EP1381824B1 - Vermessen von mikrogalvanisch hergestellten bauteilen durch schnittbauteile über lackstege - Google Patents

Vermessen von mikrogalvanisch hergestellten bauteilen durch schnittbauteile über lackstege Download PDF

Info

Publication number
EP1381824B1
EP1381824B1 EP02729860A EP02729860A EP1381824B1 EP 1381824 B1 EP1381824 B1 EP 1381824B1 EP 02729860 A EP02729860 A EP 02729860A EP 02729860 A EP02729860 A EP 02729860A EP 1381824 B1 EP1381824 B1 EP 1381824B1
Authority
EP
European Patent Office
Prior art keywords
component
photoresist
components
produced
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02729860A
Other languages
English (en)
French (fr)
Other versions
EP1381824A1 (de
Inventor
Günter DANTES
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1381824A1 publication Critical patent/EP1381824A1/de
Application granted granted Critical
Publication of EP1381824B1 publication Critical patent/EP1381824B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M65/00Testing fuel-injection apparatus, e.g. testing injection timing ; Cleaning of fuel-injection apparatus
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0671Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/166Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/168Assembling; Disassembling; Manufacturing; Adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1853Orifice plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/90Selection of particular materials
    • F02M2200/9038Coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/90Selection of particular materials
    • F02M2200/9046Multi-layered materials

