EP1377135A2 - Circuit with a near-capacitive mode detection for operating a discharge lamp - Google Patents

Circuit with a near-capacitive mode detection for operating a discharge lamp Download PDF

Info

Publication number
EP1377135A2
EP1377135A2 EP03012453A EP03012453A EP1377135A2 EP 1377135 A2 EP1377135 A2 EP 1377135A2 EP 03012453 A EP03012453 A EP 03012453A EP 03012453 A EP03012453 A EP 03012453A EP 1377135 A2 EP1377135 A2 EP 1377135A2
Authority
EP
European Patent Office
Prior art keywords
circuit
lamp
operating
voltage
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03012453A
Other languages
German (de)
French (fr)
Other versions
EP1377135B1 (en
EP1377135A3 (en
Inventor
Olaf Busse
Markus Heckmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of EP1377135A2 publication Critical patent/EP1377135A2/en
Publication of EP1377135A3 publication Critical patent/EP1377135A3/en
Application granted granted Critical
Publication of EP1377135B1 publication Critical patent/EP1377135B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/295Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps with preheating electrodes, e.g. for fluorescent lamps
    • H05B41/298Arrangements for protecting lamps or circuits against abnormal operating conditions
    • H05B41/2981Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the circuit against abnormal operating conditions
    • H05B41/2986Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the circuit against abnormal operating conditions against internal abnormal circuit conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S315/00Electric lamp and discharge devices: systems
    • Y10S315/05Starting and operating circuit for fluorescent lamp

Definitions

  • the invention relates to an operating circuit for discharge lamps.
  • the invention relates to operating circuits which supply the discharge lamp with a high-frequency supply power which is obtained from a supply power via an oscillator circuit.
  • the invention relates to the case in which the supply power for the oscillator circuit is based on an AC supply power that is rectified.
  • Such operating circuits are common, in particular in the case of low-pressure discharge lamps, and therefore do not have to be explained in detail.
  • the oscillator circuit supplies a so-called load circuit, into which the discharge lamp is connected, and through which a high-frequency lamp current generated by the oscillator circuit flows.
  • the load circuit defines a resonance frequency that is influenced by various electrical parameters of the load circuit and also depends, among other things, on the operating state of the discharge lamp. Efforts are made to operate the load circuit relatively close to the resonance frequency during continuous operation of the discharge lamp. This has the advantage of small phase shifts between current and voltage and thus low reactive currents. You benefit from this when dimensioning the components, especially a lamp choke. Otherwise, the oscillator circuit generating the high-frequency supply power regularly contains switching elements. With small phase shifts due to operation close to resonance, the switching losses in the switching elements are relatively small. This has advantages with regard to the efficiency of the operating circuit as well as the thermal load and the dimensioning of the switching elements.
  • the aim is to work in the so-called inductive range, that is to say with an operating frequency of the oscillator circuit that is higher than the resonance frequency of the load circuit.
  • the operating frequency of the oscillator circuit becomes lower than the resonance frequency, because in capacitive operation, that is to say at an operating frequency lower than the resonance frequency, disturbing current peaks in the switching elements and other difficulties can result.
  • a faulty synchronization between the switching times and the lamp inductor current in capacitive operation can result in a pronounced positive current peak at the start of a lamp current half-wave carried by a switching element.
  • the aim is to work as close to the resonance frequency as possible, but falling below it should not occur or should occur only to a limited extent.
  • US Pat. No. 6,331,755 shows in FIG. 5 a resistor RCS for measuring a lamp inductor current and a comparator COMP for comparing this inductor current with a threshold value.
  • the comparison takes place on a switching-off edge of a switching transistor of a half-bridge oscillator circuit.
  • the closer the operating frequency comes to the resonance frequency and thus to the capacitive operation the smaller is not only a reversed sign-on peak of the measurement voltage at the resistor RCS, but also the more the measurement voltage drops at the end of the on-time of the switching transistor mentioned.
  • a threshold state can thus be set with the threshold value, in which the circuit as a whole is switched off (shown on the right in FIG. 6 there) if the operation becomes too close to resonance.
  • the invention is based on the technical problem of further improving an operating circuit for a discharge lamp with an oscillator circuit and a detection circuit for detecting proximity to a capacitive operation of the load circuit.
  • the invention relates to an operating circuit of the type shown, in which the detection circuit detects the magnitude of fluctuations in the lamp current or a manipulated variable of a lamp control circuit, which fluctuations in the supply power.
  • the invention is characterized by a particularly favorable form of detection of the proximity to the capacitive operation by the detection circuit.
  • the detection circuit detects the magnitude of fluctuations in the lamp current in accordance with the frequency of the supply power. If the oscillator circuit is supplied with a rectified AC supply power, the supply power of the oscillator circuit fluctuates with the fluctuations of the rectified supply voltage (so-called intermediate circuit voltage) given by the AC voltage frequency. The intermediate circuit voltage is therefore modulated at twice the frequency of the original AC voltage. The doubling of the frequency is a consequence of the rectification. It is theoretically also conceivable that no frequency doubling occurs here; in any case, the modulation of the intermediate circuit voltage is related to the frequency of the original AC voltage.
  • This intermediate circuit voltage modulation can usually still be measured in the lamp current itself, even if the lamp current is determined by a current or power control circuit, which is a preferred embodiment of the invention. Depending on the technical complexity, control circuits are only able to weaken this modulation to a limited extent. If no control circuit is provided, the modulation of the intermediate circuit voltage is all the more recognizable in the lamp current.
  • the rectified AC supply power is converted to a largely constant DC voltage by a PFC circuit (Power Factor Correction, so-called power factor correction).
  • the PFC circuit serves to limit the harmonic content of the power consumption from the AC network and generally charges a storage capacitor to the DC link voltage.
  • the intermediate circuit voltage is then also modulated to a certain extent in accordance with the AC voltage frequency.
  • the magnitude of the lamp current fluctuations depends on the proximity to the resonance frequency and thus on the proximity to the capacitive operation. This follows from the increase in lamp current with increasing proximity to resonance on the one hand and the modulation of proximity to resonance by the intermediate circuit voltage modulation on the other hand.
  • the level of the fluctuations in the lamp current thus offers a particularly simple possibility for detecting the proximity to capacitive operation.
  • this is a signal which can be varied, for example, at twice the mains frequency of the AC voltage network and which in this respect does not present any significant measurement difficulties.
  • the conventional solutions for detecting the proximity to the capacitive operation are linked to the operating frequency of the oscillator circuit itself and must be related to these phases, which necessitates a considerably higher outlay in terms of circuitry.
  • the lamp current must be measured anyway for other reasons, for example in order not to exceed certain maximum values for safety reasons or to carry out the current regulation already mentioned. Then the invention is associated with all the less additional effort.
  • the general formulation of the invention in claims 1 and 2 speaks of a variable supply. As stated above, this can be a rectified AC supply power. However, the invention also includes the case in which the operating circuit is operated on a DC voltage source. Then the need for a rectifier is eliminated or an already provided rectifier is ineffective. In this case, however, it may also be desirable to use the invention. To this end, the DC voltage or DC link voltage can be modulated deliberately. In addition to the possibility of the detection according to the invention of the proximity to a capacitive load circuit operation, this also has the advantage that the modulation results in a broadening of the frequency spectrum of high-frequency interference transmitted by the operating circuit to the DC voltage source. The disturbances are therefore less problematic because they occur in a broader and therefore flatter interference spectrum.
  • the variable supply services in the sense of the claims can therefore also be deliberately modulated direct voltage supply services. In particular, the invention also considers combination operating circuits which are provided both for operation on DC voltage sources and on AC voltage sources.
  • the invention is also directed to the case where the lamp current is determined by a control circuit for regulating the load circuit, in particular the lamp current or the lamp power, So the changes in the control circuit in the effort of the control circuit to keep the controlled variable constant is detected.
  • the manipulated variable could then be understood as an illustration of the lamp current fluctuations, even if the latter does not occur or only to a small extent.
  • the control circuit preferably has an I control element, that is to say an integrating element, in order to compensate for the comparatively slow parameter changes in the discharge lamp in the sense of the described impedance changes due to aging or other long-term fluctuations.
  • an I control element will suffice.
  • P control element proportional element
  • another additional device for better consideration of the DC link voltage modulation.
  • control circuit and other control of the oscillator circuit can be carried out by an integrated digital circuit which only has to have a few additional functions.
  • digital circuit can be a programmable circuit or a so-called microcontroller, and the additional effort required for the invention can be limited to a pure software supplement.
  • such a digital control circuit or such a microcontroller can also take over the control of the aforementioned PFC circuit.
  • the operating circuit is not switched off when a certain proximity to the capacitive operation is detected, as in the prior art, but is operated at least as a rule.
  • the detection of the proximity to the capacitive operation is said to lead to an influencing of the operating mode, so that this proximity is at least not further increased or even reduced in order to be able to continue the operation.
  • the operating frequency of the oscillator circuit could be influenced directly.
  • the preferred solution in the case of a control circuit is to reduce the current setpoint or power setpoint of the current control circuit, which can have an indirect influence on the frequency.
  • the operating circuit according to the invention is therefore designed not to come too close to the capacitive operation in continuous operation and to counteract a further approach if it is too close, but to continue the lamp operation.
  • it is particularly tolerated to change parameters that may be permanently fixed, such as the operating frequency or the lamp current, if necessary. From the point of view of the invention, it is rather tolerable that the discharge lamp becomes slightly darker in such cases than that it is switched off completely.
  • the detection circuit compares the level of the fluctuations with a predetermined threshold value and, as long as the threshold value is not exceeded, does not further influence the operation. If the threshold value is exceeded, the detection circuit can either continuously change the operating frequency, the control setpoint or another variable in accordance with a control context or can also change it by a predetermined fixed variable, as shown in the exemplary embodiment. In any case, the comparison with the threshold value preferably provides a function of the detection circuit which does not normally influence operation.
  • Figure 1 shows a schematic representation of an operating device according to the invention
  • Figure 2a shows schematically the relationship between the intermediate circuit voltage, discharge lamp current and qualitative current form in switching elements of an oscillator circuit in an operating circuit according to the invention
  • FIG. 2b corresponds to FIG. 2a, but relates to an operating state closer to resonance
  • FIG. 3 shows a block diagram of a program sequence in a control circuit of the operating circuit from FIG. 1.
  • reference numeral 1 designates a low-pressure discharge lamp with two filament electrodes 2 and 3.
  • an oscillator half-bridge circuit known per se with two switching transistors 6 and 7 Switch center tap 8 back and forth between the DC link supply voltage and the ground potential.
  • a high-frequency supply voltage for the discharge lamp 1 can be generated from the rectified intermediate circuit supply voltage present at the connection 5, which is obtained from a mains voltage via a rectifier bridge circuit known per se with a PFC circuit.
  • the PFC circuit not shown in FIG. 1 can be a so-called step-up converter, the structure of which is known per se and is not of particular interest for the invention. It can also be a different PFC circuit. Despite the PFC circuit remains a certain residual modulation of the intermediate circuit voltage with twice the mains frequency, usually with 100 Hz.
  • a so-called coupling capacitor 9, a lamp inductor 10 and the discharge lamp 1 are connected in series between the ground connection 4 and the center tap 8.
  • the coupling capacitor 9 is used to decouple the discharge lamp 1 from DC components; the lamp choke 10 is used in particular to compensate for the negative derivation of the current-voltage characteristic of the discharge lamp 1 in places.
  • Both circuit components are generally known in this function and need not be explained in more detail here.
  • a resonance capacitor 11 which is parallel to the discharge lamp 1 and also in series with the coupling capacitor 9 and the lamp inductor 10 and which is used to generate resonance-excessive ignition voltage amplitudes for igniting the discharge lamp 1.
  • the digital control circuit 12 is a programmable microcontroller and detects a signal indicating the level of the current through the lamp inductor 10 via a measuring resistor 13.
  • the control circuit 12 contains in particular a current regulating circuit which regulates the lamp current tapped via the resistor 13 to a largely constant value I Lamp .
  • the operation of the control circuit 12 is shown in more detail in Figure 3.
  • the control circuit 12 can therefore measure the lamp current I lamp via the measuring resistor 13, and also regulates to a constant value via the operating frequency of the half-bridge oscillator with the switching transistors 6 and 7 Lamp current and, finally, by evaluating the remaining modulation of the lamp current amplitude as a result of the modulation of the intermediate circuit voltage, is able to recognize an operating mode which is too close to capacitive operation.
  • a threshold value is used for the difference between the lamp current amplitude maximum I max and minimum I min shown in FIGS. 2a and 2b.
  • FIGS. 2a and 2b schematically show the qualitative form of the fluctuations mentioned for a near-resonance but favorable operating state shown in FIG. 2a and an unfavorable operating state shown in FIG. 2b.
  • the lamp current is shown with its envelope, which illustrates the fluctuations in the amplitude with the intermediate circuit voltage U zw .
  • the lamp current I Lamp actually oscillates at the operating frequency of the half-bridge oscillator circuit, which is only indicated schematically in FIGS. 2a and 2b.
  • FIG. 3 shows in the form of a block diagram the mode of operation of the operating circuit from FIG. 1.
  • the sequence shown runs as software stored in the microcontroller 12.
  • a measured intermediate circuit voltage (between points 4 and 5 in FIG. 1) Uzw is subtracted from a desired intermediate value voltage U ZW-Soll .
  • the difference is integrated via an integration element symbolized by I, multiplied by a normalization constant denoted by k 3 and used to regulate the PFC circuit (not shown in FIG. 1) to a constant output voltage.
  • the switching processes of a switching transistor of the PFC circuit are clocked accordingly, ie ultimately the operating frequency of the switching transistor is changed so that the output voltage and thus the intermediate circuit voltage U zw is as constant as possible.
  • the intermediate circuit voltage is output by the PFC circuit via points 4 and 5 in FIG. 1 to the half-bridge oscillator formed by the switching transistors 6 and 7 and the load circuit containing the lamp 1.
  • the half-bridge oscillator with the switching transistors 6 and 7 supplies the lamp current I Lamp flowing through the lamp 1, which is measured by the microcontroller 12 via the measuring resistor 13. This is symbolized by the arrow emerging from the half-bridge oscillator in FIG. 3 to the right.
  • the lamp current is rectified and amplified by the elements labeled with the corresponding electrical switch symbols, then in one labeled PT 1 Low-pass filter filtered in the sense of averaging and finally AD converted.
  • a branch follows, which leads on the one hand to a block designated as a detection circuit.
  • This detection circuit calculates the fluctuations in the lamp current amplitude over a period of 10 ms, i.e. the difference between the maximum and the minimum of the lamp current amplitude or the envelope within the specified period. If this difference exceeds a value of, for example, 50 mA, the detection circuit increases its output signal, otherwise it decreases it. The detection circuit therefore assumes that in the normal case no output signal is necessary and in this normal case has the output signal 0 (which is also not further reduced). If the threshold value of 50 mA is exceeded, the output signal is increased by a certain fixed value and increased again after the 1Oms period by this fixed amount as long as the 50 mA threshold value is exceeded.
  • the output signal is gradually reduced, preferably using smaller step sizes than for the increase. This happens up to an output signal of 0 if the threshold value for the lamp current fluctuations is not exceeded again beforehand.
  • the detection circuit therefore uses the threshold value to recognize that it is too close to capacitive operation, responds to this detection with an output signal and slowly moves the output signal back as soon as this detection no longer applies.
  • the output signal described is limited with regard to conceivable measurement errors and then subtracted from a lamp current setpoint I Lamp Soll in the case of the differential element symbolized with a minus sign.
  • the corrected lamp current setpoint is in turn subtracted from the actual value of the lamp current I Lamp averaged by the digital mean value element.
  • the difference between them is integrated and multiplied by the normalization constant symbolized with k 1 .
  • the integrated and standardized difference between the lamp current target value corrected by the detection circuit and the lamp current actual value is then added to a value in the link symbolized by a circle according to the arrow described with offset in order to carry out an operating point setting.
  • This value stands for a period, which in turn is limited with regard to conceivable measurement errors and is used to control the switching transistors 6 and 7 of the half-bridge oscillator.
  • the PFC circuit is first regulated to a constant DC link voltage with a setpoint U ZW-Soll .
  • the modulation of the intermediate circuit voltage let through by the PFC circuit influences the lamp current via the half-bridge oscillator, which is regulated by a second control loop to a lamp current setpoint I Lamp Soll .
  • a simple, slow 1-control loop is used because only long-term drift effects need to be taken into account.
  • This lamp current setpoint is in turn corrected by a third control circuit, into which the detection circuit is connected, in such a way that the threshold value of 50 mA for the lamp current amplitude modulations is not permanently exceeded.
  • the invention only has a slow, further control loop in the sense of an additional software branch, for which no further measurement value determination is necessary. Rather, the already measured and digitized lamp current is used.
  • the control shown can be supplemented by a further control element in the lamp current control circuit, with which the 100 Hz modulation of the lamp current is damped.
  • a PI controller can be used for a simple I controller. This does not change the fact that, although smaller, lamp current modulations remain. Even if the lamp current modulations were completely compensated, they could be used for the detection according to the invention of the proximity to the capacitive operation, in that the control signal of the lamp current control loop is used as a representative of the fluctuations in the lamp current. The fluctuations in the lamp current would then to a certain extent only exist in terms of control technology and no longer be physically present. The invention also relates to this variant. Incidentally, even with perfect lamp current control, the current would drop in the capacitive range.
  • the intermediate circuit voltage U zw in FIG. 2 or between the connection 5 and ground 4 in FIG. 1 could also be a deliberately modulated voltage from a DC voltage source. This would not change the principle of this embodiment. In this case, however, the PFC circuit would be superfluous.
  • the invention thus enables a very precise adjustment of the operating circuit to a continuous operation that is close to resonance on average, despite component tolerances and lamp aging processes. If difficulties arise, in contrast to the prior art, lamp operation is continued and, as a result of the change in the current setpoint, only a certain reduction in output is carried out. From the perspective of the user, the far cheaper solution is to be seen in a lamp that shines with hardly any noticeably reduced brightness compared to a lamp that is not functioning.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Abstract

