EP1383231B1 - Method for acquiring the magnetic flux, the rotor position and/or the rotation speed - Google Patents

Method for acquiring the magnetic flux, the rotor position and/or the rotation speed Download PDF

Info

Publication number
EP1383231B1
EP1383231B1 EP02015956.2A EP02015956A EP1383231B1 EP 1383231 B1 EP1383231 B1 EP 1383231B1 EP 02015956 A EP02015956 A EP 02015956A EP 1383231 B1 EP1383231 B1 EP 1383231B1
Authority
EP
European Patent Office
Prior art keywords
speed
rotor
equation
magnetic flux
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02015956.2A
Other languages
German (de)
French (fr)
Other versions
EP1383231A1 (en
Inventor
Pierre Vadstrup
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grundfos AS
Original Assignee
Grundfos AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grundfos AS filed Critical Grundfos AS
Priority to EP02015956.2A priority Critical patent/EP1383231B1/en
Priority to US10/621,642 priority patent/US7043395B2/en
Publication of EP1383231A1 publication Critical patent/EP1383231A1/en
Application granted granted Critical
Publication of EP1383231B1 publication Critical patent/EP1383231B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/141Flux estimation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/17Circuit arrangements for detecting position and for generating speed information

Definitions

  • the invention relates to a method for detecting the magnetic flux of the rotor, the rotor position and / or the rotational speed of the rotor in a single or multi-phase permanent magnet or synchronous motor or generator according to the features indicated in the preamble of claim 1.
  • the above quantities can be determined when voltage and current in directions ⁇ and ⁇ are known.
  • the latter can be easily detected as electrical data.
  • this is only possible in the prior art if the magnitude of the magnetic flux is assumed to be constant, since otherwise the system of equations can not be solved unambiguously because of too many unknowns. Since the magnetic flux is actually not constant, but the amount varies over time and rotor position, this known method is subject to errors, which means that it is only of limited suitability for use in the control and regulation processes of the engine.
  • the invention has for its object to improve a generic method for detecting the magnetic flux, the rotor position and / or the rotational speed of the rotor in a single or Mehrphasenpermanentmagnet- or synchronous motor or generator.
  • the basic idea of the present invention is to use the stator voltage equations known per se in the method for detecting the aforementioned quantities, but, unlike the prior art, not to set the magnetic flux constant but to incorporate the energy relationships in the magnet of the rotor so that the aforementioned variables, in particular the rotor position or its time derivative, to be able to determine the speed more accurate.
  • the present invention is applicable to both single-phase and multi-phase permanent magnet or synchronous motors as well as corresponding generators.
  • single-phase motors or generators are concerned, one of the two stator voltage equations is eliminated.
  • two or more-phase motors or generators in principle with the stator voltage equation for two-phase motors and generators is calculated, is reduced in three-phase and multi-phase motors arithmetically in a conventional manner to a two-phase model or transformed so far must then metrologically recorded values be converted accordingly to a two-phase model.
  • the present method is particularly intended for permanent magnet motors, but can also be applied in the same way in synchronous motors or generators, wherein in synchronous motors or generators of the magnet formed by the rotor coil occurs in place of the permanent magnet.
  • a generator application in this sense can also be given in connection with the control of motors powered by power electronics, if they feed into the grid during generator operation in order to determine the rotor position of the network generator.
  • the inventive method can also be used for generators, for example in the control
  • Fig. 1 is such an equivalent circuit diagram of a two-phase permanent magnet motor is shown, there are two offset by 90 ° to each other arranged phases ⁇ and ⁇ provided in a stator 1, which are symbolized by two coils 3 and 4.
  • a rotor 2 is arranged, which has a permanent magnet 5 with diametral polarity distribution N and S, which is rotatably mounted within the stator 1.
  • the voltages u ⁇ and u ⁇ , ie the stator voltages in the ⁇ and ⁇ directions are measured or otherwise calculated or made available, likewise ⁇ the rotor speed.
  • These quantities are used in equations (1) to (4), so that mathematically the speed of the magnetic flux ⁇ flux , the motor currents i ⁇ in the direction ⁇ and i ⁇ in the direction ⁇ and the magnetic flux ⁇ ⁇ in the direction ⁇ and ⁇ ⁇ in the direction ⁇ can be determined.
  • the position ⁇ of the magnetic flux can be determined.
  • the rotor position is determined by equating with the position of the magnetic flux, assuming that they always coincide in real terms.
  • the measured stator currents in the ⁇ and ⁇ directions are provided as a correction element in comparison to the calculated currents in the ⁇ and ⁇ directions.
  • the motor currents can be incorporated into the motor model 6 or 6a in the same way, and the motor voltages can be calculated and optionally incorporated as a correction element by comparison with the actual voltages. It can also be provided a plurality of correction members which are constructed on the basis of a plurality of electrical variables.
  • the correction terms ⁇ 2 are formed to be formed in the equations (3a) and (4a) in the one phase by means of the difference between calculated and measured currents of the other phase.
  • the variables K i and K ⁇ each form a constant factor.
  • Fig. 4 exemplified a development of the method according to the invention, in which in addition to the corrected engine model 6a according to Fig. 3 a further development is provided to the effect that the rotor speed ⁇ is determined by calculation.
  • the rotor speed ⁇ enters as an input quantity. Then, the speed is usually detected by sensors, preferably by means of a Hall sensor, as is also known per se.
  • an adaptation block 10 which approximates the determined speed to the actual rotor speed by means of a speed correction element 11, in which the difference between an assumed or calculated speed and the flow velocity ⁇ flux calculated by the motor model 6a is approximated, until the speed correction element 11 approaches the value Zero assumes.
  • This correction element 11 is in Fig. 4 as a result of the sub-tractive linkage made in node 14 and assumes that the velocity of the magnetic flux and the rotor velocity must always coincide.
  • the difference determined by means of the speed correction element 11 is always added to the previously determined speed taking into account a correction factor and output as a new calculated speed.
  • This new calculated speed then flows, on the one hand, into the engine model 6a and, on the other hand, arrives at the node 14, which also receives a new speed of magnetic flux due to the new speed which has flowed into the engine model 6a and thereby outputs a new speed correction element 11, which outputs the above-described approach process introduced again by the adaptation block 10, until finally the correction element 11 assumes the value zero, that is, the speed of the magnetic flux, as determined from the motor model 6a, and the rotor speed, so the calculated speed of the rotor match.
  • the speed of the magnetic flux is formed by time derivative of the detected position of the magnetic flux.
  • the adaptation block 10 forms part of an approximation process in which the assumed or calculated speed is brought into agreement with the actual rotor speed with the aid of the motor model 6a, the speed correction element 11, until the speed correction element becomes zero.
  • Kv represents a gain factor with which this additional speed correction element 15 flows.
  • the speed may also be determined by means of a system speed change correction element 13, which may be derived from a speed model.
  • the procedure differs from that based on FIG. 4 described above in that in addition to the adaptation block 10, a system speed change correction element 13 derived from the speed model occurs.
  • This state equation states that a speed change occurs only when the drive torque is greater than the load torque or vice versa, and that this change is then dependent on the difference moment as well as the mass moment of inertia of the rotating load.
  • equation (8) will yield zero so that the speed model will not actually be used, but rather the speed as based on FIG. 4 is determined described.
  • the assumption that the engine is running at a constant speed therefore, is not about the basis of FIG. 4 described out.
  • the constant K 4 is zero when the load torque is assumed to be zero. Incidentally, the constant K 4 for the respective type and type of unit to be determined in advance.
  • Equation (10) is already known from the motor model 6a. Substituting equation (10) into equation (9), it will be seen that for this case (assuming that the load moment is zero or constant) the system change correction term 13 can calculate from the engine model 6a out. It is therefore possible to determine this correction element 13 without further measurement and thus calculate the speed of the rotor faster or more accurately. It is thus particularly favorable if the drive torque can be determined from the variables derived from the engine model 6a.
  • a measured rotational speed can also be included in order to achieve the desired result more quickly or to increase the accuracy of the calculated values.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Erfassen des magnetischen Flusses des Rotors, der Rotorposition und/oder der Drehzahl des Rotors in einem Ein oder Mehrphasenpermanentmagnet- oder synchronmotor oder -generator gemäß den im Oberbegriff des Anspruchs 1 angegebenen Merkmalen.The invention relates to a method for detecting the magnetic flux of the rotor, the rotor position and / or the rotational speed of the rotor in a single or multi-phase permanent magnet or synchronous motor or generator according to the features indicated in the preamble of claim 1.