Definitions

  • the invention is based on a method for measuring mikrogalvanisch manufactured components after the genus of Main claim.
  • per perforated disc two positioning recordings in shape of circular through holes near the outer Limitation of the perforated disc provided, which extends over the extend entire axial height of the perforated disc.
  • the time Successive construction of several electroplated layers is so relieved.
  • the inner opening structure of a such mikrogalvanisch manufactured component is only with Help of destructive manufacturing processes (grinding) verifiable or measurable.
  • the inventive method for measuring mikrogalvanisch manufactured components with the Characteristic features of the main claim has the Advantage that in a simple way the concrete Dimensions of the internal structure of the component checked and can be measured, so that in an advantageous way Information about the structure and contouring of the component fast, safe and reliable.
  • angles, cavities, Rear spaces and offsets of the opening structure of the component and the layer thicknesses of the component contactless are measurable.
  • FIG. 1 shows a partially illustrated injection valve with a mikrogalvanisch manufactured component in the form of a Perforated disk
  • Figure 2 a mikrogalvanisch producible Perforated disk in a plan view
  • Figure 3 in Figure 2 illustrated perforated disc with an inner Photoresist area made, so the actual Perforated disk is interrupted
  • Figure 4 is a sectional view the interrupted perforated disc in the region of a lacquer edge according to arrows IV in Figure 3
  • Figure 5 is a schematic Measuring and evaluation arrangement.
  • FIG 1 is a valve in the form of a Injector for fuel injection systems of mixture-compression spark-ignited internal combustion engines partially shown, which has a perforated disc 23, the an embodiment of a measurable according to the invention, represents mikrogalvanisch manufactured component.
  • perforated disc 23 not exclusively for the Use is provided to injectors; similar Components can also z. B. in painting nozzles, at Inhalers, in inkjet printers or in Freeze-drying process for injecting or injecting Liquids, such. As drinks, for atomizing Medicines are used.
  • z. B. with large angles which are by means of Multilayer electroplating manufactured perforated discs 23 whole generally.
  • the perforated discs 23 themselves again provide only one Embodiment of a microgalvanized component Also microgalvanically produced components with completely from the described perforated disc 23 deviating forms, Contours, proportions and purposes can of course produced and measured according to the invention become.
  • the injection valve partially shown in Figure 1 has a tubular valve seat carrier 1, in the concentric to a valve longitudinal axis 2, a longitudinal opening 3 is formed is.
  • a longitudinal opening 3 is formed in the longitudinal opening 3 in the longitudinal opening 3 in the longitudinal opening 3 .
  • tubular Valve needle 5 arranged at its downstream end 6 with a z.
  • the actuation of the injection valve takes place in known Way, for example, electromagnetic.
  • To the axial Movement of the valve needle 5 and thus to open against the Spring force of a return spring, not shown, or Closing the injector serves a schematic indicated electromagnetic circuit with a magnetic coil 10, an armature 11 and a core 12.
  • the armature 11 is with the valve closing body 7 facing away from the end Valve needle 5 by z. B. one by means of a laser produced weld and connected to the core 12th aligned.
  • valve seat body 16 To guide the valve closing body 7 during the Axialbewegüng serves a guide opening 15 of a Valve seat body 16, which in the downstream end of the valve seat carrier 1 in the longitudinal opening 3 through Welding is tightly mounted.
  • the valve seat body 16 is with a z. B. pot-shaped perforated disc carrier 21 concentric and firmly connected, thus at least with an outer ring portion 22 directly on the Valve seat body 16 is present.
  • a mikrogalvanisch manufactured component, here the Perforated disk 23, is upstream of a through hole 20th arranged in the perforated disc carrier 21 such that it is the Through opening 20 completely covered.
  • the connection Valve seat body 16 and disc holder 21 takes place for example, by a circumferential and dense, means a laser trained first weld 25th Der Perforated disk carrier 21 is connected to the wall of the longitudinal opening. 3 in the valve seat carrier 1, for example, by a circumferential and sealed second weld 30.
  • FIG. 2 shows an exemplary embodiment of a perforated disk 23 in a plan view, as for example on a Wafers or benefits produced hundreds of times side by side can be.
  • the perforated disc 23 is as flat, circular component executed, the several, for example, three, axially consecutive Functional levels or layers has. From a bottom Function level 35 are started e.g. two more Function levels 36 and 37 built on it, where also in a single electroplating step several functional levels can be generated by means of so-called lateral overgrowth.
  • the upper functional level 37 has a rectangular shape Inlet opening 40 with the largest possible extent. With z. B. in each case the same distance to the valve longitudinal axis 2 and thus to the central axis of the perforated disc 23 and around this for example, are arranged symmetrically in the lower functional level 35 four square outlet openings 42 provided.
  • the outlet openings 42 are at a Projection of all functional levels 35, 36, 37 into one plane with an offset outside the inlet opening 40.
  • the Offset can be in different directions be different in size.
  • a channel 41 (cavity) formed, which represents a cavity.
  • the one circular contour having channel 41 has such Size that he is in the projection the inlet opening 40 and the outlet openings 42 completely covered.
  • the z. B. of metal titanium, copper), Silicon, glass or ceramic can exist.
  • On the Support plate is optionally at least one first Auxiliary layer on galvanized. It is about for example, an electroplating starting layer (eg Cu), the to the electric wire for the later micro electroplating is needed.
  • the electroplating starter layer can also be used as Sacrificial layer serve to later a simple separation of the To allow perforated disk structures by etching.
  • the Applying the auxiliary layer (typically CrCu or CrCuCr) happens z. B. by sputtering or by electroless Metal deposition. After this pretreatment of Carrier plate is a photoresist on the auxiliary layer (Photoresist) applied over the entire surface.
  • the thickness of the photoresist should be the thickness of the Metal layer, in the later following Galvanic process is to be realized, ie the thickness of the lower layer or functional plane 35 of the perforated disc 23rd
  • the metal structure is to be realized with the help of a Photolithographic mask inverse in the photoresist be transmitted.
  • One possibility is to use the Photoresist directly over the mask by UV exposure Exposure (UV depth lithography).
  • the ultimately resulting in the photoresist negative structure for later functional level of the perforated disc 23 becomes galvanic filled with metal (eg Ni, NiCo) (metal deposition).
  • the metal lays down tightly by galvanizing Contour of the negative structure so that the given Contours are faithfully reproduced in it.
  • two functional levels in one Electroplating step are generated (lateral overgrowth).
  • the layers of a perforated disc 23 can also different metals are used, but only in can be used in each case a new electroplating step.
  • the separation of the perforated discs 23 takes place.
  • the sacrificial layer is etched away, causing the Lift off the perforated discs 23 from the carrier plate. After that will be the electroplating starting layers removed by etching and the Remaining photoresist from the metal structures removed.
  • microgalvanised components like the perforated discs 23, in very large numbers (e.g. > 1000 pieces) on a wafer or utility. To the separation of the perforated discs 23 of the support plate These are for their respective application for installation in front. The inner opening structure of such However, microgalvanized component is then not more accessible. For testing and measuring purposes, however, should at least randomly a very simple and cost-effective way to measure the components be created.
  • Perforated discs 23, such as one in Figure 2 can be shown so far only with the help of destructive manufacturing processes are checked and measured become. This requires the components selected for remeasurement be embedded and polished in a complex manner. By grinding the completely manufactured components can disadvantageously create burrs that the Can falsify the measurement result. There is also one increased risk of deformation of the components to be measured when embedding and sanding.
  • Photoresist areas 45 which are also called Lackstege or Lackkerne can be characterized, built-in.
  • the Installation of targeted photoresist areas 45 is about specially shaped masks on the selected components 23 ' made from the outset, so that the Metal structure starting from the lower functional level 35 already growing along this photoresist area 45.
  • the selected components 23 ' are thus in their Entire structure desired discontinuously produced (FIG. 3). After the dissolution of the photoresist region 45 are the internal structures of the respective component 23 'to simple Way exposed.
  • the Place photoresist area 45 in such a way that he can Opening structures cuts after manufacture to be measured.
  • the photoresist region 45 in the hole disc 23 'shown in Figure 3 such built in that he has the functional levels 35, 36, 37 in the range the inlet port 40, the channel 41 and the Outlet openings 42 at the same time cuts.
  • Figure 4 shows a sectional view of the broken Perforated disk 23 'in the region of a paint edge 46 according to arrows IV in Figure 3. So this view does not clarify any Cut in the sense of a cutting up by the Perforated disk 23 ', but a side view of at the outset produced such perforated disc part.
  • the on simple way exposed opening contour is like this very easily destructible measurable.
  • typical Dimensions of a perforated disc 23, which are measured can, for example, the layer thickness a, the height h of the channel 41, the offset x of the inlet opening 40 and Outlet openings 42, the so-called back space z, so the over the outlet openings 42 projecting flow area of the channel 41, as well as the inlet flank angle 47 of Inlet opening 40 and the exit flank angle 48 of Outlet openings 42.
  • the present after separation components are in complete components 23 and broken components 23 ' sorted.
  • the broken components 23 ' become a Measuring device 50 is supplied.
  • a schematic measuring and Evaluation arrangement is indicated in Figure 5.
  • the non-contact measurement of the components 23 ' e.g. at one Not shown workpiece carriers are clamped, can with various measuring devices 50 take place.
  • These suitable For example, scanning electron microscope, profile projector with incident light, optical recording devices such as CCD camera or Infrared camera, microscope with position measuring system or Microfocus measuring system with laser scanning (UBM).
  • the recorded Measured values are, for example, in an evaluation unit 51 processed and evaluated, whereby an assessment of the Dimensional accuracy and the quality of the manufactured components 23 is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Micromachines (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

