EP1397569B1 - Anchorage fixture for a strip-type tension member, used in the building trade - Google Patents

Anchorage fixture for a strip-type tension member, used in the building trade Download PDF

Info

Publication number
EP1397569B1
EP1397569B1 EP02751029A EP02751029A EP1397569B1 EP 1397569 B1 EP1397569 B1 EP 1397569B1 EP 02751029 A EP02751029 A EP 02751029A EP 02751029 A EP02751029 A EP 02751029A EP 1397569 B1 EP1397569 B1 EP 1397569B1
Authority
EP
European Patent Office
Prior art keywords
tension member
fixture according
segments
anchorage fixture
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02751029A
Other languages
German (de)
French (fr)
Other versions
EP1397569A1 (en
Inventor
Hans-Peter ANDRÄ
Gert KÖNIG
Markus Maier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LEONHARDT ANDRAE und PARTNER
LEONHARDT ANDRAE und PARTNER
Leonhardt Andra und Partner Beratende Ingenieure VBI GmbH
Original Assignee
LEONHARDT ANDRAE und PARTNER
LEONHARDT ANDRAE und PARTNER
Leonhardt Andra und Partner Beratende Ingenieure VBI GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LEONHARDT ANDRAE und PARTNER, LEONHARDT ANDRAE und PARTNER, Leonhardt Andra und Partner Beratende Ingenieure VBI GmbH filed Critical LEONHARDT ANDRAE und PARTNER
Publication of EP1397569A1 publication Critical patent/EP1397569A1/en
Application granted granted Critical
Publication of EP1397569B1 publication Critical patent/EP1397569B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/08Members specially adapted to be used in prestressed constructions
    • E04C5/12Anchoring devices
    • E04C5/127The tensile members being made of fiber reinforced plastics
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/07Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/12Mounting of reinforcing inserts; Prestressing
    • E04G21/121Construction of stressing jacks
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements
    • E04G2023/0251Increasing or restoring the load-bearing capacity of building construction elements by using fiber reinforced plastic elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements
    • E04G2023/0251Increasing or restoring the load-bearing capacity of building construction elements by using fiber reinforced plastic elements
    • E04G2023/0255Increasing or restoring the load-bearing capacity of building construction elements by using fiber reinforced plastic elements whereby the fiber reinforced plastic elements are stressed
    • E04G2023/0259Devices specifically adapted to stress the fiber reinforced plastic elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements
    • E04G2023/0251Increasing or restoring the load-bearing capacity of building construction elements by using fiber reinforced plastic elements
    • E04G2023/0262Devices specifically adapted for anchoring the fiber reinforced plastic elements, e.g. to avoid peeling off

Definitions

  • the invention relates to a clamping anchor for band-shaped tension members in construction, in particular fiber-reinforced plastic slats, with at least one frictionally connected to the tension member by gluing and / or friction anchor body, which is supported on a stationary abutment.
  • CFRP carbon fiber reinforced plastics
  • AFK aramid reinforced plastics
  • GRP glass reinforced plastics
  • the transition from the free span of the tension member to the anchoring zone is a discontinuity in terms of stiffness. Since the activatable adhesive length, which absorbs by shear stress introduced by the tension member load is relatively short, it comes at the transition from the free span length to the anchoring zone to a shear stress peak, which exceeds the locally permissible shear stress in the bonding joint and reaches the fracture stress.
  • the decisive breaking criterion for adhesion is in this case an exceeding of the cohesion of the adhesive and / or the breakage of the plastic matrix of the band-shaped tension member. The fracture shear stress front formed thereby travels along the glue joint until the adhesive bond completely fails.
  • the object of the invention is, therefore, a tension anchor of the type mentioned in such a way that the emergence of the breaking stress in the adhesive joint or in the friction region locally exceeding shear stress peak is avoided.
  • the anchor body has a plurality, in the longitudinal direction of the tension member spaced from each other, connectable to the tension member by gluing and / or friction terminal blocks, wherein the end of the tension member last terminal block on stationary abutment can be supported, that the clamping blocks are connected by Dehnabroughe different spring stiffness and that the spring stiffness of the Dehnabroughe increase toward the end of the tension member.
  • an anchor body is arranged on both sides of a band-shaped tension member or a layer of two band-shaped tension members whose respective superimposed clamping blocks are interconnected by clamping elements.
  • a tensioning anchor for band-shaped tension members 1 is schematically explained, for example, of lamellae made of carbon fiber reinforced plastic (CFRP lamellae).
  • This band-shaped tension members 1 are used in construction for retrofitting or rehabilitation of prestressed concrete or reinforced concrete structures.
  • the band-shaped tension members for example, glued to the concrete surface or remain without bonding with the concrete surface.
  • the clamping anchors described serve to apply a bias voltage and / or to the final anchoring of the tension members.
  • an anchor body 2 is connected by gluing and clamping with the tension member 1.
  • the bond can also be done by friction.
  • the adhesive bond is described below.
  • the anchor body 2 has a plurality of, in the longitudinal direction of the tension member 1 at a distance from each other arranged clamping blocks 3.
  • Each of the clamping blocks 3 is connected via an adhesive layer 4 by gluing to the tension member 1.
  • clamping screws 5, which are indicated only schematically in Fig. 1 is each Terminal block connected to a clamping counterpart 6.
  • These clamping counterparts 6 can in turn (not shown) be parts of a second clamping body 2 on the underside of the tension member 1.
  • the last terminal block 3 towards the end of the tension member, in the illustrated embodiment the leftmost terminal block 3, is attached to a stationary, i.e. Supported abutment 7 supported on the structure, for example via a hydraulic tensioning device. 8
  • Dehnabitese 9 are formed between the individual terminal blocks 3, which are symbolized in the illustration of FIGS. 1 and 2 as groups of tension springs.
  • the different thickness of the tension springs represents that the Dehnabitese 9 are designed with different spring stiffness, the spring stiffness of the transition point 10 from the free span length of the tension member 1 in the anchoring zone to the end of the tension member (left in Figs. 1 and 2) increases ,
  • the spring stiffness of the Dehnabitese 9 are chosen and graded so that the introduction of force into each terminal block 3, which takes place on shear stresses in the adhesive layer 4, excludes the emergence of shear stress peaks that would exceed the maximum shear stress in the adhesive and would lead to a cohesion failure. Deviating from the embodiments shown in the drawing, an adhesion can also take place in the region of the expansion sections 9.
  • the different spring stiffness of the Dehnabroughe 9 can be achieved structurally in different ways; preferred examples thereof are shown in the following figures.
  • an anchor body 2 is arranged on both sides of a layer of two band-shaped tension members 1, each of which superposed terminal blocks 3 each by laterally adjacent to the tension members. 1 arranged lag screws 5 are connected and clamped together. For uniform application of force, the lag screws 7 each act on a transverse yoke 11 via two adjacent support points 11a, 11b on the respective terminal block 3. Instead, a single, central support point can be selected. Multiple, individually functioning identical tie rods can be combined as modules to form a larger tendon by stacking using longer, common screws 7.
  • the end of the tension member 1 towards last terminal block 3 is connected to a head plate 2 a of the anchor body 2.
  • This top plate 2a is supported on the stationary abutment 7 via lateral hydraulic clamping cylinder 8.
  • the Dehnab songs 9 between the clamping blocks 3 are formed by connecting webs 13 which are the same width, but different thickness.
  • the thickness of the Connecting webs 13 increases from the transition point 10 to the top plate 2a and thus to the end of the tension member 1 to.
  • Fig. 6 shows a plan view in a simplified representation of the basic structure of the anchor body 2, as it is used in the embodiment of FIGS. 3-5. In the same representation, further embodiments are shown in Figs. 8-15.
  • the expansion sections 9 between the clamping blocks 3 forming connecting webs each consist of a plurality of web portions 14 which are separated by recesses, in the example of FIGS. 8 and 9 perpendicular to the band-shaped tension member 1 extending holes 15 are.
  • the total web cross-section of all web sections 14 of the individual expansion sections 9 is different.
  • the bores 15 have the largest diameter in the expansion section 9 closest to the transition point 10, so that the total cross-section of all the web sections 14 is the smallest here.
  • the diameter of the holes 15 are smaller; thus here the total web cross-section is larger.
  • the diameter of the bores 15 in the end of the tension member 1 towards the next expansion section 9 is even lower and the total web cross-section is larger.
  • FIGS. 10 and 11 differs from the previously described embodiment substantially only in that the web portions 14 'of each expansion section 9 separating holes 15' extend parallel to the surface of the band-shaped tension member 1 and transverse to its longitudinal direction.
  • the diameter of the bores 15 'decreases starting from the transition point 10 while the total web cross-section of the web sections 14' increases.
  • a bending section 16 directed transversely to the longitudinal direction of the tension member 1 is formed in each expansion section 9.
  • the bending sections 16 of the individual expansion sections 9 have different bending stiffnesses.
  • the bending sections 16 or bending beams are each formed between a slot 17 extending from the tension member 1 and a slot 17 extending into the anchor body 2 from the opposite side.
  • the expansion sections 9 exist between the clamping blocks 3 Material with different modulus of elasticity (modulus of elasticity). Starting from the transition point 10, the modulus of elasticity of the material used for the expansion sections 9 increases, ie the spring stiffnesses of the expansion sections 9 increase toward the end of the tension member 1.
  • the graded gradient of the anchor stiffness with the division into "load transfer zones” by composite and “expansion zones” preferably without composite, serves to divert only as much tensile force per load application zone from the lamella as transmitted by the selected composite principle (bonding + transverse pressure or friction + lateral pressure) can, without harm. Thereafter, this load transfer zone eludes further stresses by stretching the expansion zone beyond it, and the next load transfer zone is activated. Ideally, each load transfer zone derives a certain proportion of the total pulling force from the tension member. These are then collected in the anchor part until they are finally handed over to the component. The necessary expansions in the expansion zones must be achieved by adapted spring stiffnesses.
  • the number of "clamping blocks" to be connected in series is then determined by the size of the load in the tension member and the permissible stress of the selected composite principle (adhesion / cohesion or pure friction of anchor surfaces with the tension member).
  • the adhesive joint is activated over the entire length.

