EP1391255A2 - Verfahren zur herstellung von rohlingen mit feinkornstruktur - Google Patents
Verfahren zur herstellung von rohlingen mit feinkornstruktur Download PDFInfo
- Publication number
- EP1391255A2 EP1391255A2 EP02724834A EP02724834A EP1391255A2 EP 1391255 A2 EP1391255 A2 EP 1391255A2 EP 02724834 A EP02724834 A EP 02724834A EP 02724834 A EP02724834 A EP 02724834A EP 1391255 A2 EP1391255 A2 EP 1391255A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- workpiece
- extrusion
- workpieces
- container
- shaping tool
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C1/00—Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C23/00—Extruding metal; Impact extrusion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C23/00—Extruding metal; Impact extrusion
- B21C23/001—Extruding metal; Impact extrusion to improve the material properties, e.g. lateral extrusion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C23/00—Extruding metal; Impact extrusion
- B21C23/01—Extruding metal; Impact extrusion starting from material of particular form or shape, e.g. mechanically pre-treated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C25/00—Profiling tools for metal extruding
- B21C25/02—Dies
Definitions
- the present invention relates to the field of plastic working of metals, in particular, to a method of fabricating workpieces of metals and alloys by plastic deformation, including fabrication of long-length workpieces with a conditioned fine-grained structure, in particular, with a submicrocrystalline and nanocrystalline structure.
- the method enables the production of arbitrary laminated and internally reinforced workpieces, and can be utilized for processing workpieces from powdered metal components to obtain a solid article.
- a method of deformation processing of materials, mainly metals, by angular extrusion comprises the steps of: placing a material in a first channel of an apparatus for deformation processing, applying force to move the material to a second channel and impart deformation to the material by angular extrusion in the region of intersection of the channels, and removing the workpiece, wherein the material, when passing through the second channel, undergoes an additional deformation so that the cross-section of the workpiece is changed (RU 2 146 571 20.03.2000, B 21 C 25/00).
- the angular extrusion method allows multiple extrusions to be carried out without impairing the continuity of the workpiece, but the deformation is non-uniform throughout the cross-section of the workpiece.
- Another method of processing axisymmetric workpieces by applying torsion comprises the steps of: placing a workpiece into a cavity of a container, applying axial compression force to the workpiece by punch presses adapted to perform a relative axial movement and rotate with predetermined parameters.
- the workpiece is processed in a sectional container, wherein in the processing the workpiece is forced to move in the axial direction until each cross-section in the height of the workpiece will pass at least once through the parting plane of the container parts, and torsion is applied to the workpiece by rotation of the container parts in the directions corresponding to the directions of rotation of punch presses disposed therein (RU 2 021 064, 15.10.94, B 21 J 5/00).
- An important disadvantage of the method is that the plastic deformation is non-uniform since the external and internal layers of the metal move with different velocities under the torsion applied to them.
- Another method of processing workpieces comprises deformation according to different patterns, including that leading to reduction in the cross-section.
- the workpiece is disposed on at least two seats, and the reduction is accomplished by a tool adapted to move longitudinally and transversely relative to the workpiece axis, with relative rolling of the surface, e.g. by a roll (RU 2 159 162, 20.11.200, C21C 37/04).
- a roll e.g. by a roll (RU 2 159 162, 20.11.200, C21C 37/04).
- dedicated machinery is required, this raising the cost of application of the method in industry.
- Another disadvantage of the method is an inferior quality of the workpiece surface after the processing and the presence of scale layer on the surface, because it is formed in a free state in a furnace under the effect of rolls, therefore, an additional mechanical working is needed, which reduces the metal use factor.
- the method is unsuitable for processing workpieces from hard-to-deform and low-plastic metals, such as tungsten-niobium-tantalum and niobium-zirconium alloys.