Das erfindungsgemässe Verfahren zum Vermessen von mikrogalvanisch hergestellten Bauteilen (23') mit einer dreidimensionalen, tiefenlithographisch erzeugten Struktur zeichnet sich dadurch aus, dass das ein- oder mehrschichtige Bauteil (23') durch galvanische Metallabscheidung aufgebaut wird, wobei das Metall um eine die gewünschte Öffnungskontur (40, 41, 42) des Bauteils vorgebende Struktur aus Photoresist abgeschieden wird, dabei der Einbau eines Photoresistbereichs (45), der das herzustellende Bauteil (23') gezielt in seiner Struktur unterbricht, bei der mikrogalvanischen Herstellung erfolgtl ein Herauslösen. zumindest des unterbrechenden Photoresistbereichs (45) aus dem unterbrochenen Bauteil (23') stattfindet und ein berührungsloses Vermessen der Öffnungsstruktur des unterbrochenen Bauteils (23') im Bereich einer ehemaligen Lackkante (46) des Photoresistbereichs (45) mittels einer Messeinrichtung vorgenommen wird.

Description

Stand der Technik
Die Erfindung geht aus von einem Verfahren zum Vermessen von mikrogalvanisch hergestellten Bauteilen nach der Gattung des Hauptanspruchs.
Aus der DE 196 07 288 A1 sind bereits derartige mikrogalvanisch hergestellte Bauteile bekannt, die in der Gestalt von Lochscheiben bei Einspritzventilen bzw. ganz allgemein zur Erzeugung feiner Sprays, z. B. mit großen Abspritzwinkeln, eingesetzt werden. Die einzelnen Schichten bzw. Funktionsebenen der Lochscheibe werden dabei durch galvanische Metallabscheidung aufeinander aufgebaut (Multilayergalvanik). Die Schichten werden nacheinander galvanisch abgeschieden, so dass sich die Folgeschicht aufgrund galvanischer Haftung fest mit der darunterliegenden Schicht verbindet und alle Schichten zusammen dann eine einteilige Lochscheibe bilden. Zum besseren Handling einer Vielzahl von Lochscheiben bei der Anwendung der verschiedenen Herstellungsverfahrensschritte auf einem Wafer sind z. B. pro Lochscheibe zwei Positionieraufnahmen in Form von kreisförmigen Durchgangslöchern nahe der äußeren Begrenzung der Lochscheibe vorgesehen, die sich über die gesamte axiale Höhe der Lochscheibe erstrecken. Der zeitlich nacheinander erfolgende Aufbau mehrerer Galvanikschichten wird so erleichtert. Die innere Öffnungsstruktur eines solchen mikrogalvanisch hergestellten Bauteils ist nur mit Hilfe von zerstörenden Fertigungsverfahren (Schleifen) überprüf- bzw. nachmessbar.
Vorteile der Erfindung
Das erfindungsgemäße Verfahren zum Vermessen von mikrogalvanisch hergestellten Bauteilen mit den kennzeichnenden Merkmalen des Hauptanspruchs hat den Vorteil, dass auf einfache Art und Weise die konkreten Abmessungen der inneren Struktur des Bauteils überprüft und gemessen werden Können, so dass auf vorteilhafte Weise Informationen zum Aufbau und zur Konturgebung des Bauteils schnell, sicher und zuverlässig zugänglich sind. Dazu werden bei der mikrogalvanischen Herstellung der Bauteile in nur wenigen ausgewählten Bauteilen, die ansonsten beispielsweise in sehr großer Stückzahl auf einem Wafer oder Nutzen angeordnet sind, gezielt Photoresistbereiche bzw. -stege eingebaut, wodurch diese ausgewählten Bauteile in ihrer Struktur gewünscht unterbrochen sind. Nach dem Herauslösen des Photoresists sind die inneren Strukturen des jeweiligen Bauteils jedoch auf einfache Art und Weise freigelegt und somit sehr einfach berührungslos und zerstörungsfrei vermessbar.
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Hauptanspruch angegebenen Verfahrens möglich.
Besonders vorteilhaft ist es, dass Winkel, Hohlräume, Rückräume und Versätze der Öffnungsstruktur des Bauteils sowie die Schichtdicken des Bauteils berührungslos vermessbar sind.
In vorteilhafter Weise können auf einem einzigen Wafer baugleiche ein- oder mehrschichtige Bauteile vollständig ohne die gewünschte Öffnungsstruktur unterbrechende Photoresistbereiche zusammen mit den die unterbrechenden Photoresistbereiche aufweisenden Bauteilen durch galvanische Metallabscheidung hergestellt werden. Soll ein Nachmessen der Bauteile nur stichprobenartig erfolgen, so ist es sinnvoll, ein Verhältnis von unterbrochenen Bauteilen zu vollständigen Bauteilen gleicher Bauart auf einem Wafer von 3 bis 5 : 1000 einzurichten. Dies reicht aus, um eine Beurteilung der Maßgenauigkeit und der Qualität der hergestellten Bauteile auf dem gesamten Wafer vorzunehmen.
Zeichnung