The circuit has an oscillator circuit that generates radio frequency supply power for a load circuit containing a discharge lamp (1) from a variable supply power. A detection circuit identifies proximity to a capacitive operation of the load circuit. The detection circuit senses magnitude of fluctuations in the lamp current based on changes in the supply power.

Description

Technisches GebietTechnical field

Die Erfindung bezieht sich auf eine Betriebsschaltung für Entladungslampen.The invention relates to an operating circuit for discharge lamps.

Sie bezieht sich dabei auf Betriebsschaltungen, die die Entladungslampe mit einer Hochfrequenzversorgungsleistung versorgen, die über eine Oszillatorschaltung aus einer Versorgungsleistung gewonnen wird. Insbesondere, aber nicht ausschließlich, bezieht sich die Erfindung auf den Fall, dass die Versorgungsleistung für die Oszillatorschaltung auf eine Wechselspannungsversorgungsleistung zurückgeht, die gleichgerichtet wird. Solche Betriebsschaltungen sind allgemein üblich, insbesondere bei Niederdruckentladungslampen, und müssen daher nicht in Einzelheiten erläutert werden.It relates to operating circuits which supply the discharge lamp with a high-frequency supply power which is obtained from a supply power via an oscillator circuit. In particular, but not exclusively, the invention relates to the case in which the supply power for the oscillator circuit is based on an AC supply power that is rectified. Such operating circuits are common, in particular in the case of low-pressure discharge lamps, and therefore do not have to be explained in detail.