- the object of the invention is to provide a method for thermo-mechanical processing of workpieces having different shape and dimensions and a fine-grained structure, which increases the metal use factor and reduces equipment costs owing to the possibility to use commercially available equipment, and can be employed for processing workpieces from hard-to-deform and low-plastic alloys, powdered metals and composite materials.
- the object of the invention is accomplished in a method for fabricating workpieces with a fine-grained structure, including plastic deformation of workpieces of metals and alloys in predetermined thermo-mechanical conditions, wherein said plastic deformation of a workpiece comprises subjecting the workpiece to extrusion in an extrusion container through a shaping tool arranged in an extrusion channel to direct the flow of metal and create a combined upsetting/shear/torsional plastic deformation pattern without impairing the continuity of the workpiece.
- the processing in accordance with the invention involves a profound exposure of the metal structure throughout the cross-section of the processed workpiece with forming different patterns of plastic deformation of a portion, including upsetting, shear and torsion, and allows the direction of preferred development of deformation to be changed.
- the extrusion can be repeated many times in the same or reversed direction.
- the deformation is localized in a certain portion of the workpiece, and in a preferred embodiment it is provided by the use of at least one shaping tool that locally narrows the extrusion channel and has a working surface with a geometry which creates a combined plastic deformation pattern in the extrusion process.
- the workpiece can have recesses into which the shaping tool is inserted before the extrusion.
- the workpiece undergoes the extrusion at a predetermined back pressure, and the workpiece is arranged in a closed volume defined by a pair of punch presses.
- the workpiece disposed between the pair of punch presses is forced to move relative to the shaping tool disposed in the container, or the container is moved together with the shaping tool relative to the workpiece disposed between a pair of fixed punch presses.
- the closed volume can be provided by a frame which holds its shape in the extrusion process and accommodates the workpiece.
- the extrusion container can be a sectional container with at least one parting plane.
- a workpiece can be coated with one or more layers of different materials before the extrusion.
- internally reinforced workpieces can be produced, in that case a pre-reinforced workpiece is used.
- a workpiece being processed can undergo deformation at a temperature needed to obtain a desired structure and desired mechanical properties.
- extrusion can be carried out in a furnace or an induction chamber or with passing electric current through the workpiece. Selection of a particular temperature for heating the workpiece depends on the material or the desired microstructure to be obtained in the extrusion.
- the shaping tool can be cooled in the course of extrusion as may be required.
- a local heating can be provided only at a portion of the workpiece, the deformation being localized due to thermal softening of the material in the portion heated.
- the extrusion can be carried out in a shielding atmosphere or vacuum.
- the materials of the frame and the workpiece have different thermal expansion coefficients.
- the resulting structure is more uniform throughout the cross-section, and a high degree of accumulated deformation is provided as needed to substantially reduce grains and obtain physico-mechanical properties corresponding to the fine-grained state of the material.
- the cross-section area of the workpiece is fully or partly recovered without impairing the continuity of the material.
- Fig.1 shows an apparatus for implementing a method of fabricating a workpiece with a fine-grained structure in accordance with the present invention, comprising an extrusion container 4 having a variable cross-section channel and a shaping tool 5 accommodated in the channel.
- a workpiece 3 having pre-formed recesses that match the geometry of the shaping tool 5 is placed in the channel of the container.
- the extrusion can be repeated many times in the same or reversed direction.
- Fig.5 shows an apparatus for implementing the method in accordance with the present invention, comprising a pair of punch presses between which a workpiece is clamped, and an extrusion container 4 movable relative to the punch presses. As the container moves relative to the fixed punch presses, the workpiece undergoes deformation by the shaping tool.
- a workpiece 3 is disposed in a frame 6.
- the frame with the workpiece is put into an extrusion container 4 having a tool 5 arranged therein.
- a punch press 1 forces the frame with the workpiece to move through the extrusion channel.
- Fig.8 shows as apparatus for processing a pipe-shaped workpiece 3, where an auxiliary device is used, such as a cylindrical core with end discs for retaining the ends of the workpiece as it is forced to move through the extrusion channel under the effect of the punch press. Workpieces are processed in the following fashion.
