine nicht durch die Erfindung obgedeckte Ausführungsvariante mit einem im Hauptstromkanal aufgenommenen ersten Ablaufdrosselelement und in den Steuerraum mündender Zulaufdrossel,
    Figur 3
    eine Ausführungsvariante gemäß Figur 2 mit in den Ventilraum mündender Zulaufdrossel,
    Figur 4
    eine nicht durch die Erfindung obgedeckte Ausführungsvariante mit einer in den Hauptstromkanal mündenden Zulaufdrossel,
    Figur 5
    ein Steuerraum, der über eine in diese mündende Zulaufdrossel mit Steuervolumen beaufschlagt wird und dem eine Ablaufdrossel nachgeschaltet ist, mit in den Ventilraum mündender weiterer Zulaufdrossel,
    Figur 6
    eine Ausführungsvariante gemäß Figur 5 mit in den Nebenstromkanal mündenden weiteren Zulaufdrosselelement,
    Figur 7
    eine nicht durch die Erfindung obgedeckte Ausführungsvariante gemäß Figur 5 mit in den Hauptstromkanal aufgenommenen weiteren Ablaufdrosselelement und oberhalb von diesem mündender weiterer Zulaufdrossel und
    Figur 8
    eine Ausführungsvariante gemäß der Darstellung in Figur 7 mit in den Ventilraum des Mehrwegeventiles mündenden weiterem Zulaufdrosselelement.
    Ausführungsvarianten
  • Figur 1 zeigt eine Ausführungsvariante mit einem einem Steuerraum nachgeschalteten Ablaufdrosselelement 25, einem weiteren Ablaufdrosselelement 16, im Nebenstromkanal 11 und einer im Ventilraum 19 eines Mehrwegeventiles 18 mündenden Zulaufdrossel 15.
  • Ein Injektor zum Einspritzen von Kraftstoff in den Brennraum einer Verbrennungskraftmaschine umfaßt einen Injektorkörper 2, in welchem ein Steuerraum 3 ausgebildet ist. Der Steuerraum 3 wird einerseits von einer Steuerraumdecke 4 des Injektorkörpers 2 und andererseits von einer Stirnfläche 6 einer Düsennadel-/Stötielanordnung 5 begrenzt. Ferner ist der Steuerraum 3 von einer Steuerraumwand 7 des Injektorkörpers 2 begrenzt. Der Steuerraum 3 steht über einen ersten Strömungskanal, dem Hauptstromkanal 8 über eine steuerraumseitige Mündung 9 und eine ventilraumseitige Mündung 10 mit einem Ventilraum 19 eines Mehrwegeventiles. 18 in Verbindung. Das Mehrwegeventil 18 wird vorzugsweise als ein 3/3-Wege-Ventil ausgebildet. Ferner steht der Steuerraum 3 über einen zweiten Strömungskanal 11, dem Nebenstromkanal mit dem Ventilraum 19 des Mehrwegeventils in Verbindung. Die steuerraumseitige Mündung des Stromkanals 11 ist mit Bezugszeichen 12 gekennzeichnet, während die ventilraumseitige Mündung des Nebenstromkanales 11 mit Bezugszeichen 13 identifiziert ist. Sowohl der Hauptstromkanal 8 als auch der Nebenstromkanal 11 zwischen Steuerraum 3 und Ventilraum 19 sind in beide Fließrichtungen 29 bzw. 30 von Kraftstoff durchströmbar.
  • Der Ventilraum 19, in welchem ein in der Darstellung gemäß Figur 1 kugelförmig konfigurierter Schließkörper 20 aufgenommen ist, steht über ein erstes Zulaufdrosselelement 15 mit einem ersten hochdruckseitigen Zulauf 14 in Verbindung. Im Nebenstromkanal 11 ist ein Ablaufdrosselelement 16 angeordnet, welches eine Querschnittsfläche 17 (A1) aufweist.
  • Oberhalb des kugelförmig konfigurierten Schließkörpers 20 des Mehrwegeventils 18 ist ein auf den Schließkörper 20 einwirkendes Übertragungselement 21 dargestellt, welches über einen hier nicht näher dargestellten Aktor - sei es ein Piezoaktor oder ein Magnetventil - betätigbar ist. Zwischen der Mantelfläche des Übertragungselementes 21 und der Wandung des Injektorkörpers 2 ist ein Ringspalt 22 ausgebildet, von welchem ein Abzweig 23 in Richtung eines Ablaufes 24 verläuft. Im Ablauf 24, dem Abzweig 23 nachgeordnet, ist ein weiteres Ablaufdrosselelement 25 ausgebildet, welches in einer Querschnittsfläche A1 ausgeführt ist. Der Ventilkörper 20 des Mehrwegeventiles 18 ist mittels des Übertragungselementes 21 zwischen einem ersten Sitz 27 und einem weiteren, dem zweiten Sitz 28 hin-und herschaltbar. Zur Erzielung einer Einspritzverlaufsformung ist das erste Ablaufdrosselelement 16, welches in der Darstellung gemäß Figur 1 im Nebenstromkanal 11 aufgenommen ist, mit einer Querschnittsfläche A1 versehen, welche kleiner bemessen ist als die Querschnittsfläche 26 A2 des weiteren Ablaufdrosselelementes.