Landscapes

  • Architecture (AREA)
  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Reinforcement Elements For Buildings (AREA)
  • Clamps And Clips (AREA)
  • Piles And Underground Anchors (AREA)
  • Springs (AREA)
  • Bridges Or Land Bridges (AREA)
  • Joining Of Building Structures In Genera (AREA)
  • Laminated Bodies (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Abstract

A tie anchor for strip-type tension members includes an anchor body disposed on at least one side of the tension member. The anchor body includes a plurality of clamping blocks arranged at a distance from each other in a longitudinal direction of the tension member. The clamping blocks are connected to tension member by adhesive and/or friction (clamping friction). An end-most (final) one of the clamping blocks is attached to a fixed abutment. Adjacent clamping blocks are interconnected by expansion members whose spring stiffness becomes progressively stronger toward the end-most clamping block.

Description

Die Erfindung betrifft einen Spannanker für bandförmige Zugglieder im Bauwesen, insbesondere faserverstärkte Kunststofflamellen, mit mindestens einem mit dem Zugglied durch Klebung und/oder Reibung kraftschlüssig verbundenen Ankerkörper, der an einem ortsfesten Widerlager abstützbar ist.The invention relates to a clamping anchor for band-shaped tension members in construction, in particular fiber-reinforced plastic slats, with at least one frictionally connected to the tension member by gluing and / or friction anchor body, which is supported on a stationary abutment.

Zur Erhöhung der Tragfähigkeit (Ertüchtigung) oder zur Wiederherstellung der ursprünglichen Tragfähigkeit (Sanierung) von Tragwerken aus Stahlbeton oder Spannbeton ist es bekannt, nachträglich an der Außenseite der Tragwerke vorgespannte bandförmige Zugglieder anzubringen. Außer Stahllamellen werden hierfür bevorzugt faserverstärkte Kunststofflamellen verwendet, insbesondere durch Kohlefasern verstärkte Kunststoffe (CFK), durch Aramid verstärkte Kunststoffe (AFK) und durch Glas verstärkte Kunststoffe (GFK).To increase the sustainability (retrofitting) or restore the original capacity (rehabilitation) of structures made of reinforced concrete or prestressed concrete, it is known to subsequently attach to the outside of the structures prestressed band-shaped tension members. Apart from steel lamellae, fiber-reinforced plastic lamellae are preferred, in particular carbon fiber reinforced plastics (CFRP), aramid reinforced plastics (AFK) and glass reinforced plastics (GRP).

Eine bedeutsame Eigenschaft dieser faserverstärkten Kunststoffe, im besonderen der bevorzugt eingesetzten kohlefaserverstärkten Kunststoffe, besteht darin, dass die daraus hergestellten bandförmigen Zugglieder ein bis zum Bruch linear elastisches Verhalten zeigen. Bei der notwendigen Verankerung der Enden der Zugglieder muss darauf geachtet werden, einen einachsigen Zugspannungszustand aufrechtzuerhalten. Ein durch wesentliche Spannungsspitzen an der Einspannstelle und/oder eine Umlenkung hervorgerufener zweiachsiger Zugspannungszustand würde zu einer Beschädigung oder sogar Zerstörung des bandförmigen Zuggliedes führen.An important feature of these fiber-reinforced plastics, in particular of the carbon fiber-reinforced plastics used with preference, is that the band-shaped tension members produced therefrom exhibit a behavior which is linearly elastic up to breakage. When anchoring the ends of the tension members, care must be taken to maintain a uniaxial tension condition. A biaxial tensile stress condition caused by substantial stress peaks at the clamping point and / or a deflection would lead to damage or even destruction of the band-shaped tension member.