Magnetischer Fluss, Rotorposition und Drehzahl sind durch die an sich bekannten Statorspannungsgleichungen: L i ˙ α = R i α + p ω ψ + u α

Figure imgb0001
L i ˙ β = R i β p ω ψ + u β
Figure imgb0002
in denen
L  die Induktivität
iα  der Strom in Richtung α
iβ  der Strom in Richtung β
Figure imgb0003
  die zeitliche Ableitung des Stroms in Richtung α
Figure imgb0004
  die zeitliche Ableitung des Stroms in Richtung β
R  der ohmsche Widerstand
p  die Polpaarzahl
ω  die Drehzahl des Rotors
ψ  der magnetische Fluss in Richtung α im Rotor
ψ  der magnetische Fluss in Richtung β im Rotor
uα  die Spannung in Richtung α
uβ  die Spannung in Richtung β sind, definiert. Wie sich aus diesen Gleichungen ergibt, können die vorgenannten Größen ermittelt werden, wenn Spannung und Strom in den Richtungen ∀ und ∃ bekannt sind. Letztere können als elektrische Daten in einfacher Weise erfasst werden. Allerdings ist dies nach dem Stand der Technik nur möglich, wenn der Betrag des magnetischen Flusses als konstant angenommen wird, da sonst das Gleichungssystem aufgrund zu vieler Unbekannter nicht eindeutig lösbar ist. Da der magnetische Fluss tatsächlich aber nicht konstant ist, sondern der Betrag über Zeit und Rotorposition variiert, ist dieses bekannte Verfahren fehlerbehaftet, was dazu führt, dass es für den Einsatz im Steuerungs- und Regelungsprozessen des Motors nur bedingt geeignet ist.Magnetic flux, rotor position and speed are determined by the stator voltage equations known per se: L i ˙ α = - R i α + p ω ψ + u α
Figure imgb0001
L i ˙ β = - R i β - p ω ψ + u β
Figure imgb0002
in which
L is the inductance
i α is the current in the direction α
i β is the current in the direction β
Figure imgb0003
the time derivative of the current in the direction of α
Figure imgb0004
the time derivative of the current in the direction of β
R the ohmic resistance
p the pole pair number
ω the speed of the rotor
ψ mα is the magnetic flux in the direction α in the rotor
ψ the magnetic flux towards β in the rotor
u α is the tension in the direction α
u β are the stress in the direction β, Are defined. As can be seen from these equations, the above quantities can be determined when voltage and current in directions ∀ and ∃ are known. The latter can be easily detected as electrical data. However, this is only possible in the prior art if the magnitude of the magnetic flux is assumed to be constant, since otherwise the system of equations can not be solved unambiguously because of too many unknowns. Since the magnetic flux is actually not constant, but the amount varies over time and rotor position, this known method is subject to errors, which means that it is only of limited suitability for use in the control and regulation processes of the engine.

Moderne Mehrphasenpermanentmagnetmotoren sind heutzutage häufig mit Leistungselektronik versehen, d. h. die Kommutierung erfolgt elektronisch. Für die Steuerung dieser Kommutierung ist allerdings die Kenntnis der aktuellen Rotorposition von ganz entscheidender Bedeutung, nicht nur um den Motor mit einem hohen Wirkungsgrad betreiben zu können, sondern auch um die empfindlichen Bauteile der Leistungselektronik zu schützen und ein besseres dynamisches Verhalten des Antriebs zu erzielen.Modern multi-phase permanent magnet motors are nowadays often provided with power electronics, i. H. the commutation is done electronically. To control this commutation, however, knowledge of the current rotor position is of crucial importance, not only to operate the motor with high efficiency, but also to protect the sensitive components of the power electronics and to achieve a better dynamic behavior of the drive.

Aus US 2001/0017529 A1 zählt es zum Stand der Technik, durch eine Vektorkontrolle des Motors einen Synchronmotor mittels Pulsweitmodulation zu starten. Allerdings wird dabei der Statorfluss und nicht der Rotorfluss berücksichtigt.Out US 2001/0017529 A1 It belongs to the state of the art to start a synchronous motor by means of a pulse width modulation by means of a vector control of the motor. However, the stator flux and not the rotor flux is taken into account.

Aus WO 99/65137 A1 zählt es zum Stand der Technik, zur Bestimmung der Rotorstellung eines Synchronmotors den Statorfluss auf der Basis eines Strommodells des Synchronmotors zu bestimmen.Out WO 99/65137 A1 It is state of the art to determine the stator flux on the basis of a current model of the synchronous motor for determining the rotor position of a synchronous motor.

Aus US 5,729,102 A1 ist eine Vektorkontrolle bekannt, mit der die Rotorposition erfasst wird. Eine Erfassung des magnetischen Flusses im Rotor ist dort nicht vorgesehen.Out US 5,729,102 A1 is a vector control known, with which the rotor position is detected. A detection of the magnetic flux in the rotor is not provided there.

Die Drehzahlmessung kann zwar über eine externe Messanordnung noch vergleichsweise einfach erfolgen. Die exakte Bestimmung der Rotorposition hingegen ist aufwendig.Although the speed measurement can still be comparatively easy via an external measuring arrangement. The exact determination of the rotor position, however, is expensive.

Andererseits ist man bemüht, diese Werte nach Möglichkeit rechnerisch zu ermitteln, da aufgrund der im Steuer- und Regelteil der Motorelektronik regelmäßig vorhandenen digitalen Elektronik, entsprechende Rechenleistung zur Verfügung steht oder zumindest mit geringem Aufwand zu Verfügung stellbar ist. Entsprechende Programme zur rechnerischen Ermittlung könnten also ohne größeren Aufwand durch Softwareimplementierung integriert werden.On the other hand, it is endeavored to determine these values as far as possible mathematically, because due to the regular control and part of the engine electronics digital electronics, appropriate computing power is available or at least with little effort available adjustable. Corresponding programs for computational Investigations could therefore be integrated without much effort through software implementation.

Vor diesem Hintergrund liegt der Erfindung die Aufgabe zugrunde, ein gattungsgemäßes Verfahren zur Erfassung des magnetischen Flusses, der Rotorposition und/oder der Drehzahl des Rotors in einem Ein oder Mehrphasenpermanentmagnet- oder synchronmotor oder -generator zu verbessern.Against this background, the invention has for its object to improve a generic method for detecting the magnetic flux, the rotor position and / or the rotational speed of the rotor in a single or Mehrphasenpermanentmagnet- or synchronous motor or generator.

Diese Aufgabe wird durch die in Anspruch 1 angegebenen Merkmale gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen sowie der nachfolgenden Beschreibung angegeben.This object is achieved by the features specified in claim 1. Advantageous embodiments of the invention are specified in the subclaims and the following description.