  • Bei in den zweiten Ventilsitz 28 gestellten Ventilkörper 20 des Mehrwegeventiles 18 wirken das im Nebenstromkanal 11 aufgenommene erste Ablaufdrosselelement 16 in Ablaufrichtung 30 des Steuervolumens aus dem Steuerraum 3 gesehen und das über den Ventilraum 19 mit abzusteuerndem Steuervolumen beaufschlagte weitere Ablaufdrosselelement 25 im Ablauf 24 in Reihe. Bei in Reihe geschalteten Ablaufdrosselelementen 16 bzw. 25 läßt sich eine sehr gute Einspritzverlaufsformung, entsprechend der Dimensionierung der Drosselquerschnitte A1 17 bzw. A2 26 konfigurierte Durchflußflächen erzielen.
  • In Figur 2 ist eine nicht durch die Erfindung abgedeckte Ausführungsvariante mit einem im Hauptstromkanal aufgenommenen ersten Ablaufdrosselelement und einem in den Steuerraum unmittelbar mündender Zulaufdrosselelement dargestellt.
  • Auch gemäß dieser Ausführungsvariante stehen der Ventilraum 19 des Mehrwegeventils 18 sowie der Steuerraum 3 im Injektorkörper 2 über zwei parallel zueinander verlaufende Strömungskanäle, d.h. den Hauptstromkanal 8 un den Nebenstromkanal 11 in Verbindung. Der Ventilkörper 20 des Mehrwegeventils 18 ist mittels eines Übertragungselementes 21 zwischen einem ersten Ventilsitz 27 und einem zweiten Ventilsitz 28 oberhalb des Hauptstromkanales 8 bewegbar. Vom Ringspalt 22, der das Übertragungselement 21 zur Ansteuerung des Ventilkörpers 20 betätigt, zweigt ein Ablauf 24 an der Abzweigstelle 23 ab, in welchen das weitere Ablaufdrosselelement 25 mit Querschnittsfläche A2, Bezugszeichen 26, integriert ist. Im Unterschied zur Darstellung gemäß Figur 1 ist der Steuerraum 3 unmittelbar durch eine permanent wirkende Zulaufdrossel 15 von einem ersten hochdruckseitigem Zulauf 14 mit Kraftstoff versorgt. Ferner ist das erste Ablaufdrosselelement 16 im Gegensatz zur Darstellung gemäß Figur 1 in den Hauptstromkanal 8 integriert.
  • Bei dieser Ausführungsvariante wirken das erste Ablaufdrosselelement 16, aufgenommen im Hauptstromkanal 8 sowie das weitere Ablaufdrosselelement 25, aufgenommen im Ablauf 24 parallel zueinander. Auch gemäß dieser Ausführungsvariante liegt die Querschnittsfläche 17 A1 des ersten Ablaufdrosselelementes 16 unterhalb der Querschnittsfläche 26 A2 des weiteren Ablaufdrosselelementes.
  • Figur 3 zeigt eine Ausführungsvariante gemäß Figur 2 jedoch mit in den Ventilraum mündender, permanent wirkender Zulaufdrossel 15.
  • Diese Ausführungsvariante unterscheidet sich von derjenigen gemäß Figur 2 lediglich dadurch, dass das permanent wirkende erste Zulaufdrosselelement 15 des ersten hochdruckseitigen Zulaufes 14 nicht unmittelbar in den Steuerraum 3 mündet sondern seitlich in den den Ventilkörper 20 des Mehrwegeventiles 18 umgebenden Ventilraum 19 im Injektorkörper 2. Der Hauptstromkanal 8 wird demnach sowohl - in Bezug auf den Steuerraum 3 gesehen - in Zulaufrichtung 29 als auch in Ablaufrichtung 30 vom Steuervolumen durchströmt. Die steuerraumseitigen Mündungen des Hauptstromkanales 8 sowie des Nebenstromkanales 11 sind analog zur Darstellung gemäß den Figuren 2 und 3 mit den Bezugszeichen 9 und 12 identifiziert, während die ventilraumseitigen Mündungen 10 bzw. 13 von Hauptstromkanal 8 und Nebenstromkanal 11 analog zu den vorhergehenden Figuren mit den Bezugszeichen 10 bzw. 13 gekennzeichnet sind.
  • Figur 4 zeigt eine nicht durch die Erfindung abgedeckte Ausführungsvariante mit einem in dem Hauptstromkanal zwischen Ventilraum und Steuerraum mündenden permanent wirkenden Zulaufdrosselelement.
  • Gemäß dieser Ausführungsvariante des der Erfindung zugrundeliegenden Gedankens ist das erste Ablaufdrosselelement 16 mit seiner Querschnittsfläche 17 (A1) unmittelbar hinter der steuerraumseitigen Mündung 9 in der Steuerraumdecke 4 angeordnet. Im Unterschied zu den Darstellungen gemäß der Figuren 1 und 2 befindet sich das permanent wirkende Zulaufdrosselelement 15 in einer zweiten weiteren Zulaufposition, die mit Bezugszeichen 41 bekennzeichnet ist. Das im Hauptstromkanal 8 aufgenommene erste Ablaufdrosselelement 16 wird - in bezug auf den Steuerraum 3 - in Zulaufrichtung 29 bzw. in Ablaufrichtung 30 durchströmt, wobei das permanent wirkende Zulaufdrosselelement 15 in erster Linie als ein Leckagenmengenbegrenzer zu sehen ist, da die eigentliche Zulaufdrosselfunktion vom rückwärts - in Zulaufrichtung 29 - durchströmten ersten Ablaufdrosselelement 17 übernommen wird. Auch in dieser Ausführungsvariante ist einem Ringspalt 22 oberhalb des Ventilraumes 19 des Mehrwegeventiles 18 ein Abzweig 23 zugeordnet, welcher in einen Ablauf 24 übergeht, in welchem ein weiteres Ablaufdrosselelement 25 integriert ist. Die Querschnittsfläche 26 A2 des weiteren Ablaufdrosselelementes 25 ist größer bemessen als die Querschnittsfläche A1 17 des ersten Ablaufdrosselelementes 16, welches in dieser Ausführungsvariante im Hauptstromkanal 8 aufgenommen ist und in beide Richtungen 29 bzw. 30 vom Steuervolumen durchströmt werden kann.