- a shaping tool 5 was inserted into a rod-shaped workpiece made of a tool steel and having recesses that match the geometry of the shaping tool 5, the assembled unit was put into a sectional extrusion container 4, heated to the phase transformation temperature of 830°C, clamped between punch presses 1, 2 and subjected to extrusion while being forced to move through the shaping tool 5 at a deformation rate of 0.8 ⁇ 10 -3 s -1 .
- the punch presses were removed from the extrusion channel, the container was turned over and the extrusion was repeated.
- a rod-shaped aluminum workpiece 3 having recesses matching the geometry of a shaping tool 5 was placed in a frame 6.
- the shaping tool 5 comprised of two half parts was inserted into the workpiece recesses and the assembled unit was put into an extrusion container 4.
- the frame with the workpiece was forced to move through an extrusion channel relative to the tool 5 by a punch press 1.
- the punch press was removed from the extrusion channel, the container was turned up, and the extrusion step was repeated. After repeating the extrusion twenty times, a nanocrystalline structure was obtained with a grain diameter of from 0.8 to 1.0 ⁇ m.
- Fig.8 shows an apparatus for implementing a method of plastic deformation of tubular workpieces.
- a pipe-shaped workpiece 3 made of a cast refractory alloy and having recesses matching the geometry of a shaping tool was inserted into a part 7 creating a closed volume, and disposed in an extrusion container 4 with a shaping tool 6. Then, the assembly was heated in a furnace to the temperature of 1075°C. After reaching the desired temperature, the workpiece was subjected to extrusion at the deformation rate of 10 -3 c -1 . The process was repeated nine times with reversal of the direction of extrusion. As the result, an equilibrium fine-grained structure of micro-duplex type with a grain size of 2-5 ⁇ m was obtained.
- a method in accordance with the present invention reduces expenditures for processing workpieces as compared to conventional methods owing to the use of commercially available equipment, such as vertical or horizontal hydraulic presses, depending on the length of the workpiece processed. Furthermore, the method suits well for processing of workpieces from hard-to-deform, highly oxidable and low-plastic alloys, powdered metals, composite materials, as it increases the use factor of the workpiece metal.
Landscapes
- Mechanical Engineering (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Extrusion Of Metal (AREA)
- Powder Metallurgy (AREA)
- Forging (AREA)
- Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2001108871 | 2001-04-04 | ||
RU2001108871/02A RU2191652C1 (ru) | 2001-04-04 | 2001-04-04 | Способ получения заготовок с мелкозернистой структурой |
PCT/RU2002/000152 WO2002081762A2 (fr) | 2001-04-04 | 2002-04-02 | Procede de production d'ebauches ayant une structure a grains fins |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1391255A2 true EP1391255A2 (de) | 2004-02-25 |
EP1391255A4 EP1391255A4 (de) | 2005-09-28 |
Family
ID=20247957
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02724834A Withdrawn EP1391255A4 (de) | 2001-04-04 | 2002-04-02 | Verfahren zur herstellung von rohlingen mit feinkornstruktur |