Bei der Klebebefestigung der bandförmigen Zugglieder an den Ankerkörpern stellt der Übergang von der freien Spannlänge des Zuggliedes zu der Verankerungszone eine Unstetigkeit hinsichtlich der Steifigkeit dar. Da die aktivierbare Klebelänge, die durch Schubspannung die von dem Zugglied eingeleitete Last aufnimmt, verhältnismäßig kurz ist, kommt es am Übergang von der freien Spannlänge zur Verankerungszone zu einer Schubspannungsspitze, die die örtlich zulässige Schubspannung in der Klebefuge überschreitet und die Bruchspannung erreicht. Das entscheidende Bruchkriterium bei Klebung ist hierbei ein Überschreiten der Kohäsion des Klebers und/oder der Bruch der Kunststoffmatrix des bandförmigen Zugglieds. Die dadurch gebildete Bruch-Schubspannungsfront wandert entlang der Klebefuge, bis die Klebeverbindung vollständig versagt.In the adhesive attachment of the band-shaped tension members to the anchor bodies, the transition from the free span of the tension member to the anchoring zone is a discontinuity in terms of stiffness. Since the activatable adhesive length, which absorbs by shear stress introduced by the tension member load is relatively short, it comes at the transition from the free span length to the anchoring zone to a shear stress peak, which exceeds the locally permissible shear stress in the bonding joint and reaches the fracture stress. The decisive breaking criterion for adhesion is in this case an exceeding of the cohesion of the adhesive and / or the breakage of the plastic matrix of the band-shaped tension member. The fracture shear stress front formed thereby travels along the glue joint until the adhesive bond completely fails.

Es ist zwar bekannt (DE 198 49 605 A1), zur Erhöhung der Klebewirkung eine zusätzliche Klemmkraft zwischen dem Ankerkörper und dem damit verklebten Zugglied aufzubringen. Der dadurch entstehende zweiachsige Spannungszustand (Längszug/begrenzter Querdruck) ist für das Zugglied unschädlich, da kein Querzug auftritt. Vielmehr kommt es zu einer Steigerung der maßgeblichen Bruchfestigkeit. Die Schubspannungsspitze am Übergang von der freien Spannlänge zur Verankerungszone wird dadurch aber nicht verringert.Although it is known (DE 198 49 605 A1), to increase the adhesive effect to apply an additional clamping force between the anchor body and the tension member glued thereto. The resulting biaxial stress state (longitudinal tension / limited transverse pressure) is harmless for the tension member, since no transverse tension occurs. Rather, there is an increase in the relevant breaking strength. The shear stress peak at the transition from the free span length to the anchoring zone is not reduced thereby.

Zur Lösung dieses Problems durch Verminderung oder vermeidung einer Schubspannungsspitze am Übergang von der freien Spannlänge in die Verankerungszone ist schon vorgeschlagen worden, die Klebereigenschaften entlang der Krafteinleitungsstrecke so zu verändern, dass am Übergang zur verankerung ein verhältnismäßig weicher Kleber (geringer Schubmodul) verwendet wird und die Klebeeigenschaften zum anderen Ende der Verankerung hin so verändert werden, dass der Kleber einen hohen Schubmodul aufweist und daher wesentlich steifer wirkt. Die Auswahl der Klebermaterialien und insbesondere die Einhaltung der vorgeschriebenen Bedingungen beim Aufbringen des Klebers stellen jedoch sehr hohe Anforderungen und sind insbesondere nachträglich nicht kontrollierbar.To solve this problem by reducing or avoiding a shear stress peak at the transition from the free span length in the anchoring zone is already It has been proposed to change the adhesive properties along the force introduction path such that a relatively soft adhesive (low shear modulus) is used at the transition to the anchorage and the adhesive properties to the other end of the anchorage are changed so that the adhesive has a high shear modulus and therefore substantially looks stiffer. However, the selection of the adhesive materials and in particular the observance of the prescribed conditions when applying the adhesive make very high demands and are especially not subsequently controllable.

Es ist auch bekannt, in die Klebefuge ein Lochblech oder ein ähnliches Material einzulegen. Dadurch wird ohne Beeinträchtigung der Gesamtbelastbarkeit ein insgesamt geringerer Schubmodul der Klebefuge erreicht. Dadurch kann die schädliche Schubspannungsspitze zwar vermindert werden, aber für viele Anwendungsfälle nicht in ausreichendem Maße.It is also known to insert a perforated plate or a similar material in the glue joint. As a result, an overall lower shear modulus of the adhesive joint is achieved without affecting the overall load capacity. As a result, the harmful shear stress peak can indeed be reduced, but not sufficient for many applications.

Aufgabe der Erfindung ist es daher, einen Spannanker der eingangs genannten Gattung so auszugestalten, dass das Entstehen einer die Bruchspannung in der Klebefuge bzw. im Reibbereich lokal überschreitenden Schubspannungsspitze vermieden wird.The object of the invention is, therefore, a tension anchor of the type mentioned in such a way that the emergence of the breaking stress in the adhesive joint or in the friction region locally exceeding shear stress peak is avoided.

Ausgehend vom Oberbegriff des Anspruchs 1 wird diese Aufgabe erfindungsgemäß dadurch gelöst, dass der Ankerkörper mehrere, in Längsrichtung des Zugglieds im Abstand zueinander angeordnete, mit dem Zugglied durch Klebung und/oder Reibung verbindbare Klemmblöcke aufweist, wobei der zum Ende des Zugglieds hin letzte Klemmblock am ortsfesten Widerlager abstützbar ist, dass die Klemmblöcke durch Dehnabschnitte unterschiedlicher Federsteifigkeit miteinander verbunden sind und dass die Federsteifigkeiten der Dehnabschnitte zum Ende des Zugglieds hin zunehmen.Starting from the preamble of claim 1, this object is achieved in that the anchor body has a plurality, in the longitudinal direction of the tension member spaced from each other, connectable to the tension member by gluing and / or friction terminal blocks, wherein the end of the tension member last terminal block on stationary abutment can be supported, that the clamping blocks are connected by Dehnabschnitte different spring stiffness and that the spring stiffness of the Dehnabschnitte increase toward the end of the tension member.

Damit wird zwar ein gestufter, aber noch ausreichend gleichmäßig bis zum Übergang von der freien Spannlänge zur Verankerungszone abfallender Gradient der übertragenen Zugkraft in der Klebefuge bzw. im Reibbereich erreicht. Die Schubspannung ist bis zum Übergang in die freie Spannlänge des Zugglieds so weit abgebaut, dass an dieser Stelle weder die Kohäsion des Klebers oder die maximal mögliche Reibkraft überschritten wird, noch eine Beschädigung des Zuggliedes auftritt.Thus, although a stepped, but still sufficiently evenly until the transition from the free span length to the anchoring zone sloping gradient of the transmitted tensile force in the adhesive joint or in the friction region is achieved. The shear stress is so far reduced to the transition to the free span length of the tension member, that at this point neither the cohesion of the adhesive or the maximum possible frictional force is exceeded, nor damage to the tension member occurs.

Gemäß einer bevorzugten Ausführungsform der Erfindung ist vorgesehen, dass auf beiden Seiten eines bandförmigen Zugglieds oder einer Lage von zwei bandförmigen Zuggliedern jeweils ein Ankerkörper angeordnet ist, deren jeweils übereinander liegende Klemmblöcke durch Klemmelemente miteinander verbunden sind. Vorzugsweise sind die Klemmelemente beiderseits neben dem Zugglied angeordnete Zugschrauben.According to a preferred embodiment of the invention it is provided that in each case an anchor body is arranged on both sides of a band-shaped tension member or a layer of two band-shaped tension members whose respective superimposed clamping blocks are interconnected by clamping elements. Preferably, the clamping elements on both sides next to the tension member arranged lag screws.