  • Den in Figur 1 bis 4 wiedergegebenen Ausführungsvarianten ist gemeinsam, das bei Stellung des Ventilkörpers 20 des Mehrwegeventils 18 an seinen ersten Sitz 27 im Injektorkörper 2 der Steuerraum 3 durch den im hochdruckseitigen Zulauf 14 anstehenden hohen Druck befüllt wird und die Düsennadel-/Stößelanordnung 5 in ihre Schließposition gehalten wird. Die Befüllung des Steuerraumes erfolgt durch das erste Zulaufdrosselelement 15, welches gemäß der hier dargestellten Ausführungsvarianten an verschiedenen Stellen angeordnet ist. Eine sehr gute Einspritzverlaufsformung läßt sich insbesondere mit den Ausführungsvarianten gemäß der Figuren 1 und 5 erzielen, bei welchen die als erste Ablaufdrosselelemente 16 sowie das weitere Ablaufdrosselelement 25 in Reihe geschaltet sind.
  • Figur 5 zeigt eine weitere generelle Ausführungsvariante eines Kraftstoffinjektors, mit einem Steuerraum, der über eine in diesen mündende permanent wirkende Zulaufdrossel 15 beaufschlagt ist, wobei dem Ventilraum eine Ablaufdrossel nachgeschaltet ist und in den Ventilraum ein weiteres Zulaufdrosselelement 51 mündet.
  • Auch bei den nachfolgend beschriebenen Figuren 5, 6, 7 und 8 ist dem Ventilraum 19 des Mehrwegeventiles 18 jeweils ein weiteres Ablaufdrosselelement 25 mit einer Querschnittsfläche 26 A2 nachgeschaltet, welches im Ablauf 24, der vom Ringspalt 22 abzweigt, aufgenommen ist.
  • Ferner wird der in den Figuren 5, 6, 7 und 8 dargestellten Ausführungsvarianten der im Injektorkörper 2 des Injektors 1 ausgebildete Steuerraum 3 unmittelbar über ein permanent wirkendes erstes Zulaufdrosselelement 15 befüllt, welches seinerseits von einem ersten hochdruckseitigen Zulauf 14 beaufschlagt wird. Eine weitere Gemeinsamkeit besteht darin, das in den nachfolgend beschriebenen Ausführungsvarianten des der Erfindung zugrundeliegenden Gedankens der Steuerraum 3 sowie der Ventilraum 19 des Mehrwegeventiles 18 über zwei Strömungskanäle, d.h. den Hauptstromkanal 8 sowie den Nebenstromkanal 11 miteinander in Verbindung stehen. Dabei ist der Hauptstromkanal 8 durch den in den nachstehenden Ausführungsvarianten kugelförmig ausgebildeten Ventilkörper 20 des Mehrwegeventiles 18 bei dessen Einfahren in den zweiten Ventilsitz 28 verschließbar bzw. bei Betätigung des Übertragungselementes 21 durch einen nicht dargestellten Aktor auch wieder freigebbar.
  • Gemäß der Ausführungsvariante nach Figur 5 ist in den Nebenstromkanal 11 zwischen Ventilraum 19 des Mehrwegeventiles 18 und Steuerraum 3 ein erstes Ablaufdrosselelement 16 aufgenommen. Der Nebenstromkanal 11 ist in bezug auf den Steuerraum 3 sowohl in Zulaufrichtung 29 als auch in Ablaufrichtung 30 vom Strömungsvolumen durchströmbar. Analog zu den in Figur 1 bis 4 dargestellten Ausführungsvarianten ist das steuerseitige Ende des Hauptstromkanals mit Bezugszeichen 9 und dessen ventilraumseitige Mündung mit Bezugszeichen 10 bezeichnet, während das steuerraumseitige Ende des Nebenstromkanales 11 mit Bezugszeichen 12 und dessen ventihaumseitiges Ende mit Bezugszeichen 13 identifiziert ist. Im in Figur 5 dargestellten Ausführungsbeispiel mündet ein weiteres Zulaufdrosselelement 51, welches mit einem weiteren hochdruckseitigen Zulauf 50 in Verbindung steht, in den Ventilraum. Wird gemäß dieser Ausführungsvariante der Ventilkörper 20 des Mehrwegeventiles 18 in seinen ersten Sitz 27 gestellt, erfolgt eine schnelle Erfüllung des Steuerraumes über die parallel wirkenden Zulaufdrosselelemente 15 und 51, wobei in dieser Schaltungsvariante der Steuerraum über den Nebenstromkanal 11, den Hauptstromkanal 8 und das permanent wirkende erste Zulaufdrosselelement 15 beaufschlagt wird. Das im Nebenstromkanal 11 aufgenommene erste Ablaufdrosselelement wird bei in den ersten Ventilsitz 27 gestellten Ventilkörper 20 des Mehrwegeventiles 18 in rückwärtige Richtung durchströmt, ein schnelles Schließen der Düsennadel/Nadelanordnung 5 erfolgt demnach dadurch, dass der die Stirnseite 6 der Düsennadel-/Stößelanordnung beaufschlagende Steuerraum 3 zusätzlich über ein weiteres Zulaufdrosselelement 51, welches in diesem Falle im Ventilraum 19 des Mehrwegeventiles 18 mündet, befüllt wird und sich demzufolge ein schnellerer Druckaufbau in Steuerraum 3 einstellt. Das weitere Zulaufdrosselelement 51 wirkt in der Ausführungsvariante gemäß Figur 5 als Bypass zum im Nebenstromkanal 11 aufgenommenen ersten Ablaufdrosselelement 16 und bei in den ersten Ventilsitz 27 gefahrenen Ventilkörper 20 wird eine Parallelschaltung zweier Zulaufdrosselelemente 15 bzw. 51 herbeigeführt.