Country Status (8)
Country | Link |
---|---|
US (1) | US20040112112A1 (de) |
EP (1) | EP1391255A4 (de) |
JP (1) | JP2004531398A (de) |
AU (1) | AU2002255398A1 (de) |
CA (1) | CA2443374A1 (de) |
IL (1) | IL158203A0 (de) |
RU (1) | RU2191652C1 (de) |
WO (1) | WO2002081762A2 (de) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013213072A1 (de) * | 2013-07-04 | 2015-01-08 | Karlsruher Institut für Technologie | Vorrichtung und Verfahren zur Umformung von Bauteilen aus Metallwerkstoffen |
CN105537307A (zh) * | 2015-12-11 | 2016-05-04 | 上海交通大学 | 管材制备的连续剪切往复反挤复合式加工装置及方法 |
CN106955902A (zh) * | 2017-05-25 | 2017-07-18 | 天津工业大学 | 一种管材旋挤成形模具及其成形方法 |
CN106984665A (zh) * | 2017-05-25 | 2017-07-28 | 天津工业大学 | 一种偏轴旋挤模具及其成形材料方法 |
CN107685084A (zh) * | 2017-08-17 | 2018-02-13 | 西京学院 | 一种管材螺旋挤压成形模具及其使用方法 |
CN108380682A (zh) * | 2018-03-26 | 2018-08-10 | 合肥工业大学 | 一种晶粒尺寸梯度分布的缩径式往复挤压成型方法 |
CN109047364A (zh) * | 2018-09-21 | 2018-12-21 | 江苏科技大学 | 一种制备块体超细晶材料的循环挤压模具与方法 |
CN109772922A (zh) * | 2019-03-12 | 2019-05-21 | 广东省材料与加工研究所 | 一种挤镦模具、挤镦加工方法及镁合金中心夹套 |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1332057C (zh) * | 2003-01-10 | 2007-08-15 | 西北工业大学 | 棒状超细晶材料的制备方法 |
RU2476288C2 (ru) * | 2009-01-27 | 2013-02-27 | Государственное образовательное учреждение высшего профессионального образования "Уральский государственный технический университет-УПИ имени первого Президента России Б.Н. Ельцина" | Способ волочения заготовок |
RU2443493C2 (ru) * | 2009-02-03 | 2012-02-27 | Государственное образовательное учреждение высшего профессионального образования "Уральский государственный технический университет" - УПИ имени первого Президента России Б.Н. Ельцина" | Способ прессования заготовок с обеспечением интенсивной пластической деформации |
RU2478136C2 (ru) * | 2011-07-15 | 2013-03-27 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" | Ультрамелкозернистые алюминиевые сплавы для электротехнических изделий и способы их получения (варианты) |
RU2498870C1 (ru) * | 2012-07-06 | 2013-11-20 | Открытое акционерное общество "Магнитогорский метизно-калибровочный завод "ММК-МЕТИЗ" | Способ получения из высокоуглеродистой стали проволоки с наноструктурой |
RU2547984C1 (ru) * | 2013-12-26 | 2015-04-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный университет" (СПбГУ) | Способ интенсивной пластической деформации кручением под высоким циклическим давлением |
RU2659558C2 (ru) * | 2014-02-03 | 2018-07-02 | Анатолий Евгеньевич Волков | Способ получения заготовки с мелкозернистой структурой и устройство для его осуществления |
WO2015156750A1 (ru) * | 2014-04-10 | 2015-10-15 | Донэцькый Физыко-Тэхничный Инстытут Им. Галкина Национальной Акааэмии Наук Украины | Способ получения металлических полуфабрикатов |
RU2570268C1 (ru) * | 2014-07-04 | 2015-12-10 | Олег Вячеславович Голубев | Способ пластического структурообразования металла |
CN104801558B (zh) * | 2015-05-05 | 2017-01-18 | 太原理工大学 | 一种增强型镁铝层状复合管材的加工方法 |
CN104801557B (zh) * | 2015-05-05 | 2017-01-18 | 太原理工大学 | 一种增强型镁合金板材的等体积往复挤压装置及加工方法 |
CN104874629B (zh) * | 2015-06-02 | 2016-10-05 | 太原理工大学 | 一种等通道u形挤压模具及方法 |
CN105562448B (zh) * | 2016-01-11 | 2019-05-10 | 中国兵器工业第五九研究所 | 药型罩细晶材料的低温制备方法 |