Stand der TechnikState of the art

Die Oszillatorschaltung versorgt dabei einen sogenannten Lastkreis, in den die Entladungslampe geschaltet ist, und der von einem durch die Oszillatorschaltung erzeugten hochfrequenten Lampenstrom durchflossen wird. Der Lastkreis definiert dabei eine Resonanzfrequenz, die durch verschiedene elektrische Parameter des Lastkreises beeinflusst wird und u.a. auch vom Betriebszustand der Entladungslampe abhängt. Man ist bemüht, den Lastkreis im Dauerbetrieb der Entladungslampe relativ nah an der Resonanzfrequenz zu betreiben. Dies hat den Vorteil geringer Phasenverschiebungen zwischen Strom und Spannung und damit geringer Blindströme. Davon profitiert man bei der Bauteildimensionierung insbesondere einer Lampendrossel. Im übrigen enthält die die Hochfrequenzversorgungsleistung erzeugende Oszillatorschaltung regelmäßig Schaltelemente. Bei geringen Phasenverschiebungen infolge eines resonanznahen Betriebes sind die Schaltverluste in den Schaltelementen relativ klein. Dies hat Vorteile im Hinblick auf die Effizienz der Betriebsschaltung sowie auf die thermische Belastung und die Dimensionierung der Schaltelemente.The oscillator circuit supplies a so-called load circuit, into which the discharge lamp is connected, and through which a high-frequency lamp current generated by the oscillator circuit flows. The load circuit defines a resonance frequency that is influenced by various electrical parameters of the load circuit and also depends, among other things, on the operating state of the discharge lamp. Efforts are made to operate the load circuit relatively close to the resonance frequency during continuous operation of the discharge lamp. This has the advantage of small phase shifts between current and voltage and thus low reactive currents. You benefit from this when dimensioning the components, especially a lamp choke. Otherwise, the oscillator circuit generating the high-frequency supply power regularly contains switching elements. With small phase shifts due to operation close to resonance, the switching losses in the switching elements are relatively small. This has advantages with regard to the efficiency of the operating circuit as well as the thermal load and the dimensioning of the switching elements.

Im Regelfall wird angestrebt, im sogenannten induktiven Bereich zu arbeiten, also mit einer gegenüber der Resonanzfrequenz des Lastkreises erhöhten Betriebsfrequenz der Oszillatorschaltung. Dabei muss man allerdings vermeiden, dass die Betriebsfrequenz der Oszillatorschaltung kleiner wird als die Resonanzfrequenz, weil sich im kapazitiven Betrieb, also bei kleinerer Betriebsfrequenz als die Resonanzfrequenz, störende Stromspitzen in den Schaltelementen und andere Schwierigkeiten ergeben können. Insbesondere kann sich durch eine Fehlsynchronisation zwischen den Schaltzeitpunkten und dem Lampendrosselstrom im kapazitiven Betrieb eine ausgeprägte positive Stromspitze zu Beginn einer von einem Schaltelement getragenen Lampenstromhalbwelle ergeben. Es wird also insgesamt angestrebt, möglichst nah an der Resonanzfrequenz zu arbeiten, wobei jedoch ein Unterschreiten derselben möglichst nicht oder nur begrenzt auftreten soll.As a rule, the aim is to work in the so-called inductive range, that is to say with an operating frequency of the oscillator circuit that is higher than the resonance frequency of the load circuit. However, one must avoid that the operating frequency of the oscillator circuit becomes lower than the resonance frequency, because in capacitive operation, that is to say at an operating frequency lower than the resonance frequency, disturbing current peaks in the switching elements and other difficulties can result. In particular, a faulty synchronization between the switching times and the lamp inductor current in capacitive operation can result in a pronounced positive current peak at the start of a lamp current half-wave carried by a switching element. Overall, the aim is to work as close to the resonance frequency as possible, but falling below it should not occur or should occur only to a limited extent.

Allerdings treten infolge von Temperaturänderungen und Alterungsprozessen wie Elektrodenabbrand, Quecksilberdiffusion in Leuchtstoffen und anderen Alterungsphänomenen sowie auch infolge der Exemplarstreuung zwischen verschiedenen individuellen Entladungslampen Schwankungen der Lampenimpedanz (bezogen auf den Dauerbetrieb) auf.However, as a result of temperature changes and aging processes such as electrode erosion, mercury diffusion in phosphors and other aging phenomena, and also as a result of specimen scatter between different individual discharge lamps, fluctuations in lamp impedance (based on continuous operation) occur.

Infolge dieser Lampenimpedanzschwankungen und der üblichen Bauteiltoleranzen lassen sich die Betriebsschaltungen nicht ohne weiteres relativ genau auf einen resonanznahen Betrieb einstellen. Vielmehr wird aus Sicherheitsgründen ein relativ großer Abstand von der nominellen Resonanzfrequenz gehalten, der die aufgeführten Schwankungen und Toleranzen berücksichtigt. Daraus entstehen höhere Bauteilkosten und erhöhter Platzbedarf wegen entsprechend größerer Dimensionierung sowie Effizienzeinbußen.As a result of these lamp impedance fluctuations and the usual component tolerances, the operating circuits cannot easily be relatively accurately set to a resonance-near operation. Rather, for safety reasons, a relatively large distance is kept from the nominal resonance frequency, which takes into account the fluctuations and tolerances listed. This results in higher component costs and increased space requirements due to the correspondingly larger dimensions and loss of efficiency.

Daher ist bereits versucht worden, Betriebsschaltungen der dargestellten Bauart mit Detektionsschaltungen zum Erkennen der Nähe zu einem kapazitiven Betrieb des Lastkreises auszustatten. Beispielsweise zeigt die US 6 331 755 in ihrer Figur 5 einen Widerstand RCS zum Messen eines Lampendrosselstroms und einen Komparator COMP zum Vergleichen dieses Drosselstroms mit einem Schwellenwert. Der Vergleich findet an einer Ausschaltflanke eines Schalttransistors einer Halbbrückenoszillatorschaltung statt. Je näher die Betriebsfrequenz der Resonanzfrequenz und damit dem kapazitiven Betrieb kommt, umso kleiner wird nicht nur ein vorzeichenumgekehrter Einschaltpeak der Messspannung an dem Widerstand RCS, sondern umso stärker sinkt auch die Messspannung am Ende der Einschaltzeit des erwähnten Schalttransistors ab. Damit kann mit dem Schwellenwert ein Grenzzustand eingestellt werden, bei dem die Schaltung insgesamt ausgeschaltet wird (in der dortigen Figur 6 rechts eingezeichnet), wenn der Betrieb zu resonanznah wird.For this reason, attempts have already been made to equip operating circuits of the type shown with detection circuits for recognizing the proximity to capacitive operation of the load circuit. For example, US Pat. No. 6,331,755 shows in FIG. 5 a resistor RCS for measuring a lamp inductor current and a comparator COMP for comparing this inductor current with a threshold value. The comparison takes place on a switching-off edge of a switching transistor of a half-bridge oscillator circuit. The closer the operating frequency comes to the resonance frequency and thus to the capacitive operation, the smaller is not only a reversed sign-on peak of the measurement voltage at the resistor RCS, but also the more the measurement voltage drops at the end of the on-time of the switching transistor mentioned. A threshold state can thus be set with the threshold value, in which the circuit as a whole is switched off (shown on the right in FIG. 6 there) if the operation becomes too close to resonance.

Darstellung der ErfindungPresentation of the invention

Ausgehend von dem genannten Stand der Technik liegt der Erfindung das technische Problem zu Grunde, eine Betriebsschaltung für eine Entladungslampe mit einer Oszillatorschaltung und einer Detektionsschaltung zum Erkennen der Nähe zu einem kapazitiven Betrieb des Lastkreises weiter zu verbessern.Starting from the prior art mentioned, the invention is based on the technical problem of further improving an operating circuit for a discharge lamp with an oscillator circuit and a detection circuit for detecting proximity to a capacitive operation of the load circuit.

Die Erfindung betrifft eine Betriebsschaltung des dargestellten Typs, bei der die Detektionsschaltung die Höhe von den Veränderungen der Versorgungsleistung entsprechenden Schwankungen des Lampenstroms oder einer Stellgröße einer Lampenregelschaltung erfasst.The invention relates to an operating circuit of the type shown, in which the detection circuit detects the magnitude of fluctuations in the lamp current or a manipulated variable of a lamp control circuit, which fluctuations in the supply power.

Bevorzugte Ausführungsformen sind in den abhängigen Ansprüchen angegeben.Preferred embodiments are specified in the dependent claims.

Die Erfindung zeichnet sich durch eine besonders günstige Form der Erkennung der Nähe zu dem kapazitiven Betrieb durch die Detektionsschaltung aus. Dazu erfasst die Detektionsschaltung bei einer Variante der Erfindung die Höhe von Schwankungen des Lampenstroms entsprechend der Frequenz der Versorgungsleistung. Wenn die Oszillatorschaltung mit einer gleichgerichteten Wechselspannungs-Versorgungsleistung versorgt wird, schwankt die Versorgungsleistung der Oszillatorschaltung mit den durch die Wechselspannungsfrequenz gegebenen Schwankungen der gleichgerichteten Versorgungsspannung (sogenannte Zwischenkreisspannung). Die Zwischenkreisspannung ist also mit der doppelten Frequenz der ursprünglichen Wechselspannung moduliert. Die Verdoppelung der Frequenz ist eine Folge der Gleichrichtung. Es ist theoretisch auch denkbar, dass hier keine Frequenzverdoppelung auftritt; jedenfalls steht die Modulation der Zwischenkreisspannung in Beziehung zu der Frequenz der ursprünglichen Wechselspannung.The invention is characterized by a particularly favorable form of detection of the proximity to the capacitive operation by the detection circuit. To this end, in a variant of the invention, the detection circuit detects the magnitude of fluctuations in the lamp current in accordance with the frequency of the supply power. If the oscillator circuit is supplied with a rectified AC supply power, the supply power of the oscillator circuit fluctuates with the fluctuations of the rectified supply voltage (so-called intermediate circuit voltage) given by the AC voltage frequency. The intermediate circuit voltage is therefore modulated at twice the frequency of the original AC voltage. The doubling of the frequency is a consequence of the rectification. It is theoretically also conceivable that no frequency doubling occurs here; in any case, the modulation of the intermediate circuit voltage is related to the frequency of the original AC voltage.

Diese Zwischenkreispannungsmodulation ist in aller Regel noch im Lampenstrom selbst messbar, und zwar auch dann, wenn der Lampenstrom durch eine Strom- oder Leistungsregelschaltung bestimmt wird, was eine bevorzugte Ausführungsform der Erfindung bildet. Regelschaltungen sind je nach technischem Aufwand nur begrenzt in der Lage, diese Modulation abzuschwächen. Wenn keine Regelschaltung vorgesehen ist, ist die Modulation der Zwischenkreisspannung umso mehr im Lampenstrom erkennbar.This intermediate circuit voltage modulation can usually still be measured in the lamp current itself, even if the lamp current is determined by a current or power control circuit, which is a preferred embodiment of the invention. Depending on the technical complexity, control circuits are only able to weaken this modulation to a limited extent. If no control circuit is provided, the modulation of the intermediate circuit voltage is all the more recognizable in the lamp current.