  • Gemäß dieser Ausführungsvariante ist die Fähigkeit zur Einspritzverlaufsformung dadurch gegeben, dass bei in den zweiten Ventilsitz 28 gestelltem Ventilkörper 20 - entsprechend angesteuert durch den das Übertragungselemente 21 betätigenden Aktor - eine Druckentlastung des Steuerraumes 3 über die in Reihe geschalteten Ablaufdrosselelemente, d.h. das im Nebenstromkanal 11 aufgenommene erste Ablaufdrosselelemente 16 und das zu diesem in Reihe schaltbare weitere Ablaufdrosselelement 25 in den dem Ventilraum 19 nachgeordneten Ablauf 24 erfolgt. Die Einspritzverlaufsformung kann durch die Auslegung der Drosselquerschnitte 17 bzw. 26 des ersten Ablaufdrosselelementes 16 im Nebenstromkanal 11 und des weiteren Ablaufdrosselelementes 25 in Ablauf 24 charakterisiert und eingestellt werden.
  • Figur 6 zeigt eine Ausführungsvariante gemäß der Darstellung in Figur 5 mit in den Nebenstromkanal mündenden weiteren Zulaufdrosselelement.
  • Auch gemäß dieser Ausführungsvariante wird der Steuerraum 3 im Injektorkörper 2 über ein permanent wirkendes erstes Zulaufdrosselelement 15 unmittelbar über einen ersten hochdruckseitigen Zulauf 14 befüllt. Analog zur Ausgestaltung des Hauptstromkanals 8 und des Nebenstromkanals 11 gemäß der Ausführungsvariante in Figur 5 ist bei der in Figur 6 dargestellten Ausführungsvariante ein erstes Ablaufdrosselelement 16 im Nebenstromkanal 11 aufgenommen. Dem Ventilraum des Mehrwegeventils ist ein Ablauf 24 nachgeordnet, der ein weiteres Ablaufdrosselelement 25, ausgelegt in Querschnitt 26 A2 umfasst. Im Unterschied zur Ausführungsvariante gemäß Figur 5 mündet das weitere Zulaufdrosselelement 51 eines weiteres hochdruckseitigen Zulaufes 50 nun nicht im Ventilraum 19, sondern im Nebenstromkanal 11 in einem ersten Abstand 54 in bezug auf das im Nebenstromkanal 11 angeordnete erste Ablaufdrosselelement 16. Der Abstand 54 gemäß der Ausführungsvariante in Figur 6 ist so bemessen, dass im Bereich der Mündungsstelle des weiteren Zulaufdrosselelementes 51 und dem Ende des ersten Ablaufdrosselelementes 16 im Nebenstromkanal 11 die Strömung sich wieder laminar ausbilden kann.
  • Wird der Ventilkörper 20 im Ventilraum 19 in seinen ersten Sitz 27 gestellt, erfolgt eine Parallelschaltung des ersten hochdruckseitigen Zulaufes 14 und des weiteren hochdruckseitigen Zulaufes 50 und die darin aufgenommenen Zulaufdrosselelemente 15 bzw. 51, so dass auch gemäß dieser Ausführungsvariante der Steuerraum 3 parallel über zwei Zuläufe beaufschlagt und damit ein schneller Druckaufbau realisierbar ist, der zu einem schnellen Nadelschließen führt. Auch hier ist der weitere hochdruckseitige Zulauf 50 als Bypass zum ersten Ablaufdrosselelemente 16, welches dem Steuerraum 3 nachgeordnet ist, ausgelegt.
  • Bei in den zweiten Ventilsitz 28 gestelltem Ventilkörper 20 des Mehrwegeventiles erfolgt eine Druckentlastung des Steuerraumes 3 über die in Reihe geschalteten Ablaufdrosselelemente 16 im Nebenstromkanal 11 und das weitere Ablaufdrosselelement 25 im Ventilraum 19 nachgeordneten Ablauf 24.
  • In der Ausführungsvariante gemäß Figur 7, welche nicht durch die Erfindung gedeckt ist, ist eine Abwandlung der Ausführungsvariante gemäß Figur 5 mit in den Hauptstrom aufgenommenen weiteren Ablaufdrosselelement und oberhalb von diesem im Hauptstromkanal mündenden weiteren Zulaufdrosselelement dargestellt.
  • Auch gemäß dieser Variante wird der Steuerraum 3 stets unmittelbar durch ein permanent wirkendes erstes Zulaufdrosselelement 15 über einen ersten hochdruckseitigen Zulauf 14 mit Steuervolumen beaufschlagt. Dem Steuerraum 19 ist ein Ablauf 24 nachgeschaltet, in dem ein weiteres Ablaufdrosselelement 25 aufgenommen ist, das in einem Querschnitt 26 A2 ausgebildet ist. Im Unterschied zur in Figur 5 dargestellten Ausführungsvariante ist das dem Steuerraum nachgeschaltete erste Ablaufdrosselelement 16 nicht im Nebenstromkanal 11, sondern im Hauptstromkanal 8 aufgenommen, welcher durch den Ventilkörper 20 des Mehrwegeventiles 18 im Ventilraum 19 geöffnet bzw. verschlossen werden kann.