Die zwischen den einzelnen Klemmblöcken angeordneten, unterschiedlich elastischen, d.h. mit unterschiedlicher Federsteifigkeit ausgeführten Dehnabschnitte werden in konstruktiv besonders einfacher und einfach herzustellender Weise als Verbindungsstege mit unterschiedlichem Stegquerschnitt ausgeführt. Der unterschiedliche Stegquerschnitt, der auf mehrere, nachfolgend beschriebene Arten erreicht werden kann, führt zu unterschiedlicher Federsteifigkeit. Damit läßt sich in sehr einfacher Weise die Forderung realisieren, die Federsteifigkeiten der Dehnabschnitte von der Stelle des Eintritts des Zuggliedes bis zu dessen Ende hin zunehmend auszuführen.The arranged between the individual terminal blocks, different elastic, ie running with different spring stiffness Dehnabschnitte be executed structurally particularly simple and easy to manufacture manner as connecting webs with different web cross-section. The different web cross-section, which is based on several subsequently described types can be achieved leads to different spring stiffness. This can be realized in a very simple manner, the requirement to increasingly perform the spring stiffness of the Dehnabschnitte from the point of entry of the tension member to its end.

Weitere vorteilhafte Ausgestaltungen des Erfindungsgedankens sind Gegenstand weiterer Unteransprüche.Further advantageous embodiments of the inventive concept are the subject of further subclaims.

Nachfolgend werden Ausführungsbeispiele der Erfindung näher erläutert, die in der Zeichnung dargestellt sind. Es zeigt:

  • Fig. 1 in einem Längsschnitt eine stark schematisierte Darstellung eines Spannankers für ein bandförmiges Zugglied, wobei für die Dehnabschnitte unterschiedlicher Federsteifigkeit Federsymbole verwendet werden,
  • Fig. 2 eine Draufsicht auf den schematisch dargestellten Spannanker gemäß Fig. 1,
  • Fig. 3 eine Draufsicht auf ein Ausführungsbeispiel eines Spannankers für ein bandförmiges Zugglied,
  • Fig. 4 eine Seitenansicht des Spannankers gemäß Fig. 3, wobei die Abstützung an einem ortsfesten Widerlager der deutlicheren Darstellung halber weggelassen ist,
  • Fig. 5 eine räumliche Darstellung des Spannankers gemäß Fig. 4,
  • Fig. 6 eine Draufsicht auf einen Spannkörper gemäß einer ersten Ausführungsform,
  • Fig. 7 einen Schnitt längs der Linie VII-VII in Fig. 6 und
  • Fig. 8-15 weitere Ausführungsbeispiele in Darstellungen entsprechend den Fig. 6 und 7.
Embodiments of the invention will be explained in more detail, which are illustrated in the drawing. It shows:
  • 1 is a longitudinal section of a highly schematic representation of a clamping anchor for a band-shaped tension member, being used for the Dehnabschnitte different spring stiffness spring symbols
  • 2 is a plan view of the schematically illustrated clamping anchor of FIG. 1,
  • 3 is a plan view of an embodiment of a clamping anchor for a band-shaped tension member,
  • 4 shows a side view of the tensioning anchor according to FIG. 3, wherein the support on a stationary abutment has been omitted for the sake of greater clarity,
  • 5 is a perspective view of the clamping anchor of FIG. 4,
  • 6 is a plan view of a clamping body according to a first embodiment,
  • Fig. 7 is a section along the line VII-VII in Fig. 6 and
  • 8-15 further embodiments in illustrations corresponding to FIGS. 6 and 7.

Anhand der Fig. 1 und 2 wird schematisch der Grundaufbau eines Spannankers für bandförmige Zugglieder 1 erläutert, beispielsweise von Lamellen aus kohlefaserverstärktem Kunststoff (CFK-Lamellen). Diese bandförmigen Zugglieder 1 werden im Bauwesen zur Ertüchtigung oder Sanierung von Tragwerken aus Spannbeton oder Stahlbeton eingesetzt. Die bandförmigen Zugglieder werden beispielsweise auf die Betonoberfläche aufgeklebt oder bleiben ohne Verbund mit der Betonoberfläche. Die beschriebenen Spannanker dienen zur Aufbringung einer Vorspannung und/oder zur Endverankerung der Zugglieder.1 and 2, the basic structure of a tensioning anchor for band-shaped tension members 1 is schematically explained, for example, of lamellae made of carbon fiber reinforced plastic (CFRP lamellae). This band-shaped tension members 1 are used in construction for retrofitting or rehabilitation of prestressed concrete or reinforced concrete structures. The band-shaped tension members, for example, glued to the concrete surface or remain without bonding with the concrete surface. The clamping anchors described serve to apply a bias voltage and / or to the final anchoring of the tension members.

Hierfür wird ein Ankerkörper 2 durch Klebung und Klemmung mit dem Zugglied 1 verbunden. Stattdessen kann der Verbund auch durch Reibung erfolgen. Als eines der möglichen Ausführungsbeispiele wird nachfolgend der Klebeverbund beschrieben. Der Ankerkörper 2 weist mehrere, in Längsrichtung des Zugglieds 1 im Abstand zueinander angeordnete Klemmböcke 3 auf. Jeder der Klemmböcke 3 ist über eine Kleberschicht 4 durch Klebung mit dem Zugglied 1 verbunden. Mittels Klemmschrauben 5, die in Fig. 1 nur schematisch angedeutet sind, ist jeder Klemmblock mit einem Klemmgegenstück 6 verbunden. Diese Klemmgegenstücke 6 können wiederum (nicht dargestellt) Teile eines zweiten Klemmkörpers 2 an der Unterseite des Zugglieds 1 sein.For this purpose, an anchor body 2 is connected by gluing and clamping with the tension member 1. Instead, the bond can also be done by friction. As one of the possible embodiments, the adhesive bond is described below. The anchor body 2 has a plurality of, in the longitudinal direction of the tension member 1 at a distance from each other arranged clamping blocks 3. Each of the clamping blocks 3 is connected via an adhesive layer 4 by gluing to the tension member 1. By means of clamping screws 5, which are indicated only schematically in Fig. 1, is each Terminal block connected to a clamping counterpart 6. These clamping counterparts 6 can in turn (not shown) be parts of a second clamping body 2 on the underside of the tension member 1.

