EP1400156B1 - Ballast device for fluorescent tubes comprising an integrated cooling point - Google Patents

Ballast device for fluorescent tubes comprising an integrated cooling point Download PDF

Info

Publication number
EP1400156B1
EP1400156B1 EP01274324A EP01274324A EP1400156B1 EP 1400156 B1 EP1400156 B1 EP 1400156B1 EP 01274324 A EP01274324 A EP 01274324A EP 01274324 A EP01274324 A EP 01274324A EP 1400156 B1 EP1400156 B1 EP 1400156B1
Authority
EP
European Patent Office
Prior art keywords
temperature
cooling point
fluorescent tube
heating coil
ballast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01274324A
Other languages
German (de)
French (fr)
Other versions
EP1400156A1 (en
Inventor
Wilhelm Wilken
Jürgen Schneider
Ewald Ehmen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NeoSave Europe Ltd
Original Assignee
NEOSAVE EUROPE Ltd
NEOSAVE EUROP Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEOSAVE EUROPE Ltd, NEOSAVE EUROP Ltd filed Critical NEOSAVE EUROPE Ltd
Publication of EP1400156A1 publication Critical patent/EP1400156A1/en
Application granted granted Critical
Publication of EP1400156B1 publication Critical patent/EP1400156B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/39Controlling the intensity of light continuously
    • H05B41/392Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
    • H05B41/3921Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations
    • H05B41/3927Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations by pulse width modulation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling

Definitions

  • This invention enters an electronic control gear according to the preamble of claim 1.
  • the mercury vapor pressure increases exponentially with temperature.
  • the luminous flux of the fluorescent tube initially increases with the mercury vapor pressure and the temperature, because with increasing pressure, more mercury atoms are available for generating light.
  • the self-absorption losses increase with temperature, resulting in a luminous flux drop. In between there is an optimal operating temperature.
  • the new T5 fluorescent tubes 14 to 35 W and 24 to 80 W are equipped with a cooling point behind a heating coil, namely the heating coil on the stamped side of the fluorescent tube, so that they allow control of the mercury vapor pressure by heating this coil and thus the cooling point.
  • T5 fluorescent tubes are designed to reach their optimum operating temperature of 35 ° without coil heating at an ambient temperature in the luminaire of 25 °. Especially T5 fluorescent tubes are particularly sensitive to temperature fluctuations and react with high luminous flux drop, if the optimum operating temperature is not met, so the mercury vapor pressure is not optimally adjusted. The operating temperature is met when new T5 fluorescent lamps are used with newer non-dimmable control gear, also known as electronic prescalers (ECGs).
  • ECGs electronic prescalers
  • the temperature of the fluorescent tube decreases due to the lower lamp power.
  • the ambient temperature of the fluorescent tubes ie the temperature in the luminaires
  • the luminous flux decreases in addition.
  • some dimmable electronic ballasts heat the heating filament of the fluorescent lamps with a dimming independent Wendel carvingstrom. This ensures that with an electrical dimming by pulse width modulation to 10%, the luminous flux also drops to 10% of the maximum luminous flux. Due to the dimming independent WendelMapstroms reach lamps undamped operating temperatures of about 45 ° C. As stated above, when the operating temperature is too high, the self-absorption losses increase. Therefore, these ECGs deliver worse maximum luminous flux values than non-dimmable ECGs.
  • Neither dimmable nor dimmable T5 lamps on the market are capable of maintaining optimum lamp temperature at different ambient temperatures.
  • An advantage of a measurement of the temperature of the cooling point or a temperature in the vicinity of the cooling point and a heating of the coil on the cooling side, so that the measured temperature remains constant, is that thereby an optimal mercury vapor pressure is maintained regardless of the dimming of the lamp and ambient temperature fluctuations becomes.
  • the best and most reliable way to set the optimum vapor pressure is to measure the temperature of the aluminum lamp cap above the cooling point, the temperature of which determines the mercury vapor pressure in the lamp.
  • control according to the invention advantageously sets the maximum light output at all ambient temperatures and degrees of dimming within the scope of the lamp-physical possibilities.
  • Fig. 1 shows an inventive operating device. It preferably drives a T5 fluorescent tube 12. This contains the heating coils 13 and 14, wherein the cooling point is arranged behind the coil 13.
  • the operating device comprises a line filter 1, a rectifier bridge circuit 2, an RF generator 3 (HF: high frequency), a pulse width modulator 4, a FET power amplifier 5, a safety cutoff and burnout control module 6, a low voltage power supply 9, a filament heater controller 10, a filament heater 11, a dimming factor stabilizer 8 and a temperature sensor 15.
  • the line filter 1 can be, for example, by the in Fig. 2 shown provided with a core double throttles 25 and 26 and the capacitors 27 and 28 can be realized.
  • a further throttle 24 and a further capacitor 21 may be provided in the line filter 1.
  • the rectifier bridge 2 preferably consists of four diodes 31, 32, 33 and 34.
  • capacitors 29 and 30 may be provided.
  • the rectifier bridge circuit 2 includes one or more electrolytic capacitors 35 and 36 for reducing the ripple of the rectified voltage.
  • the high-frequency generator 3 is realized by the integrated circuit 43 in conjunction with resistors 50 and 52 and capacitors 51 and 42.
  • the FET power amplifier 5 (FET: Field Effect Transistor) preferably consists of FETs 38 and 40. Furthermore, the resistors 39 and 41 may be provided which protect the integrated circuit 43 from excessive currents when the FETs 38 and 40 are turned on and off. Further, the FET power amplifier 5 includes a capacitor 37 for suppressing the DC component and for supplying a reactor 63 with an output voltage charged with an impedance to the fluorescent tube. The driving of the fluorescent tube with an impedance-loaded voltage is necessary because the fluorescent tube has a negative differential resistance, so that in the typical operating range, despite increasing voltage, the current increases.
  • the reason for the use of high frequency is that with increasing frequency coils with lower inductance produce sufficient reactance. Consequently, as the frequency increases, the size of the inductor 63 decreases.
  • One electrode of the capacitor 37 is connected to both FETs, the other to one terminal of the inductor 63. Between the other terminal of the inductor 63 and an operating voltage of the FET power amplifier, the burning voltage 16 for the fluorescent tube are tapped.
  • the assembly 6, which realizes the safety shutdown and the internal voltage control, is realized in the preferred embodiment by resistors 48, 58, 66, Tyristor 54, capacitors 57 and 59 and diodes 53, 55, 56 and 60.
  • resistor 66 and diodes 53 and 55 provide for a shutdown of the operating device, if too high a voltage is supplied by the network, which can lead to the destruction of the operating device and / or the fluorescent tube.
  • resistors 58, 61, 62, diodes 56, 60 and capacitors 57 and 59 practice the burning voltage.
  • the power amplifier As long as the fluorescent tube has not yet ignited, the power amplifier generates a burning voltage of about 800 V between the two due to the resonant circuit formed by capacitors 37 and 65 and coil 63 Spiraling the fluorescent tube. After ignition of the fluorescent tube breaks this voltage by damping the resonant circuit through the fluorescent tube to about 200 to 300 V together.
  • the combustion voltage control in module 6 switches off the pulse width modulator and thus also the power amplifier, if the ignition voltage does not collapse within 0.5 to 1 s after switching on the burning voltage to 200 to 300 V, ie the fluorescent tube has not ignited.
  • the ignition of the fluorescent tube is determined by measuring the drain current through a power transistor. When ignited, this current increases in the time average.
  • a resistor between the negative supply voltage and the drain in the transistor 40 are preferably connected, and the voltage drop across this transistor via the diode 60 of the combustion voltage control.
  • the mains voltage controller 7 also influences the pulse width modulator.
  • the mains voltage controller alters the pulse width modulation in such a way that the fluorescent tube glows equally bright despite fluctuations in the mains voltage. This makes sense, in particular, since the net nominal voltage varies between 220 and 240 V in individual European countries and the USA. In this way, country-specific features are compensated by the Netzwoodscontroler 7.
  • the low-voltage power supply generates a DC voltage of 15 V for the Dimm tintstabilmaschine 8 and the Wendelsammlungungs Kunststoffung 10.
  • the dimming factor stabilizer can measure a voltage or a resistance at the dimming input.
  • the WendelMapungsberichtung 10 controls the filament heater 11 when switching so that both Thompsonheirl 13 and 14 for 0.3 to 0.5 s are heated at full power, before the FET power amplifier 5, a burning voltage is applied to the fluorescent tube.
  • the preheating of the filament is referred to as a so-called warm start.
  • the warm start reduces the wear of the heating coil 13 and 14.
  • the life of a fluorescent tube without starting operations is about 20,000 operating hours. Due to frequent cold starts, ie starts without preheating the heating coils, this reduces to approximately 5,000 operating hours.
  • the heating coil 13 After starting the fluorescent tube, only the heating coil 13 is heated in a preferred embodiment.
  • the heating coil 14 is completely separated from the filament heating, so that the filament heating itself is not a short circuit for the power amplifier 5, when the power amplifier supplies a burning voltage.
  • the filament heating can be done by alternating current and be provided in the filament heating a transformer having two secondary windings, namely for each heating coil one.
  • the heating power in the heating coil is controlled by the coil heating controller 10 so that the temperature measured by the temperature sensor 15 remains constant.
  • the output signal of the temperature sensor of the coil heating control 10 is supplied.
  • the helical heater controller receives a control signal from dimming factor stabilizer 8. The latter signal provides improved control over transient dimming operations. If the dimming is suddenly ramped up or down, the temperature sensor 15 reacts only with a delay to the temperature changing in the aluminum cap with the lamp power.
  • the coil heater controller may be a PID controller. Where P is proportional, D is differential, and I is integral. In particular, the differential component for the controller is calculated from the signal obtained from the dimming factor stabilization.
  • the dimming factor stabilization affects the pulse width modulator according to the dimming.
  • heating coil 13 not only heating coil 13 but also heating coil 14 is preferably heated during operation with the same heating power.
  • This embodiment keeps the temperature in the fluorescent tube and thus the mercury vapor pressure in the optimum range, especially in the case of strong ambient temperature fluctuations.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Discharge-Lamp Control Circuits And Pulse- Feed Circuits (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

The invention relates to a ballast device for lamps, comprising an integrated cooling point, whose mercury vapour pressure can be regulated by the heating of said cooling point. According to the invention, the temperature of the cooling point or a temperature in the vicinity of the cooling point is measured by means of a temperature sensor (15) and the heating output of the coils is regulated in such a way that the temperature of the lamp remains within an optimal range.

Description

Diese Erfindung betrittt ein elektronisches Betriebsgerät gemäß dem Oberbegriff des Patentanspruchs 1.This invention enters an electronic control gear according to the preamble of claim 1.