Grundgedanke der vorliegenden Erfindung ist es, beim Verfahren zum Erfassen der vorgenannten Größen die an sich bekannten Statorspannungsgleichungen einzusetzen, jedoch anders als im Stand der Technik nicht den magnetischen Fluss konstant zu setzen, sondern die Energieverhältnisse in dem Magneten des Rotors mit einfließen zu lassen, um so die vorgenannten Größen, insbesondere die Rotorposition bzw. deren zeitliche Ableitung, die Drehzahl genauer bestimmen zu können.The basic idea of the present invention is to use the stator voltage equations known per se in the method for detecting the aforementioned quantities, but, unlike the prior art, not to set the magnetic flux constant but to incorporate the energy relationships in the magnet of the rotor so that the aforementioned variables, in particular the rotor position or its time derivative, to be able to determine the speed more accurate.

Die vorliegende Erfindung ist sowohl bei Einphasen- als auch bei Mehrphasenpermanentmagnet- oder -synchronmotoren sowie auch entsprechenden -generatoren anwendbar. Soweit es einphasige Motoren oder Generatoren betrifft, fällt eine der beiden Statorspannungsgleichungen weg. Im Übrigen wird bei zwei oder mehrphasigen Motoren oder Generatoren grundsätzlich mit dem Statorspannungsgleichung für zweiphasige Motoren und Generatoren gerechnet, wobei bei drei- und mehrphasigen Motoren rechnerisch in an sich bekannter Weise auf ein zweiphasiges Modell reduziert bzw. transformiert wird, insofern müssen dann messtechnisch erfasste Werte entsprechend auf ein zweiphasiges Modell umgerechnet werden.The present invention is applicable to both single-phase and multi-phase permanent magnet or synchronous motors as well as corresponding generators. As far as single-phase motors or generators are concerned, one of the two stator voltage equations is eliminated. Incidentally, in two or more-phase motors or generators in principle with the stator voltage equation for two-phase motors and generators is calculated, is reduced in three-phase and multi-phase motors arithmetically in a conventional manner to a two-phase model or transformed so far must then metrologically recorded values be converted accordingly to a two-phase model.

Das vorliegende Verfahren ist insbesondere für Permanentmagnetmotoren vorgesehen, kann jedoch in gleicher Weise auch bei Synchronmotoren oder Generatoren angewendet werden, wobei bei Synchronmotoren oder Generatoren der durch die Rotorspule gebildete Magnet anstelle des Permanentmagneten tritt. Eine Generatoranwendung in diesem Sinne kann auch im Zusammenhang mit der Steuerung von mit Leistungselektronik betriebenen Motoren gegeben sein, wenn diese im Generatorbetrieb ins Netz speisen um die Rotorposition des Netzgenerators zu ermitteln.The present method is particularly intended for permanent magnet motors, but can also be applied in the same way in synchronous motors or generators, wherein in synchronous motors or generators of the magnet formed by the rotor coil occurs in place of the permanent magnet. A generator application in this sense can also be given in connection with the control of motors powered by power electronics, if they feed into the grid during generator operation in order to determine the rotor position of the network generator.

Das erfindungsgemäße Verfahren kann auch für Generatoren angewendet werden, beispielsweise bei der SteuerungThe inventive method can also be used for generators, for example in the control

In Fig. 1 ist ein solches Ersatzschaltbild eines zweiphasigen Permanentmagnetmotors dargestellt, es sind zwei um 90° versetzt zueinander angeordneten Phasen α und β in einem Stator 1 vorgesehen, die durch zwei Spulen 3 und 4 symbolisiert sind. Innerhalb dieses Stators 1 ist ein Rotor 2 angeordnet, der einen Permanentmagneten 5 mit diametraler Polaritätsverteilung N und S aufweist, der innerhalb des Stators 1 rotierend gelagert ist.In Fig. 1 is such an equivalent circuit diagram of a two-phase permanent magnet motor is shown, there are two offset by 90 ° to each other arranged phases α and β provided in a stator 1, which are symbolized by two coils 3 and 4. Within this stator 1, a rotor 2 is arranged, which has a permanent magnet 5 with diametral polarity distribution N and S, which is rotatably mounted within the stator 1.

Um die Energieverhältnisse im Magneten 5 des Rotors 2 zu berücksichtigen, werden die folgenden Gleichungen (3) und (4) eingesetzt. ψ ˙ = p ω ψ

Figure imgb0005
ψ ˙ = p ω ψ
Figure imgb0006
wobei

ψ̇
die zeitliche Ableitung von ψ und
ψ̇
die zeitliche Ableitung von ψ sind.
In order to consider the energy ratios in the magnet 5 of the rotor 2, the following equations (3) and (4) are used. ψ ˙ = - p ω ψ
Figure imgb0005
ψ ˙ = p ω ψ
Figure imgb0006
in which
ψ̇
the time derivative of ψ and
ψ̇
are the time derivative of ψ .

Die Besonderheit dieser Rotorenergiegleichungen liegt darin, dass in die zeitliche Ableitung des magnetischen Flusses in α - Richtung der magnetische Fluss in ß - Richtung einfließt und umgekehrt.The peculiarity of these rotor energy equations lies in the fact that the magnetic flux in the ß - direction flows into the time derivative of the magnetic flux in the α - direction and vice versa.

Hierdurch ergibt sich ein rechnerisches Motormodell, mit dem beispielsweise wie anhand von Fig. 2 veranschaulicht, elektrische, magnetische und/oder mechanische Werte des Motors ermittelt werden können.This results in a mathematical engine model with which, for example, as based on Fig. 2 illustrated, electrical, magnetic and / or mechanical values of the engine can be determined.

In den folgenden in den Figuren blockdiagrammmäßig dargestellten Motormodellen ist mit ^ jeweils ein errechneter Wert gekennzeichnet, wohingegen bei den ohne ^ gekennzeichneten Werten es sich um gemessene Werte handelt.In the following motor models shown block-wise in the figures, a calculated value is indicated by,, whereas in the case of the values marked without ^ these are measured values.

Es versteht sich, dass von den einleitend genannten Größen (magnetischer Fluss, Rotorposition, Drehzahl) jeweils eine ermittelt werden kann, wenn das durch den Block 6 in Fig. 2 symbolisierte Motormodell verwendet wird. Dieses durch den Block 6 symbolisierte Motormodell besteht aus den Gleichungen (1) bis (4), mit denen einer der vorgenannten Werte rechnerisch vergleichsweise genau ermittelt werden kann.It is understood that one of the variables mentioned in the introduction (magnetic flux, rotor position, rotational speed) can be determined in each case if this is indicated by the block 6 in FIG Fig. 2 symbolized engine model is used. This motor model symbolized by the block 6 consists of the equations (1) to (4), with which one of the abovementioned values can be computationally determined comparatively accurately.

Bei dem Verfahren gemäß Fig. 2 werden die Spannungen uα und uβ, d. h. die Statorspannungen in α - und β - Richtung gemessen oder anderweitig berechnet oder zur Verfügung gestellt, ebenso ω die Rotordrehzahl. Diese Größen werden in die Gleichungen (1) bis (4) eingesetzt, so dass rechnerisch die Geschwindigkeit des magnetischen Flusses ωflux, die Motorströme iα in Richtung α und iβ in Richtung β sowie der magnetische Fluss ψα in Richtung α und ψβ in Richtung β ermittelt werden können. Die entsprechend rechnerisch ermittelten Werte sind mit ^ gekennzeichnet: L i ^ ˙ α = R i ^ α + p ω ^ ψ ^ + u α