Der zum Ende des Zugglieds hin letzte Klemmblock 3, im dargestellten Ausführungsbeispiel der am weitesten links angeordnete Klemmblock 3, ist an einem ortsfesten, d.h. am Tragwerk angebrachten Widerlager 7 abgestützt, beispielsweise über eine hydraulische Spanneinrichtung 8.The last terminal block 3 towards the end of the tension member, in the illustrated embodiment the leftmost terminal block 3, is attached to a stationary, i.e. Supported abutment 7 supported on the structure, for example via a hydraulic tensioning device. 8

Zwischen den einzelnen Klemmblöcken 3 sind Dehnabschnitte 9 ausgebildet, die in der Darstellung der Fig. 1 und 2 als Gruppen von Zugfedern symbolisiert sind. Die unterschiedliche Dicke der Zugfedern stellt dar, dass die Dehnabschnitte 9 mit unterschiedlicher Federsteifigkeit ausgeführt sind, wobei die Federsteifigkeit von der Übergangsstelle 10 aus der freien Spannlänge des Zugglieds 1 in die Verankerungszone zum Ende des Zuggliedes (links in den Fig. 1 und 2) zunimmt.Dehnabschnitte 9 are formed between the individual terminal blocks 3, which are symbolized in the illustration of FIGS. 1 and 2 as groups of tension springs. The different thickness of the tension springs represents that the Dehnabschnitte 9 are designed with different spring stiffness, the spring stiffness of the transition point 10 from the free span length of the tension member 1 in the anchoring zone to the end of the tension member (left in Figs. 1 and 2) increases ,

Die Federsteifigkeiten der Dehnabschnitte 9 sind dabei so gewählt und so abgestuft, dass die Krafteinleitung in jeden Klemmblock 3, die über Schubspannungen in der Klebeschicht 4 erfolgt, das Entstehen von Schubspannungsspitzen ausschließt, die die höchstzulässige Schubspannung im Kleber überschreiten und zu einem Kohäsionsbruch führen würden. Abweichend von den in der Zeichnung dargestellten Ausführungen kann eine Klebung auch im Bereich der Dehnabschnitte 9 erfolgen.The spring stiffness of the Dehnabschnitte 9 are chosen and graded so that the introduction of force into each terminal block 3, which takes place on shear stresses in the adhesive layer 4, excludes the emergence of shear stress peaks that would exceed the maximum shear stress in the adhesive and would lead to a cohesion failure. Deviating from the embodiments shown in the drawing, an adhesion can also take place in the region of the expansion sections 9.

Die unterschiedliche Federsteifigkeit der Dehnabschnitte 9 kann konstruktiv in unterschiedlicher Weise erreicht werden; bevorzugte Beispiele hierfür sind in den folgenden Figuren dargestellt.The different spring stiffness of the Dehnabschnitte 9 can be achieved structurally in different ways; preferred examples thereof are shown in the following figures.

Bei dem in den Fig. 3-5 dargestellten Ausführungsbeispiel eines Spannankers für Zugglieder 1, beispielsweise kohlefaserverstärkte Kunststofflamellen, ist auf beiden Seiten einer Lage von zwei bandförmigen Zuggliedern 1 jeweils ein Ankerkörper 2 angeordnet, deren jeweils übereinanderliegende Klemmblöcke 3 jeweils durch seitlich neben den Zuggliedern 1 angeordnete Zugschrauben 5 miteinander verbunden und geklemmt sind. Zur gleichmäßigen Krafteinleitung wirken die Zugschrauben 7 jeweils über ein Querjoch 11 über zwei nebeneinander liegende Stützstellen 11a, 11b auf den jeweiligen Klemmblock 3. Stattdessen kann auch eine einzige, mittige Stützstelle gewählt werden. Mehrere, einzeln funktionierende identische Spannanker können als Module zu einem größeren Spannglied durch Übereinanderstapeln kombiniert werden, wobei längere, gemeinsame Zuschrauben 7 verwendet werden.In the embodiment of a tension anchor for tension members 1, for example carbon fiber reinforced plastic slats shown in FIGS. 3-5, an anchor body 2 is arranged on both sides of a layer of two band-shaped tension members 1, each of which superposed terminal blocks 3 each by laterally adjacent to the tension members. 1 arranged lag screws 5 are connected and clamped together. For uniform application of force, the lag screws 7 each act on a transverse yoke 11 via two adjacent support points 11a, 11b on the respective terminal block 3. Instead, a single, central support point can be selected. Multiple, individually functioning identical tie rods can be combined as modules to form a larger tendon by stacking using longer, common screws 7.

Der zum Ende des Zuggliedes 1 hin letzte Klemmblock 3 ist mit einer Kopfplatte 2a des Ankerkörpers 2 verbunden. Diese Kopfplatte 2a ist über seitliche hydraulische Spannzylinder 8 an dem ortsfesten Widerlager 7 abgestützt.The end of the tension member 1 towards last terminal block 3 is connected to a head plate 2 a of the anchor body 2. This top plate 2a is supported on the stationary abutment 7 via lateral hydraulic clamping cylinder 8.

Die Dehnabschnitte 9 zwischen den Klemmblöcken 3 werden durch Verbindungsstege 13 gebildet, die gleich breit, jedoch unterschiedlich dick sind. Die Dicke der Verbindungsstege 13 nimmt von der Übergangsstelle 10 zur Kopfplatte 2a und somit zum Ende des Zugglieds 1 zu.The Dehnabschnitte 9 between the clamping blocks 3 are formed by connecting webs 13 which are the same width, but different thickness. The thickness of the Connecting webs 13 increases from the transition point 10 to the top plate 2a and thus to the end of the tension member 1 to.

Fig. 6 zeigt in einer Draufsicht in vereinfachter Darstellungsweise den grundsätzlichen Aufbau des Ankerkörpers 2, wie er beim Ausführungsbeispiel nach den Fig. 3-5 Verwendung findet. In gleicher Darstellungsweise sind in den Fig. 8-15 weitere Ausführungsbeispiele dargestellt.Fig. 6 shows a plan view in a simplified representation of the basic structure of the anchor body 2, as it is used in the embodiment of FIGS. 3-5. In the same representation, further embodiments are shown in Figs. 8-15.

Beim Beispiel nach den Fig. 8 und 9 bestehen die die Dehnabschnitte 9 zwischen den Klemmblöcken 3 bildenden Verbindungsstege jeweils aus mehreren Stegabschnitten 14, die durch Ausnehmungen, beim Beispiel nach den Fig. 8 und 9 senkrecht zum bandförmigen Zugglied 1 verlaufende Bohrungen 15, voneinander getrennt sind. Jeweils der Gesamtstegquerschnitt aller Stegabschnitte 14 der einzelnen Dehnabschnitte 9 ist unterschiedlich. Wie in Fig. 8 und 9 gezeigt, haben die Bohrungen 15 in dem der Übergangsstelle 10 nächstgelegenen Dehnabschnitt 9 den größten Durchmesser, so dass der Gesamtstegquerschnitt aller Stegabschnitte 14 hier am geringsten ist. Im nächstfolgenden Dehnabschnitt 9 sind die Durchmesser der Bohrungen 15 kleiner; somit ist hier der Gesamtstegquerschnitt größer. Schließlich sind die Durchmesser der Bohrungen 15 in dem zum Ende des Zugglieds 1 hin nächsten Dehnabschnitt 9 noch geringer und der Gesamtstegquerschnitt ist größer.In the example according to FIGS. 8 and 9, the expansion sections 9 between the clamping blocks 3 forming connecting webs each consist of a plurality of web portions 14 which are separated by recesses, in the example of FIGS. 8 and 9 perpendicular to the band-shaped tension member 1 extending holes 15 are. In each case the total web cross-section of all web sections 14 of the individual expansion sections 9 is different. As shown in FIGS. 8 and 9, the bores 15 have the largest diameter in the expansion section 9 closest to the transition point 10, so that the total cross-section of all the web sections 14 is the smallest here. In the next following expansion section 9, the diameter of the holes 15 are smaller; thus here the total web cross-section is larger. Finally, the diameter of the bores 15 in the end of the tension member 1 towards the next expansion section 9 is even lower and the total web cross-section is larger.