Bei herkömmlichen Leuchtstoffröhren steigt der Quecksilberdampfdruck mit der Temperatur exponentiell an. Bei tiefen Temperaturen steigt der Lichtstrom der Leuchtstoffröhre mit dem Quecksilberdampfdruck und der Temperatur zunächst an, weil mit steigendem Druck mehr Quecksilberatome zur Lichterzeugung zur Verfügung stehen. Bei höheren Temperaturen und höherem Quecksilberdruck steigen die Selbstabsorptionsverluste mit der Temperatur, was zu einem Lichtstromabfall führt. Dazwischen gibt es eine optimale Betriebstemperatur.In conventional fluorescent tubes, the mercury vapor pressure increases exponentially with temperature. At low temperatures, the luminous flux of the fluorescent tube initially increases with the mercury vapor pressure and the temperature, because with increasing pressure, more mercury atoms are available for generating light. At higher temperatures and higher mercury pressure, the self-absorption losses increase with temperature, resulting in a luminous flux drop. In between there is an optimal operating temperature.

Die neue T5-Leuchtstoffröhren 14 bis 35 W und 24 bis 80 W sind mit einer Kühlstelle hinter einer Heizwendel, nämlich der Heizwendel auf der gestempelten Seite der Leuchtstoffröhre ausgestattet, so dass sie eine Regelung des Quecksilberdampfdrucks durch Heizung dieser Wendel und damit der Kühlstelle erlauben.The new T5 fluorescent tubes 14 to 35 W and 24 to 80 W are equipped with a cooling point behind a heating coil, namely the heating coil on the stamped side of the fluorescent tube, so that they allow control of the mercury vapor pressure by heating this coil and thus the cooling point.

T5-Leuchtstoffröhren sind so konstruiert, dass sie ohne Wendelheizung ihre optimale Betriebstemperatur von 35° bei einer Umgebungstemperatur in der Leuchte von, 25° erreichen. Gerade T5-Leuchtstoffröhren sind besonders empfindlich gegen Temperaturschwankungen und reagieren mit hohem Lichtstromabfall, wenn die optimale Betriebstemperatur nicht eingehalten wird, also der Quecksilberdampfdruck nicht optimal eingestellt ist. Die Betriebstemperatur wird bei Verwerdung der T5-Leuchtstofflampen mit neueren, nicht dimmbaren Betriebsgeräten eingehalten, die auch als elektronische Vorschattgeräte (EVGs) bezeichnet werden.T5 fluorescent tubes are designed to reach their optimum operating temperature of 35 ° without coil heating at an ambient temperature in the luminaire of 25 °. Especially T5 fluorescent tubes are particularly sensitive to temperature fluctuations and react with high luminous flux drop, if the optimum operating temperature is not met, so the mercury vapor pressure is not optimally adjusted. The operating temperature is met when new T5 fluorescent lamps are used with newer non-dimmable control gear, also known as electronic prescalers (ECGs).

Werden die Leuchtstoffröhren gedimmt, sinkt die Temperatur der Leuchtstoffröhre aufgrund der geringeren Lampenleistung. Bei 10% des maximalen Lichtstroms sinkt die Umgebungstemperatur der Leuchtstoffröhren, also die Temperatur in den Leuchten, bis auf ca.25° ab. Hierdurch sinkt der Lichtstrom zusätzlich ab. Um ein zusätzliches Absinken des Lichtstroms aufgrund der nicht optimalen Temperatur zu vermeiden, heizen manche dimmbare EVGs die Heizwendel der Leuchtstofflampen mit einem von der Dimmung unabhängigen Wendelheizstrom. So wird erreicht, dass bei einer elektrischen Dimmung durch Pulsbreitenmodulation auf 10% auch der Lichtstrom auf 10% des maximalen Lichtstroms abfällt. Aufgrund des von der Dimmung unabhängigen Wendelheizstroms erreichen Lampen ungedimmt Betriebstemperaturen von ca. 45°C. Wie oben ausgeführt, nehmen bei einer zu hohen Betriebstemperatur die Selbstabsorptionsverluste zu. Deshalb liefern diese EVGs schlechtere maximale Lichtstromwerte als die nicht dimmbaren EVGs.If the fluorescent tubes are dimmed, the temperature of the fluorescent tube decreases due to the lower lamp power. At 10% of the maximum luminous flux, the ambient temperature of the fluorescent tubes, ie the temperature in the luminaires, drops to approx. 25 °. As a result, the luminous flux decreases in addition. In order to avoid an additional decrease in the luminous flux due to the non-optimal temperature, some dimmable electronic ballasts heat the heating filament of the fluorescent lamps with a dimming independent Wendelheizstrom. This ensures that with an electrical dimming by pulse width modulation to 10%, the luminous flux also drops to 10% of the maximum luminous flux. Due to the dimming independent Wendelheizstroms reach lamps undamped operating temperatures of about 45 ° C. As stated above, when the operating temperature is too high, the self-absorption losses increase. Therefore, these ECGs deliver worse maximum luminous flux values than non-dimmable ECGs.

Um diesen Nachteil zu überwinden, wurden EVGs entwickelt, bei denen die Wendelheizleistung abhängig vom Dimmgrad und vom Lampentyp eingestellt wird.In order to overcome this disadvantage, electronic ballasts have been developed in which the filament heating power is adjusted depending on the degree of dimming and the lamp type.

Weder dimmbare noch nicht dimmbare, auf dem Markt befindliche EVGs für T5-Lampen sind in der Lage, die optimale Lampentemperatur bei unterschiedlichen Umgebungstemperaturen aufrechtzuerhalten.Neither dimmable nor dimmable T5 lamps on the market are capable of maintaining optimum lamp temperature at different ambient temperatures.

Aus dem Druchschrift EP1017257 ist gemäß Figur 3 ein Betriebsgerät in Form eines Lampenkontrollschaltkreises 302 bekannt, das zum Betrieb einer Lampe 330 vorgesehen ist. Die Lampe 330 weist allerdings keine eingebaute Kühlstelle auf. Aus Druckschrift US5274305 ist eine Gasentladungslampe bekannt, bei der Amalgam mittels einer Heizung beheizt wird.From the druchschrift EP1017257 3, an operating device in the form of a lamp control circuit 302, which is provided for operating a lamp 330, is known. However, the lamp 330 does not have a built-in cooling point. From publication US5274305 a gas discharge lamp is known in which amalgam is heated by means of a heater.