RU2625864C1 (ru) * | 2016-10-10 | 2017-07-19 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" | Способ низкотемпературного ионного азотирования стальных изделий в магнитном поле |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2755544A (en) * | 1952-07-10 | 1956-07-24 | Kaiser Aluminium Chem Corp | Metal treatment |
US3286498A (en) * | 1964-02-03 | 1966-11-22 | Gen Electric | Compressive forming |
FR1409455A (fr) * | 1964-07-17 | 1965-08-27 | Commissariat Energie Atomique | Perfectionnements apportés aux procédés pour la mise en forme, par extrusion, de produits du genre du monocarbure d'uranium |
US3514985A (en) * | 1966-08-22 | 1970-06-02 | Rotary Profile Anstalt | Profiling of metal billets |
SU1348048A1 (ru) * | 1985-11-18 | 1987-10-30 | Московский институт стали и сплавов | Способ изготовлени пресс-изделий |
RU2021064C1 (ru) * | 1991-04-09 | 1994-10-15 | Институт проблем сверхпластичности металлов РАН | Способ обработки осесимметричных заготовок кручением |
DE4407908C2 (de) * | 1994-03-09 | 1998-04-23 | Ver Schmiedewerke Gmbh | Verfahren zum Umformen metallischer Körper mittels über ein druckübertragendes Medium aufgebrachter hoher Drücke und Vorrichtung dazu |
ATE195674T1 (de) * | 1994-05-30 | 2000-09-15 | Andrzej Korbel | Verfahren zur plastischen verformung von materialien |
RU2116155C1 (ru) * | 1997-04-16 | 1998-07-27 | Уфимский государственный авиационный технический университет | Способ пластического структурообразования высокопрочных материалов |
US6718809B1 (en) * | 1998-01-10 | 2004-04-13 | General Electric Company | Method for processing billets out of metals and alloys and the article |
RU2159162C2 (ru) * | 1998-10-01 | 2000-11-20 | Институт проблем сверхпластичности металлов РАН | Способ обработки заготовок из металлов и сплавов |
-
2001
- 2001-04-04 RU RU2001108871/02A patent/RU2191652C1/ru not_active IP Right Cessation
-
2002
- 2002-04-02 CA CA002443374A patent/CA2443374A1/en not_active Abandoned
- 2002-04-02 EP EP02724834A patent/EP1391255A4/de not_active Withdrawn
- 2002-04-02 JP JP2002579524A patent/JP2004531398A/ja active Pending
- 2002-04-02 IL IL15820302A patent/IL158203A0/xx unknown
- 2002-04-02 AU AU2002255398A patent/AU2002255398A1/en not_active Abandoned
- 2002-04-02 WO PCT/RU2002/000152 patent/WO2002081762A2/ru not_active Application Discontinuation
- 2002-04-02 US US10/474,114 patent/US20040112112A1/en not_active Abandoned
Non-Patent Citations (2)
Title |
---|
No further relevant documents disclosed * |
See also references of WO02081762A2 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013213072A1 (de) * | 2013-07-04 | 2015-01-08 | Karlsruher Institut für Technologie | Vorrichtung und Verfahren zur Umformung von Bauteilen aus Metallwerkstoffen |
CN105537307A (zh) * | 2015-12-11 | 2016-05-04 | 上海交通大学 | 管材制备的连续剪切往复反挤复合式加工装置及方法 |
CN106955902A (zh) * | 2017-05-25 | 2017-07-18 | 天津工业大学 | 一种管材旋挤成形模具及其成形方法 |
CN106984665A (zh) * | 2017-05-25 | 2017-07-28 | 天津工业大学 | 一种偏轴旋挤模具及其成形材料方法 |
CN107685084A (zh) * | 2017-08-17 | 2018-02-13 | 西京学院 | 一种管材螺旋挤压成形模具及其使用方法 |
CN108380682A (zh) * | 2018-03-26 | 2018-08-10 | 合肥工业大学 | 一种晶粒尺寸梯度分布的缩径式往复挤压成型方法 |
