EP1383231B1 - Method for acquiring the magnetic flux, the rotor position and/or the rotation speed - Google Patents
Method for acquiring the magnetic flux, the rotor position and/or the rotation speed Download PDFInfo
- Publication number
- EP1383231B1 EP1383231B1 EP02015956.2A EP02015956A EP1383231B1 EP 1383231 B1 EP1383231 B1 EP 1383231B1 EP 02015956 A EP02015956 A EP 02015956A EP 1383231 B1 EP1383231 B1 EP 1383231B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- speed
- rotor
- equation
- magnetic flux
- model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 40
- 230000004907 flux Effects 0.000 title claims description 37
- 238000012937 correction Methods 0.000 claims description 44
- 230000001360 synchronised effect Effects 0.000 claims description 9
- 238000005259 measurement Methods 0.000 claims description 6
- 230000002123 temporal effect Effects 0.000 claims description 6
- 238000011156 evaluation Methods 0.000 claims 2
- 230000006978 adaptation Effects 0.000 description 9
- 238000001514 detection method Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- BGPVFRJUHWVFKM-UHFFFAOYSA-N N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] Chemical compound N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] BGPVFRJUHWVFKM-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/14—Estimation or adaptation of machine parameters, e.g. flux, current or voltage
- H02P21/141—Flux estimation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P6/00—Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
- H02P6/14—Electronic commutators
- H02P6/16—Circuit arrangements for detecting position
- H02P6/17—Circuit arrangements for detecting position and for generating speed information
Definitions
- the invention relates to a method for detecting the magnetic flux of the rotor, the rotor position and / or the rotational speed of the rotor in a single or multi-phase permanent magnet or synchronous motor or generator according to the features indicated in the preamble of claim 1.
- the above quantities can be determined when voltage and current in directions ⁇ and ⁇ are known.
- the latter can be easily detected as electrical data.
- this is only possible in the prior art if the magnitude of the magnetic flux is assumed to be constant, since otherwise the system of equations can not be solved unambiguously because of too many unknowns. Since the magnetic flux is actually not constant, but the amount varies over time and rotor position, this known method is subject to errors, which means that it is only of limited suitability for use in the control and regulation processes of the engine.
- the invention has for its object to improve a generic method for detecting the magnetic flux, the rotor position and / or the rotational speed of the rotor in a single or Mehrphasenpermanentmagnet- or synchronous motor or generator.
- the basic idea of the present invention is to use the stator voltage equations known per se in the method for detecting the aforementioned quantities, but, unlike the prior art, not to set the magnetic flux constant but to incorporate the energy relationships in the magnet of the rotor so that the aforementioned variables, in particular the rotor position or its time derivative, to be able to determine the speed more accurate.
- the present invention is applicable to both single-phase and multi-phase permanent magnet or synchronous motors as well as corresponding generators.
- single-phase motors or generators are concerned, one of the two stator voltage equations is eliminated.
- two or more-phase motors or generators in principle with the stator voltage equation for two-phase motors and generators is calculated, is reduced in three-phase and multi-phase motors arithmetically in a conventional manner to a two-phase model or transformed so far must then metrologically recorded values be converted accordingly to a two-phase model.
- the present method is particularly intended for permanent magnet motors, but can also be applied in the same way in synchronous motors or generators, wherein in synchronous motors or generators of the magnet formed by the rotor coil occurs in place of the permanent magnet.
- a generator application in this sense can also be given in connection with the control of motors powered by power electronics, if they feed into the grid during generator operation in order to determine the rotor position of the network generator.
- the inventive method can also be used for generators, for example in the control
- Fig. 1 is such an equivalent circuit diagram of a two-phase permanent magnet motor is shown, there are two offset by 90 ° to each other arranged phases ⁇ and ⁇ provided in a stator 1, which are symbolized by two coils 3 and 4.
- a rotor 2 is arranged, which has a permanent magnet 5 with diametral polarity distribution N and S, which is rotatably mounted within the stator 1.
- the voltages u ⁇ and u ⁇ , ie the stator voltages in the ⁇ and ⁇ directions are measured or otherwise calculated or made available, likewise ⁇ the rotor speed.
- These quantities are used in equations (1) to (4), so that mathematically the speed of the magnetic flux ⁇ flux , the motor currents i ⁇ in the direction ⁇ and i ⁇ in the direction ⁇ and the magnetic flux ⁇ ⁇ in the direction ⁇ and ⁇ ⁇ in the direction ⁇ can be determined.
- the position ⁇ of the magnetic flux can be determined.
- the rotor position is determined by equating with the position of the magnetic flux, assuming that they always coincide in real terms.
- the measured stator currents in the ⁇ and ⁇ directions are provided as a correction element in comparison to the calculated currents in the ⁇ and ⁇ directions.
- the motor currents can be incorporated into the motor model 6 or 6a in the same way, and the motor voltages can be calculated and optionally incorporated as a correction element by comparison with the actual voltages. It can also be provided a plurality of correction members which are constructed on the basis of a plurality of electrical variables.
- the correction terms ⁇ 2 are formed to be formed in the equations (3a) and (4a) in the one phase by means of the difference between calculated and measured currents of the other phase.