  • Gemäß dieser Ausführungsvariante, bei der das weitere Zulaufdrosselelement 51 des weiteren hochdruckseitigen Zulaufes 50 in einem zweiten Abstand 55 oberhalb des ersten Ablaufdrosselelementes 16 im Hauptstromkanal 8 mündet, erfolgt eine Befüllung des Steuerraumes 3 bei in den den Hauptstromkanal 8 verschließenden Ventilkörper 20 über die parallel wirkenden Zulaufdrosselelemente 15 bzw. 51 und die diese beaufschlagenden hochdruckseitigen Zuläufe 14 bzw. 50. Eine Druckentlastung des Steuerraumes 3 erfolgt gemäß der in Figur 7 dargestellten Ausführungsvariante des Injektors bei in den zweiten Ventilsitz gestellten Ventilkörper 20 über das im Ablauf 24 aufgenommene weitere Ablaufdrosselelement. Das im Hauptstromkanal 8 aufgenommene erste Ablaufdrosselelement 16 ist, da der Hauptstromkanal 8 bei Druckentlastung des Steuerraumes 3 verschlossen ist, nicht wirksam, so dass die Druckentlastung des Steuerraumes 3 über den Nebenstromkanal, 11 den Ventilraum 19 und das weitere Ablaufdrosselelement 25 des Ablaufes 24 erfolgt.
  • In der Darstellung gemäß Figur 8 ist eine leichte Abwandlung der Ausführungsvariante gemäß Figur 7 dargestellt. Im Unterschied zur Darstellung gemäß Figur 7 mündet der weitere hochdruckseitige Zulauf 50 und das in diesen integrierte weitere Zulaufdrosselelement 51 nicht unmittelbar in den Hauptstromkanal 8, sondern in den Ventilraum 19 des Mehrwegeventiles. Analog zur Darstellung gemäß Figur 7 ist im Hauptstromkanal 8 das erste Ablaufdrosselelement 16, ausgelegt in einem ersten Querschnitt A1 17, enthalten. Dem Ventilraum 19 des Mehrwegeventiles ist der Ablauf 24 nachgeschaltet, der das weitere Ablaufdrosselement 25, ausgelegt im Querschnitt A2 umfasst. Ist der Ventilkörper 20 des Mehrwegeventiles in seinen ersten Ventilsitz 27 gestellt, so erfolgt eine Druckbeaufschlagung des Steuerraumes 3 einerseits über das permanent diesen befüllende erste Zulaufdrosselelement 15 über den ersten hochdruckseitigen Zulauf 14 und über das in den Ventilraum 19 mündende weitere Zulaufdrosselelement 51 eines weiteres hochdruckseitigen Zulaufes 50. Der Steuerraum wird somit über den Nebenstromkanal 11 und den Hauptstromkanal 8 befüllt, wobei das im Hauptstromkanal 8 gemäß der Ausführungsvariante in Figur 8 aufgenommene erste Ablaufdrosselelement 16 als eigentliche Zulaufdrossel fungiert.
  • Wird hingegen der Ventilkörper 20 des Mehrwegeventiles im Ventilraum 19 an seinen zweiten Sitz 28 gestellt, ist der Hauptstromkanal 8 verschlossen und eine Druckentlastung des Steuerraumes 3 erfolgt über den Nebenstromkanal 11 in die dem Ventilraum 19 des Mehrwegeventiles 18 nachgeschalteten Ablauf 24, aufgenommen ist.
  • In den dargestellten Ausführungsvarianten gemäß der Figuren 5, 6, 7 und 8 wird die Einspritzverlauffarmungsfähigkeit des Injektors 1 dadurch erreicht, dass gemäß der Ausführungsvarianten der Figuren 5 und 6 bei Druckentlastung des Steuerraumes 3 das erste Ablaufdrosselelement 16 des Nebenstromkanales 11 und das weitere Ablaufdrosselelement 25 des Ablaufes 24, welches dem Steuerraum 19 nachgeschaltet ist, in Reihe wirken und gemäß der Auslegung der Drosselquerschnitte A1 17 und A2 26 eine Einspritzverlaufsformung erzielbar ist, während bei den in Figur 7 und 8 ausgebildeten Ausführungsvarianten die Druckentlastung des Steuerraumes 3 bei in den zweiten Ventilsitz 28 gestellten Ventilkörper 20 des Mehrwegeventiles 18 über den Nebenstromkanal 11, den Ventilraum 19 in das in diesen Fällen einzeln wirkende weitere Ablaufdrosselelement 25 im Ablauf 24 erfolgt.
  • Gemäß der Ausführungsvarianten in den Figuren 5 bis 8 erfolgt bei in den zweiten Ventilsitz 28 gestellten Ventilkörper 20 des Mehrwegeventiles 18 eine Befüllung des Steuerraumes 3 parallel über das permanent wirkende erste Zulaufdrosselelement 15 und den ersten hochdruckseitigen Zulauf 14 sowie das weitere Zulaufdrosselelement 51 und den weiteren hochdruckseitigen Zulauf 50, welcher in den Ausführungsvarianten 5, 6, 7 und 8 an verschiedenen Stellen, d.h. dem Ventilraum 19, dem Nebenstromkanal 11, Hauptstromkanal 8 münden kann.