Figure imgb0007
L i ^ ˙ β = R i ^ β p ω ^ ψ ^ + u β
Figure imgb0008
ψ ^ ˙ = p ω ^ ψ ^
Figure imgb0009
ψ ^ ˙ = p ω ^ ψ ^
Figure imgb0010
In the method according to Fig. 2 the voltages u α and u β , ie the stator voltages in the α and β directions are measured or otherwise calculated or made available, likewise ω the rotor speed. These quantities are used in equations (1) to (4), so that mathematically the speed of the magnetic flux ω flux , the motor currents i α in the direction α and i β in the direction β and the magnetic flux ψ α in the direction α and ψ β in the direction β can be determined. The calculated values are marked with ^: L i ^ ˙ α = - R i ^ α + p ω ^ ψ ^ + u α
Figure imgb0007
L i ^ ˙ β = - R i ^ β - p ω ^ ψ ^ + u β
Figure imgb0008
ψ ^ ˙ = - p ω ^ ψ ^
Figure imgb0009
ψ ^ ˙ = - p ω ^ ψ ^
Figure imgb0010

Aus dem magnetischen Fluss ψα in Richtung α und ψβ in Richtung β kann dann mittels eines Winkelkalkulators 7, der die geometrische Bezeichnung gemäß ρ = 1 p Arctg ψ ψ

Figure imgb0011
verwendet, die Position ρ des magnetischen Flusses ermittelt werden. In diesem grundlegenden Motormodell 6 wird die Rotorposition durch Gleichsetzung mit der Position des magnetischen Flusses bestimmt, davon ausgehend, dass diese real stets übereinstimmen.From the magnetic flux ψ α in the direction α and ψ β in the direction β can then by means of an angle calculator 7, the geometric designation according to ρ = 1 p arctan ψ ψ
Figure imgb0011
used, the position ρ of the magnetic flux can be determined. In this basic motor model 6, the rotor position is determined by equating with the position of the magnetic flux, assuming that they always coincide in real terms.

Da dieses Motormodell 6 in seiner einfachsten Form auch nur eine rechnerische Annährung an die tatsächlichen Werte darstellt, kann es durch weitere Maßnahmen verbessert werden. Eine solche Verbesserung stellt beispielsweise das anhand von Fig. 3 dargestellte Verfahren dar. Wie die Fig. 3 zeigt, ist auch dort das grundlegende Motormodell 6, bestehend aus den Gleichungen (1) bis (4) zugrunde gelegt, wobei die Statorspannungen u in Richtung α und β, uα und uβ sowie die Rotorgeschwindigkeit ω beispielsweise als gemessene Größen in das Modell einfließen. Im Unterschied zu dem Verfahren nach Fig. 2 wird jedoch im Modell 6a nach Fig. 3 der Statorstrom in α- und β- Richtung, also iα und iβ zusätzlich erfasst, mit dem durch das Motormodell 6a ermittelten rechnerischen Stromwerten α und β durch Subtraktion verknüpft (dies ist in Fig. 3 durch die subtraktorische Verknüpfung 8 dargestellt) und der daraus resultierende Wert einem Korrekturglied 9 zugeführt, der in das Motormodell 6a korrigierend mit einfließt. Auf diese Weise wird ein verfeinertes Motormodell 6a und somit ein verbessertes Verfahren zur Ermittlung der vorgenannten Werte zur Verfügung gestellt, das aus den Gleichungen (1a), (2a), (3a) und (4a) besteht: L i ˙ α = R i α + p ω ψ + u α + υ 1 α

Figure imgb0012
L i ˙ β = R i β p ω ψ + u β + υ 1 β
Figure imgb0013
ψ ˙ = p ω ψ + υ 2 α
Figure imgb0014
ψ ˙ = p ω ψ + υ 2 β
Figure imgb0015
in denen

υ 1a 1 β ,υ 2β
Korrekturglieder sind.
Since this engine model 6 in its simplest form represents only a mathematical approximation to the actual values, it can be improved by further measures. Such an improvement is for example the basis of Fig. 3 represented method. How the Fig. 3 The basic motor model 6, consisting of equations (1) to (4), is also used as the basis, the stator voltages u in the direction α and β, u α and u β, and the rotor speed ω, for example, as measured variables in the model incorporated. Unlike the method after Fig. 2 However, in the model 6a after Fig. 3 the stator current in α- and β-direction, ie i α and i β additionally detected, is linked to the calculated current values î α and î β determined by the motor model 6a by subtraction (this is in Fig. 3 represented by the subtraktorische link 8) and the resulting value supplied to a correction member 9, which flows into the motor model 6a corrective. In this way, a refined motor model 6a and thus an improved method for determining the aforementioned values is provided, which consists of the equations (1a), (2a), (3a) and (4a): L i ˙ α = - R i α + p ω ψ + u α + υ 1 α
Figure imgb0012
L i ˙ β = - R i β - p ω ψ + u β + υ 1 β
Figure imgb0013
ψ ˙ = - p ω ψ + υ 2 α
Figure imgb0014
ψ ˙ = p ω ψ + υ 2 β
Figure imgb0015
in which
υ 1a , υ 1 β , υ , υ 2 β
Correction members are.

In dem Verfahren gemäß Fig. 3 sind die gemessenen Statorströme in α- und β- Richtung im Vergleich zu den errechneten Strömen in α und β Richtung als Korrekturglied vorgesehen. Es versteht sich, dass dies nur beispielhaft zu verstehen ist, es können in gleicher Weise die Motorströme in das Motormodell 6 bzw. 6a einfließen und die Motorspannungen rechnerisch ermittelt und gegebenenfalls durch Vergleich mit den tatsächlichen Spannungen als Korrekturglied einfließen. Es können auch mehrere Korrekturglieder vorgesehen sein, die auf der Basis mehrerer elektrischer Größen aufgebaut sind.In the method according to Fig. 3 the measured stator currents in the α and β directions are provided as a correction element in comparison to the calculated currents in the α and β directions. It is understood that this is to be understood only as an example, the motor currents can be incorporated into the motor model 6 or 6a in the same way, and the motor voltages can be calculated and optionally incorporated as a correction element by comparison with the actual voltages. It can also be provided a plurality of correction members which are constructed on the basis of a plurality of electrical variables.

Für das anhand von Fig. 3 beispielhaft dargestellte und vorbeschriebene Verfahren ergeben sich also beispielhaft die folgenden Gleichungen L i ^ α = R i α + p ω ^ ψ ^ + u α + υ 1 α

Figure imgb0016
L i ^ β = R i β p ω ^ ψ ^ + u β + υ 1 β
Figure imgb0017
ψ ^ ˙ = p ω ^ ψ ^ + υ 2 α
Figure imgb0018
ψ ^ = p ω ^ ψ ^ + υ 2 β
Figure imgb0019
in denen

υ 1 β 2β
Korrekturglieder sind,
wobei die Korrekturglieder durch einen Korrekturfaktor und die Differenz der errechneten elektrischen Werte und der gemessenen elektrischen Werte wie folgt gebildet sind: υ 1 α = K i i ^ α i α
Figure imgb0020
υ 2 α = K ψ i ^ β i β
Figure imgb0021
υ 1 β = K i i ^ β i β
Figure imgb0022
υ 2 β = K ψ i ^ α i α
Figure imgb0023
For that, based on Fig. 3 By way of example and method described by way of example, the following equations result by way of example L i ^ α = - R i α + p ω ^ ψ ^ + u α + υ 1 α
Figure imgb0016
L i ^ β = - R i β - p ω ^ ψ ^ + u β + υ 1 β
Figure imgb0017
ψ ^ ˙ = - p ω ^ ψ ^ + υ 2 α
Figure imgb0018
ψ ^ = p ω ^ ψ ^ + υ 2 β
Figure imgb0019
in which
υ , υ 1 β , υ , υ 2 β
Correction members are,
wherein the correction terms are formed by a correction factor and the difference of the calculated electrical values and the measured electrical values as follows: υ 1 α = K i i ^ α - i α
Figure imgb0020
υ 2 α = - K ψ i ^ β - i β
Figure imgb0021
υ 1 β = K i i ^ β - i β
Figure imgb0022
υ 2 β = K ψ i ^ α - i α
Figure imgb0023

Wie aus den vorstehenden Gleichungen ersichtlich, werden die Korrekturglieder ν2 so gebildet, dass sie in den Gleichungen (3a) und (4a) in der einen Phase mittels der Differenz zwischen errechneten und gemessenen Strömen der anderen Phase gebildet wird. Die Größen Ki und Kψ bilden dabei jeweils einen konstanten Faktor.As apparent from the above equations, the correction terms ν 2 are formed to be formed in the equations (3a) and (4a) in the one phase by means of the difference between calculated and measured currents of the other phase. The variables K i and K ψ each form a constant factor.