Es ist die Aufgabe der Erfindung, ein energiesparendes Betriebsgerät anzugeben.It is the object of the invention to provide an energy-saving operating device.

Bevorzugte Ausführungsformen der Erfindung sind Gegenstand der abhängigen Ansprüche.Preferred embodiments of the invention are the subject of the dependent claims.

Vorteilhaft an einer Messung der Temperatur der Kühlstelle oder einer Temperatur in der Nähe der Kühlstelle und einer Heizung der Wendel auf der Kühlstellenseite, so dass die gemessene Temperatur konstant bleibt, ist, dass hierdurch ein optimaler Quecksilberdampfdruck unabhängig von der Dimmung der Lampe und von Umgebungstemperaturschwankungen eingehalten wird.An advantage of a measurement of the temperature of the cooling point or a temperature in the vicinity of the cooling point and a heating of the coil on the cooling side, so that the measured temperature remains constant, is that thereby an optimal mercury vapor pressure is maintained regardless of the dimming of the lamp and ambient temperature fluctuations becomes.

Die beste und zuverlässigste Möglichkeit, den optimalen Dampfdruck einzustellen, ist die Messung der Temperatur der Aluminiumlampenkappe über der Kühlstelle, deren Temperatur den Quecksilberdampfdruck in der Lampe bestimmt.The best and most reliable way to set the optimum vapor pressure is to measure the temperature of the aluminum lamp cap above the cooling point, the temperature of which determines the mercury vapor pressure in the lamp.

Die erfindungsgemäße Regelung stellt in vorteilhafter Weise bei allen Umgebungstemperaturen und Dimmgraden im Rahmen des lampenphysikalisch Möglichen die jeweils maximale Lichtausbeute ein.The control according to the invention advantageously sets the maximum light output at all ambient temperatures and degrees of dimming within the scope of the lamp-physical possibilities.

Im folgenden werden bevorzugte Ausführungsformen anhand der beiliegenden Zeichnungen näher erläutert. Dabei zeigen

  • Fig. 1 ein Blockschaltbild eines erfindungsgemäßen Betriebsgeräts, und
  • Fig. 2 ein Schaltbild eines Betriebsgeräts, das Schaltungen für Baugruppen des erfindungsgemäßen Betriebsgeräts enthält.
In the following preferred embodiments are explained in detail with reference to the accompanying drawings. Show
  • Fig. 1 a block diagram of a control gear according to the invention, and
  • Fig. 2 a circuit diagram of an operating device containing circuits for modules of the operating device according to the invention.

Fig. 1 zeigt ein erfindungsgemäßes Betriebsgerät. Es steuert vorzugsweise eine T5-Leuchtstoffröhre 12 an. Diese enthält die Heizwendeln 13 und 14, wobei die Kühlstelle hinter der Wendel 13 angeordnet ist. Das Betriebsgerät umfasst ein Netzfilter 1, eine Gleichrichterbrückenschaltung 2, einen HF-Generator 3 (HF: Hochfrequenz), einen Pulsbreitenmodulator 4, einen FET-Leistungsverstärker 5, eine Baugruppe 6 zur Sicherheitsabschaltung und Brennspannungskontrolle, ein Niedervoltnetzteil 9, eine Wendelheizungssteuerung 10, eine Wendelheizung 11, eine Dimmfaktorstabilisierung 8 sowie einen Temperatursensor 15. Fig. 1 shows an inventive operating device. It preferably drives a T5 fluorescent tube 12. This contains the heating coils 13 and 14, wherein the cooling point is arranged behind the coil 13. The operating device comprises a line filter 1, a rectifier bridge circuit 2, an RF generator 3 (HF: high frequency), a pulse width modulator 4, a FET power amplifier 5, a safety cutoff and burnout control module 6, a low voltage power supply 9, a filament heater controller 10, a filament heater 11, a dimming factor stabilizer 8 and a temperature sensor 15.

Das Netzfilter 1 kann beispielsweise durch die in Fig. 2 dargestellten mit einem Kern versehenen Doppeldrosseln 25 und 26 sowie die Kondensatoren 27 und 28 realisiert werden. Darüber hinaus kann eine weitere Drossel 24 sowie ein weiterer Kondensator 21 im Netzfilter 1 vorgesehen sein. Die Gleichrichterbrücke 2 besteht vorzugsweise aus vier Dioden 31, 32, 33 sowie 34. Zur weiteren Unterdrückung hochfrequenter Störungen beim Ein- und Ausschalten der Dioden können Kondensatoren 29 und 30 vorgesehen sein. Daneben enthält die Gleichrichterbrückenschaltung 2 einen oder mehrere Elektrolytkondensatoren 35 und 36 zur Reduzierung der Welligkeit der gleichgerichteten Spannung. Der Hochfrequenzgenerator 3 wird durch die integrierte Schaltung 43 in Verbindung mit Widerständen 50 und 52 sowie Kondensatoren 51 und 42 realisiert.The line filter 1 can be, for example, by the in Fig. 2 shown provided with a core double throttles 25 and 26 and the capacitors 27 and 28 can be realized. In addition, a further throttle 24 and a further capacitor 21 may be provided in the line filter 1. The rectifier bridge 2 preferably consists of four diodes 31, 32, 33 and 34. For further suppression of high-frequency interference when switching on and off of the diodes, capacitors 29 and 30 may be provided. In addition, the rectifier bridge circuit 2 includes one or more electrolytic capacitors 35 and 36 for reducing the ripple of the rectified voltage. The high-frequency generator 3 is realized by the integrated circuit 43 in conjunction with resistors 50 and 52 and capacitors 51 and 42.