Claims (7)

  1. Kraftstoffinjektor zum Einspritzen von Kraftstoff in den Brennraum einer Verbrennungskraftmaschine, in welchem ein Mehrwegeventil (18) aufgenommen ist, welches einen in einem Ventilraum (19) aufgenommenen Ventilkörper (20) umfasst und bei Betätigung des Mehrwegeventiles (18) ein im Injektorkörper (2) angeordneter Steuerraum (3) druckentlastbar oder druckbeaufschlagbar ist,
    - wobei der Steuerraum (3) über mindestens ein Zulaufdrosselelement (15, 51) druckbeaufschlagbar und über mindestens ein Ablaufdrosselelement (16) druckentlastbar ist,
    - wobei dem Ventilraum (19) des Mehrwegeventiles (18) ein weiteres Ablaufdrosselelement (25) nachgeschaltet ist,
    - wobei der Ventilraum (19) und der Steuerraum (3) über einen Hauptstromkanal (8) und einen Nebenstromkanal (11) miteinander in Verbindung stehen, und
    - wobei der Hauptstromkanal (8) durch den Ventilkörper (20) des Mehrwegeventiles (18) an einem zweiten Ventilsitz (28) verschließbar ist,

    dadurch gekennzeichnet,
    dass bei durch den Ventilkörper (20) verschlossenem Hauptstromkanal (8) Kraftstoff von mindestens einem Zulaufdrosselelement (15, 51) zu dem mindestens einen weiteren Ablaufdrosselelement (25) strömen kann, ohne den Steuerraum (3) zu durchströmen.
  2. Kraftstoffinjektor gemäß Anspruch 1, dadurch gekennzeichnet, dass das erste Ablaufdrosselelement (16) im Nebenstromkanal (11) angeordnet ist.
  3. Kraftstoffinjektor gemäß Anspruch 1, dadurch gekennzeichnet, dass das erste Ablaufdrosselelement (16) im Hauptstromkanal (8) angeordnet ist.
  4. Kraftstoffinjektor gemäß Anspruch 1, dadurch gekennzeichnet, dass das erste Ablaufdrosselelement (16) einen kleineren Querschnitt (17) aufweist als der Querschnitt (26) des dem Ventilraum (19) nachgeschalteten weiteren Ablaufdrosselelementes (25).
  5. Kraftstoffinjektor gemäß Anspruch 2, dadurch gekennzeichnet, dass ein permanent wirkendes erstes Zulaufdrosselelement (15) im Ventilraum (19) des Mehrwegeventiles (18) mündet.
  6. Kraftstoffinjektor gemäß Anspruch 2, dadurch gekennzeichnet, dass der Steuerraum (3) über ein weiteres Zulaufdrosselelement (51) beaufschlagbar ist.
  7. Kraftstof6njektor gemäß Anspruch 3, dadurch gekennzeichnet, dass ein permanent wirkendes Zulaufdrosselelement (15) mit dem Ventilraum (19) des Mehrwegeventiles (18) und ein weiteres Zulaufdrosselelement (51) mit dem Steuerraum (3) unmittelbar in Fluidverbindung stehen.
EP02748597A 2001-06-29 2002-06-19 Kraftstoffinjektor mit einspritzverlaufsformung durch schaltbare drosselelemente Expired - Lifetime EP1404961B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10131640 2001-06-29
DE10131640A DE10131640A1 (de) 2001-06-29 2001-06-29 Kraftstoffinjektor mit Einspritzverlaufsformung durch schaltbare Drosselelemente
PCT/DE2002/002236 WO2003004856A1 (de) 2001-06-29 2002-06-19 Kraftstoffinjektor mit einspritzverlaufsformung durch schaltbare drosselelemente