- the variables K i and K ⁇ each form a constant factor.
- Fig. 4 exemplified a development of the method according to the invention, in which in addition to the corrected engine model 6a according to Fig. 3 a further development is provided to the effect that the rotor speed ⁇ is determined by calculation.
- the rotor speed ⁇ enters as an input quantity. Then, the speed is usually detected by sensors, preferably by means of a Hall sensor, as is also known per se.
- an adaptation block 10 which approximates the determined speed to the actual rotor speed by means of a speed correction element 11, in which the difference between an assumed or calculated speed and the flow velocity ⁇ flux calculated by the motor model 6a is approximated, until the speed correction element 11 approaches the value Zero assumes.
- This correction element 11 is in Fig. 4 as a result of the sub-tractive linkage made in node 14 and assumes that the velocity of the magnetic flux and the rotor velocity must always coincide.
- the difference determined by means of the speed correction element 11 is always added to the previously determined speed taking into account a correction factor and output as a new calculated speed.
- This new calculated speed then flows, on the one hand, into the engine model 6a and, on the other hand, arrives at the node 14, which also receives a new speed of magnetic flux due to the new speed which has flowed into the engine model 6a and thereby outputs a new speed correction element 11, which outputs the above-described approach process introduced again by the adaptation block 10, until finally the correction element 11 assumes the value zero, that is, the speed of the magnetic flux, as determined from the motor model 6a, and the rotor speed, so the calculated speed of the rotor match.
- the speed of the magnetic flux is formed by time derivative of the detected position of the magnetic flux.
- the adaptation block 10 forms part of an approximation process in which the assumed or calculated speed is brought into agreement with the actual rotor speed with the aid of the motor model 6a, the speed correction element 11, until the speed correction element becomes zero.
- Kv represents a gain factor with which this additional speed correction element 15 flows.
- the speed may also be determined by means of a system speed change correction element 13, which may be derived from a speed model.
- the procedure differs from that based on FIG. 4 described above in that in addition to the adaptation block 10, a system speed change correction element 13 derived from the speed model occurs.
- This state equation states that a speed change occurs only when the drive torque is greater than the load torque or vice versa, and that this change is then dependent on the difference moment as well as the mass moment of inertia of the rotating load.
- equation (8) will yield zero so that the speed model will not actually be used, but rather the speed as based on FIG. 4 is determined described.
- the assumption that the engine is running at a constant speed therefore, is not about the basis of FIG. 4 described out.
- the constant K 4 is zero when the load torque is assumed to be zero. Incidentally, the constant K 4 for the respective type and type of unit to be determined in advance.
- Equation (10) is already known from the motor model 6a. Substituting equation (10) into equation (9), it will be seen that for this case (assuming that the load moment is zero or constant) the system change correction term 13 can calculate from the engine model 6a out. It is therefore possible to determine this correction element 13 without further measurement and thus calculate the speed of the rotor faster or more accurately. It is thus particularly favorable if the drive torque can be determined from the variables derived from the engine model 6a.
- a measured rotational speed can also be included in order to achieve the desired result more quickly or to increase the accuracy of the calculated values.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
- Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)
Description
Die Erfindung betrifft ein Verfahren zum Erfassen des magnetischen Flusses des Rotors, der Rotorposition und/oder der Drehzahl des Rotors in einem Ein oder Mehrphasenpermanentmagnet- oder synchronmotor oder -generator gemäß den im Oberbegriff des Anspruchs 1 angegebenen Merkmalen.The invention relates to a method for detecting the magnetic flux of the rotor, the rotor position and / or the rotational speed of the rotor in a single or multi-phase permanent magnet or synchronous motor or generator according to the features indicated in the preamble of
Magnetischer Fluss, Rotorposition und Drehzahl sind durch die an sich bekannten Statorspannungsgleichungen:
L die Induktivität
iα der Strom in Richtung α
iβ der Strom in Richtung β
die zeitliche Ableitung des Stroms in Richtung α
die zeitliche Ableitung des Stroms in Richtung β
R der ohmsche Widerstand
p die Polpaarzahl
ω die Drehzahl des Rotors
ψmα der magnetische Fluss in Richtung α im Rotor
ψmβ der magnetische Fluss in Richtung β im Rotor
uα die Spannung in Richtung α
uβ die Spannung in Richtung β sind,
definiert. Wie sich aus diesen Gleichungen ergibt, können die vorgenannten Größen ermittelt werden, wenn Spannung und Strom in den Richtungen ∀ und ∃ bekannt sind. Letztere können als elektrische Daten in einfacher Weise erfasst werden. Allerdings ist dies nach dem Stand der Technik nur möglich, wenn der Betrag des magnetischen Flusses als konstant angenommen wird, da sonst das Gleichungssystem aufgrund zu vieler Unbekannter nicht eindeutig lösbar ist. Da der magnetische Fluss tatsächlich aber nicht konstant ist, sondern der Betrag über Zeit und Rotorposition variiert, ist dieses bekannte Verfahren fehlerbehaftet, was dazu führt, dass es für den Einsatz im Steuerungs- und Regelungsprozessen des Motors nur bedingt geeignet ist.Magnetic flux, rotor position and speed are determined by the stator voltage equations known per se:
L is the inductance
i α is the current in the direction α
i β is the current in the direction β
the time derivative of the current in the direction of α
the time derivative of the current in the direction of β
R the ohmic resistance
p the pole pair number
ω the speed of the rotor
ψ mα is the magnetic flux in the direction α in the rotor
ψ mβ the magnetic flux towards β in the rotor
u α is the tension in the direction α
u β are the stress in the direction β, Are defined. As can be seen from these equations, the above quantities can be determined when voltage and current in directions ∀ and ∃ are known. The latter can be easily detected as electrical data. However, this is only possible in the prior art if the magnitude of the magnetic flux is assumed to be constant, since otherwise the system of equations can not be solved unambiguously because of too many unknowns. Since the magnetic flux is actually not constant, but the amount varies over time and rotor position, this known method is subject to errors, which means that it is only of limited suitability for use in the control and regulation processes of the engine.