CN109047364A (zh) * | 2018-09-21 | 2018-12-21 | 江苏科技大学 | 一种制备块体超细晶材料的循环挤压模具与方法 |
CN109047364B (zh) * | 2018-09-21 | 2020-02-07 | 江苏科技大学 | 一种制备块体超细晶材料的循环挤压模具与方法 |
CN109772922A (zh) * | 2019-03-12 | 2019-05-21 | 广东省材料与加工研究所 | 一种挤镦模具、挤镦加工方法及镁合金中心夹套 |
CN109772922B (zh) * | 2019-03-12 | 2020-04-03 | 广东省材料与加工研究所 | 一种挤镦模具、挤镦加工方法及镁合金中心夹套 |
Also Published As
Publication number | Publication date |
---|---|
CA2443374A1 (en) | 2002-10-17 |
WO2002081762A2 (fr) | 2002-10-17 |
EP1391255A4 (de) | 2005-09-28 |
WO2002081762A3 (fr) | 2002-11-28 |
US20040112112A1 (en) | 2004-06-17 |
AU2002255398A1 (en) | 2002-10-21 |
RU2191652C1 (ru) | 2002-10-27 |
JP2004531398A (ja) | 2004-10-14 |
IL158203A0 (en) | 2004-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1391255A2 (de) | Verfahren zur herstellung von rohlingen mit feinkornstruktur | |
Ahmed et al. | Estimation of machine parameters for hydraulic bulge forming of tubular components | |
JP5162102B2 (ja) | 異形管の曲げ加工方法およびその曲げ加工装置、並びにそれらを用いた曲げ加工製品 | |
Savarabadi et al. | Hydrostatic tube cyclic expansion extrusion (HTCEE) as a new severe plastic deformation method for producing long nanostructured tubes | |
US7302821B1 (en) | Techniques for manufacturing a product using electric current during plastic deformation of material | |
US7115177B2 (en) | Method for the treatment of metallic materials | |
WO2000018973A1 (en) | Method for processing billets out of metals and alloys and the article | |
KR100397266B1 (ko) | 난가공재의 결정립 미세화장치 및 방법 | |
CN106670359A (zh) | 一种gh4169合金环件及其制备方法 | |
Kaya et al. | Novel molding technique for ECAP process and effects on hardness of AA7075 | |
Zayed et al. | Deformation behavior and properties of severe plastic deformation techniques for bulk materials: A review | |
CN108422161B (zh) | 超高强度钢复杂形状小型客车后副车架扭力梁制造方法 | |
Babaei et al. | Tube twist pressing (TTP) as a new severe plastic deformation method | |
DE102013006171B4 (de) | Verfahren und Anlage zur Herstellung von Blechen aus strangförmigen Profilen | |
US2610304A (en) | Thin-walled tubing for use as electrode structures of electron discharge devices | |
US3331120A (en) | Process for composite metal shapes | |
Rahmani et al. | Experimental Study on Warm Incremental Tube Forming of AA6063 Aluminum Tubes | |
US3180024A (en) | Metal working process and apparatus | |
US7251972B2 (en) | Method and device for reshaping tubes | |
RU2187403C2 (ru) | Способ изготовления сложнопрофильных осесимметричных деталей из труднодеформируемых многофазных сплавов и устройство для его осуществления | |
RU2686704C1 (ru) | Способ изготовления длинноосных изделий | |
RU2251588C2 (ru) | Способ получения ультрамелкозернистых титановых заготовок | |
Li et al. | Effects of reduction of diameter on microstructure and surface roughness of rotary swaged magnesium by FEA | |
KR102583132B1 (ko) | 단조품 제조 방법 및 그 실행을 위한 4-다이 단조 장치 | |
RU2277992C2 (ru) | Способ получения заготовок с мелкозернистой структурой |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20031013 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20050818 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: 7C 22F 1/00 B Ipc: 7B 21C 25/02 B Ipc: 7B 21C 23/00 B Ipc: 7B 21J 5/00 A |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20060804 |