Publications (2)

Publication Number Publication Date
EP1404961A1 EP1404961A1 (de) 2004-04-07
EP1404961B1 true EP1404961B1 (de) 2006-03-15

Family

ID=7690077

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02748597A Expired - Lifetime EP1404961B1 (de) 2001-06-29 2002-06-19 Kraftstoffinjektor mit einspritzverlaufsformung durch schaltbare drosselelemente

Country Status (5)

Country Link
US (1) US20060086818A1 (de)
EP (1) EP1404961B1 (de)
JP (1) JP2004521262A (de)
DE (2) DE10131640A1 (de)
WO (1) WO2003004856A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0215490D0 (en) 2002-07-04 2002-08-14 Delphi Tech Inc Control valve arrangement
DE10254749A1 (de) 2002-11-23 2004-06-17 Robert Bosch Gmbh Kraftstoffeinspritzvorrichtung mit einem 3/3-Wege-Steuerventil zur Einspritzverlaufsformung
DE102004055263A1 (de) * 2004-11-17 2006-05-18 Robert Bosch Gmbh Kraftstoffeinspritzvorrichtung
ATE390554T1 (de) * 2006-03-15 2008-04-15 Delphi Tech Inc Verbesserte steuerventilanordnung
JP4855946B2 (ja) * 2006-06-08 2012-01-18 株式会社デンソー 燃料噴射弁
DE102007034318A1 (de) 2007-07-24 2009-01-29 Robert Bosch Gmbh Injektor
US8505514B2 (en) * 2010-03-09 2013-08-13 Caterpillar Inc. Fluid injector with auxiliary filling orifice
US8448878B2 (en) 2010-11-08 2013-05-28 Caterpillar Inc. Fuel injector with needle control system that includes F, A, Z and E orifices
CN102364080A (zh) * 2011-11-22 2012-02-29 哈尔滨工程大学 多级节流稳压电控喷油器
DE102013224404A1 (de) * 2013-11-28 2015-05-28 Robert Bosch Gmbh Kraftstoffinjektor
GB201411162D0 (en) * 2014-06-24 2014-08-06 Delphi International Operations Luxembourg S.�.R.L. Control valve