In Fig. 4 ist beispielhaft eine Weiterbildung des erfindungsgemäßen Verfahrens dargestellt, bei dem neben dem korrigierten Motormodell 6a gemäß Fig. 3 noch eine Weiterbildung dahingehend vorgesehen ist, dass die Rotordrehzahl ω rechnerisch ermittelt wird. Bei den Motormodellen gemäß den Fig. 2 und 3 fließt die Rotordrehzahl ω als Eingangsgröße ein. Dann wird die Drehzahl üblicherweise sensorisch erfasst, und zwar vorzugsweise mit Hilfe eines Hallsensors, wie dies an sich auch bekannt ist.In Fig. 4 exemplified a development of the method according to the invention, in which in addition to the corrected engine model 6a according to Fig. 3 a further development is provided to the effect that the rotor speed ω is determined by calculation. In the engine models according to the FIGS. 2 and 3 the rotor speed ω enters as an input quantity. Then, the speed is usually detected by sensors, preferably by means of a Hall sensor, as is also known per se.

Es gibt jedoch Konstellationen, bei denen auch die Rotordrehzahl rechnerisch ermittelt werden muss oder bei der die sensorisch ermittelten Messwerte nicht hinreichend genau sind oder zeitlich in nur vergleichsweise großen Abständen zur Verfügung stehen. Für diese Fälle ist in einer Weiterbildung der Erfindung ein Adaptionsblock 10 vorgesehen, der mittels eines Drehzahlkorrekturglieds 11, in dem die Differenz zwischen einer angenommen oder errechneten Drehzahl und der vom Motormodell 6a errechneten Flussgeschwindigkeit ωflux gebildet wird, die ermittelte Drehzahl an die tatsächliche Rotorgerschwindigkeit annähert bis das Drehzahlkorrekturglied 11 den Wert Null annimmt. Dieses Korrekturglied 11 ist in Fig. 4 als Ergebnis der im Knotenpunkt 14 erfolgten subtraktorischen Verknüpfung dargestellt und geht von der Annahme aus, dass die Geschwindigkeit des magnetischen Flusses und die Rotorgeschwindigkeit stets übereinstimmen müssen. Im Adaptionsblock 10 wird also stets die mittels des Drehzahlkorrekturglieds 11 ermittelte Differenz ggf. unter Berücksichtigung eines Korrekturfaktors zu der zuvor ermittelten Drehzahl addiert und als neue errechnete Drehzahl ausgegeben. Diese neue errechnete Drehzahl fließt dann einerseits in das Motormodell 6a ein und steht andererseits am Knotenpunkt 14 an, der aufgrund der in das Motormodell 6a eingeflossenen neuen Drehzahl auch eine neue Geschwindigkeit des magnetischen Flusses erhält und dadurch ein neues Drehzahlkorrekturglied 11 ausgibt, das den vorbeschriebenen Annäherungsprozeß durch den Adaptionsblock 10 erneut einleitet, bis schließlich das Korrekturglied 11 den Wert Null annimmt, also die Geschwindigkeit des magnetischen Flusses, wie sie aus dem Motormodell 6a ermittelt wird, und die Rotorgeschwindigkeit, also die errechnete Drehzahl des Rotors, übereinstimmen.However, there are constellations in which the rotor speed must also be determined by calculation or in which the sensory measured values are not sufficiently accurate or are available in time in only relatively large distances. For these cases is in one According to a further development of the invention, an adaptation block 10 is provided, which approximates the determined speed to the actual rotor speed by means of a speed correction element 11, in which the difference between an assumed or calculated speed and the flow velocity ω flux calculated by the motor model 6a is approximated, until the speed correction element 11 approaches the value Zero assumes. This correction element 11 is in Fig. 4 as a result of the sub-tractive linkage made in node 14 and assumes that the velocity of the magnetic flux and the rotor velocity must always coincide. In the adaptation block 10, therefore, the difference determined by means of the speed correction element 11 is always added to the previously determined speed taking into account a correction factor and output as a new calculated speed. This new calculated speed then flows, on the one hand, into the engine model 6a and, on the other hand, arrives at the node 14, which also receives a new speed of magnetic flux due to the new speed which has flowed into the engine model 6a and thereby outputs a new speed correction element 11, which outputs the above-described approach process introduced again by the adaptation block 10, until finally the correction element 11 assumes the value zero, that is, the speed of the magnetic flux, as determined from the motor model 6a, and the rotor speed, so the calculated speed of the rotor match.

Innerhalb des Motormodells 6a wird die Geschwindigkeit des magnetischen Flusses durch zeitliche Ableitung der ermittelten Position des magnetischen Flusses gebildet. Leitet man die Gleichung (5) also zeitlich ab, um die Geschwindigkeit des magnetischen Flusses zu erhalten und setzt man die Gleichungen (3a) und (4a) in diese abgeleitet Gleichung (5) ein, so ergibt sich die Geschwindigkeit des magnetischen Flusses wie folgt: ρ ^ ˙ = ω Flux = ω ^ + 1 p υ 2 β ψ ^ υ 2 α ψ ^ ψ ^ 2 + ψ ^ 2

Figure imgb0024
wobei 1 p υ 2 β ψ ^ υ 2 α ψ ^ ψ ^ 2 + ψ ^ 2
Figure imgb0025
das Drehzahlkorrekturglied 11 darstellt. Within the motor model 6a, the speed of the magnetic flux is formed by time derivative of the detected position of the magnetic flux. Thus, if we derive equation (5) in time to obtain the velocity of the magnetic flux and insert equations (3a) and (4a) into equation (5) derived therefrom, the velocity of the magnetic flux is as follows : ρ ^ ˙ = ω Flux = ω ^ + 1 p υ 2 β ψ ^ - υ 2 α ψ ^ ψ ^ 2 + ψ ^ 2
Figure imgb0024
in which 1 p υ 2 β ψ ^ - υ 2 α ψ ^ ψ ^ 2 + ψ ^ 2
Figure imgb0025
the speed correction member 11 represents.

Der Adaptionsblock 10 bildet Teil eines Annäherungsprozesses, bei dem die angenommene oder errechnete Drehzahl mit Hilfe des Motormodells 6a, des Drehzahlkorrekturgliedes 11 in Übereinstimmung mit der tatsächlichen Rotordrehzahl gebracht wird, bis das Drehzahlkorrekturglied zu Null wird.The adaptation block 10 forms part of an approximation process in which the assumed or calculated speed is brought into agreement with the actual rotor speed with the aid of the motor model 6a, the speed correction element 11, until the speed correction element becomes zero.

Zusätzlich kann die Differenz zwischen der im Adaptionsblock 10 errechneten Rotordrehzahl und einer gemessenen Rotordrehzahl berücksichtigt werden, ein solches zusätzliches Drehzahlkorrekturglied 15 wird im Knotenpunkt 12 additiv mit dem Drehzahlkorrekturglied 11 verknüpft, was sich formelmäßig wie folgt darstellt: Δ ω mess = K V ω ω Rotor

Figure imgb0026
wobei
Δωmess das zusätzliche Drehzahlkorrekturglied 15 bildet und Kv eine Konstante. In addition, the difference between the calculated in the adaptation block 10 rotor speed and a measured rotor speed can be taken into account, such an additional speed correction element 15 is additively linked in the node 12 with the speed correction element 11, which is formally represented as follows: Δ ω mess = K V ω - ω rotor
Figure imgb0026
in which
Δω measurement forms the additional speed correction element 15 and K v is a constant.