Moderne Mehrphasenpermanentmagnetmotoren sind heutzutage häufig mit Leistungselektronik versehen, d. h. die Kommutierung erfolgt elektronisch. Für die Steuerung dieser Kommutierung ist allerdings die Kenntnis der aktuellen Rotorposition von ganz entscheidender Bedeutung, nicht nur um den Motor mit einem hohen Wirkungsgrad betreiben zu können, sondern auch um die empfindlichen Bauteile der Leistungselektronik zu schützen und ein besseres dynamisches Verhalten des Antriebs zu erzielen.Modern multi-phase permanent magnet motors are nowadays often provided with power electronics, i. H. the commutation is done electronically. To control this commutation, however, knowledge of the current rotor position is of crucial importance, not only to operate the motor with high efficiency, but also to protect the sensitive components of the power electronics and to achieve a better dynamic behavior of the drive.
Aus
Aus
Aus
Die Drehzahlmessung kann zwar über eine externe Messanordnung noch vergleichsweise einfach erfolgen. Die exakte Bestimmung der Rotorposition hingegen ist aufwendig.Although the speed measurement can still be comparatively easy via an external measuring arrangement. The exact determination of the rotor position, however, is expensive.
Andererseits ist man bemüht, diese Werte nach Möglichkeit rechnerisch zu ermitteln, da aufgrund der im Steuer- und Regelteil der Motorelektronik regelmäßig vorhandenen digitalen Elektronik, entsprechende Rechenleistung zur Verfügung steht oder zumindest mit geringem Aufwand zu Verfügung stellbar ist. Entsprechende Programme zur rechnerischen Ermittlung könnten also ohne größeren Aufwand durch Softwareimplementierung integriert werden.On the other hand, it is endeavored to determine these values as far as possible mathematically, because due to the regular control and part of the engine electronics digital electronics, appropriate computing power is available or at least with little effort available adjustable. Corresponding programs for computational Investigations could therefore be integrated without much effort through software implementation.
Vor diesem Hintergrund liegt der Erfindung die Aufgabe zugrunde, ein gattungsgemäßes Verfahren zur Erfassung des magnetischen Flusses, der Rotorposition und/oder der Drehzahl des Rotors in einem Ein oder Mehrphasenpermanentmagnet- oder synchronmotor oder -generator zu verbessern.Against this background, the invention has for its object to improve a generic method for detecting the magnetic flux, the rotor position and / or the rotational speed of the rotor in a single or Mehrphasenpermanentmagnet- or synchronous motor or generator.
Diese Aufgabe wird durch die in Anspruch 1 angegebenen Merkmale gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen sowie der nachfolgenden Beschreibung angegeben.This object is achieved by the features specified in
Grundgedanke der vorliegenden Erfindung ist es, beim Verfahren zum Erfassen der vorgenannten Größen die an sich bekannten Statorspannungsgleichungen einzusetzen, jedoch anders als im Stand der Technik nicht den magnetischen Fluss konstant zu setzen, sondern die Energieverhältnisse in dem Magneten des Rotors mit einfließen zu lassen, um so die vorgenannten Größen, insbesondere die Rotorposition bzw. deren zeitliche Ableitung, die Drehzahl genauer bestimmen zu können.The basic idea of the present invention is to use the stator voltage equations known per se in the method for detecting the aforementioned quantities, but, unlike the prior art, not to set the magnetic flux constant but to incorporate the energy relationships in the magnet of the rotor so that the aforementioned variables, in particular the rotor position or its time derivative, to be able to determine the speed more accurate.
Die vorliegende Erfindung ist sowohl bei Einphasen- als auch bei Mehrphasenpermanentmagnet- oder -synchronmotoren sowie auch entsprechenden -generatoren anwendbar. Soweit es einphasige Motoren oder Generatoren betrifft, fällt eine der beiden Statorspannungsgleichungen weg. Im Übrigen wird bei zwei oder mehrphasigen Motoren oder Generatoren grundsätzlich mit dem Statorspannungsgleichung für zweiphasige Motoren und Generatoren gerechnet, wobei bei drei- und mehrphasigen Motoren rechnerisch in an sich bekannter Weise auf ein zweiphasiges Modell reduziert bzw. transformiert wird, insofern müssen dann messtechnisch erfasste Werte entsprechend auf ein zweiphasiges Modell umgerechnet werden.The present invention is applicable to both single-phase and multi-phase permanent magnet or synchronous motors as well as corresponding generators. As far as single-phase motors or generators are concerned, one of the two stator voltage equations is eliminated. Incidentally, in two or more-phase motors or generators in principle with the stator voltage equation for two-phase motors and generators is calculated, is reduced in three-phase and multi-phase motors arithmetically in a conventional manner to a two-phase model or transformed so far must then metrologically recorded values be converted accordingly to a two-phase model.