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 ein teilweise dargestelltes Einspritzventil mit einem mikrogalvanisch hergestellten Bauteil in der Form einer Lochscheibe, Figur 2 eine mikrogalvanisch herstellbare Lochscheibe in einer Draufsicht, Figur 3 die in Figur 2 dargestellte Lochscheibe mit einem inneren Photoresistbereich hergestellt, so dass die eigentliche Lochscheibe unterbrochen ist, Figur 4 eine Schnittansicht der unterbrochenen Lochscheibe im Bereich einer Lackkante gemäß Pfeilen IV in Figur 3 und Figur 5 eine schematische Mess- und Auswerteanordnung.
Beschreibung des Ausführungsbeispiels
In der Figur 1 ist ein Ventil in der Form eines Einspritzventils für Brennstoffeinspritzanlagen von gemischverdichtenden fremdgezündeten Brennkraftmaschinen teilweise dargestellt, das eine Lochscheibe 23 aufweist, die ein Ausführungsbeispiel eines erfindungsgemäß vermessbaren, mikrogalvanisch hergestellten Bauteils darstellt. Es soll darauf hingewiesen werden, dass die im folgenden noch näher beschriebene Lochscheibe 23 nicht ausschließlich für den Gebrauch an Einspritzventilen vorgesehen ist; ähnliche Bauteile können vielmehr auch z. B. bei Lackierdüsen, bei Inhalatoren, bei Tintenstrahldruckern oder bei Gefriertrockenverfahren, zum Ab- bzw. Einspritzen von Flüssigkeiten, wie z. B. Getränken, zum Zerstäuben von Medikamenten zum Einsatz kommen. Zur Erzeugung feiner Sprays, z. B. mit großen Winkeln, eignen sich die mittels Multilayergalvanik hergestellten Lochscheiben 23 ganz allgemein.
Auch die Lochscheiben 23 selbst stellen wiederum nur eine Ausführungsform eines mikrogalvanisch hergestellten Bauteils dar. Auch mikrogalvanisch erzeugte Bauteile mit völlig von der beschriebenen Lochscheibe 23 abweichenden Formen, Konturen, Größenverhältnissen und Einsatzzwecken können selbstverständlich erfindungsgemäß hergestellt und vermessen werden.
Das in Figur 1 teilweise dargestellte Einspritzventil hat einen rohrförmigen Ventilsitzträger 1, in dem konzentrisch zu einer Ventillängsachse 2 eine Längsöffnung 3 ausgebildet ist. In der Längsöffnung 3 ist eine z. B. rohrförmige Ventilnadel 5 angeordnet, die an ihrem stromabwärtigen Ende 6 mit einem z. B. kugelförmigen Ventilschließkörper 7, an dessen Umfang beispielsweise fünf Abflachungen 8 zum Vorbeiströmen des Brennstoffs vorgesehen sind, fest verbunden ist.
Die Betätigung des Einspritzventils erfolgt in bekannter Weise, beispielsweise elektromagnetisch. Zur axialen Bewegung der Ventilnadel 5 und damit zum Öffnen entgegen der Federkraft einer nicht dargestellten Rückstellfeder bzw. Schließen des Einspritzventils dient ein schematisch angedeuteter elektromagnetischer Kreis mit einer Magnetspule 10, einem Anker 11 und einem Kern 12. Der Anker 11 ist mit dem dem Ventilschließkörper 7 abgewandten Ende der Ventilnadel 5 durch z. B. eine mittels eines Lasers hergestellte Schweißnaht verbunden und auf den Kern 12 ausgerichtet.
Zur Führung des Ventilschließkörpers 7 während der Axialbewegüng dient eine Führungsöffnung 15 eines Ventilsitzkörpers 16, der in dem stromabwärts liegenden Ende des Ventilsitzträgers 1 in der Längsöffnung 3 durch Schweißen dicht montiert ist. Der Ventilsitzkörper 16 ist mit einem z. B. topfförmig ausgebildeten Lochscheibenträger 21 konzentrisch und fest verbunden, der somit zumindest mit einem äußeren Ringbereich 22 unmittelbar an dem Ventilsitzkörper 16 anliegt.
Ein mikrogalvanisch hergestelltes Bauteil, hier die Lochscheibe 23, ist stromaufwärts einer Durchgangsöffnung 20 im Lochscheibenträger 21 derart angeordnet, dass es die Durchgangsöffnung 20 vollständig überdeckt. Die Verbindung von Ventilsitzkörper 16 und Lochscheibenträger 21 erfolgt beispielsweise durch eine umlaufende und dichte, mittels eines Lasers ausgebildete erste Schweißnaht 25. Der Lochscheibenträger 21 ist mit der Wandung der Längsöffnung 3 im Ventilsitzträger 1 beispielsweise durch eine umlaufende und dichte zweite Schweißnaht 30 verbunden.
Die Lochscheibe 23 wird beispielsweise in eine stromabwärts einer sich kegelstumpfförmig verjüngenden Ventilsitzfläche 29 folgende zylindrische Austrittsöffnung 31 des Ventilsitzkörpers 16 maßgenau eingeklemmt. Die in den Figuren 2 bis 4 dargestellten Lochscheiben 23 werden in mehreren metallischen Funktionsebenen durch galvanische Abscheidung aufgebaut (Multilayergalvanik). Aufgrund der tiefenlithographischen, galvanotechnischen Herstellung gibt es besondere Merkmale in der Konturgebung, wie z. B.
  • Funktionsebenen mit über die Scheibenfläche konstanter Dicke,
  • durch die tiefenlithographische Strukturierung weitgehend senkrechte Einschnitte in den Funktionsebenen, welche die jeweils durchströmten Hohlräume bilden (fertigungstechnisch bedingte Abweichungen von ca. 3° gegenüber optimal senkrechten Wandungen können auftreten),