Wie ein Pulsbreitenmodulator 4 aufzubauen ist, ist aus dem Stand der Technik bekannt. Der FET-Leistungsverstärker 5 (FET: Feldeffekttransistor) besteht vorzugsweise aus FETs 38 und 40. Ferner können die Widerstände 39 und 41 vorgesehen sein, die die integrierte Schaltung 43 vor zu hohen Strömen beim Ein- und Ausschalten der FETs 38 und 40 schützen. Ferner enthält der FET-Leistungsverstärker 5 einen Kondensator 37, um den Gleichspannungsanteil zu unterdrücken und eine Drossel 63 um eine mit einer Impedanz belastete Ausgangsspannung an die Leuchtstoffröhre zu liefern. Die Ansteuerung der Leuchtstoffröhre mit einer impedanzbelasteten Spannung ist notwendig, weil die Leuchtstoffröhre einen negativen differentiellen Widerstand aufweist, so dass im typischen Betriebsbereich trotz sinkender Spannung der Strom zunimmt. Der Grund für die Verwendung von Hochfrequenz liegt darin, dass mit steigender Frequenz Spulen mit geringerer Induktivität einen ausreichenden Blindwiderstand erzeugen. Folglich sinkt mit steigender Frequenz die Baugröße der Drossel 63. Eine Elektrode des Kondensators 37 ist mit beiden FETs verbunden, die andere mit einem Anschluss der Drossel 63. Zwischen dem anderen Anschluss der Drossel 63 und einer Betriebsspannung des FET-Leistungsverstärkers kann die Brennspannung 16 für die Leuchtstoffröhre abgegriffen werden.How to build a pulse width modulator 4 is known from the prior art. The FET power amplifier 5 (FET: Field Effect Transistor) preferably consists of FETs 38 and 40. Furthermore, the resistors 39 and 41 may be provided which protect the integrated circuit 43 from excessive currents when the FETs 38 and 40 are turned on and off. Further, the FET power amplifier 5 includes a capacitor 37 for suppressing the DC component and for supplying a reactor 63 with an output voltage charged with an impedance to the fluorescent tube. The driving of the fluorescent tube with an impedance-loaded voltage is necessary because the fluorescent tube has a negative differential resistance, so that in the typical operating range, despite increasing voltage, the current increases. The reason for the use of high frequency is that with increasing frequency coils with lower inductance produce sufficient reactance. Consequently, as the frequency increases, the size of the inductor 63 decreases. One electrode of the capacitor 37 is connected to both FETs, the other to one terminal of the inductor 63. Between the other terminal of the inductor 63 and an operating voltage of the FET power amplifier, the burning voltage 16 for the fluorescent tube are tapped.

Die Baugruppe 6, die die Sicherheitsabschaltung und die Brennspannungskontrolle realisiert, wird in der bevorzugten Ausführungsform durch Widerstände 48, 58, 66, Tyristor 54, Kondensatoren 57 und 59 sowie Dioden 53, 55, 56 und 60 realisiert. Insbesondere Widerstand 66 sowie Dioden 53 und 55 sorgen für eine Abschaltung des Betriebsgeräts, falls vom Netz eine zu hohe Spannung geliefert wird, die zur Zerstörung des Betriebsgeräts und/oder der Leuchtstoffröhre führen kann. Insbesondere Widerstände 58, 61, 62, Dioden 56, 60 sowie Kondensatoren 57 und 59 übennrachen die Brennspannung.The assembly 6, which realizes the safety shutdown and the internal voltage control, is realized in the preferred embodiment by resistors 48, 58, 66, Tyristor 54, capacitors 57 and 59 and diodes 53, 55, 56 and 60. In particular, resistor 66 and diodes 53 and 55 provide for a shutdown of the operating device, if too high a voltage is supplied by the network, which can lead to the destruction of the operating device and / or the fluorescent tube. In particular, resistors 58, 61, 62, diodes 56, 60 and capacitors 57 and 59 practice the burning voltage.

Solange die Leuchtstoffröhre noch nicht gezündet hat, erzeugt der Leistungsverstärker aufgrund des durch Kondensatoren 37 evtl. und 65 sowie Spule 63 gebildeten Schwingkreises eine Brennspannung von ca. 800 V zwischen den beiden Wendeln der Leuchtstoffröhre. Nach dem Zünden der Leuchtstoffröhre bricht diese Spannung durch Dämpfung des Schwingkreises durch die Leuchtstoffröhre auf etwa 200 bis 300 V zusammen. Die Brennspannungskontrolle in Baugruppe 6 schaltet den Pulsbreitenmodulator und damit auch den Leistungsverstärker ab, falls die Zündspannung nicht innerhalb von 0,5 bis 1 s nach Einschalten der Brennspannung auf 200 bis 300 V zusammengebrochen ist, also die Leuchtstoffröhre nicht gezündet hat.As long as the fluorescent tube has not yet ignited, the power amplifier generates a burning voltage of about 800 V between the two due to the resonant circuit formed by capacitors 37 and 65 and coil 63 Spiraling the fluorescent tube. After ignition of the fluorescent tube breaks this voltage by damping the resonant circuit through the fluorescent tube to about 200 to 300 V together. The combustion voltage control in module 6 switches off the pulse width modulator and thus also the power amplifier, if the ignition voltage does not collapse within 0.5 to 1 s after switching on the burning voltage to 200 to 300 V, ie the fluorescent tube has not ignited.