Wenn keine gemessene Rotordrehzahl zur Verfügung steht ist dieses zusätzliche Drehzahlkorrekturglied 15 gleich Null. Kv stellt einen Verstärkungsfaktor dar, mit dem dieses zusätzliche Drehzahlkorrekturglied 15 einfließt.If no measured rotor speed is available this additional speed correction element 15 is equal to zero. Kv represents a gain factor with which this additional speed correction element 15 flows.

Zusätzlich kann gemäß Figur 5 die Drehzahl auch mittels eines Systemdrehzahländerungskorrekturglieds 13, welches aus einem Drehzahlmodell abgeleitet sein kann, bestimmt werden. Das Verfahren unterscheidet sich von dem anhand von Figur 4 vorbeschriebenen dadurch, dass neben dem Adaptionsblock 10 ein aus dem Drehzahlmodell abgeleitetes Systemdrehzahländerungskorrekturglied 13 tritt.Additionally, according to FIG. 5 the speed may also be determined by means of a system speed change correction element 13, which may be derived from a speed model. The procedure differs from that based on FIG. 4 described above in that in addition to the adaptation block 10, a system speed change correction element 13 derived from the speed model occurs.

Das Drehzahlmodell beinhaltet weitere Informationen über die mechanischen Zusammenhänge des Antriebssystems. Zweckmäßigerweise wird die Veränderung der Drehzahl, also die zeitliche Änderung der Rotorgeschwindigkeit durch eine mechanische Zustandsgleichung ausgedrückt, welche die vorerwähnten mechanischen Zusammenhänge berücksichtigt. Die Änderung der Drehzahl kann dabei durch folgende Gleichung im Drehzahlmodell 13 berücksichtigt werden : ω ˙ = 1 J M M L

Figure imgb0027
in der

M
das antreibende Moment
ML
das Lastmonent
J
das Massenträgheitsmoment der rotierenden Last sind.
The speed model contains more information about the mechanical relationships of the drive system. Expediently, the change in the rotational speed, that is to say the temporal change of the rotor speed, is expressed by a mechanical equation of state which takes into account the aforementioned mechanical relationships. The change in the rotational speed can be taken into account by the following equation in the rotational speed model 13: ω ˙ = 1 J M - M L
Figure imgb0027
in the
M
the driving moment
M L
the load month
J
are the moment of inertia of the rotating load.

Diese an sich bekannte Zustandsgleichung besagt, dass eine Drehzahländerung nur dann erfolgt, wenn das Antriebsmoment größer als das Lastmoment ist oder umgekehrt, und dass diese Änderung dann abhängig von dem Differenzmoment sowie der dem Massenträgheitsmoment der rotierenden Last ist.This state equation, which is known per se, states that a speed change occurs only when the drive torque is greater than the load torque or vice versa, and that this change is then dependent on the difference moment as well as the mass moment of inertia of the rotating load.

Diese zusätzliche Information führt in Verbindung mit dem Adaptionsblock 10 bei sich ändernder Drehzahl schneller zum Ergebnis, bei dem die errechnete Drehzahl des Rotors der tatsächlichen Drehzahl entspricht und eignet sich somit besonders für hochdynamische Antriebsaufgaben. Das Drehzahlmodell setzt jedoch voraus, dass entsprechende mechanische oder elektrische Größen zum Beispiel durch Messen oder in anderer Weise zur Verfügung stehen. Dabei kann das Drehzahlmodell ggf. auch durch geschickt zu treffende Annahmen vereinfacht werden.This additional information leads in conjunction with the adaptation block 10 with changing speed faster to the result in which the calculated speed of the rotor corresponds to the actual speed and is thus particularly suitable for highly dynamic drive tasks. However, the speed model assumes that appropriate mechanical or electrical quantities are available, for example, by measurement or otherwise. If necessary, the speed model can also be simplified by making clever statements.

Wenn der Motor beispielsweise mit konstanter Geschwindigkeit läuft und dass Drehzahlmodell zur Ermittlung der Drehzahl herangezogen wird, dann wird die Gleichung (8) Null ergeben, so dass dann das Drehzahlmodell im eigentlichen Sinne gar nicht zur Anwendung kommt, sondern stattdessen die Drehzahl wie anhand von Figur 4 beschrieben ermittelt wird. Die Annahme, dass der Motor mit konstanter Drehzahl läuft, geht daher nicht über das anhand von Figur 4 beschriebene hinaus.For example, if the engine is running at a constant speed and the speed model is being used to determine the speed, then equation (8) will yield zero so that the speed model will not actually be used, but rather the speed as based on FIG. 4 is determined described. The assumption that the engine is running at a constant speed, therefore, is not about the basis of FIG. 4 described out.

Die Gleichung (8) kann hingegen durch bestimmte Lastannahmen, beispielsweise durch den Lastzustand ML = 0 oder konst. vereinfacht werden. Das Lastmoment ist häufig nicht bekannt oder nur aufwändig ermittelbar. In vielen Fällen kann jedoch ein konstantes Lastmoment angenommen werden. Bei dieser Annahme hat das Systemdrehzahländerungskorrekturglied 13 dann folgende Form : Δ ω System = 1 J M M 4

Figure imgb0028
wobei

ΔωSystem
- das Systemänderungskorrekturglied und
K4
- die Konstante sind.
By contrast, equation (8) can be simplified by specific load assumptions, for example by the load state M L = 0 or const. The load torque is often unknown or can only be determined with difficulty. In many cases, however, a constant load moment can be assumed. In this assumption, the system speed change correction member 13 then has the form: Δ ω system = 1 J M - M 4
Figure imgb0028
in which
Δ ω system
the system change correction term and
K 4
- are the constant.

Die Konstante K4 ist Null, wenn das Lastmoment zu Null angenommen wird. Im übrigen ist die Konstante K4 für den jeweiligen Aggregattyp und -einsatz vorab zu ermitteln.The constant K 4 is zero when the load torque is assumed to be zero. Incidentally, the constant K 4 for the respective type and type of unit to be determined in advance.

Das Antriebsmoment ist durch die Gleichung (10) bestimmt: M = K 2 ψ i β ψ i α ,

Figure imgb0029
in der

K 2
eine Konstante ist,
The drive torque is determined by equation (10): M = K 2 ψ i β - ψ i α .
Figure imgb0029
in the
K 2
a constant,

Der in der Klammer stehende Therm in Gleichung (10) ist bereits aus dem Motormodell 6a bekannt. Setzt man die Gleichung (10) in die Gleichung (9) ein, so wird ersichtlich, dass man für diesen Fall (Annahme, dass das Lastmoment Null oder konstant ist) das Systemänderungskorrekturglied 13 aus dem Motormodell 6a heraus berechnen kann. Man kann also ohne weitere Messung dieses Korrekturglied 13 bestimmen und somit die Drehzahl des Rotors schneller bzw. genauer berechnen. Es ist also besonders günstig, wenn das Antriebsmoment aus den aus dem Motormodell 6a abgeleiteten Größen bestimmt werden kann.The parenthesized Therm in equation (10) is already known from the motor model 6a. Substituting equation (10) into equation (9), it will be seen that for this case (assuming that the load moment is zero or constant) the system change correction term 13 can calculate from the engine model 6a out. It is therefore possible to determine this correction element 13 without further measurement and thus calculate the speed of the rotor faster or more accurately. It is thus particularly favorable if the drive torque can be determined from the variables derived from the engine model 6a.