Dies gilt übrigens auch für den Fall, der ebenfalls eine bevorzugte Ausführungsform der Erfindung darstellt, dass die gleichgerichtete Wechselspannungs-Versorgungsleistung durch eine PFC-Schaltung (Power Factor Correction, sogenannte Leistungsfaktorkorrektur) zu einer weitgehend konstanten Gleichspannung gewandelt wird. Die PFC-Schaltung dient zur Begrenzung des Oberwellengehalts der Leistungsaufnahme aus dem Wechselspannungsnetz und lädt in der Regel einen Speicherkondensator auf die Zwischenkreisgleichspannung auf. Die Zwischenkreisspannung ist auch dann in gewissem Umfang entsprechend der Wechselspannungsfrequenz moduliert.Incidentally, this also applies to the case, which also represents a preferred embodiment of the invention, that the rectified AC supply power is converted to a largely constant DC voltage by a PFC circuit (Power Factor Correction, so-called power factor correction). The PFC circuit serves to limit the harmonic content of the power consumption from the AC network and generally charges a storage capacitor to the DC link voltage. The intermediate circuit voltage is then also modulated to a certain extent in accordance with the AC voltage frequency.

Die Höhe der Lampenstromschwankungen hängt von der Nähe zu der Resonanzfrequenz und damit von der Nähe zu dem kapazitiven Betrieb ab. Dies folgt aus der Zunahme des Lampenstroms mit zunehmender Resonanznähe einerseits und der Modulation der Resonanznähe durch die Zwischenkreisspannungsmodulation andererseits.The magnitude of the lamp current fluctuations depends on the proximity to the resonance frequency and thus on the proximity to the capacitive operation. This follows from the increase in lamp current with increasing proximity to resonance on the one hand and the modulation of proximity to resonance by the intermediate circuit voltage modulation on the other hand.

Damit bietet die Höhe der Schwankungen des Lampenstroms eine besonders einfache Möglichkeit zur Erfassung der Nähe zum kapazitiven Betrieb. Insbesondere handelt es sich dabei um ein beispielsweise mit der doppelten Netzfrequenz des Wechselspannungsnetzes veränderliches Signal, das insoweit keine wesentlichen messtechnischen Schwierigkeiten bietet. Andererseits sind die konventionellen Lösungen zur Erfassung der Nähe zu dem kapazitiven Betrieb mit der Betriebsfrequenz der Oszillatorschaltung selbst verknüpft und müssen auf diese Phasen bezogen sein, was einen erheblich höheren schaltungstechnischen Aufwand bedingt. Der Lampenstrom muss in vielen Fällen ohnehin aus anderen Gründen gemessen werden, beispielsweise um aus Sicherheitserwägungen bestimmte Maximalwerte nicht zu überschreiten oder um die bereits erwähnte Stromregelung durchzuführen. Dann ist die Erfindung mit einem umso geringeren zusätzlichen Aufwand verbunden.The level of the fluctuations in the lamp current thus offers a particularly simple possibility for detecting the proximity to capacitive operation. In particular, this is a signal which can be varied, for example, at twice the mains frequency of the AC voltage network and which in this respect does not present any significant measurement difficulties. On the other hand, the conventional solutions for detecting the proximity to the capacitive operation are linked to the operating frequency of the oscillator circuit itself and must be related to these phases, which necessitates a considerably higher outlay in terms of circuitry. In many cases, the lamp current must be measured anyway for other reasons, for example in order not to exceed certain maximum values for safety reasons or to carry out the current regulation already mentioned. Then the invention is associated with all the less additional effort.

In der allgemeinen Formulierung der Erfindung in Anspruch 1 und Anspruch 2 ist von einer veränderlichen Versorgungsleistung die Rede. Dies kann, wie oben ausgeführt, zum einen eine gleichgerichtete Wechselspannungs-Versorgungsleistung sein. Die Erfindung umfasst aber auch den Fall, dass die Betriebsschaltung an einer Gleichspannungsquelle betrieben wird. Dann entfällt die Notwendigkeit eines Gleichrichters bzw. ist ein ohnehin vorgesehener Gleichrichter wirkungslos. Auch in diesem Fall kann es jedoch erwünscht sein, die Erfindung zu verwenden. Dazu kann die Gleichspannung bzw. Zwischenkreisspannung bewusst moduliert werden. Neben der Möglichkeit der erfindungsgemäßen Detektion der Nähe zu einem kapazitiven Lastkreisbetrieb hat dies außerdem den Vorteil, dass sich infolge der Modulation eine Verbreiterung des Frequenzspektrums von durch die Betriebsschaltung zu der Gleichspannungsquelle übertragenen hochfrequenten Störungen ergibt. Die Störungen sind damit weniger problematisch, weil sie in einem breiteren und damit flacheren Störspektrum auftreten. Die veränderlichen Versorgungsleistungen im Sinn der Ansprüche können also auch bewusst modulierte Gleichspannungsversorgungsleistungen sein. Insbesondere zieht die Erfindung auch Kombinationsbetriebsschaltungen in Betracht, die sowohl für den Betrieb an Gleichspannungs- als auch an Wechselspannungsquellen vorgesehen sind.The general formulation of the invention in claims 1 and 2 speaks of a variable supply. As stated above, this can be a rectified AC supply power. However, the invention also includes the case in which the operating circuit is operated on a DC voltage source. Then the need for a rectifier is eliminated or an already provided rectifier is ineffective. In this case, however, it may also be desirable to use the invention. To this end, the DC voltage or DC link voltage can be modulated deliberately. In addition to the possibility of the detection according to the invention of the proximity to a capacitive load circuit operation, this also has the advantage that the modulation results in a broadening of the frequency spectrum of high-frequency interference transmitted by the operating circuit to the DC voltage source. The disturbances are therefore less problematic because they occur in a broader and therefore flatter interference spectrum. The variable supply services in the sense of the claims can therefore also be deliberately modulated direct voltage supply services. In particular, the invention also considers combination operating circuits which are provided both for operation on DC voltage sources and on AC voltage sources.

Ferner richtet sich die Erfindung alternativ zu einer Erfassung der Höhe der Schwankungen des Lampenstroms selbst auch auf den Fall, dass der Lampenstrom durch eine Regelschaltung zur Regelung des Lastkreises, also insbesondere des Lampenstromes oder der Lampenleistung, bestimmt wird, wobei dann eine Stellgröße der Regelschaltung, also die Veränderungen in der Regelschaltung in dem Bemühen der Regelschaltung zum Konstanthalten der Regelgröße, erfasst wird. Die Stellgröße könnte dann als Abbildung der Lampenstromschwankungen aufgefasst werden, selbst wenn letztere nicht oder nur in geringem Umfang auftreten.Furthermore, as an alternative to detecting the level of the fluctuations in the lamp current itself, the invention is also directed to the case where the lamp current is determined by a control circuit for regulating the load circuit, in particular the lamp current or the lamp power, So the changes in the control circuit in the effort of the control circuit to keep the controlled variable constant is detected. The manipulated variable could then be understood as an illustration of the lamp current fluctuations, even if the latter does not occur or only to a small extent.

Die Regelschaltung weist vorzugsweise ein I-Regelglied auf, also ein integrierendes Element, um die vergleichsweise langsamen Parameteränderungen in der Entladungslampe im Sinne der beschriebenen Impedanzänderungen durch Alterung oder andere langfristige Schwankungen zu kompensieren. In vielen Fällen wird ein solches I-Regelglied ausreichen. Es kann bei Bedarf durch ein P-Regelglied (Proportionalelement) oder eine andere zusätzliche Einrichtung zur besseren Berücksichtigung der Zwischenkreisspannungsmodulation ergänzt werden.The control circuit preferably has an I control element, that is to say an integrating element, in order to compensate for the comparatively slow parameter changes in the discharge lamp in the sense of the described impedance changes due to aging or other long-term fluctuations. In many cases, such an I control element will suffice. If necessary, it can be supplemented by a P control element (proportional element) or another additional device for better consideration of the DC link voltage modulation.

Insbesondere kann die Regelschaltung und übrige Steuerung der Oszillatorschaltung durch eine integrierte Digitalschaltung erfolgen, die lediglich einige Zusatzfunktionen aufweisen muss. Darüber hinaus kann es sich bei der Digitalschaltung um eine programmierbare Schaltung bzw. einen sogenannten Mikrocontroller handeln, wobei sich der für die Erfindung notwendige Zusatzaufwand auf eine reine Softwareergänzung beschränken kann.In particular, the control circuit and other control of the oscillator circuit can be carried out by an integrated digital circuit which only has to have a few additional functions. In addition, the digital circuit can be a programmable circuit or a so-called microcontroller, and the additional effort required for the invention can be limited to a pure software supplement.

Eine solche digitale Steuerschaltung bzw. ein solcher Mikrocontroller kann insbesondere neben der Steuerung der Oszillatorschaltung auch die Steuerung der erwähnten PFC-Schaltung übernehmen.In addition to controlling the oscillator circuit, such a digital control circuit or such a microcontroller can also take over the control of the aforementioned PFC circuit.

Vorzugsweise ist ferner vorgesehen, dass die Betriebsschaltung bei der Erkennung einer bestimmten Nähe zu dem kapazitiven Betrieb nicht, wie im Stand der Technik, ausgeschaltet wird, sondern zumindest im Regelfall weiterbetrieben wird. Die Erkennung der Nähe zu dem kapazitiven Betrieb soll also zu einer Beeinflussung der Betriebsweise führen, so dass diese Nähe zumindest nicht weiter verstärkt oder sogar verringert wird, um den Betrieb fortsetzen zu können. Beispielsweise könnte die Betriebsfrequenz der Oszillatorschaltung direkt beeinflusst werden. Die bevorzugte Lösung für den Fall einer Regelschaltung ist allerdings, den Stromsollwert oder Leistungssollwert der Stromregelschaltung zu verkleinern, was eine indirekte Beeinflussung der Frequenz nach sich ziehen kann. Anschaulich gesprochen ist die erfindungsgemäße Betriebsschaltung also dazu ausgelegt, sich im Dauerbetrieb nicht zu nahe an den kapazitiven Betrieb anzunähern und bei zu großer Nähe einer weiteren Annäherung entgegen zu wirken, jedoch den Lampenbetrieb fortzusetzen. Dazu wird insbesondere toleriert, an sich möglicherweise fest vorgegebene Parameter wie die Betriebsfrequenz oder den Lampenstrom notfalls zu verändern. Aus der Sicht der Erfindung ist es nämlich eher tolerierbar, dass die Entladungslampe in solchen Fällen geringfügig dunkler wird, als dass sie ganz ausgeschaltet wird.It is also preferably provided that the operating circuit is not switched off when a certain proximity to the capacitive operation is detected, as in the prior art, but is operated at least as a rule. The detection of the proximity to the capacitive operation is said to lead to an influencing of the operating mode, so that this proximity is at least not further increased or even reduced in order to be able to continue the operation. For example, the operating frequency of the oscillator circuit could be influenced directly. However, the preferred solution in the case of a control circuit is to reduce the current setpoint or power setpoint of the current control circuit, which can have an indirect influence on the frequency. That is clearly spoken The operating circuit according to the invention is therefore designed not to come too close to the capacitive operation in continuous operation and to counteract a further approach if it is too close, but to continue the lamp operation. For this purpose, it is particularly tolerated to change parameters that may be permanently fixed, such as the operating frequency or the lamp current, if necessary. From the point of view of the invention, it is rather tolerable that the discharge lamp becomes slightly darker in such cases than that it is switched off completely.