Das Ausführungsbeispiel nach den Fig. 10 und 11 unterscheidet sich von dem vorher beschriebenen Ausführungsbeispiel im wesentlichen nur dadurch, dass die die Stegabschnitte 14' jedes Dehnabschnitts 9 trennenden Bohrungen 15' parallel zur Fläche des bandförmigen Zugglieds 1 und quer zu seiner Längsrichtung verlaufen. Jede Bohrung 15' trennt in jedem Dehnabschnitt 9 zwei Stegabschnitte 14' voneinander. Auch hierbei nimmt der Durchmesser der Bohrungen 15' von der Übergangsstelle 10 ausgehend ab, während der Gesamtstegquerschnitt der Stegabschnitte 14' zunimmt.The embodiment of FIGS. 10 and 11 differs from the previously described embodiment substantially only in that the the web portions 14 'of each expansion section 9 separating holes 15' extend parallel to the surface of the band-shaped tension member 1 and transverse to its longitudinal direction. Each bore 15 'separates two web sections 14' from one another in each expansion section 9. Here, too, the diameter of the bores 15 'decreases starting from the transition point 10, while the total web cross-section of the web sections 14' increases.

Beim Ausführungsbeispiel nach den Fig. 12 und 13 ist in jedem Dehnabschnitt 9 ein quer zur Längsrichtung des Zugglieds 1 gerichteter Biegeabschnitt 16 ausgebildet. Die Biegeabschnitte 16 der einzelnen Dehnabschnitte 9 weisen unterschiedliche Biegesteifigkeiten auf.In the embodiment according to FIGS. 12 and 13, a bending section 16 directed transversely to the longitudinal direction of the tension member 1 is formed in each expansion section 9. The bending sections 16 of the individual expansion sections 9 have different bending stiffnesses.

Die Biegeabschnitte 16 oder Biegebalken sind jeweils zwischen einem vom Zugglied 1 her und einem sich von der entgegengesetzten Seite her in den Ankerkörper 2 erstreckenden Schlitz 17 ausgebildet.The bending sections 16 or bending beams are each formed between a slot 17 extending from the tension member 1 and a slot 17 extending into the anchor body 2 from the opposite side.

Durch die von der Übergangsstelle 10 her abnehmende Tiefe der Schlitze 17 nimmt die wirksame Länge der Biegeabschnitte 16 ab. Zugleich wird durch den von der Übergangsstelle 10 ausgehend zunehmenden Abstand der jeweils benachbarten Schlitze 17 erreicht, dass die Dicke der Biegeabschnitte 16 zunimmt. Beide einzeln oder in Kombination anwendbaren Maßnahmen führen dazu, dass die Federsteifigkeit der Biegeabschnitte 16 ausgehend von der Übergangsstelle 10 zum Ende des Zuggliedes 1 hin zunimmt.As a result of the depth of the slots 17 decreasing from the transition point 10, the effective length of the bending sections 16 decreases. At the same time, it is achieved that the thickness of the bending sections 16 increases as a result of the distance of the respectively adjacent slots 17 increasing starting from the transition point 10. Both individually or in combination applicable measures cause the spring stiffness of the bending sections 16, starting from the transition point 10 to the end of the tension member 1 increases towards.

Beim Ausführungsbeispiel nach den Fig. 14 und 15 bestehen die Dehnabschnitte 9 zwischen den Klemmblöcken 3 aus Material mit unterschiedlichem Elastizitätsmodul (E-Modul). Ausgehend von der Übergangsstelle 10 nimmt der Elastizitätsmodul des für die Dehnabschnitte 9 verwendeten Materials zu, d.h. die Federsteifigkeiten der Dehnabschnitte 9 nehmen zum Ende des Zugglieds 1 hin zu.In the embodiment according to FIGS. 14 and 15, the expansion sections 9 exist between the clamping blocks 3 Material with different modulus of elasticity (modulus of elasticity). Starting from the transition point 10, the modulus of elasticity of the material used for the expansion sections 9 increases, ie the spring stiffnesses of the expansion sections 9 increase toward the end of the tension member 1.

Die gestufte Gradiente der Ankersteifigkeit mit der Einteilung in "Lastübertragungszonen" durch Verbund und "Dehnungszonen" vorzugsweise ohne Verbund, dient dazu, je Lasteinleitungszone nur soviel Zugkraft aus der Lamelle auszuleiten wie durch das gewählte Verbundprinzip (Klebung + Querdruck oder Reibung + Querdruck) übertragen werden kann, ohne Schaden zu nehmen. Danach entzieht sich diese Lasteinleitungszone durch Dehnung der Dehnungszone dahinter weiterer Beanspruchungen und die nächste Lastübertragungszone wird aktiviert. Im Idealfall leitet jede Lasteinleitungszone einen bestimmten Anteil der gesamten Zugkraft aus dem Zugglied aus. Diese werden dann im Ankerteil bis zu endgültigen Übergabe an das Bauteil gesammelt. Die dazu notwendigen Dehnungen in den Dehnungszonen müssen durch angepasste Federsteifigkeiten erreicht werden. Die Anzahl der hintereinanderzuschaltenden "Klemmböcke" bestimmt sich dann nach der Größe der Last im Zugglied und der zulässigen Beanspruchung des gewählten Verbundprinzips (Adhäsion/Kohäsion bzw. reine Reibung von Ankerflächen mit dem Zugglied). Somit wird gegenüber einer konventionellen Klebung ohne alternierende Anordnung von Lasteinleitung und Dehnungsausgleich die Klebefuge auf der kompletten Länge aktiviert.The graded gradient of the anchor stiffness with the division into "load transfer zones" by composite and "expansion zones" preferably without composite, serves to divert only as much tensile force per load application zone from the lamella as transmitted by the selected composite principle (bonding + transverse pressure or friction + lateral pressure) can, without harm. Thereafter, this load transfer zone eludes further stresses by stretching the expansion zone beyond it, and the next load transfer zone is activated. Ideally, each load transfer zone derives a certain proportion of the total pulling force from the tension member. These are then collected in the anchor part until they are finally handed over to the component. The necessary expansions in the expansion zones must be achieved by adapted spring stiffnesses. The number of "clamping blocks" to be connected in series is then determined by the size of the load in the tension member and the permissible stress of the selected composite principle (adhesion / cohesion or pure friction of anchor surfaces with the tension member). Thus, compared to a conventional bond without alternating arrangement of load introduction and expansion compensation, the adhesive joint is activated over the entire length.