In einer anderen Ausführungsform wird das Zünden der Leuchtstoffröhre durch Messen des Drainstroms durch einen Leistungstransistor ermittelt. Beim Zünden steigt dieser Strom im zeitlichen Mittel an. Hierzu sind vorzugsweise ein Widerstand zwischen die negative Versorgungsspannung und das Drain im Transistor 40 geschaltet und die über diesen Transistor abfallende Spannung über Diode 60 der Brennspannungskontrolle zugeführt.In another embodiment, the ignition of the fluorescent tube is determined by measuring the drain current through a power transistor. When ignited, this current increases in the time average. For this purpose, a resistor between the negative supply voltage and the drain in the transistor 40 are preferably connected, and the voltage drop across this transistor via the diode 60 of the combustion voltage control.

Der Netzspannungscontroler 7 beeinflusst ebenfalls den Pulsbreitenmodulator. Der Netzspannungscontroler verändert die Pulsbreitenmodulation so, dass trotz Schwankungen der Netzspannung die Leuchtstoffröhre gleich hell leuchtet. Dies ist insbesondere deshalb sinnvoll, da die Netzsollspannung in einzelnen europäischen Ländern und den USA zwischen 220 und 240 V schwankt. Auf diese Weise werden landespezifische Besonderheiten durch den Netzspannungscontroler 7 kompensiert.The mains voltage controller 7 also influences the pulse width modulator. The mains voltage controller alters the pulse width modulation in such a way that the fluorescent tube glows equally bright despite fluctuations in the mains voltage. This makes sense, in particular, since the net nominal voltage varies between 220 and 240 V in individual European countries and the USA. In this way, country-specific features are compensated by the Netzspannungscontroler 7.

Das Niedervoltnetzteil erzeugt eine Gleichspannung von 15 V für die Dimmfaktorstabilisierung 8 und die Wendelheizungssteuerung 10. An die Dimmfaktorstabilisierung 8 kann über Dimmeingang 16 ein Potentiometer oder eine Fotozelle zum Dimmen der Leuchtstoffröhre angeschlossen werden. Die Dimmfaktorstabilisierung kann am Dimmeingang eine Spannung oder einen Widerstand messen. Die Wendelheizungssteuerung 10 steuert die Wendelheizung 11 beim Einschalten so, dass beide Heizwendel 13 und 14 für 0,3 bis 0,5 s mit voller Leistung beheizt werden, bevor durch den FET-Leistungsverstärker 5 eine Brennspannung an die Leuchtstoffröhre gelegt wird.The low-voltage power supply generates a DC voltage of 15 V for the Dimmfaktorstabilisierung 8 and the Wendelheizungssteuerung 10. At the Dimmfaktorstabilisierung 8 can be connected via dimming input 16, a potentiometer or a photocell for dimming the fluorescent tube. The dimming factor stabilizer can measure a voltage or a resistance at the dimming input. The Wendelheizungssteuerung 10 controls the filament heater 11 when switching so that both Heizwendel 13 and 14 for 0.3 to 0.5 s are heated at full power, before the FET power amplifier 5, a burning voltage is applied to the fluorescent tube.

Das Vorheizen der Glühwendel wird als sogenannter Warmstart bezeichnet. Der Warmstart reduziert den Verschleiß der Heizwendel 13 und 14. Die Lebensdauer einer Leuchtstoffröhre ohne Startvorgänge beträgt etwa 20.000 Betriebsstunden. Durch häufige Kaltstarts, also Starts ohne Vorheizen der Heizwendeln reduziert sich diese etwa auf 5.000 Betriebsstunden.The preheating of the filament is referred to as a so-called warm start. The warm start reduces the wear of the heating coil 13 and 14. The life of a fluorescent tube without starting operations is about 20,000 operating hours. Due to frequent cold starts, ie starts without preheating the heating coils, this reduces to approximately 5,000 operating hours.

Nach dem Starten der Leuchtstoffröhre wird in einer bevorzugten Ausführungsform lediglich die Heizwendel 13 beheizt. Die Heizwendel 14 wird komplett von der Wendelheizung getrennt, so dass die Wendelheizung selbst keinen Kurzschluss für den Leistungsverstärker 5 darstellt, wenn der Leistungsverstärker eine Brennspannung liefert.After starting the fluorescent tube, only the heating coil 13 is heated in a preferred embodiment. The heating coil 14 is completely separated from the filament heating, so that the filament heating itself is not a short circuit for the power amplifier 5, when the power amplifier supplies a burning voltage.

Um das Problem des Kurzschlusses des Leistungsverstärkers durch die Wendelheizung weiter zu reduzieren, kann die Wendelheizung durch Wechselstrom erfolgen und in der Wendelheizung ein Transformator vorgesehen sein, der zwei Sekundärwicklungen, nämlich für jede Heizwendel eine, aufweist.To further reduce the problem of the short circuit of the power amplifier by the filament heating, the filament heating can be done by alternating current and be provided in the filament heating a transformer having two secondary windings, namely for each heating coil one.