Das vorliegende Verfahren ist insbesondere für Permanentmagnetmotoren vorgesehen, kann jedoch in gleicher Weise auch bei Synchronmotoren oder Generatoren angewendet werden, wobei bei Synchronmotoren oder Generatoren der durch die Rotorspule gebildete Magnet anstelle des Permanentmagneten tritt. Eine Generatoranwendung in diesem Sinne kann auch im Zusammenhang mit der Steuerung von mit Leistungselektronik betriebenen Motoren gegeben sein, wenn diese im Generatorbetrieb ins Netz speisen um die Rotorposition des Netzgenerators zu ermitteln.The present method is particularly intended for permanent magnet motors, but can also be applied in the same way in synchronous motors or generators, wherein in synchronous motors or generators of the magnet formed by the rotor coil occurs in place of the permanent magnet. A generator application in this sense can also be given in connection with the control of motors powered by power electronics, if they feed into the grid during generator operation in order to determine the rotor position of the network generator.
Das erfindungsgemäße Verfahren kann auch für Generatoren angewendet werden, beispielsweise bei der SteuerungThe inventive method can also be used for generators, for example in the control
In
Um die Energieverhältnisse im Magneten 5 des Rotors 2 zu berücksichtigen, werden die folgenden Gleichungen (3) und (4) eingesetzt.
- ψ̇mα
- die zeitliche Ableitung von ψmα und
- ψ̇mβ
- die zeitliche Ableitung von ψmβ sind.
- ψ̇ mα
- the time derivative of ψ mα and
- ψ̇ mβ
- are the time derivative of ψ mβ .
Die Besonderheit dieser Rotorenergiegleichungen liegt darin, dass in die zeitliche Ableitung des magnetischen Flusses in α - Richtung der magnetische Fluss in ß - Richtung einfließt und umgekehrt.The peculiarity of these rotor energy equations lies in the fact that the magnetic flux in the ß - direction flows into the time derivative of the magnetic flux in the α - direction and vice versa.
Hierdurch ergibt sich ein rechnerisches Motormodell, mit dem beispielsweise wie anhand von
In den folgenden in den Figuren blockdiagrammmäßig dargestellten Motormodellen ist mit ^ jeweils ein errechneter Wert gekennzeichnet, wohingegen bei den ohne ^ gekennzeichneten Werten es sich um gemessene Werte handelt.In the following motor models shown block-wise in the figures, a calculated value is indicated by,, whereas in the case of the values marked without ^ these are measured values.
Es versteht sich, dass von den einleitend genannten Größen (magnetischer Fluss, Rotorposition, Drehzahl) jeweils eine ermittelt werden kann, wenn das durch den Block 6 in
Bei dem Verfahren gemäß
Aus dem magnetischen Fluss ψα in Richtung α und ψβ in Richtung β kann dann mittels eines Winkelkalkulators 7, der die geometrische Bezeichnung gemäß
Da dieses Motormodell 6 in seiner einfachsten Form auch nur eine rechnerische Annährung an die tatsächlichen Werte darstellt, kann es durch weitere Maßnahmen verbessert werden. Eine solche Verbesserung stellt beispielsweise das anhand von
- υ 1a,υ 1 β,υ 2α,υ 2β
- Korrekturglieder sind.
- υ 1a , υ 1 β , υ 2α , υ 2 β
- Correction members are.
In dem Verfahren gemäß
Für das anhand von
- υ1α,υ 1 β,υ 2α ,υ 2β
- Korrekturglieder sind,
- υ 1α , υ 1 β , υ 2α , υ 2 β
- Correction members are,
Wie aus den vorstehenden Gleichungen ersichtlich, werden die Korrekturglieder ν2 so gebildet, dass sie in den Gleichungen (3a) und (4a) in der einen Phase mittels der Differenz zwischen errechneten und gemessenen Strömen der anderen Phase gebildet wird. Die Größen Ki und Kψ bilden dabei jeweils einen konstanten Faktor.As apparent from the above equations, the correction terms ν 2 are formed to be formed in the equations (3a) and (4a) in the one phase by means of the difference between calculated and measured currents of the other phase. The variables K i and K ψ each form a constant factor.