Claims (12)

  1. Anchorage fixture for strip-shaped tension members in the construction industry, especially fibre-reinforced plastic laminae, having at least one anchor body which can be non-positively connected by adhesion and/or friction to the tension member and which can be supported against a fixed abutment, characterized in that the anchor body (2) has a plurality of clamping blocks (3) which are arranged spaced apart in the longitudinal direction of the tension member (1) and can be connected by adhesion and/or friction to the tension member (1), the last clamping block (3) in the direction of the end of the tension member (1) being able to be supported against the fixed abutment (7), in that the clamping blocks (3) are connected one to another by expansion segments (9) of different spring stiffness, and in that the spring stiffnesses of the expansion segments (9) increase in the direction of the end of the tension member (1).
  2. Anchorage fixture according to Claim 1, characterized in that on both sides of a strip-shaped tension member (1) or of a layer of two strip-shaped tension members (1) there is respectively disposed an anchor body (2), whose clamping blocks (3) situated respectively one above the other are connected one to the other by clamping elements (5).
  3. Anchorage fixture according to Claim 2, characterized in that the clamping elements are tension bolts (5) disposed next to the tension member (1) on both sides.
  4. Anchorage fixture according to Claim 1, characterized in that the expansion segments (9) between the clamping blocks (3) are connecting webs (13, 14, 14') of different web cross section.
  5. Anchorage fixture according to Claim 4, characterized in that all the connecting webs (13) are equally wide, yet varyingly thick.
  6. Anchorage fixture according to Claim 4, characterized in that the connecting webs respectively consist of a plurality of web segments (14, 14') separated from one another by recesses (15, 15'), and in that the total web cross section of the individual expansion segments (9) is in each case different.
  7. Anchorage fixture according to Claim 6, characterized in that the recesses separating the web segments (14) are bores (15) running perpendicular to the strip-shaped tension member (5).
  8. Anchorage fixture according to Claim 6, characterized in that a bore (15') running parallel to the surface of the strip-shaped tension member (1) and transversely to its longitudinal direction respectively separates two web segments (14') one from the other.
  9. Anchorage fixture according to Claim 1, characterized in that in each expansion segment (9) there is configured a bending segment (16) directed transversely to the longitudinal direction of the tension member (1) and the bending segments (16) of the individual expansion segments (9) have different bending stiffnesses.
  10. Anchorage fixture according to Claim 9, characterized in that the bending segments (16) are configured respectively between a slot (17) extending from the tension member (1) and slot (17) extending from the opposite side into the anchor body (2).
  11. Anchorage fixture according to Claim 10, characterized in that the bending segments (16) are varyingly thick and/or varyingly long.
  12. Anchorage fixture according to Claim 1, characterized in that the expansion segments (9) consist of material with different modulus of elasticity.
EP02751029A 2001-06-19 2002-06-14 Anchorage fixture for a strip-type tension member, used in the building trade Expired - Lifetime EP1397569B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10129216 2001-06-19
DE10129216A DE10129216C1 (en) 2001-06-19 2001-06-19 Tension anchors for band-shaped tension members in the building industry
PCT/EP2002/006572 WO2002103137A1 (en) 2001-06-19 2002-06-14 Tie rod for a strip-type tension member, used in the building trade

Publications (2)

Publication Number Publication Date
EP1397569A1 EP1397569A1 (en) 2004-03-17
EP1397569B1 true EP1397569B1 (en) 2006-01-11

Family

ID=7688504

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02751029A Expired - Lifetime EP1397569B1 (en) 2001-06-19 2002-06-14 Anchorage fixture for a strip-type tension member, used in the building trade

Country Status (10)

Country Link
US (1) US7441380B2 (en)
EP (1) EP1397569B1 (en)
JP (1) JP4072121B2 (en)
KR (1) KR20040039202A (en)
AT (1) ATE315700T1 (en)
DE (2) DE10129216C1 (en)
DK (1) DK1397569T3 (en)
ES (1) ES2256501T3 (en)
PT (1) PT1397569E (en)
WO (1) WO2002103137A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013113442A1 (en) 2012-02-02 2013-08-08 Sgl Carbon Se Reinforcing system for structures

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1507050A1 (en) * 2003-08-13 2005-02-16 Sika Technology AG Force transfer element
ES1057875Y (en) * 2004-06-18 2005-01-16 Pellicer Carlos F TENSOR INSTALLATION OF THE ARMORS OF ARCHITECTURAL ELEMENTS PRETENSED.
KR100677847B1 (en) * 2005-01-20 2007-02-02 (주)엠프로 Concrete Prestressing device and Strengthening method using thereof
CA2727295A1 (en) * 2008-06-12 2009-12-17 University Of Utah Research Foundation Anchoring, splicing and tensioning elongated reinforcement members
US8904721B2 (en) * 2008-06-12 2014-12-09 University Of Utah Research Foundation Anchoring, splicing and tensioning elongated reinforcement members
CN101929221A (en) * 2010-02-10 2010-12-29 山东省建筑科学研究院 Active anchor clamp for fiber reinforced plastic sheet material
CA2793733A1 (en) 2010-04-13 2011-10-20 The University Of Utah Research Foundation Sheet and rod attachment apparatus and system
EP2420622A1 (en) * 2010-08-18 2012-02-22 Sika Technology AG Device for the application of force to tension members from fiber-reinforced plastic plates
FR2969196B1 (en) * 2010-12-15 2014-02-07 Soletanche Freyssinet METHOD FOR REINFORCING A CONSTRUCTION STRUCTURE USING AT LEAST ONE REINFORCING STRIP
EP2602399A1 (en) 2011-12-05 2013-06-12 Latvijas Universitates agentura "Latvijas Universitates Polimeru mehanikas Instituts" Gripping device for transmission of tensile load to an elastic strip
EP2631392A1 (en) * 2012-02-21 2013-08-28 Sika Technology AG Device for the application of force to tension members from fiber-reinforced plastic plates
KR20160102051A (en) * 2013-12-23 2016-08-26 텐록 테크놀로지스 아베 A pre-stressing device, and a method for reinforcing a structural member
CA2970576C (en) * 2014-11-21 2023-02-28 Danmarks Tekniske Universitet A reinforcement system and a method of reinforcing a structure with a tendon
WO2020087887A1 (en) * 2018-10-31 2020-05-07 深圳大学 Early warning apparatus of pre-stressed frp reinforcing structure and ductility regulation method
US11174639B2 (en) * 2019-02-28 2021-11-16 Post Tensioning Solutions LLC Anchor block method for reanchoring live tendons
US20220186759A1 (en) * 2020-10-21 2022-06-16 Kulstoff Composite Products, LLC Fiber-Reinforced Polymer Anchors and Connectors For Repair and Strengthening of Structures Configured for Field Testing, and Assemblies for Field Testing the Same
CN113216016B (en) * 2021-05-12 2021-12-31 大连理工大学 Reinforcing method for bearing structure of old bridge based on reinforcement carbon fiber resin plate internal mesh method in earthquake high-risk area
CN113417679B (en) * 2021-05-31 2022-06-24 哈尔滨工业大学 Anchoring device and anchoring method for fiber reinforced resin composite material rod body