  • gewünschte Hinterschneidungen und Überdeckungen der Einschnitte durch mehrlagigen Aufbau einzeln strukturierter Metallschichten,
  • Einschnitte mit beliebigen, weitgehend achsparallele Wandungen aufweisenden Querschnittsformen,
  • einteilige Ausführung der Lochscheibe, da die einzelnen Metallabscheidungen unmittelbar aufeinander erfolgen.
Die Figur 2 zeigt ein Ausführungsbeispiel einer Lochscheibe 23 in einer Draufsicht, wie sie beispielsweise auf einem Wafer oder Nutzen hundertfach nebeneinander hergestellt werden kann. Die Lochscheibe 23 ist als flaches, kreisförmiges Bauteil ausgeführt, das mehrere, beispielsweise drei, axial aufeinanderfolgende Funktionsebenen bzw. Schichten aufweist. Von einer unteren Funktionsebene 35 angefangen werden z.B. zwei weitere Funktionsebenen 36 und 37 darauf aufgebaut, wobei auch in einem einzigen Galvanikschritt mehrere Funktionsebenen mittels sogenanntem lateralen Überwachsen erzeugbar sind.
Die obere Funktionsebene 37 weist eine rechteckförmige Einlassöffnung 40 mit einem möglichst großen Umfang auf. Mit z. B. jeweils gleichem Abstand zur Ventillängsachse 2 und damit zur Mittelachse der Lochscheibe 23 und um diese beispielsweise auch symmetrisch angeordnet sind in der unteren Funktionsebene 35 vier quadratische Auslassöffnungen 42 vorgesehen. Die Auslassöffnungen 42 liegen bei einer Projektion aller Funktionsebenen 35, 36, 37 in eine Ebene mit einem Versatz außerhalb der Einlassöffnung 40. Der Versatz kann dabei in verschiedene Richtungen unterschiedlich groß sein.
Um eine Fluidströmung von der Einlassöffnung 40 bis hin zu den Auslassöffnungen 42 zu gewährleisten, ist in der mittleren Funktionsebene 36 ein Kanal 41 (cavity) ausgebildet, der eine Kavität darstellt. Der eine kreisförmige Kontur aufweisende Kanal 41 besitzt eine solche Größe, dass er in der Projektion die Einlassöffnung 40 und die Auslassöffnungen 42 vollständig überdeckt.
In den Figuren 3 und 4 ist die Lochscheibe mit gleicher Konturgebung wie die in Figur 2 gezeigte Lochscheibe 23 dargestellt, allerdings in einer erfindungsgemäß einfach vermessbaren Gestalt als unterbrochene Lochscheibe 23'.
In den folgenden Abschnitten wird nur in Kurzform das eigentliche Verfahren zur Herstellung der Lochscheiben 23 gemäß der Figuren 2 bis 4 erläutert. Die Verfahrensschritte der galvanischen Metallabscheidung zur Herstellung einer Lochscheibe sind der DE 196 07 288 A1 entnehmbar.
Ausgangspunkt für das Verfahren ist eine ebene und stabile Trägerplatte, die z. B. aus Metall (Titan, Kupfer), Silizium, Glas oder Keramik bestehen kann. Auf die Trägerplatte wird optional zunächst wenigstens eine Hilfsschicht aufgalvanisiert. Dabei handelt es sich beispielsweise um eine Galvanikstartschicht (z. B. Cu), die zur elektrischen Leitung für die spätere Mikrogalvanik benötigt wird. Die Galvanikstartschicht kann auch als Opferschicht dienen, um später ein einfaches Vereinzeln der Lochscheibenstrukturen durch Ätzung zu ermöglichen. Das Aufbringen der Hilfsschicht (typischerweise CrCu oder CrCuCr) geschieht z. B. durch Sputtern oder durch stromlose Metallabscheidung. Nach dieser Vorbehandlung der Trägerplatte wird auf die Hilfsschicht ein Photoresist (Photolack) ganzflächig aufgebracht.
Die Dicke des Photoresists sollte dabei der Dicke der Metallschicht entsprechen, die in dem später folgenden Galvanikprozess realisiert werden soll, also der Dicke der unteren Schicht bzw. Funktionsebene 35 der Lochscheibe 23. Die zu realisierende Metallstruktur soll mit Hilfe einer photolithographischen Maske invers in dem Photoresist übertragen werden. Eine Möglichkeit besteht darin, den Photoresist direkt über die Maske mittels UV-Belichtung zu belichten (UV-Tiefenlithographie).
Die letztlich im Photoresist entstehende Negativstruktur zur späteren Funktionsebene der Lochscheibe 23 wird galvanisch mit Metall (z. B. Ni, NiCo) aufgefüllt (Metallabscheidung). Das Metall legt sich durch das Galvanisieren eng an die Kontur der Negativstruktur an, so dass die vorgegebenen, Konturen formtreu in ihm reproduziert werden. Um die Struktur der Lochscheibe 23 zu realisieren, müssen die Schritte ab dem optionalen Aufbringen der Hilfsschicht entsprechend der Anzahl der gewünschten Schichten wiederholt werden, wobei z. B. zwei Funktionsebenen in einem Galvanikschritt erzeugt werden (laterales Überwachsen). Für die Schichten einer Lochscheibe 23 können auch unterschiedliche Metalle verwendet werden, die jedoch nur in einem jeweils neuen Galvanikschritt einsetzbar sind. Abschließend erfolgt das Vereinzeln der Lochscheiben 23. Dazu wird die Opferschicht weggeätzt, wodurch die Lochscheiben 23 von der Trägerplatte abheben. Danach werden die Galvanikstartschichten durch Ätzung entfernt und der verbliebene Photoresist aus den Metallstrukturen herausgelöst.