Insbesondere kann vorgesehen sein, dass die Detektionsschaltung die Höhe der Schwankungen mit einem vorgegebenen Schwellenwert vergleicht und, solange der Schwellenwert nicht überschritten wird, den Betrieb nicht weiter beeinflusst. Wird der Schwellenwert überschritten, kann die Detektionsschaltung die Betriebsfrequenz, den Regelsollwert oder eine andere Größe entweder entsprechend einem Regelungszusammenhang kontinuierlich verändern oder auch um eine vorgegebene feste Größe verändern, wie dies im Ausführungsbeispiel dargestellt ist. Jedenfalls ist vorzugsweise durch den Vergleich mit dem Schwellenwert eine Funktion der Detektionsschaltung gegeben, die den Betrieb im Normalfall nicht beeinflusst.In particular, it can be provided that the detection circuit compares the level of the fluctuations with a predetermined threshold value and, as long as the threshold value is not exceeded, does not further influence the operation. If the threshold value is exceeded, the detection circuit can either continuously change the operating frequency, the control setpoint or another variable in accordance with a control context or can also change it by a predetermined fixed variable, as shown in the exemplary embodiment. In any case, the comparison with the threshold value preferably provides a function of the detection circuit which does not normally influence operation.

Beschreibung der ZeichnungenDescription of the drawings

Im Folgenden wird die Erfindung anhand eines Ausführungsbeispiels näher veranschaulicht, wobei die dabei dargestellten Merkmale auch in anderen Kombinationen erfindungswesentlich sein können. Insbesondere wird darauf hingewiesen, dass die vorstehende und die nachfolgende Beschreibung auch im Hinblick auf die Verfahrenskategorie zu verstehen ist.The invention is illustrated in more detail below with the aid of an exemplary embodiment, the features illustrated here also being essential to the invention in other combinations. In particular, it is pointed out that the above and the following description should also be understood with regard to the process category.

Figur 1 zeigt eine schematisierte Darstellung eines erfindungsgemäßen Betriebsgerätes;Figure 1 shows a schematic representation of an operating device according to the invention;

Figur 2a zeigt schematisiert den Zusammenhang zwischen Zwischenkreisspannung, Entladungslampenstrom und qualitativer Stromform in Schaltelementen einer Oszillatorschaltung bei einer erfindungsgemäßen Betriebsschaltung;Figure 2a shows schematically the relationship between the intermediate circuit voltage, discharge lamp current and qualitative current form in switching elements of an oscillator circuit in an operating circuit according to the invention;

Figur 2b entspricht Figur 2a, bezieht sich jedoch auf einen resonanznäheren Betriebszustand;FIG. 2b corresponds to FIG. 2a, but relates to an operating state closer to resonance;

Figur 3 zeigt ein Blockdiagramm eines Programmablaufs in einer Steuerschaltung der Betriebsschaltung aus Figur 1.FIG. 3 shows a block diagram of a program sequence in a control circuit of the operating circuit from FIG. 1.

In Figur 1 bezeichnet die Bezugsziffer 1 eine Niederdruckentladungslampe mit zwei Glühwendelelektroden 2 und 3. Zwischen einem Masseanschluß 4 und einer Zwischenkreisversorgungsspannung 5 liegt eine an sich bekannte Oszillatorhalbbrückenschaltung mit zwei Schalttransistoren 6 und 7. Durch einen alternierenden Schaltbetrieb der beiden Schalttransistoren 6 und 7 läßt sich ein Mittenabgriff 8 zwischen der Zwischenkreisversorgungsspannung und dem Massepotential hin- und herschalten. Dadurch kann aus der an dem Anschluß 5 anliegenden gleichgerichteten Zwischenkreisversorgungsspannung, die über eine an sich bekannte Gleichrichterbrückenschaltung mit einer PFC-Schaltung aus einer Netzspannung gewonnen wird, eine hochfrequente Versorgungsspannung für die Entladungslampe 1 erzeugt werden.In FIG. 1, reference numeral 1 designates a low-pressure discharge lamp with two filament electrodes 2 and 3. Between a ground connection 4 and an intermediate circuit supply voltage 5 there is an oscillator half-bridge circuit known per se with two switching transistors 6 and 7 Switch center tap 8 back and forth between the DC link supply voltage and the ground potential. As a result, a high-frequency supply voltage for the discharge lamp 1 can be generated from the rectified intermediate circuit supply voltage present at the connection 5, which is obtained from a mains voltage via a rectifier bridge circuit known per se with a PFC circuit.

Bei der in Figur 1 nicht dargestellten PFC-Schaltung kann es sich um einen sogenannten Hochsetzsteller handeln, dessen Aufbau an sich bekannt und für die Erfindung nicht im Einzelnen von Interesse ist. Es kann sich auch um eine andere PFC-Schaltung handeln. Trotz PFC-Schaltung verbleibt jedoch eine gewisse Restmodulation der Zwischenkreisspannung mit der doppelten Netzfrequenz, gewöhnlich also mit 100 Hz.The PFC circuit not shown in FIG. 1 can be a so-called step-up converter, the structure of which is known per se and is not of particular interest for the invention. It can also be a different PFC circuit. Despite the PFC circuit remains a certain residual modulation of the intermediate circuit voltage with twice the mains frequency, usually with 100 Hz.

Zwischen den Masseanschluß 4 und den Mittenabgriff 8 sind in Serie ein sogenannter Koppelkondensator 9, eine Lampendrossel 10 und die Entladungslampe 1 geschaltet. Der Koppelkondensator 9 dient zur Abkopplung der Entladungslampe 1 von Gleichstromanteilen; die Lampendrossel 10 dient insbesondere zur Kompensation der stellenweise negativen Ableitung der Stromspannungskennlinie der Entladungslampe 1. Beide Schaltungsbauteile sind in dieser Funktion allgemein bekannt und müssen hier nicht näher erläutert werden.A so-called coupling capacitor 9, a lamp inductor 10 and the discharge lamp 1 are connected in series between the ground connection 4 and the center tap 8. The coupling capacitor 9 is used to decouple the discharge lamp 1 from DC components; the lamp choke 10 is used in particular to compensate for the negative derivation of the current-voltage characteristic of the discharge lamp 1 in places. Both circuit components are generally known in this function and need not be explained in more detail here.

Das Gleiche gilt für einen parallel zu der Entladungslampe 1 und ebenfalls in Serie zu dem Koppelkondensator 9 und der Lampendrossel 10 liegenden Resonanzkondensator 11, der zur Erzeugung von resonanzüberhöhten Zündspannungsamplituden zum Zünden der Entladungslampe 1 dient.The same applies to a resonance capacitor 11 which is parallel to the discharge lamp 1 and also in series with the coupling capacitor 9 and the lamp inductor 10 and which is used to generate resonance-excessive ignition voltage amplitudes for igniting the discharge lamp 1.

Soweit bislang beschrieben, ist die Betriebsschaltung völlig konventionell aufgebaut. Allerdings werden die Steueranschlüsse der Schalttransistoren 6 und 7, wie in Figur 1 gestrichelt angedeutet, durch Steuersignale aus einer digitalen Steuerschaltung 12 gesteuert. Die digitale Steuerschaltung 12 ist ein programmierbarer Mikrocontroller und erfaßt über einen Messwiderstand 13 ein die Höhe des Stroms durch die Lampendrossel 10 anzeigendes Signal.As far as described so far, the operating circuit is completely conventional. However, the control connections of the switching transistors 6 and 7, as indicated by dashed lines in FIG. 1, are controlled by control signals from a digital control circuit 12. The digital control circuit 12 is a programmable microcontroller and detects a signal indicating the level of the current through the lamp inductor 10 via a measuring resistor 13.

Die Steuerschaltung 12 enthält insbesondere eine Stromregelschaltung, die den über den Widerstand 13 abgegriffenen Lampenstrom auf einen weitgehend konstanten Wert ILamp regelt. Die Funktionsweise der Steuerschaltung 12 ist in Figur 3 näher dargestellt.The control circuit 12 contains in particular a current regulating circuit which regulates the lamp current tapped via the resistor 13 to a largely constant value I Lamp . The operation of the control circuit 12 is shown in more detail in Figure 3.

Die Steuerschaltung 12 kann also über den Messwiderstand 13 den Lampenstrom ILamp messen, regelt ferner über die Betriebsfrequenz des Halbbrückenoszillators mit den Schalttransistoren 6 und 7 auf einen konstanten Lampenstrom und ist schließlich durch Auswertung der verbleibenden Modulation der Lampenstromamplitude infolge der Modulation der Zwischenkreisspannung imstande, eine zu nahe an einem kapazitiven Betrieb liegende Betriebsweise zu erkennen. Dazu wird, wie anhand von Figur 3 erläutert wird, ein Schwellenwert für die in den Figuren 2a und 2b dargestellte Differenz zwischen dem Lampenstromamplitudenmaximum Imax und -minimum Imin verwendet.The control circuit 12 can therefore measure the lamp current I lamp via the measuring resistor 13, and also regulates to a constant value via the operating frequency of the half-bridge oscillator with the switching transistors 6 and 7 Lamp current and, finally, by evaluating the remaining modulation of the lamp current amplitude as a result of the modulation of the intermediate circuit voltage, is able to recognize an operating mode which is too close to capacitive operation. For this purpose, as will be explained with reference to FIG. 3, a threshold value is used for the difference between the lamp current amplitude maximum I max and minimum I min shown in FIGS. 2a and 2b.