In
Es gibt jedoch Konstellationen, bei denen auch die Rotordrehzahl rechnerisch ermittelt werden muss oder bei der die sensorisch ermittelten Messwerte nicht hinreichend genau sind oder zeitlich in nur vergleichsweise großen Abständen zur Verfügung stehen. Für diese Fälle ist in einer Weiterbildung der Erfindung ein Adaptionsblock 10 vorgesehen, der mittels eines Drehzahlkorrekturglieds 11, in dem die Differenz zwischen einer angenommen oder errechneten Drehzahl und der vom Motormodell 6a errechneten Flussgeschwindigkeit ωflux gebildet wird, die ermittelte Drehzahl an die tatsächliche Rotorgerschwindigkeit annähert bis das Drehzahlkorrekturglied 11 den Wert Null annimmt. Dieses Korrekturglied 11 ist in
Innerhalb des Motormodells 6a wird die Geschwindigkeit des magnetischen Flusses durch zeitliche Ableitung der ermittelten Position des magnetischen Flusses gebildet. Leitet man die Gleichung (5) also zeitlich ab, um die Geschwindigkeit des magnetischen Flusses zu erhalten und setzt man die Gleichungen (3a) und (4a) in diese abgeleitet Gleichung (5) ein, so ergibt sich die Geschwindigkeit des magnetischen Flusses wie folgt:
Der Adaptionsblock 10 bildet Teil eines Annäherungsprozesses, bei dem die angenommene oder errechnete Drehzahl mit Hilfe des Motormodells 6a, des Drehzahlkorrekturgliedes 11 in Übereinstimmung mit der tatsächlichen Rotordrehzahl gebracht wird, bis das Drehzahlkorrekturglied zu Null wird.The
Zusätzlich kann die Differenz zwischen der im Adaptionsblock 10 errechneten Rotordrehzahl und einer gemessenen Rotordrehzahl berücksichtigt werden, ein solches zusätzliches Drehzahlkorrekturglied 15 wird im Knotenpunkt 12 additiv mit dem Drehzahlkorrekturglied 11 verknüpft, was sich formelmäßig wie folgt darstellt:
Δωmess das zusätzliche Drehzahlkorrekturglied 15 bildet und Kv eine Konstante. In addition, the difference between the calculated in the
Δω measurement forms the
Wenn keine gemessene Rotordrehzahl zur Verfügung steht ist dieses zusätzliche Drehzahlkorrekturglied 15 gleich Null. Kv stellt einen Verstärkungsfaktor dar, mit dem dieses zusätzliche Drehzahlkorrekturglied 15 einfließt.If no measured rotor speed is available this additional
Zusätzlich kann gemäß
Das Drehzahlmodell beinhaltet weitere Informationen über die mechanischen Zusammenhänge des Antriebssystems. Zweckmäßigerweise wird die Veränderung der Drehzahl, also die zeitliche Änderung der Rotorgeschwindigkeit durch eine mechanische Zustandsgleichung ausgedrückt, welche die vorerwähnten mechanischen Zusammenhänge berücksichtigt. Die Änderung der Drehzahl kann dabei durch folgende Gleichung im Drehzahlmodell 13 berücksichtigt werden :
- M
- das antreibende Moment
- ML
- das Lastmonent
- J
- das Massenträgheitsmoment der rotierenden Last sind.
- M
- the driving moment
- M L
- the load month
- J
- are the moment of inertia of the rotating load.
Diese an sich bekannte Zustandsgleichung besagt, dass eine Drehzahländerung nur dann erfolgt, wenn das Antriebsmoment größer als das Lastmoment ist oder umgekehrt, und dass diese Änderung dann abhängig von dem Differenzmoment sowie der dem Massenträgheitsmoment der rotierenden Last ist.This state equation, which is known per se, states that a speed change occurs only when the drive torque is greater than the load torque or vice versa, and that this change is then dependent on the difference moment as well as the mass moment of inertia of the rotating load.
Diese zusätzliche Information führt in Verbindung mit dem Adaptionsblock 10 bei sich ändernder Drehzahl schneller zum Ergebnis, bei dem die errechnete Drehzahl des Rotors der tatsächlichen Drehzahl entspricht und eignet sich somit besonders für hochdynamische Antriebsaufgaben. Das Drehzahlmodell setzt jedoch voraus, dass entsprechende mechanische oder elektrische Größen zum Beispiel durch Messen oder in anderer Weise zur Verfügung stehen. Dabei kann das Drehzahlmodell ggf. auch durch geschickt zu treffende Annahmen vereinfacht werden.This additional information leads in conjunction with the
Wenn der Motor beispielsweise mit konstanter Geschwindigkeit läuft und dass Drehzahlmodell zur Ermittlung der Drehzahl herangezogen wird, dann wird die Gleichung (8) Null ergeben, so dass dann das Drehzahlmodell im eigentlichen Sinne gar nicht zur Anwendung kommt, sondern stattdessen die Drehzahl wie anhand von
Die Gleichung (8) kann hingegen durch bestimmte Lastannahmen, beispielsweise durch den Lastzustand ML = 0 oder konst. vereinfacht werden. Das Lastmoment ist häufig nicht bekannt oder nur aufwändig ermittelbar. In vielen Fällen kann jedoch ein konstantes Lastmoment angenommen werden. Bei dieser Annahme hat das Systemdrehzahländerungskorrekturglied 13 dann folgende Form :
- ΔωSystem
- - das Systemänderungskorrekturglied und
- K4
- - die Konstante sind.