Nach dem Starten wird die Heizleistung in der Heizwendel durch die Wendelheizungssteuerung 10 so gesteuert, dass die vom Temperatursensor 15 gemessene Temperatur konstant bleibt. Hierzu wird das Ausgangssignal des Temperatursensors der Wendelheizungssteuerung 10 zugeführt. Darüber hinaus erhält die Wendelheizungssteuerung ein Steuersignal von der Dimmfaktorstabilisierung 8. Das Letztere Signal sorgt für eine verbesserte Regelung bei transienten Dimmvorgängen. Wird die Dimmung plötzlich herauf- oder heruntergeregelt, reagiert der Temperatursensor 15 nur mit Verzögerung auf die sich mit der Lampenleistung ändernde Temperatur in der Aluminiumkappe. Anders ausgedrückt kann die Wendelheizungssteuerung einen PID-Regler darstellen. Dabei steht P für proportional, D für differential und I für Integral. Insbesondere der Differentialanteil für den Regler wird aus dem von der Dimmfaktorstabilisierung erhaltenen Signal berechnet.After starting, the heating power in the heating coil is controlled by the coil heating controller 10 so that the temperature measured by the temperature sensor 15 remains constant. For this purpose, the output signal of the temperature sensor of the coil heating control 10 is supplied. In addition, the helical heater controller receives a control signal from dimming factor stabilizer 8. The latter signal provides improved control over transient dimming operations. If the dimming is suddenly ramped up or down, the temperature sensor 15 reacts only with a delay to the temperature changing in the aluminum cap with the lamp power. In other words, the coil heater controller may be a PID controller. Where P is proportional, D is differential, and I is integral. In particular, the differential component for the controller is calculated from the signal obtained from the dimming factor stabilization.

Darüber hinaus beeinflusst die Dimmfaktorstabilisierung den Pulsbreitenmodulator entsprechend der Dimmung.In addition, the dimming factor stabilization affects the pulse width modulator according to the dimming.

In einer anderen bevorzugten Ausführungsform wird nicht nur Heizwendel 13 sondern auch Heizwendel 14 während des Betriebs vorzugsweise mit der gleichen Heizleistung beheizt. Diese Ausführungsform hält insbesondere bei starken Umgebungstemperaturschwankungen die Temperatur in der Leuchtstoffröhre und damit den Quecksilberdampfdruck im optimalen Bereich.In another preferred embodiment, not only heating coil 13 but also heating coil 14 is preferably heated during operation with the same heating power. This embodiment keeps the temperature in the fluorescent tube and thus the mercury vapor pressure in the optimum range, especially in the case of strong ambient temperature fluctuations.

Claims (7)

  1. A ballast for a fluorescent tube (12) with integral cooling point, the mercury vapour pressure of which may be regulated by heating the cooling point,
    characterised by
    - a temperature sensor (15), by means of which the temperature of the cooling point or a temperature in the surroundings of the cooling point is measured, and by
    - a heating coil (10, 11) with a heating coil output which is controlled such that the temperature of the fluorescent tube (12) remains within an ideal range.
  2. A ballast according to claim 1, characterised in that the temperature sensor (15) is arranged in a lamp cap close to the cooling point.
  3. A ballast according to claim 1, characterised in that the ballast is provided for T5 fluorescent tubes.
  4. A ballast according to any one of the above claims, characterised in that the fluorescent tube is operated at a high frequency which is generated by a high frequency generator (3) and a power amplifier (5), a pulse width modulator (4) furthermore being provided in order to control the pulse width of the high frequency and thus the light flux.
  5. A ballast according to claim 4, characterised in that a mains voltage controller (7) is furthermore provided which generates an output signal which is supplied to the pulse width modulator (4) and controls the pulse width modulator such that the luminous flux produced by a connected fluorescent tube (12) is independent of the level of the mains voltage.
  6. A ballast according to claim 4 or claim 5, characterised in that the ballast furthermore comprises a dimming factor stabiliser (8) which likewise generates an output signal for the pulse width modulator (4) such that the luminous flux of a connected fluorescent tube (12) is dimmed in accordance with a resistance connected to a dimming input (16) or a voltage applied to a dimming input (16).
  7. A ballast according to claim 6, characterised in that a heating coil controller (10) is furthermore provided which is supplied with an output signal from the temperature sensor (15) in order to regulate the heating coil output for the heating coil (13), the heating coil controller (10) furthermore being supplied with a signal from the dimming factor stabiliser (8).
EP01274324A 2001-06-20 2001-11-02 Ballast device for fluorescent tubes comprising an integrated cooling point Expired - Lifetime EP1400156B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10129755 2001-06-20
DE10129755A DE10129755A1 (en) 2001-06-20 2001-06-20 Control gear for fluorescent tubes with built-in cooling point
PCT/DE2001/004138 WO2003001856A1 (en) 2001-06-20 2001-11-02 Ballast device for fluorescent tubes comprising an integrated cooling point

Publications (2)

Publication Number Publication Date
EP1400156A1 EP1400156A1 (en) 2004-03-24
EP1400156B1 true EP1400156B1 (en) 2008-12-31

Family

ID=7688844

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01274324A Expired - Lifetime EP1400156B1 (en) 2001-06-20 2001-11-02 Ballast device for fluorescent tubes comprising an integrated cooling point

Country Status (13)

Country Link
EP (1) EP1400156B1 (en)
JP (1) JP2004531040A (en)
AT (1) ATE419734T1 (en)
CA (1) CA2451590A1 (en)
CZ (1) CZ20033517A3 (en)
DE (3) DE10129755A1 (en)
ES (1) ES2320092T3 (en)
HU (1) HUP0401456A2 (en)
PL (1) PL204319B1 (en)
RU (1) RU2004101293A (en)
SK (1) SK15962003A3 (en)
TR (1) TR200302237T1 (en)
WO (1) WO2003001856A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8318007B2 (en) 2005-08-31 2012-11-27 Trojan Technologies Ultraviolet radiation lamp and source module and treatment system containing same
DE102010064032A1 (en) * 2010-12-23 2012-06-28 Tridonic Gmbh & Co. Kg Regulated coil heater for gas discharge lamps
DE102012109519B4 (en) 2012-10-08 2017-12-28 Heraeus Noblelight Gmbh Method for operating a lamp unit for generating ultraviolet radiation and suitable lamp unit therefor
DE102016120672B4 (en) 2016-10-28 2018-07-19 Heraeus Noblelight Gmbh Lamp system with a gas discharge lamp and adapted operating method
ES2955182T3 (en) * 2018-01-24 2023-11-29 Xylem Europe Gmbh Germicidal amalgam lamp with temperature sensor for optimized operation