Die Figuren 2a und 2b zeigen schematisch die qualitative Form der erwähnten Schwankungen für einen in Figur 2a dargestellten resonanznahen, jedoch günstigen Betriebszustand und einen in Figur 2b dargestellten ungünstigen Betriebszustand. Man erkennt die Änderung der Höhe der Schwankungen des an dem Widerstand 13 abgegriffenen Lampenstromes ILamp und die entsprechenden Änderungen der zwischen dem Punkt 5 und dem Masseanschluss 4 anliegenden Zwischenkreisspannung Uzw. Der Lampenstrom ist mit seinen Einhüllenden dargestellt, die die Schwankungen der Amplitude mit der Zwischenkreisspannung Uzw veranschaulicht. Tatsächlich oszilliert der Lampenstrom ILamp mit der Betriebsfrequenz der Halbbrückenoszillatorschaltung, was in den Figuren 2a und 2b nur schematisch angedeutet ist.FIGS. 2a and 2b schematically show the qualitative form of the fluctuations mentioned for a near-resonance but favorable operating state shown in FIG. 2a and an unfavorable operating state shown in FIG. 2b. One can see the change in the level of the fluctuations of the lamp current I lamp tapped off at the resistor 13 and the corresponding changes in the intermediate circuit voltage U between the point 5 and the ground connection 4. The lamp current is shown with its envelope, which illustrates the fluctuations in the amplitude with the intermediate circuit voltage U zw . The lamp current I Lamp actually oscillates at the operating frequency of the half-bridge oscillator circuit, which is only indicated schematically in FIGS. 2a and 2b.

Im jeweiligen unteren Bereich der Figuren sind qualitative Stromformen der durch den jeweils geschlossenen Schalttransistor 6 bzw. 7 fließenden Halbperiodenströme dargestellt. Der in der jeweiligen linken Stromform zunächst erkennbare begrenzte negative Ausschlag ist typisch für den induktiven Betrieb und bedeutet, dass der Strom der Spannung nachläuft. So lange die negative Spitze nicht zu ausgeprägt ist, kann dies als günstiger Betriebszustand angesehen werden. In Figur 2a erkennt man in der rechten Stromform, dass im Bereich der kleinen Amplituden des Lampenstromes, also der minimalen Zwischenkreisspannungen UZW, der den induktiven Betrieb anzeigende negative Ausschlag fast verschwunden ist. Die Nähe zum kapazitiven Betrieb schwankt also mit der Zwischenkreisspannung Uzw. Dementsprechend zeigt die rechte Stromform in Figur 2b eine ausgeprägte positive Spitze am Anfang der Stromform, die einen beginnenden kapazitiven Betrieb symbolisiert. Diese Spitze führt zu thermischen Belastungen und möglicherweise Schäden der Schalttransistoren 6 und 7 und soll vermieden werden.In the respective lower area of the figures, qualitative current forms of the half-period currents flowing through the respectively closed switching transistor 6 or 7 are shown. The limited negative deflection that can initially be seen in the respective left-hand current form is typical for inductive operation and means that the current follows the voltage. As long as the negative peak is not too pronounced, this can be seen as a favorable operating condition. In the right-hand current form in FIG. 2a, it can be seen that in the region of the small amplitudes of the lamp current, that is to say the minimum intermediate circuit voltages U ZW , the negative deflection indicating inductive operation has almost disappeared. The proximity to capacitive operation thus fluctuates with the intermediate circuit voltage U between . Accordingly, the right-hand current form in FIG. 2b shows a pronounced positive peak at the beginning of the current form, which symbolizes the beginning of capacitive operation. This tip leads to thermal loads and possibly damage to the switching transistors 6 and 7 and should be avoided.

Figur 3 zeigt in Form eines Blockdiagramms die Funktionsweise der Betriebsschaltung aus Figur 1. Der dargestellte Ablauf läuft als in den Mikrocontroller 12 eingespeicherte Software ab. Gemäß dem oberen Ende des Blockdiagramms wird eine gemessene Zwischenkreisspannung (zwischen den Punkten 4 und 5 in Figur 1) Uzw von einer Sollzwischenwertspannung UZW-Soll subtrahiert. Die Differenz wird über ein mit I symbolisiertes Integrationsglied aufintegriert, mit einer mit k3 bezeichneten Normierungskonstante multipliziert und zur Regelung der in Figur 1 nicht dargestellten PFC-Schaltung auf eine konstante Ausgangsspannung verwendet. Dazu werden die Schaltvorgänge eines Schalttransistors der PFC-Schaltung, etwa eines Hochsetzstellers, entsprechend getaktet, d.h. letztlich die Betriebsfrequenz des Schalttransistors so verändert, dass die Ausgangsspannung und damit die Zwischenkreisspannung Uzw möglichst konstant ist. Diese Zwischenkreisspannung gibt die PFC-Schaltung über die Punkte 4 und 5 in Figur 1 an den durch die Schalttransistoren 6 und 7 gebildeten Halbbrückenoszillator und den die Lampe 1 enthaltenden Lastkreis aus.FIG. 3 shows in the form of a block diagram the mode of operation of the operating circuit from FIG. 1. The sequence shown runs as software stored in the microcontroller 12. According to the upper end of the block diagram, a measured intermediate circuit voltage (between points 4 and 5 in FIG. 1) Uzw is subtracted from a desired intermediate value voltage U ZW-Soll . The difference is integrated via an integration element symbolized by I, multiplied by a normalization constant denoted by k 3 and used to regulate the PFC circuit (not shown in FIG. 1) to a constant output voltage. For this purpose, the switching processes of a switching transistor of the PFC circuit, for example a step-up converter, are clocked accordingly, ie ultimately the operating frequency of the switching transistor is changed so that the output voltage and thus the intermediate circuit voltage U zw is as constant as possible. The intermediate circuit voltage is output by the PFC circuit via points 4 and 5 in FIG. 1 to the half-bridge oscillator formed by the switching transistors 6 and 7 and the load circuit containing the lamp 1.

Der Halbbrückenoszillator mit den Schalttransistoren 6 und 7 liefert den durch die Lampe 1 fließenden Lampenstrom ILamp, der über den Messwiderstand 13 von dem Mikrocontroller 12 gemessen wird. Dies ist durch den aus dem Halbbrückenoszillator in Figur 3 nach rechts heraustretenden Pfeil symbolisiert. In dem Mikrocontroller wird der Lampenstrom durch die mit den entsprechenden elektrotechnischen Schaltsymbolen bezeichneten Elemente gleichgerichtet und verstärkt, dann in einem mit PT1 bezeichneten Tiefpassglied im Sinne einer Mittelwertsbildung gefiltert und schließlich ADgewandelt.The half-bridge oscillator with the switching transistors 6 and 7 supplies the lamp current I Lamp flowing through the lamp 1, which is measured by the microcontroller 12 via the measuring resistor 13. This is symbolized by the arrow emerging from the half-bridge oscillator in FIG. 3 to the right. In the microcontroller, the lamp current is rectified and amplified by the elements labeled with the corresponding electrical switch symbols, then in one labeled PT 1 Low-pass filter filtered in the sense of averaging and finally AD converted.

Es folgt eine Verzweigung, die zum einen zu einem mit Detektionsschaltung bezeichneten Block führt. Diese Detektionsschaltung berechnet über einen Zeitraum von 10ms die Schwankungen der Lampenstromamplitude, d.h. die Differenz zwischen dem Maximum und dem Minimum der Lampenstromamplitude bzw. der Einhüllenden innerhalb des genannten Zeitraums. Wenn diese Differenz einen Wert von beispielsweise 50 mA überschreitet, erhöht die Detektionsschaltung ihr Ausgangssignal, anderenfalls erniedrigt sie es. Die Detektionsschaltung geht also davon aus, dass im Normalfall kein Ausgangssignal notwendig ist und hat in diesem Normalfall das Ausgangssignal 0 (das auch nicht weiter erniedrigt wird). Wenn der Schwellenwert von 50 mA überschritten wird, wird das Ausgangssignal um einen bestimmten festen Wert erhöht und nach Ablauf des 1Oms-Zeitraum wieder um diesen festen Betrag erhöht, solange der 50 mA Schwellenwert überschritten ist.A branch follows, which leads on the one hand to a block designated as a detection circuit. This detection circuit calculates the fluctuations in the lamp current amplitude over a period of 10 ms, i.e. the difference between the maximum and the minimum of the lamp current amplitude or the envelope within the specified period. If this difference exceeds a value of, for example, 50 mA, the detection circuit increases its output signal, otherwise it decreases it. The detection circuit therefore assumes that in the normal case no output signal is necessary and in this normal case has the output signal 0 (which is also not further reduced). If the threshold value of 50 mA is exceeded, the output signal is increased by a certain fixed value and increased again after the 1Oms period by this fixed amount as long as the 50 mA threshold value is exceeded.

Sobald der Schwellenwert nicht mehr überschritten wird, wird das Ausgangssignal schrittweise erniedrigt, wobei vorzugsweise kleinere Schrittweiten als bei der Erhöhung Verwendung finden. Dies geschieht bis zu einem Ausgangssignal von 0, wenn nicht zuvor wieder der Schwellenwert für die Lampenstromschwankungen überschritten wird. Die Detektionsschaltung erkennt also mittels des Schwellenwerts eine zu große Nähe zum kapazitiven Betrieb, reagiert mit einem Ausgangssignal auf diese Detektion und fährt das Ausgangssignal langsam zurück, sobald diese Detektion nicht mehr zutrifft.As soon as the threshold value is no longer exceeded, the output signal is gradually reduced, preferably using smaller step sizes than for the increase. This happens up to an output signal of 0 if the threshold value for the lamp current fluctuations is not exceeded again beforehand. The detection circuit therefore uses the threshold value to recognize that it is too close to capacitive operation, responds to this detection with an output signal and slowly moves the output signal back as soon as this detection no longer applies.

Das beschriebene Ausgangssignal wird mit Rücksicht auf denkbare Messfehler begrenzt und dann bei dem mit einem Minuszeichen symbolisierten Differenzglied von einem Lampenstrom-Sollwert ILamp Soll subtrahiert. Von diesem korrigierten Lampenstrom-Sollwert wird wiederum der von dem digitalen Mittelwertglied gemittelte Istwert des Lampenstroms ILamp substrahiert.The output signal described is limited with regard to conceivable measurement errors and then subtracted from a lamp current setpoint I Lamp Soll in the case of the differential element symbolized with a minus sign. The corrected lamp current setpoint is in turn subtracted from the actual value of the lamp current I Lamp averaged by the digital mean value element.