- Δ ω system
- the system change correction term and
- K 4
- - are the constant.
Die Konstante K4 ist Null, wenn das Lastmoment zu Null angenommen wird. Im übrigen ist die Konstante K4 für den jeweiligen Aggregattyp und -einsatz vorab zu ermitteln.The constant K 4 is zero when the load torque is assumed to be zero. Incidentally, the constant K 4 for the respective type and type of unit to be determined in advance.
Das Antriebsmoment ist durch die Gleichung (10) bestimmt:
- K 2
- eine Konstante ist,
- K 2
- a constant,
Der in der Klammer stehende Therm in Gleichung (10) ist bereits aus dem Motormodell 6a bekannt. Setzt man die Gleichung (10) in die Gleichung (9) ein, so wird ersichtlich, dass man für diesen Fall (Annahme, dass das Lastmoment Null oder konstant ist) das Systemänderungskorrekturglied 13 aus dem Motormodell 6a heraus berechnen kann. Man kann also ohne weitere Messung dieses Korrekturglied 13 bestimmen und somit die Drehzahl des Rotors schneller bzw. genauer berechnen. Es ist also besonders günstig, wenn das Antriebsmoment aus den aus dem Motormodell 6a abgeleiteten Größen bestimmt werden kann.The parenthesized Therm in equation (10) is already known from the motor model 6a. Substituting equation (10) into equation (9), it will be seen that for this case (assuming that the load moment is zero or constant) the system
Wird der Motor beispielweise in einem Kreiselpumpenaggregat eingesetzt, so kann das Lastmoment auf einfache Weise rechnerisch ermittelt werden, denn es ist durch die Gleichung (11) bestimmt:
- K 1
- eine Konstante ist,
- K 1
- a constant,
Ungeachtet dessen, ob die Drehzahl nur mittels des Adaptionsmodells 10 oder ergänzend auch Berücksichtigung eines Drehzahlmodells ermittelt wird, kann auch eine gemessene Drehzahl mit einfließen um schneller zum gewünschten Ergebnis zu gelangen oder die Genauigkeit der errechneten Werte zu erhöhen. Eine solche schnelle und genaue Erfassung von Motorbetriebsgrößen, wie sie durch das vorbeschriebene erfindungsgemäße Verfahren erfolgen können, ist die Voraussetzung für eine dynamische und stabile Motoransteuerung.Irrespective of whether the rotational speed is determined only by means of the
Die vorbeschriebenen Verfahren können ohne weiteres softwaremäßig in eine digitale Motorelektronik implementiert werden. Das ständige Erfassen und Speichern der entsprechenden elektrischen Werte des Motors, also der Motorströme und Spannungen zählt heute zum angewandten Stand der Technik, diese Daten stehen also steuerungsseitig ohnehin zur Verfügung, so dass die vorliegende Erfindung ggf. ohne bauliche Veränderung innerhalb der digitalen Motorsteuerung angewendet werden kann um diese zu verbessern.The above-described methods can be implemented by software in a digital engine electronics without further ado. The constant detection and storage of the corresponding electrical values of the motor, so the motor currents and voltages is one of the applied state of the art today, so these data are on the control side Anyway available, so that the present invention may be applied without any structural change within the digital engine control to improve them.
- 11
- - Stator- stator
- 22
- - Rotor- Rotor
- 33
- - Spule- Kitchen sink
- 44
- - Spule- Kitchen sink
- 55
- - Permanentmagnet- permanent magnet
- 66
- - Motormodell 6a in Fig.Motor model 6a in FIG.
- 77
- - Winkelkalkulator- Angle calculator
- 88th
- - Verknüpfung- Shortcut
- 99
- - Korrekturglied- correction element
- αα
- - Richtung- Direction
- ββ
- - Richtung- Direction
- NN
- - Nordpol des Magneten- North pole of the magnet
- SS
- - Südpol des Magneten- South pole of the magnet
- 1010
- - Adaptionsblock- Adaptation block
- 1111
- - Drehzahlkorrekturglied- Speed correction element
- 1212
- - Knotenpunkt- node
- 1313
- - Systemdrehzahländerungskorrekturglied- System speed change correction element
- 1414
- - Knotenpunkt- node
- 1515
- - zusätzliches Drehzahlkorrekturglied- additional speed correction element
Claims (19)
- A method for detecting the magnetic flux of the rotor, the rotor position and/or the speed of the rotor, in a single-phase or multiphase permanent magnet motor or in a single-phase or multiphase synchronous motor or in a single-phase or multiphase generator, whilst applying the stator voltage equationsL is the inductanceiα the current in the direction αiβ the current in the direction βR the ohmic resistancep the pole pair numberω the speed of the rotorψmα the magnetic flux in the direction αψmβ the magnetic flux in the direction βuα the voltage in the direction αuβ the voltage in the direction βcharacterised in that with regard to the evaluations, the energy conditions in the magnet (5) of the rotor (2) are taken into account by way of the following energy equations:ψ̇mα is the temporal derivative of ψmα andψ̇mβ the temporal derivative of ψmβ.