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2279010A (en) * 1941-08-19 1942-04-07 American Locomotive Co Fuel injection apparatus
DE19729844A1 (de) * 1997-07-11 1999-01-14 Bosch Gmbh Robert Kraftstoffeinspritzvorrichtung
DE19738397A1 (de) * 1997-09-03 1999-03-18 Bosch Gmbh Robert Kraftstoffeinspritzanlage für eine Brennkraftmaschine
DE59906995D1 (de) * 1998-07-31 2003-10-23 Siemens Ag Einspritzventil mit einem Servoventil
DE19844996A1 (de) * 1998-09-30 2000-04-13 Siemens Ag Vorrichtung und Verfahren zur Dosierung von Fluid
DE19859592C1 (de) * 1998-12-22 2000-05-04 Bosch Gmbh Robert Kraftstoffeinspritzventil
DE19860397A1 (de) * 1998-12-28 2000-06-29 Bosch Gmbh Robert Kraftstoffeinspritzvorrichtung für Brennkraftmaschinen
DE19940289B4 (de) * 1999-08-25 2008-01-31 Robert Bosch Gmbh Kraftstoffeinspritzventil
DE19940301A1 (de) * 1999-08-25 2001-03-01 Bosch Gmbh Robert Kraftstoffeinspritzventil
EP1081372B1 (de) * 1999-08-31 2004-10-13 Denso Corporation Kraftstoffeinspritzvorrichtung
DE10024702A1 (de) * 2000-05-18 2001-11-22 Bosch Gmbh Robert Einspritzanordnung für ein Kraftstoff-Speichereinspritzsystem einer Verbrennungsmaschine
JP3551898B2 (ja) * 2000-06-15 2004-08-11 トヨタ自動車株式会社 燃料噴射弁

Also Published As

Publication number Publication date
DE50206087D1 (de) 2006-05-11
EP1404961A1 (de) 2004-04-07
JP2004521262A (ja) 2004-07-15
DE10131640A1 (de) 2003-01-16
US20060086818A1 (en) 2006-04-27
WO2003004856A1 (de) 2003-01-16

Similar Documents

Publication Publication Date Title
DE4311627B4 (de) Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen
EP0898650B1 (de) Kraftstoffeinspritzeinrichtung für brennkraftmaschinen
DE4332119A1 (de) Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen
DE10052604A1 (de) Magnetventil zur Steuerung eines Einspritzventils einer Brennkraftmaschine
DE1943693B2 (de) Federbelastetes rueckschlagventil
DE60034722T2 (de) Kraftstoffeinspritzanordnung
EP0976924B1 (de) Einspritzventil mit einem Servoventil
EP1404961B1 (de) Kraftstoffinjektor mit einspritzverlaufsformung durch schaltbare drosselelemente
DE60107794T2 (de) Kraftstoffeinspritzsystem
DE19823937B4 (de) Servoventil für Kraftstoffeinspritzventil
EP1404966B1 (de) Kraftstoffinjektor-schaltventil zur druckentlastung/belastung eines steuerraumes
EP1925812B1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE10059124A1 (de) Druckgesteuerter Injektor für Einspritzsysteme mit Hochdrucksammelraum
EP1314881A2 (de) Injektor für ein Common-Rail-Kraftstoffeinspritzsystem mit Einspritzverlaufsformung
WO2003004858A1 (de) Kraftstoffinjektor mit variabler steuerraumdruckbeaufschlagung
EP1404962A1 (de) Kraftstoffinjektor mit einspritzverlaufsformung
DE10132248C2 (de) Kraftstoffinjektor mit 2-Wege-Ventilsteuerung
DE19725474B4 (de) Mengenregelventil für ein Kraftstoffeinspritzsystem
EP1247978A2 (de) Kraftstoffeinspritzsystem für eine Brennkraftmaschine
DE10046829C2 (de) Steuerventil für Einspritzinjektoren von Brennkraftmaschinen
EP0915251A2 (de) Speichereinspritzsystem für eine mehrzylindrige Brennkraftmaschine
EP1176306A2 (de) Kraftstoffeinspriztsystem für Brennkraftmaschinen
DE10149868C1 (de) Einspritzinjektor für Brennkraftmaschinen
WO2023079163A1 (de) Kraftstoffinjektor
WO2003004860A2 (de) Kraftstoffinjektor mit zuschaltbarem steuerraumzulauf

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040129

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20040715

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50206087

Country of ref document: DE

Date of ref document: 20060511

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060705

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061218

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140620

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140617

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150619

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190822

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50206087

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210101