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2094720A5 (en) * 1970-06-30 1972-02-04 Fedorenko Anatoly
DE2138793A1 (en) * 1971-08-03 1973-02-22 Patra Patent Treuhand LOW PRESSURE MERCURY VAPOR DISCHARGE LAMP WITH AMALGAM
US3898511A (en) * 1974-04-22 1975-08-05 Gte Sylvania Inc Fluorescent lamp containing amalgam-forming material for reducing stabilization time
DE3432675A1 (en) * 1984-09-05 1986-03-13 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH, 8000 München COMPACT LOW PRESSURE DISCHARGE LAMP
US4827313A (en) * 1988-07-11 1989-05-02 Xerox Corporation Mechanism and method for controlling the temperature and output of an amalgam fluorescent lamp
US5173643A (en) * 1990-06-25 1992-12-22 Lutron Electronics Co., Inc. Circuit for dimming compact fluorescent lamps
US5029311A (en) * 1990-09-28 1991-07-02 Xerox Corporation Stabilized fluorescent lamp for a document scanning system
US5274305A (en) * 1991-12-04 1993-12-28 Gte Products Corporation Low pressure mercury discharge lamp with thermostatic control of mercury vapor pressure
EP0768812B1 (en) * 1995-10-16 2001-11-14 General Electric Company High power factor electronic ballast
DE19702285A1 (en) * 1997-01-23 1998-07-30 Josef Hoffmann Fluorescent lamp for operating on low current
JP3275797B2 (en) * 1997-09-10 2002-04-22 松下電器産業株式会社 Low pressure mercury vapor discharge lamp
US5808418A (en) * 1997-11-07 1998-09-15 Honeywell Inc. Control mechanism for regulating the temperature and output of a fluorescent lamp
US6252355B1 (en) * 1998-12-31 2001-06-26 Honeywell International Inc. Methods and apparatus for controlling the intensity and/or efficiency of a fluorescent lamp
TW453136B (en) * 1999-05-19 2001-09-01 Koninkl Philips Electronics Nv Circuit arrangement

Also Published As

Publication number Publication date
PL374148A1 (en) 2005-10-03
CZ20033517A3 (en) 2004-05-12
JP2004531040A (en) 2004-10-07
ATE419734T1 (en) 2009-01-15
RU2004101293A (en) 2005-06-20
SK15962003A3 (en) 2004-10-05
DE50114631D1 (en) 2009-02-12
TR200302237T1 (en) 2004-12-21
DE10129755A1 (en) 2003-01-02
PL204319B1 (en) 2009-12-31
DE20122035U1 (en) 2004-05-13
WO2003001856A1 (en) 2003-01-03
ES2320092T3 (en) 2009-05-19
HUP0401456A2 (en) 2004-10-28
EP1400156A1 (en) 2004-03-24
CA2451590A1 (en) 2003-01-03

Similar Documents

Publication Publication Date Title
DE3101568C2 (en) Circuit arrangement for operating low-pressure discharge lamps with adjustable luminous flux
DE4426664B4 (en) Device for starting and operating a high-pressure discharge lamp
DE4428850B4 (en) Circuit arrangement for controlling the lamp current of a high-pressure discharge lamp
DE69725823T2 (en) DIMMABLE BALLAST
DE4017415C2 (en) Circuit arrangement for operating a high-pressure discharge lamp for a vehicle headlight
EP0422255A1 (en) Electronic ballast
DE3715162A1 (en) CIRCUIT ARRANGEMENT FOR OPERATING A GAS DISCHARGE LAMP ON A DC POWER SOURCE
DE2701661A1 (en) POWER SUPPLY FOR FLUORESCENT LAMPS
DE3829388A1 (en) CIRCUIT ARRANGEMENT FOR OPERATING A LOAD
DE19708783C1 (en) Method and device for regulating the operating behavior of gas discharge lamps
DE3445817C2 (en)
EP1400156B1 (en) Ballast device for fluorescent tubes comprising an integrated cooling point
EP1635620B1 (en) Electronic ballast with charge pump for discharge lamps with pre-heated electrodes
EP0391383B1 (en) Ballast for a discharge lamp
EP0391360B1 (en) Ballast for a direct heated discharge lamp
DE69702829T2 (en) Electronic ballast of a gas discharge lamp with measurement of the lamp power by a direct current signal
DE69618568T2 (en) CIRCUIT
EP0155729B1 (en) Circuit device for the ac operation of high-pressure discharge lamps
EP1590993B1 (en) Electronic ballast
EP1377135A2 (en) Circuit with a near-capacitive mode detection for operating a discharge lamp
DE10164242B4 (en) Electronic ballast with current limitation with power control
EP1601237A2 (en) Ballast with control circuit for the permanent operation of a discharge lamp
DE19517355C2 (en) Dimmable electronic ballast
EP1296541B1 (en) Circuit device and method to produce UV rays
EP0949851A1 (en) Ballast for low-pressure discharge lamp

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031022

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20040326

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NEOSAVE EUROPE LIMITED

17Q First examination report despatched

Effective date: 20040326

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50114631

Country of ref document: DE

Date of ref document: 20090212

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: MICHELI & CIE SA

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2320092

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081231

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081231

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090601

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081231

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20091001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090401

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101129

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20111125

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20111122

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120131

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20120522

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120521

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120525

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120521

Year of fee payment: 11

BERE Be: lapsed

Owner name: NEOSAVE EUROPE LTD

Effective date: 20121130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 419734

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121102

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121102

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121102

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50114631

Country of ref document: DE

Effective date: 20130601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121102

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121103