- Method according to claim 1, characterised in that the motor model which is defined by the equations (1) to (4) is corrected in dependence on a comparison between computed model values (^) and measured electrical and/or mechanical values, by way of at least one correction term (9), so that the following equations result:υ1α,υ 1 β,υ 2 α,υ 1β are correction terms.
- A method according to claim 2, characterised in that the measured electrical values are the motor currents.
- A method according to one of the preceding claims, characterised in that the correction terms (9) are formed in each case from one correction factor and the difference between measured and computed motor currents.
- A method according to one of the preceding claims, characterised in that the correction terms (9) in the Equations (3a) and (4a) in the one phase are formed by way of the difference between the measured and the computed currents of the other phase, wherein the correction term enters the equation (3a) with a negative sign.
- A method according to one of the preceding claims, characterised in that the speed is detected sensorically.
- A method according to claim 6, characterised in that the speed is determined with the help of a Hall sensor
- A method according to one of the preceding claims, characterised in that the speed is determined by computation, in a manner such that the difference between the flux speed and an assumed rotor speed or variables derived therefrom is formed as a speed correction term (11), and the current speed is determined by an approximation process from this.
- A method according to claim 8, characterised in that the speed correction term (11) is corrected by way of a speed measurement.
- A method according to one of the preceding claims, characterised in that the assumed rotor speed is adapted to the current speed in an adapter block (10) by way of the speed correction term (11).
- A method according to one of the preceding claims, characterised in that the assumed speed is adapted to the current speed in a speed model by way of the speed correction term (11).
- A method according to claim 12, characterised in that the equation (5) is differentiated with regard to time, and the equations (3a) and 4(a) (for computational evaluation of the speed) are substituted into the differentiated equation (5).
- A method according to claim 11, characterised in that the temporal derivative of the speed, preferably of the first order, is used in the speed model.
- A method according to claim 15, characterised in that the load moment is equated to zero.
- A method according to claim 16, characterised in that the drive moment is equated to zero.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP02015956.2A EP1383231B1 (en) | 2002-07-18 | 2002-07-18 | Method for acquiring the magnetic flux, the rotor position and/or the rotation speed |
US10/621,642 US7043395B2 (en) | 2002-07-18 | 2003-07-17 | Method for detecting the magnetic flux the rotor position and/or the rotational speed |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP02015956.2A EP1383231B1 (en) | 2002-07-18 | 2002-07-18 | Method for acquiring the magnetic flux, the rotor position and/or the rotation speed |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1383231A1 EP1383231A1 (en) | 2004-01-21 |
EP1383231B1 true EP1383231B1 (en) | 2017-03-01 |
Family
ID=29762647
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02015956.2A Expired - Lifetime EP1383231B1 (en) | 2002-07-18 | 2002-07-18 | Method for acquiring the magnetic flux, the rotor position and/or the rotation speed |
Country Status (2)
Country | Link |
---|---|
US (1) | US7043395B2 (en) |
EP (1) | EP1383231B1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7406214B2 (en) * | 1999-05-19 | 2008-07-29 | Digimarc Corporation | Methods and devices employing optical sensors and/or steganography |
EP2006545B1 (en) * | 2007-06-20 | 2010-06-09 | Grundfos Management A/S | Method for recording the temperature of the carrier liquid of a rotary pump |
DE102009028746A1 (en) * | 2009-08-20 | 2011-02-24 | Robert Bosch Gmbh | Method and device for operating an electric motor |
DE102010024688A1 (en) | 2010-06-23 | 2011-12-29 | Festo Ag & Co. Kg | Control arrangement for, e.g. electrical synchronous motor, has microcontroller for determining difference between spatial position of runner computed based on operational parameters and spatial position measured by sensor device |
DE102010038295A1 (en) * | 2010-07-22 | 2012-01-26 | Robert Bosch Gmbh | Method and device for sensorless position detection of an electronically commutated electrical machine |
US9705437B2 (en) * | 2014-09-24 | 2017-07-11 | Texas Instruments Incorporated | Angular position estimation for PM motors |
CN105577049A (en) * | 2015-12-31 | 2016-05-11 | 天津嘉诺科技有限公司 | Motor frequency conversion electric actuator |
CN111181459B (en) * | 2018-11-09 | 2021-11-23 | 广东美的白色家电技术创新中心有限公司 | Identification method and device for permanent magnet flux linkage of motor and electrical equipment |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010017529A1 (en) * | 1995-08-04 | 2001-08-30 | Farhad Nozari | Starting of synchronous machine without rotor position or speed measurement |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3397007B2 (en) * | 1995-06-30 | 2003-04-14 | 松下電器産業株式会社 | Brushless motor |
EP0784378A3 (en) * | 1996-01-11 | 1997-08-06 | Siemens Aktiengesellschaft | Method for determining the absolute rotor position of in field controlled synchronous machines and device for carrying out this method |
FI109847B (en) * | 1998-06-11 | 2002-10-15 | Abb Oy | Procedure for minimizing the error in a synchronous motor rotor angle estimate |
JP4624619B2 (en) * | 1999-09-17 | 2011-02-02 | ジーエム・グローバル・テクノロジー・オペレーションズ・インコーポレーテッド | Method and apparatus for controlling torque in a permanent magnet brushless electronic motor |
KR100615878B1 (en) * | 2000-06-02 | 2006-08-25 | 미츠비시 쥬고교 가부시키가이샤 | Ipm motor, motor drive vehicle, electric car and electric train |
KR100421373B1 (en) * | 2001-06-20 | 2004-03-06 | 엘지전자 주식회사 | Apparatus for rotary velocity control of synchronous reluctance motor |
-
2002
- 2002-07-18 EP EP02015956.2A patent/EP1383231B1/en not_active Expired - Lifetime
-
2003
- 2003-07-17 US US10/621,642 patent/US7043395B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010017529A1 (en) * | 1995-08-04 | 2001-08-30 | Farhad Nozari | Starting of synchronous machine without rotor position or speed measurement |