Wird der Motor beispielweise in einem Kreiselpumpenaggregat eingesetzt, so kann das Lastmoment auf einfache Weise rechnerisch ermittelt werden, denn es ist durch die Gleichung (11) bestimmt: M L = K 1 ω 2 ,

Figure imgb0030
in der

K 1
eine Konstante ist,
die eine Beziehung zur Rotordrehzahl schafft. Auch hier können aus dem Motormodell 6a abgeleitete Größen in das Drehzahlmodell einfließen ohne dass weitere mechanische oder elektrische Messungen erforderlich sind.If the motor is used, for example, in a centrifugal pump unit, then the load torque can be determined in a simple manner by calculation, since it is determined by the equation (11): M L = K 1 ω 2 .
Figure imgb0030
in the
K 1
a constant,
which creates a relationship to the rotor speed. Here, too, variables derived from the engine model 6a can be included in the speed model without the need for further mechanical or electrical measurements.

Ungeachtet dessen, ob die Drehzahl nur mittels des Adaptionsmodells 10 oder ergänzend auch Berücksichtigung eines Drehzahlmodells ermittelt wird, kann auch eine gemessene Drehzahl mit einfließen um schneller zum gewünschten Ergebnis zu gelangen oder die Genauigkeit der errechneten Werte zu erhöhen. Eine solche schnelle und genaue Erfassung von Motorbetriebsgrößen, wie sie durch das vorbeschriebene erfindungsgemäße Verfahren erfolgen können, ist die Voraussetzung für eine dynamische und stabile Motoransteuerung.Irrespective of whether the rotational speed is determined only by means of the adaptation model 10 or additionally taking into account a rotational speed model, a measured rotational speed can also be included in order to achieve the desired result more quickly or to increase the accuracy of the calculated values. Such a fast and accurate detection of engine operating variables, as can be done by the above-described method according to the invention, is the prerequisite for a dynamic and stable motor drive.

Die vorbeschriebenen Verfahren können ohne weiteres softwaremäßig in eine digitale Motorelektronik implementiert werden. Das ständige Erfassen und Speichern der entsprechenden elektrischen Werte des Motors, also der Motorströme und Spannungen zählt heute zum angewandten Stand der Technik, diese Daten stehen also steuerungsseitig ohnehin zur Verfügung, so dass die vorliegende Erfindung ggf. ohne bauliche Veränderung innerhalb der digitalen Motorsteuerung angewendet werden kann um diese zu verbessern.The above-described methods can be implemented by software in a digital engine electronics without further ado. The constant detection and storage of the corresponding electrical values of the motor, so the motor currents and voltages is one of the applied state of the art today, so these data are on the control side Anyway available, so that the present invention may be applied without any structural change within the digital engine control to improve them.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
- Stator- stator
22
- Rotor- Rotor
33
- Spule- Kitchen sink
44
- Spule- Kitchen sink
55
- Permanentmagnet- permanent magnet
66
- Motormodell 6a in Fig.Motor model 6a in FIG.
77
- Winkelkalkulator- Angle calculator
88th
- Verknüpfung- Shortcut
99
- Korrekturglied- correction element
αα
- Richtung- Direction
ββ
- Richtung- Direction
NN
- Nordpol des Magneten- North pole of the magnet
SS
- Südpol des Magneten- South pole of the magnet
1010
- Adaptionsblock- Adaptation block
1111
- Drehzahlkorrekturglied- Speed correction element
1212
- Knotenpunkt- node
1313
- Systemdrehzahländerungskorrekturglied- System speed change correction element
1414
- Knotenpunkt- node
1515
- zusätzliches Drehzahlkorrekturglied- additional speed correction element

Claims (19)

  1. A method for detecting the magnetic flux of the rotor, the rotor position and/or the speed of the rotor, in a single-phase or multiphase permanent magnet motor or in a single-phase or multiphase synchronous motor or in a single-phase or multiphase generator, whilst applying the stator voltage equations L i ˙ α = R i α + p ω ψ + u α
    Figure imgb0045
    L i ˙ β = R i β p ω ψ + u β
    Figure imgb0046
    in which
    L is the inductance
    iα the current in the direction α
    iβ the current in the direction β
    Figure imgb0047
    the temporal derivative of the current in the direction α
    Figure imgb0048
    the temporal derivative of the current in the direction β
    R the ohmic resistance
    p the pole pair number
    ω the speed of the rotor
    ψ the magnetic flux in the direction α
    ψ the magnetic flux in the direction β
    uα the voltage in the direction α
    uβ the voltage in the direction β
    characterised in that with regard to the evaluations, the energy conditions in the magnet (5) of the rotor (2) are taken into account by way of the following energy equations: ψ ˙ = p ω ψ
    Figure imgb0049
    ψ ˙ = p ω ψ
    Figure imgb0050
    wherein
    ψ̇ is the temporal derivative of ψ and
    ψ̇ the temporal derivative of ψ.
  2. Method according to claim 1, characterised in that the motor model which is defined by the equations (1) to (4) is corrected in dependence on a comparison between computed model values (^) and measured electrical and/or mechanical values, by way of at least one correction term (9), so that the following equations result: L i ˙ α = R i α + p ω ψ + u α + υ 1 α
    Figure imgb0051
    L i ˙ β = R i β p ω ψ + u β + υ 1 β
    Figure imgb0052
    ψ ˙ = p ω ψ + υ 2 α
    Figure imgb0053
    ψ ˙ = p ω ψ + υ 1 β
    Figure imgb0054
    in which
    υ 1 β 2 α 1β are correction terms.
  3. A method according to claim 2, characterised in that the measured electrical values are the motor currents.
  4. A method according to one of the preceding claims, characterised in that the correction terms (9) are formed in each case from one correction factor and the difference between measured and computed motor currents.
  5. A method according to one of the preceding claims, characterised in that the correction terms (9) in the Equations (3a) and (4a) in the one phase are formed by way of the difference between the measured and the computed currents of the other phase, wherein the correction term enters the equation (3a) with a negative sign.
  6. A method according to one of the preceding claims, characterised in that the speed is detected sensorically.
  7. A method according to claim 6, characterised in that the speed is determined with the help of a Hall sensor
  8. A method according to one of the preceding claims, characterised in that the speed is determined by computation, in a manner such that the difference between the flux speed and an assumed rotor speed or variables derived therefrom is formed as a speed correction term (11), and the current speed is determined by an approximation process from this.
  9. A method according to claim 8, characterised in that the speed correction term (11) is corrected by way of a speed measurement.
  10. A method according to one of the preceding claims, characterised in that the assumed rotor speed is adapted to the current speed in an adapter block (10) by way of the speed correction term (11).
  11. A method according to one of the preceding claims, characterised in that the assumed speed is adapted to the current speed in a speed model by way of the speed correction term (11).
  12. A method according to one of the preceding claims, characterised in that the position of the magnetic flux is determined for determining the flux speed, and specifically by way of the equation ρ = 1 p Arctg ψmβ ψmα
    Figure imgb0055
  13. A method according to claim 12, characterised in that the equation (5) is differentiated with regard to time, and the equations (3a) and 4(a) (for computational evaluation of the speed) are substituted into the differentiated equation (5).
  14. A method according to claim 11, characterised in that the temporal derivative of the speed, preferably of the first order, is used in the speed model.
  15. A method according to one of the preceding claims, characterised in that the speed model is formed by a mechanical equation of state, preferably of the form ω ˙ = 1 J M M L ,
    Figure imgb0056
    in which
    M is the driving moment
    ML the load moment
    J the moment of inertia of the rotating load.
  16. A method according to claim 15, characterised in that the load moment is equated to zero.
  17. A method according to claim 16, characterised in that the drive moment is equated to zero.
  18. A method according to one of the preceding claims, characterised in that the load moment is formed by the equation M L = K 1 ω 2 ,
    Figure imgb0057
    in which
    K 1 is a constant.
  19. A method according to one of the preceding claims, characterised in that the drive moment is defined by the equation M = K 2 ψ i β ψ i α ,
    Figure imgb0058
    in which
    K2 is a constant.
EP02015956.2A 2002-07-18 2002-07-18 Method for acquiring the magnetic flux, the rotor position and/or the rotation speed Expired - Lifetime EP1383231B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP02015956.2A EP1383231B1 (en) 2002-07-18 2002-07-18 Method for acquiring the magnetic flux, the rotor position and/or the rotation speed
US10/621,642 US7043395B2 (en) 2002-07-18 2003-07-17 Method for detecting the magnetic flux the rotor position and/or the rotational speed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP02015956.2A EP1383231B1 (en) 2002-07-18 2002-07-18 Method for acquiring the magnetic flux, the rotor position and/or the rotation speed