In idealer Weise werden mikrogalvanisch aufgebaute Bauteile, wie die Lochscheiben 23, in sehr großer Stückzahl (z.B. bis > 1000 Stück) auf einem Wafer oder Nutzen hergestellt. Nach dem Vereinzeln der Lochscheiben 23 von der Trägerplatte liegen diese für ihren jeweiligen Einsatzzweck zum Einbau vor. Die innere Öffnungsstruktur eines solchen mikrogalvanisch hergestellten Bauteils ist dann jedoch nicht mehr zugänglich. Zu Prüf- und Messzwecken soll jedoch zumindest stichprobenartig eine sehr einfache und kostengünstige Möglichkeit zum Vermessen der Bauteile geschaffen sein. Lochscheiben 23, wie eine in Figur 2 dargestellt ist, können bisher nur mit Hilfe von zerstörenden Fertigungsverfahren überprüft und nachgemessen werden. Dazu müssen die zum Nachmessen ausgewählten Bauteile in aufwendiger Weise eingebettet und geschliffen werden. Durch das Schleifen der komplett hergestellten Bauteile können in nachteiliger Weise Grate entstehen, die das Messergebnis verfälschen können. Außerdem besteht eine erhöhte Gefahr von Verformungen der zu vermessenden Bauteile beim Einbetten und Schleifen.
Erfindungsgemäß werden deshalb unmittelbar bei der mikrogalvanischen Herstellung der Bauteile, hier der Lochscheiben 23, in nur wenigen ausgewählten Bauteilen 23' auf dem Wafer (z.B. bei 3 bis 5 von 1000 Bauteilen) gezielt Photoresistbereiche 45, die auch als Lackstege oder Lackkerne charakterisiert werden können, eingebaut. Der Einbau von gezielten Photoresistbereichen 45 wird über speziell geformte Masken an den ausgewählten Bauteilen 23' von vornherein vorgenommen, so dass die aufzubauende Metallstruktur von der unteren Funktionsebene 35 beginnend bereits an diesem Photoresistbereich 45 entlang wächst. Die ausgewählten Bauteile 23' werden somit in ihrer Gesamtstruktur gewünscht unterbrochen hergestellt (Figur 3). Nach dem Herauslösen des Photoresistbereichs 45 sind die inneren Strukturen des jeweiligen Bauteils 23' auf einfache Art und Weise freigelegt.
Wie Figur 3 zu entnehmen ist, ist es sinnvoll, den Photoresistbereich 45 so zu legen, dass er die ÖffnungsstruJcturen schneidet, die nach der Herstellung vermessen werden sollen. So ist der Photoresistbereich 45 bei der in Figur 3 dargestellten Lochscheibe 23' derart eingebaut, dass er die Funktionsebenen 35, 36, 37 im Bereich der Einlassöffnung 40, des Kanals 41 und der Auslassöffnungen 42 zugleich schneidet.
Figur 4 zeigt eine Schnittansicht der unterbrochenen Lochscheibe 23' im Bereich einer Lackkante 46 gemäß Pfeilen IV in Figur 3. Diese Ansicht verdeutlicht somit also keinen Schnitt im Sinne eines spanenden Aufschneidens durch die Lochscheibe 23', sondern eine Seitenansicht des von vornherein derart hergestellten Lochscheibenteils. Die auf einfache Art und Weise freiliegende Öffnungskontur ist so sehr einfach zerstörungsfrei vermessbar. Typische Abmessungen einer Lochscheibe 23, die vermessen werden können, sind beispielsweise die Schichtdicke a, die Höhe h des Kanals 41, der Versatz x von Einlassöffnung 40 und Auslassöffnungen 42, der sogenannte Rückraum z, also der über die Auslassöffnungen 42 überstehende Strömungsbereich des Kanals 41, sowie der Eintrittsflankenwinkel 47 der Einlassöffnung 40 und der Austrittsflankenwinkel 48 der Auslassöffnungen 42.
Die nach dem Vereinzeln vorliegenden Bauteile werden in vollständige Bauteile 23 und unterbrochene Bauteile 23' sortiert. Die unterbrochenen Bauteile 23' werden einer Messeinrichtung 50 zugeführt. Eine schematische Mess- und Auswerteanordnung ist in Figur 5 angedeutet. Das berührungslose Messen der Bauteile 23', die z.B. an einem nicht gezeigten Werkstückträger eingespannt sind, kann mit verschiedenen Messeinrichtungen 50 erfolgen. Geeignet sind beispielsweise Rasterelektronenmikroskop, Profilprojektor mit Auflicht, optische Aufnahmegeräte wie CCD-Kamera oder Infrarotkamera, Mikroskop mit Wegmesssystem oder Microfocus-Messsystem mit Laserabtastung (UBM). Die aufgenommenen Messwerte werden beispielsweise in einer Auswerteeinheit 51 verarbeitet und ausgewertet, wodurch eine Beurteilung der Maßgenauigkeit und der Qualität der hergestellten Bauteile 23 möglich ist.