Die Differenz dazwischen wird integriert und mit der mit k1 symbolisierten Normierungskonstanten multipliziert. Die integrierte und normierte Differenz zwischen dem durch die Detektionsschaltung korrigierten Lampenstrom-Sollwert und dem Lampenstrom-Istwert wird daraufhin in dem durch einen Kreis symbolisierten Glied gemäß dem mit Offset beschriebenen Pfeil mit einem Wert addiert, um eine Arbeitspunkteinstellung durchzuführen. Dieser Wert steht für eine Periodendauer, die wiederum mit Rücksicht auf denkbare Messfehler begrenzt und zur Ansteuerung der Schalttransistoren 6 und 7 des Halbbrückenoszillators verwendet wird.The difference between them is integrated and multiplied by the normalization constant symbolized with k 1 . The integrated and standardized difference between the lamp current target value corrected by the detection circuit and the lamp current actual value is then added to a value in the link symbolized by a circle according to the arrow described with offset in order to carry out an operating point setting. This value stands for a period, which in turn is limited with regard to conceivable measurement errors and is used to control the switching transistors 6 and 7 of the half-bridge oscillator.

Man erkennt also insgesamt, dass zunächst die PFC-Schaltung auf eine konstante Zwischenkreisspannung mit einem Sollwert UZW-Soll geregelt wird. Die von der PFC-Schaltung hindurchgelassene Modulation der Zwischenkreisspannung beeinflusst über den Halbbrückenoszillator den Lampenstrom, der durch einen zweiten Regelkreis auf einen Lampenstrom-Sollwert ILamp Soll geregelt wird. Dazu findet ein einfacher langsamer 1-Regelkreis Anwendung, weil nur langfristige Drifteffekte berücksichtigt werden müssen. Dieser Lampenstrom-Sollwert wiederum wird durch einen dritten Regelkreis, in den die Detektionsschaltung geschaltet ist, so korrigiert, dass der Schwellenwert von 50mA für die Lampenstromamplitudenmodulationen nicht dauerhaft überschritten wird.It can thus be seen overall that the PFC circuit is first regulated to a constant DC link voltage with a setpoint U ZW-Soll . The modulation of the intermediate circuit voltage let through by the PFC circuit influences the lamp current via the half-bridge oscillator, which is regulated by a second control loop to a lamp current setpoint I Lamp Soll . A simple, slow 1-control loop is used because only long-term drift effects need to be taken into account. This lamp current setpoint is in turn corrected by a third control circuit, into which the detection circuit is connected, in such a way that the threshold value of 50 mA for the lamp current amplitude modulations is not permanently exceeded.

Man erkennt ferner, dass die Erfindung neben der ohnehin vorgesehenen Lampenstromregelung lediglich einen langsamen weiteren Regelkreis im Sinne eines zusätzlichen Softwareastes aufweist, für den keine weitere Messwertermittlung notwendig ist. Vielmehr wird der ohnehin gemessene und digitalisierte Lampenstrom verwendet.It can also be seen that in addition to the lamp current control provided in any case, the invention only has a slow, further control loop in the sense of an additional software branch, for which no further measurement value determination is necessary. Rather, the already measured and digitized lamp current is used.

Bei Bedarf kann die dargestellte Regelung durch ein weiteres Regelglied in dem Lampenstromregelkreis ergänzt werden, mit dem die 100 Hz-Modulation des Lampenstroms gedämpft wird. Beispielsweise könnte statt eines einfachen I-Reglers ein PI-Regler verwendet werden. Dies ändert nichts daran, dass, wenn auch kleinere, Lampenstrommodulationen bleiben. Selbst wenn die Lampenstrommodulationen komplett ausgeregelt werden würden, so könnten sie insoweit für die erfindungsgemäße Detektion der Nähe zu dem kapazitiven Betrieb Verwendung finden, als das Stellsignal des Lampenstromregelkreises stellvertretend für die Schwankungen des Lampenstroms verwendet wird. Die Schwankungen des Lampenstroms wären dann gewissermaßen nur noch regelungstechnisch existent und nicht mehr physikalisch vorhanden. Die Erfindung bezieht sich auch auf diese Variante. Im Übrigen würde auch bei perfekter Lampenstromregelung der Strom im kapazitiven Bereich einbrechen.If necessary, the control shown can be supplemented by a further control element in the lamp current control circuit, with which the 100 Hz modulation of the lamp current is damped. For example, instead of a PI controller can be used for a simple I controller. This does not change the fact that, although smaller, lamp current modulations remain. Even if the lamp current modulations were completely compensated, they could be used for the detection according to the invention of the proximity to the capacitive operation, in that the control signal of the lamp current control loop is used as a representative of the fluctuations in the lamp current. The fluctuations in the lamp current would then to a certain extent only exist in terms of control technology and no longer be physically present. The invention also relates to this variant. Incidentally, even with perfect lamp current control, the current would drop in the capacitive range.

Im Übrigen ist bereits festgestellt worden, dass die Zwischenkreisspannung Uzw in Figur 2 bzw. zwischen dem Anschluss 5 und Masse 4 in Figur 1 auch eine bewusst modulierte Spannung aus einer Gleichspannungsquelle sein könnte. Dies würde am Prinzip dieses Ausführungsbeispiels nichts ändern. In diesem Fall wäre allerdings die PFC-Schaltung überflüssig.In addition, it has already been established that the intermediate circuit voltage U zw in FIG. 2 or between the connection 5 and ground 4 in FIG. 1 could also be a deliberately modulated voltage from a DC voltage source. This would not change the principle of this embodiment. In this case, however, the PFC circuit would be superfluous.

Die Erfindung ermöglicht damit mit einem geringen Zusatzaufwand eine trotz Bauteiltoleranzen und Lampenalterungsprozessen recht präzise Abstimmung der Betriebsschaltung auf einen im Mittel resonanznahen Dauerbetrieb. Bei auftretenden Schwierigkeiten wird im Gegensatz zum Stand der Technik der Lampenbetrieb fortgesetzt und infolge der Veränderung des Stromsollwerts lediglich eine gewisse Leistungsverringerung vorgenommen. Aus der Perspektive des Anwenders ist in einer mit kaum spürbar verringerter Helligkeit leuchtenden Lampe gegenüber einer nicht funktionstüchtigen Lampe die bei weitem günstigere Lösung zu sehen.The invention thus enables a very precise adjustment of the operating circuit to a continuous operation that is close to resonance on average, despite component tolerances and lamp aging processes. If difficulties arise, in contrast to the prior art, lamp operation is continued and, as a result of the change in the current setpoint, only a certain reduction in output is carried out. From the perspective of the user, the far cheaper solution is to be seen in a lamp that shines with hardly any noticeably reduced brightness compared to a lamp that is not functioning.

Claims (11)

Betriebsschaltung für eine Entladungslampe (1) mit
einer Oszillatorschaltung (6, 7) zum Erzeugen einer Hochfrequenzversorgungsleistung für einen die Entladungslampe (1) enthaltenden Lastkreis (1, 8 - 11) aus einer veränderlichen Versorgungsleistung (5)
und einer Detektionsschaltung (12, 13) zum Erkennen der Nähe zu einem kapazitiven Betrieb des Lastkreises (1, 8 -11),
dadurch gekennzeichnet, dass die Detektionsschaltung (12, 13) die Höhe von den Veränderungen der Versorgungsleistung (5) entsprechenden Schwankungen des Lampenstroms (ILamp) erfasst.
Operating circuit for a discharge lamp (1) with
an oscillator circuit (6, 7) for generating a high-frequency supply power for a load circuit (1, 8-11) containing the discharge lamp (1) from a variable supply power (5)
and a detection circuit (12, 13) for recognizing the proximity to a capacitive operation of the load circuit (1, 8 -11),
characterized in that the detection circuit (12, 13) detects the level of fluctuations in the lamp current (I lamp ) corresponding to the changes in the supply power (5).
Betriebsschaltung für eine Entladungslampe (1) mit
einer Oszillatorschaltung (6, 7) zum Erzeugen einer Hochfrequenzversorgungsleistung für einen die Entladungslampe (1) enthaltenden Lastkreis (1, 8 - 11) aus einer veränderlichen Versorgungsleistung (5),
einer Detektionsschaltung (12, 13) zum Erkennen der Nähe zu einem kapazitiven Betrieb des Lastkreises (1, 8 -11)
und einer Lampenregelschaltung (12, 13) zum Regeln des Lastkreises (1, 8-11) auf einen Lampensollwert (ILamp-Soll),
dadurch gekennzeichnet, dass die Detektionsschaltung (12, 13) die Höhe von den Veränderungen der Versorgungsleistung (5) entsprechenden Schwankungen einer Stellgröße der Lampenregelschaltung (12,13) erfaßt.
Operating circuit for a discharge lamp (1) with
an oscillator circuit (6, 7) for generating a high-frequency supply power for a load circuit (1, 8-11) containing the discharge lamp (1) from a variable supply power (5),
a detection circuit (12, 13) for recognizing the proximity to a capacitive operation of the load circuit (1, 8 -11)
and a lamp control circuit (12, 13) for controlling the load circuit (1, 8-11) to a lamp setpoint (I lamp setpoint ),
characterized in that the detection circuit (12, 13) corresponds to the amount of changes in the supply power (5) Fluctuations in a manipulated variable of the lamp control circuit (12, 13) are detected.
Betriebsschaltung nach Anspruch 1 oder 2, die dazu ausgelegt ist, ansprechend auf eine Erkennung der Nähe zu einem kapazitiven Betrieb durch die Detektionsschaltung (12, 13) den Betrieb der Oszillatorschaltung (6, 7) in solcher Weise anzupassen, dass die Nähe zu dem kapazitiven Betrieb nicht weiter erhöht wird und der Betrieb fortgesetzt werden kann.Operating circuit according to claim 1 or 2, which is designed in response to detection of the proximity to a capacitive operation by the detection circuit (12, 13) to adapt the operation of the oscillator circuit (6, 7) in such a way that the proximity to the capacitive Operation is not increased further and the operation can be continued. Betriebsschaltung nach einem der vorstehenden Ansprüche mit einer Stromregelschaltung (12, 13) zum Regeln des Lampenstromes (ILamp) auf einen Stromsollwert (ILamp-Soll).Operating circuit according to one of the preceding claims with a current regulating circuit (12, 13) for regulating the lamp current (I lamp ) to a current setpoint (I lamp setpoint ). Betriebsschaltung nach einem der vorstehenden Ansprüche mit einer Leistungsregelschaltung zum Regeln der Lampenleistung auf einen Leistungssollwert.Operating circuit according to one of the preceding claims with a power control circuit for regulating the lamp power to a power setpoint. Betriebsschaltung nach Anspruch 4 und 5, die dazu ausgelegt ist, ansprechend auf eine Erkennung der Nähe zu einem kapazitiven Betrieb durch die Detektionsschaltung (12, 13) den Regelsollwert (I-Lamp-Soll) zu verkleinern.Operating circuit according to Claims 4 and 5, which is designed to reduce the control setpoint (I- lamp setpoint ) in response to detection of the proximity to capacitive operation by the detection circuit (12, 13). Betriebsschaltung nach einem der Ansprüche 4 bis 6, bei der die Regelschaltung (12,13) ein I-Regelglied aufweist.Operating circuit according to one of Claims 4 to 6, in which the control circuit (12, 13) has an I control element. Betriebsschaltung nach einem der vorstehenden Ansprüche, bei der die Detektionsschaltung (12, 13) einen Vergleich der Höhe der Schwankungen mit einem vorgegebenen Schwellenwert durchführt.Operating circuit according to one of the preceding claims, in which the detection circuit (12, 13) compares the magnitude of the fluctuations with a predetermined threshold value. Betriebsschaltung nach einem der vorstehenden Ansprüche mit einer die Oszillatorschaltung (6, 7) mit einer Gleichspannungsleistung (5) versorgenden und an einem Gleichrichter angeschlossenen PFC-Schaltung, die auf die Gleichspannung (5) geregelt ist.Operating circuit according to one of the preceding claims with a PFC circuit which supplies the oscillator circuit (6, 7) with a DC voltage power (5) and is connected to a rectifier and is regulated to the DC voltage (5). Betriebsschaltung nach einem der vorstehenden Ansprüche, die für eine Wechselspannungs-Versorgungsleistung ausgelegt ist und einen Gleichrichter zum Erzeugen einer Gleichspannungsleistung (5) aufweist.Operating circuit according to one of the preceding claims, which is designed for an AC voltage supply power and has a rectifier for generating a DC voltage power (5). Betriebsschaltung nach Anspruch 9, bei der ein Mikrocontroller (12) eine Zwangssteuerschaltung für die Oszillatorschaltung (6, 7) und für die PFC-Schaltung enthält.Operating circuit according to Claim 9, in which a microcontroller (12) contains a positive control circuit for the oscillator circuit (6, 7) and for the PFC circuit.
EP03012453A 2002-06-11 2003-05-30 Circuit with a near-capacitive mode detection for operating a discharge lamp Expired - Lifetime EP1377135B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10225881 2002-06-11
DE10225881A DE10225881A1 (en) 2002-06-11 2002-06-11 Discharge lamp operating circuit with circuit for detecting proximity to a capacitive operation