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US457291A (en) * 1891-08-04 pulliam
US3102722A (en) * 1961-12-11 1963-09-03 Hugh C Hamontre Self damping shock and vibration mount
US4068435A (en) * 1977-01-03 1978-01-17 Unadilla Silo Company, Inc. Pre-stressed tension ring structures
US4173857A (en) * 1977-11-22 1979-11-13 Yoshiharu Kosaka Double-layered wooden arch truss
SU768908A1 (en) * 1978-10-10 1980-10-07 Конструкторское Бюро По Железобетону Госстроя Рсфср Multivoid ferroconcrete plate for roof structure
US4767134A (en) * 1983-08-22 1988-08-30 Booher Benjamin V Vehicle suspension system with multiple overlapping composite control arm elements
MX9200051A (en) * 1992-01-07 1993-07-01 Jose Luis Siller Franco IMPROVED FRICTION CONNECTOR FOR ANCHORING TENSION REINFORCING STEEL IN PRE-STRENGTHENED OR REINFORCED CONCRETE ELEMENTS.
JP2884465B2 (en) 1993-12-27 1999-04-19 東京製綱株式会社 Terminal fixing structure of FRP reinforcement
US5671572A (en) * 1994-02-11 1997-09-30 Siller-Franco; Jose Luis Method for externally reinforcing girders
DE19849605A1 (en) 1998-10-28 2000-05-04 Goehler Andrae Und Partner Ber Tensioning device for a band-shaped tension member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013113442A1 (en) 2012-02-02 2013-08-08 Sgl Carbon Se Reinforcing system for structures
DE102012201518A1 (en) 2012-02-02 2013-08-08 Sgl Carbon Se Reinforcement system for buildings

Also Published As

Publication number Publication date
JP2005503499A (en) 2005-02-03
KR20040039202A (en) 2004-05-10
WO2002103137A8 (en) 2004-02-19
DE10129216C1 (en) 2003-05-15
US20040216403A1 (en) 2004-11-04
US7441380B2 (en) 2008-10-28
DK1397569T3 (en) 2006-05-22
ES2256501T3 (en) 2006-07-16
EP1397569A1 (en) 2004-03-17
JP4072121B2 (en) 2008-04-09
ATE315700T1 (en) 2006-02-15
WO2002103137A1 (en) 2002-12-27
DE50205594D1 (en) 2006-04-06
PT1397569E (en) 2006-05-31

Similar Documents

Publication Publication Date Title
EP1397569B1 (en) Anchorage fixture for a strip-type tension member, used in the building trade
EP1186730B1 (en) Reinforcement element for load-carrying or load-transferring structural parts and method for fixing said reinforcement element to the surface of a structural part
EP1007809B1 (en) Reinforcement device for supporting structures
EP1025323B1 (en) Method for strengthening and/or restoring reinforced or prestressed concrete supporting structures, and device for carrying out said method
AT412564B (en) Anchoring for pre-tensioned and/or stressed tensile elements comprises a wedge and anchoring body formed by at least two wedge-shaped layers lying over each other
WO1993020296A1 (en) Process and device for increasing the shearing resistance of a structure component
EP2165030B1 (en) Mast arrangement
EP0343316A1 (en) Device for anchoring the end of at least one rod of fibrous composite material used as a tensioning member in prestressed concrete constructions
EP2372036A1 (en) Anchoring device for pre-stressed reinforcement
EP0949389B1 (en) Anchorage device for tension members
DE1936903A1 (en) Connection for glass fiber reinforced plastic parts or the like.
EP0901171A1 (en) Electrostrictive actuator
EP0375601A1 (en) Baculiform construction element with a high rigidity, and use of same
EP0338124B1 (en) Bridge deck joint bridging
EP3856993B1 (en) Cable network facade comprising cables made of fiber-reinforced composite material
DE202006007155U1 (en) Cable holder for power transmission chains has clamping element comprising soft elastic deformable material, and several separating joins formed in clamping element which divide support holes for cables
EP1656485B1 (en) Force transfer element
DE3114219A1 (en) Articulated structure for building and bridge construction
DE19530572C2 (en) Building support structure
EP2096220B1 (en) Prestressed hollow board element
DE19939500A1 (en) Springy support system for a plate shaped load carrying member comprises at least one spring element which is provided with several slits and a central through bore
DE10113283A1 (en) Component or structural part with core part and fiber support element
EP2083455B1 (en) Shear actuator and beam equipped with such a shear actuator
WO1988008065A1 (en) Device for anchoring plastic prestressing elements
DE102021103589A1 (en) concrete reinforcement element

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030103

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RTI1 Title (correction)

Free format text: ANCHORAGE FIXTURE FOR A STRIP-TYPE TENSION MEMBER, USED IN THE BUILDING TRADE

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

REF Corresponds to:

Ref document number: 50205594

Country of ref document: DE

Date of ref document: 20060406

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060411

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Effective date: 20060406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060614

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060614

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060614

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060630

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060630

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20060401334

Country of ref document: GR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2256501

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070101

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060614

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20070101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070314

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20070314

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: ISLER & PEDRAZZINI AG;POSTFACH 1772;8027 ZUERICH (CH)

BERE Be: lapsed

Owner name: *LEONHARDT ANDRA UND PARTNER BERATENDE INGENIEURE

Effective date: 20060630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060111

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50205594

Country of ref document: DE

Representative=s name: KATSCHER HABERMANN PATENTANWAELTE, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50205594

Country of ref document: DE

Representative=s name: KATSCHER HABERMANN PATENTANWAELTE, DE

Effective date: 20130925

Ref country code: DE

Ref legal event code: R081

Ref document number: 50205594

Country of ref document: DE

Owner name: LEONHARDT, ANDRAE UND PARTNER BERATENDE INGENI, DE

Free format text: FORMER OWNER: LEONHARDT, ANDRAE UND PARTNER BERATENDE INGENIEURE VBI GMBH, 70192 STUTTGART, DE

Effective date: 20130925

Ref country code: DE

Ref legal event code: R082

Ref document number: 50205594

Country of ref document: DE

Representative=s name: PATENTANWAELTE KATSCHER HABERMANN, DE

Effective date: 20130925

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: LEONHARDT, ANDRAE UND PARTNER INGENIEURE VBI A, DE

Free format text: FORMER OWNER: LEONHARDT, ANDRAE UND PARTNER BERATENDE INGENIEURE VBI GMBH, DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: HC

Ref document number: 315700

Country of ref document: AT

Kind code of ref document: T

Owner name: LEONHARDT, ANDRAE UND PARTNER BERATENDE INGENI, DE

Effective date: 20150113

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: LEONHARDT, ANDRA UND PARTNER BERATENDE INGENIEURE

Effective date: 20150226

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

Effective date: 20150130

Ref country code: FR

Ref legal event code: CJ

Effective date: 20150130

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20150625

Year of fee payment: 14

Ref country code: ES

Payment date: 20150625

Year of fee payment: 14

Ref country code: CH

Payment date: 20150623

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20150624

Year of fee payment: 14

Ref country code: FR

Payment date: 20150623

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150625

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160715

Year of fee payment: 15

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20160630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 315700

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160614

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50205594

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160615

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181203