Also Published As
Publication number | Publication date |
---|---|
US7043395B2 (en) | 2006-05-09 |
US20040060348A1 (en) | 2004-04-01 |
EP1383231A1 (en) | 2004-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2023479B1 (en) | System for seamless velocity and/or location determination including standstill for a permanent magnet rotor of an electric machine | |
DE69736603T2 (en) | SENSORLESS STEERING PROCESS AND PERMANENT CONTROLLED SYNCHRONOUS MOTOR DEVICE | |
EP0539401B1 (en) | Process and circuit for the sensor-less detection of the angle of rotation in a synchronous machine without a damper and preferably excited by a permanent magnet and powered via a converter | |
DE102013004954B4 (en) | Method for operating a multi-phase electrical machine and corresponding multi-phase electrical machine | |
EP3288179B1 (en) | Method for sensorless determination of the orientation of the rotor of an ironless pmsm motor | |
DE10106404A1 (en) | Speed control device for synchronous reluctance motor | |
WO2018082902A1 (en) | Method for determining a rotational angle position of a crankshaft of an internal combustion engine | |
DE10162170B4 (en) | Method for controlling an induction generator | |
EP2026461B1 (en) | Method for sensorless control of a three-phase machine | |
AT406722B (en) | METHOD FOR FIELD-ORIENTED CONTROL OF A MECHANICALLY ENCODER WITHOUT THREE-PHASE | |
WO2011117139A2 (en) | Method and device for determining output torque of an electric drive | |
DE102019134768A1 (en) | DEVICE AND METHOD FOR CONTROLLING A MOTOR | |
EP1383231B1 (en) | Method for acquiring the magnetic flux, the rotor position and/or the rotation speed | |
EP2532087A2 (en) | Sensor unit to be fastened to an electrical machine and motor system | |
DE102017222841A1 (en) | Method for determining a rotational angle position of a crankshaft of an internal combustion engine | |
EP2144362B1 (en) | Method and assembly for observing the drive speed of a permanent magnet rotor in a drive control loop | |
EP2619899B1 (en) | Method and device for the sensorless determination of a rotor position of an electric motor | |
WO2019120617A1 (en) | Method for determining a rotor position of a three-phase machine without using a rotary encoder, and device for controlling a three-phase motor without using a rotary encoder | |
DE69016794T2 (en) | METHOD AND DEVICE FOR STARTING AN ELECTRICAL MACHINE WITH VARIABLE RELUCTIVITY. | |
DE202019101146U1 (en) | Device for detecting the winding temperature | |
WO2018024280A1 (en) | Control unit and method for controlling an electric machine | |
EP3704790B1 (en) | Method for determining the rotor position of synchronously running electric machines without a mechanical sensor | |
DE102019130180A1 (en) | Method for determining an offset of an angular position encoder on a rotor shaft of an electrical synchronous machine with a current or voltage timing offset of an inverter | |
DE102019117818A1 (en) | Device and method for detecting an overload on a brushless DC motor | |
DE4311597A1 (en) | Measuring linear or rotary motion of electric motor - ascertaining rotor or secondary part speed, position, torque or force and deriving transfer model parameters |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
17P | Request for examination filed |
Effective date: 20040424 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
17Q | First examination report despatched |
Effective date: 20110317 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 50216216 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: H02P0006160000 Ipc: H02P0021140000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H02P 21/14 20060101AFI20160701BHEP Ipc: H02P 6/17 20160101ALI20160701BHEP |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: VADSTRUP, PIERRE |
|
INTG | Intention to grant announced |
Effective date: 20160718 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
GRAL | Information related to payment of fee for publishing/printing deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR3 |
|
INTC | Intention to grant announced (deleted) | ||
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
GRAR | Information related to intention to grant a patent recorded |
Free format text: ORIGINAL CODE: EPIDOSNIGR71 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
INTG | Intention to grant announced |
Effective date: 20170118 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 872399 Country of ref document: AT Kind code of ref document: T Effective date: 20170315 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 50216216 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20170301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170301 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170602 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170301 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170601 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170301 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170301 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170301 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170703 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 50216216 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170301 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50216216 Country of ref document: DE |
|
26N | No opposition filed |
Effective date: 20171204 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20170718 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20180330 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170731 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170718 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180201 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170718 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170731 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20170731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170718 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170731 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 872399 Country of ref document: AT Kind code of ref document: T Effective date: 20170718 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170718 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170301 |