Claims (8)

  1. Verfahren zum Vermessen von mikrogalvanisch hergestellten Bauteilen mit einer dreidimensionalen, tiefenlithographisch erzeugten Struktur, gekennzeichnet durch die Verfahrensschritte
    Aufbau eines ein- oder mehrschichtigen Bauteils (23') durch galvanische Metallabscheidung, wobei das Metall um eine die gewünschte Öffnungskontur (40, 41, 42) des Bauteils vorgebende Struktur aus Photoresist abgeschieden wird,
    dabei Einbau eines Photoresistbereichs (45) bei der mikrogalvanischen Herstellung, der das herzustellende Bauteil (23') gezielt in seiner Struktur unterbricht,
    Herauslösen zumindest des unterbrechenden Photoresistbereichs (45) aus dem unterbrochenen Bauteil (23') und
    berührungsloses Vermessen der Öffnungsstruktur des unterbrochenen Bauteils (23') im Bereich einer ehemaligen Lackkante (46) des Photoresistbereichs (45) mittels einer Messeinrichtung (50).
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Photoresistbereich (45) derart eingebaut wird, dass die Öffnungsstruktur des Bauteils (23') in allen Ebenen (35, 36, 37) zugleich unterbrochen ist.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass Winkel (47, 48), Hohlräume (h), Rückräume (z) und Versätze (x) der Öffnungsstruktur des Bauteils (23') berührungslos vermessbar sind.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Schichtdicken (a) des Bauteils (23') berührungslos vermessbar sind.
  5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Messeinrichtungen (50) ein Rasterelektronenmikroskop, ein Profilprojektor mit Auflicht, optische Aufnahmegeräte wie CCD-Kamera oder Infrarotkamera, ein Mikroskop mit Wegmesssystem oder ein Microfocus-Messsystem mit Laserabtastung (UBM) zum Einsatz kommen.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die aufgenommenen Messwerte in einer Auswerteeinheit (51) verarbeitet und ausgewertet werden.
  7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass baugleiche ein- oder mehrschichtige Bauteile (23) vollständig ohne die gewünschte Öffnungsstruktur unterbrechende Photoresistbereiche (45) zusammen mit den die unterbrechenden Photoresistbereiche (45) aufweisenden Bauteilen (23') durch galvanische Metallabscheidung auf einem Wafer hergestellt werden.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass das Verhältnis von unterbrochenen Bauteilen (23') zu vollständigen Bauteilen (23) gleicher Bauart auf einem Wafer 3 bis 5 : 1000 beträgt.
EP02729860A 2001-04-12 2002-04-09 Vermessen von mikrogalvanisch hergestellten bauteilen durch schnittbauteile über lackstege Expired - Lifetime EP1381824B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10118274A DE10118274A1 (de) 2001-04-12 2001-04-12 Verfahren zum Vermessen von mikrogalvanisch hergestellten Bauteilen
DE10118274 2001-04-12
PCT/DE2002/001289 WO2002084212A1 (de) 2001-04-12 2002-04-09 Vermessen von mikrogalvanisch hergestellten bauteilen durch schnittbauteile über lackstege