Publications (2)

Publication Number Publication Date
EP1383231A1 EP1383231A1 (en) 2004-01-21
EP1383231B1 true EP1383231B1 (en) 2017-03-01

Family

ID=29762647

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02015956.2A Expired - Lifetime EP1383231B1 (en) 2002-07-18 2002-07-18 Method for acquiring the magnetic flux, the rotor position and/or the rotation speed

Country Status (2)

Country Link
US (1) US7043395B2 (en)
EP (1) EP1383231B1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7406214B2 (en) * 1999-05-19 2008-07-29 Digimarc Corporation Methods and devices employing optical sensors and/or steganography
EP2006545B1 (en) * 2007-06-20 2010-06-09 Grundfos Management A/S Method for recording the temperature of the carrier liquid of a rotary pump
DE102009028746A1 (en) * 2009-08-20 2011-02-24 Robert Bosch Gmbh Method and device for operating an electric motor
DE102010024688A1 (en) 2010-06-23 2011-12-29 Festo Ag & Co. Kg Control arrangement for, e.g. electrical synchronous motor, has microcontroller for determining difference between spatial position of runner computed based on operational parameters and spatial position measured by sensor device
DE102010038295A1 (en) * 2010-07-22 2012-01-26 Robert Bosch Gmbh Method and device for sensorless position detection of an electronically commutated electrical machine
US9705437B2 (en) * 2014-09-24 2017-07-11 Texas Instruments Incorporated Angular position estimation for PM motors
CN105577049A (en) * 2015-12-31 2016-05-11 天津嘉诺科技有限公司 Motor frequency conversion electric actuator
CN111181459B (en) * 2018-11-09 2021-11-23 广东美的白色家电技术创新中心有限公司 Identification method and device for permanent magnet flux linkage of motor and electrical equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010017529A1 (en) * 1995-08-04 2001-08-30 Farhad Nozari Starting of synchronous machine without rotor position or speed measurement

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3397007B2 (en) * 1995-06-30 2003-04-14 松下電器産業株式会社 Brushless motor
EP0784378A3 (en) * 1996-01-11 1997-08-06 Siemens Aktiengesellschaft Method for determining the absolute rotor position of in field controlled synchronous machines and device for carrying out this method
FI109847B (en) * 1998-06-11 2002-10-15 Abb Oy Procedure for minimizing the error in a synchronous motor rotor angle estimate
JP4624619B2 (en) * 1999-09-17 2011-02-02 ジーエム・グローバル・テクノロジー・オペレーションズ・インコーポレーテッド Method and apparatus for controlling torque in a permanent magnet brushless electronic motor
KR100615878B1 (en) * 2000-06-02 2006-08-25 미츠비시 쥬고교 가부시키가이샤 Ipm motor, motor drive vehicle, electric car and electric train
KR100421373B1 (en) * 2001-06-20 2004-03-06 엘지전자 주식회사 Apparatus for rotary velocity control of synchronous reluctance motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010017529A1 (en) * 1995-08-04 2001-08-30 Farhad Nozari Starting of synchronous machine without rotor position or speed measurement

Also Published As

Publication number Publication date
US7043395B2 (en) 2006-05-09
US20040060348A1 (en) 2004-04-01
EP1383231A1 (en) 2004-01-21

Similar Documents

Publication Publication Date Title
EP2023479B1 (en) System for seamless velocity and/or location determination including standstill for a permanent magnet rotor of an electric machine
DE69736603T2 (en) SENSORLESS STEERING PROCESS AND PERMANENT CONTROLLED SYNCHRONOUS MOTOR DEVICE
EP0539401B1 (en) Process and circuit for the sensor-less detection of the angle of rotation in a synchronous machine without a damper and preferably excited by a permanent magnet and powered via a converter
DE102013004954B4 (en) Method for operating a multi-phase electrical machine and corresponding multi-phase electrical machine
EP3288179B1 (en) Method for sensorless determination of the orientation of the rotor of an ironless pmsm motor
DE10106404A1 (en) Speed control device for synchronous reluctance motor
WO2018082902A1 (en) Method for determining a rotational angle position of a crankshaft of an internal combustion engine
DE10162170B4 (en) Method for controlling an induction generator
EP2026461B1 (en) Method for sensorless control of a three-phase machine
AT406722B (en) METHOD FOR FIELD-ORIENTED CONTROL OF A MECHANICALLY ENCODER WITHOUT THREE-PHASE
WO2011117139A2 (en) Method and device for determining output torque of an electric drive
DE102019134768A1 (en) DEVICE AND METHOD FOR CONTROLLING A MOTOR
EP1383231B1 (en) Method for acquiring the magnetic flux, the rotor position and/or the rotation speed
EP2532087A2 (en) Sensor unit to be fastened to an electrical machine and motor system
DE102017222841A1 (en) Method for determining a rotational angle position of a crankshaft of an internal combustion engine
EP2144362B1 (en) Method and assembly for observing the drive speed of a permanent magnet rotor in a drive control loop
EP2619899B1 (en) Method and device for the sensorless determination of a rotor position of an electric motor
WO2019120617A1 (en) Method for determining a rotor position of a three-phase machine without using a rotary encoder, and device for controlling a three-phase motor without using a rotary encoder
DE69016794T2 (en) METHOD AND DEVICE FOR STARTING AN ELECTRICAL MACHINE WITH VARIABLE RELUCTIVITY.
DE202019101146U1 (en) Device for detecting the winding temperature
WO2018024280A1 (en) Control unit and method for controlling an electric machine
EP3704790B1 (en) Method for determining the rotor position of synchronously running electric machines without a mechanical sensor
DE102019130180A1 (en) Method for determining an offset of an angular position encoder on a rotor shaft of an electrical synchronous machine with a current or voltage timing offset of an inverter
DE102019117818A1 (en) Device and method for detecting an overload on a brushless DC motor
DE4311597A1 (en) Measuring linear or rotary motion of electric motor - ascertaining rotor or secondary part speed, position, torque or force and deriving transfer model parameters

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20040424

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

17Q First examination report despatched

Effective date: 20110317

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 50216216

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H02P0006160000

Ipc: H02P0021140000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H02P 21/14 20060101AFI20160701BHEP

Ipc: H02P 6/17 20160101ALI20160701BHEP

RIN1 Information on inventor provided before grant (corrected)

Inventor name: VADSTRUP, PIERRE

INTG Intention to grant announced

Effective date: 20160718

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

INTC Intention to grant announced (deleted)
GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

INTG Intention to grant announced

Effective date: 20170118

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 872399

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50216216

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170601

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170703

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50216216

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50216216

Country of ref document: DE

26N No opposition filed

Effective date: 20171204

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170718

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170718

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180201

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170718

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 872399

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301