Publications (3)

Publication Number Publication Date
EP1377135A2 true EP1377135A2 (en) 2004-01-02
EP1377135A3 EP1377135A3 (en) 2006-05-03
EP1377135B1 EP1377135B1 (en) 2007-07-25

Family

ID=29594376

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03012453A Expired - Lifetime EP1377135B1 (en) 2002-06-11 2003-05-30 Circuit with a near-capacitive mode detection for operating a discharge lamp

Country Status (5)

Country Link
US (1) US6707262B2 (en)
EP (1) EP1377135B1 (en)
AT (1) ATE368368T1 (en)
CA (1) CA2431713A1 (en)
DE (2) DE10225881A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10225880A1 (en) * 2002-06-11 2003-12-24 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Discharge lamp operating circuit with a current control circuit and a circuit for detecting proximity to a capacitive operation
DE102005035466A1 (en) * 2005-07-28 2007-02-01 Tridonicatco Gmbh & Co. Kg Adaptive regulation of the power of gas discharge lamps
EP2124510B1 (en) * 2008-05-16 2013-01-02 Infineon Technologies Austria AG Method for controlling a phosphorescent light and light pre-switching device
DE102013216878A1 (en) * 2013-08-23 2015-02-26 Osram Gmbh Two-stage clocked electronic energy converter
DE102018203599B4 (en) * 2018-03-09 2024-02-22 Inventronics Gmbh CIRCUIT ARRANGEMENT FOR OPERATING A LOAD PREFERABLY HAVING LAMPS

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4723098A (en) * 1980-10-07 1988-02-02 Thomas Industries, Inc. Electronic ballast circuit for fluorescent lamps
EP0338109A1 (en) * 1988-04-20 1989-10-25 Zumtobel Aktiengesellschaft Converter for a discharge lamp
EP0430358A1 (en) * 1989-11-29 1991-06-05 Koninklijke Philips Electronics N.V. Circuit arrangement
US5696431A (en) * 1996-05-03 1997-12-09 Philips Electronics North America Corporation Inverter driving scheme for capacitive mode protection
WO1999034650A1 (en) * 1997-12-23 1999-07-08 Tridonic Bauelemente Gmbh Electronic lamp ballast
US6331755B1 (en) * 1998-01-13 2001-12-18 International Rectifier Corporation Circuit for detecting near or below resonance operation of a fluorescent lamp driven by half-bridge circuit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4928038A (en) * 1988-09-26 1990-05-22 General Electric Company Power control circuit for discharge lamp and method of operating same
US5914572A (en) * 1997-06-19 1999-06-22 Matsushita Electric Works, Ltd. Discharge lamp driving circuit having resonant circuit defining two resonance modes
ATE213901T1 (en) * 1997-12-23 2002-03-15 Tridonic Bauelemente METHOD AND DEVICE FOR DETECTING THE RECTIFICATION EFFECT OCCURRING IN A GAS DISCHARGE LAMP

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4723098A (en) * 1980-10-07 1988-02-02 Thomas Industries, Inc. Electronic ballast circuit for fluorescent lamps
EP0338109A1 (en) * 1988-04-20 1989-10-25 Zumtobel Aktiengesellschaft Converter for a discharge lamp
EP0430358A1 (en) * 1989-11-29 1991-06-05 Koninklijke Philips Electronics N.V. Circuit arrangement
US5696431A (en) * 1996-05-03 1997-12-09 Philips Electronics North America Corporation Inverter driving scheme for capacitive mode protection
WO1999034650A1 (en) * 1997-12-23 1999-07-08 Tridonic Bauelemente Gmbh Electronic lamp ballast
US6331755B1 (en) * 1998-01-13 2001-12-18 International Rectifier Corporation Circuit for detecting near or below resonance operation of a fluorescent lamp driven by half-bridge circuit

Also Published As

Publication number Publication date
ATE368368T1 (en) 2007-08-15
DE50307753D1 (en) 2007-09-06
CA2431713A1 (en) 2003-12-11
US20030227264A1 (en) 2003-12-11
EP1377135B1 (en) 2007-07-25
US6707262B2 (en) 2004-03-16
DE10225881A1 (en) 2004-01-08
EP1377135A3 (en) 2006-05-03

Similar Documents

Publication Publication Date Title
EP0422255B1 (en) Electronic ballast
DE69818941T2 (en) BALLAST
DE69614471T2 (en) CONTROL UNIT FOR A DISCHARGE LAMP
DE68927334T2 (en) Control circuits for fluorescent lamps
DE69301561T3 (en) DC power supply device
DE3407067C2 (en) Control circuit for gas discharge lamps
DE3903520C2 (en)
DE19814681B4 (en) Current Mode Switching Regulators
DE3587792T2 (en) Electronic ballast for fluorescent lamps.
DE69828862T2 (en) BY MEANS OF A TRIACS DIMMABLE COMPACT FLUORESCENT LAMP WITH LOW POWERFUL FACTOR
DE69815281T2 (en) FLICKER-FREE SWITCHGEAR FOR A FLUORESCENT LAMP
DE102018113402B4 (en) METHOD OF OPERATING A POWER SUPPLY WITH A LOW POWER STANDBY, POWER SUPPLY AND CONTROLLER
DE102006032091B4 (en) The discharge lamp lighting circuit
EP0876742A1 (en) Method and control circuit for regulation of the operational characteristics of gas discharge lamps
DE19708783C1 (en) Method and device for regulating the operating behavior of gas discharge lamps
EP1465330A2 (en) Method for varying the power consumption of capacitive loads
DE19522956C2 (en) Converter
DE102014220099A1 (en) Clocked electronic energy converter
EP1377135A2 (en) Circuit with a near-capacitive mode detection for operating a discharge lamp
DE10209631A1 (en) Electronic circuit and method for supplying energy to a high-pressure gas discharge lamp
DE69314864T2 (en) Power factor correction circuit
EP0588273A1 (en) Process for electronically dimming and dimmer for carrying out this process
EP1372362A2 (en) Circuit with a current control and a near-capacitive mode detection for operating a discharge lamp
DE102007024467B4 (en) Discharge lamp operating circuit with differential and integral calculation
EP1476003A2 (en) Power supply and method for driving discharge lamps

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

RIC1 Information provided on ipc code assigned before grant

Ipc: H05B 41/298 20060101AFI20060313BHEP

17P Request for examination filed

Effective date: 20060522

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070810

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50307753

Country of ref document: DE

Date of ref document: 20070906

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071025

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071226

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071105

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070725

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070725

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070725

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070725

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070725

26N No opposition filed

Effective date: 20080428

BERE Be: lapsed

Owner name: PATENT-TREUHAND-GESELLSCHAFT FUR ELEKTRISCHE GLUH

Effective date: 20080531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080530

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070725

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20110510

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20110517

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110526

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50307753

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG, 81543 MUENCHEN, DE

Effective date: 20111130

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20121201

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120530

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50307753

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM AG, 81543 MUENCHEN, DE

Effective date: 20130205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50307753

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GMBH, 81543 MUENCHEN, DE

Effective date: 20130822

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20160511

Year of fee payment: 14

Ref country code: GB

Payment date: 20160520

Year of fee payment: 14

Ref country code: DE

Payment date: 20160520

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160520

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50307753

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170530

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171201

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531