Publications (2)

Publication Number Publication Date
EP1381824A1 EP1381824A1 (de) 2004-01-21
EP1381824B1 true EP1381824B1 (de) 2005-04-06

Family

ID=7681351

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02729860A Expired - Lifetime EP1381824B1 (de) 2001-04-12 2002-04-09 Vermessen von mikrogalvanisch hergestellten bauteilen durch schnittbauteile über lackstege

Country Status (5)

Country Link
US (1) US6854347B2 (de)
EP (1) EP1381824B1 (de)
JP (1) JP4154240B2 (de)
DE (2) DE10118274A1 (de)
WO (1) WO2002084212A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2947190B1 (fr) * 2009-06-25 2011-09-02 Gloster Europe Procede de controle d'un injecteur de brumisation
KR101842646B1 (ko) * 2016-11-29 2018-05-15 동명대학교산학협력단 은도금 작업의 관리시스템
DE102018203065A1 (de) * 2018-03-01 2019-09-05 Robert Bosch Gmbh Verfahren zur Herstellung eines Injektors
CN111474822B (zh) * 2020-05-19 2021-09-17 中国科学院光电技术研究所 一种基于三维光刻胶掩膜快速修正光学基底均匀性的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1161821A1 (ru) * 1984-01-02 1985-06-15 Всесоюзный Ордена Трудового Красного Знамени Научно-Исследовательский Институт Горной Геомеханики И Маркшейдерского Дела Устройство дл измерени деформаций
DE19607277A1 (de) 1995-03-29 1996-10-02 Bosch Gmbh Robert Lochscheibe, insbesondere für Einspritzventile

Also Published As

Publication number Publication date
DE50202720D1 (de) 2005-05-12
US20040026373A1 (en) 2004-02-12
WO2002084212A1 (de) 2002-10-24
DE10118274A1 (de) 2002-10-17
EP1381824A1 (de) 2004-01-21
JP4154240B2 (ja) 2008-09-24
US6854347B2 (en) 2005-02-15
JP2004518827A (ja) 2004-06-24

Similar Documents

Publication Publication Date Title
EP0787255B1 (de) Lochscheibe, inbesondere für einspritzventile
EP0787254B1 (de) Lochscheibe, insbesondere für einspritzventile
EP0787256B1 (de) Verfahren zur herstellung einer lochscheibe
EP0783628B1 (de) Brennstoffeinspritzventil
EP1228306B1 (de) Brennstoffeinspritzventil mit drallelement
DE19607277A1 (de) Lochscheibe, insbesondere für Einspritzventile
DE19523915A1 (de) Mikroventil und Verfahren zur Herstellung eines Mikroventils
DE19703200A1 (de) Brennstoffeinspritzventil
DE19815795A1 (de) Zerstäuberscheibe und Brennstoffeinspritzventil mit Zerstäuberscheibe
DE10056006A1 (de) Brennstoffeinspritzventil
DE19815800A1 (de) Brennstoffeinspritzventil
WO2006040246A1 (de) Brennstoffeinspritzventil
EP0783627B1 (de) Ventil, insbesondere brennstoffeinspritzventil
EP1313942B1 (de) Drallscheibe, insbesondere für einspritzventile
DE4404021A1 (de) Düsenplatte, insbesondere für Einspritzventile und Verfahren zur Herstellung einer Düsenplatte
DE19815780A1 (de) Brennstoffeinspritzventil und Verfahren zur Montage eines Brennstoffeinspritzventils
DE19622350A1 (de) Verfahren zur Herstellung einer Düsenplatte
EP1381824B1 (de) Vermessen von mikrogalvanisch hergestellten bauteilen durch schnittbauteile über lackstege
EP1012471B1 (de) Brennstoffeinspritzventil
EP0902848B1 (de) Mikrogalvanisch hergestelltes bauteil
DE102006047137A1 (de) Lochscheibe, Brennstoffeinspritzventil mit einer Lochscheibe und Verfahren zur Herstellung einer Lochscheibe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031112

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50202720

Country of ref document: DE

Date of ref document: 20050512

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050801

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20060110

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080428

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080626

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080418

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080423

Year of fee payment: 7

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090409

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20091231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090409

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090409