EP1381711B1 - Method for improving metal surfaces to prevent thermal tarnishing - Google Patents

Method for improving metal surfaces to prevent thermal tarnishing Download PDF

Info

Publication number
EP1381711B1
EP1381711B1 EP01991656A EP01991656A EP1381711B1 EP 1381711 B1 EP1381711 B1 EP 1381711B1 EP 01991656 A EP01991656 A EP 01991656A EP 01991656 A EP01991656 A EP 01991656A EP 1381711 B1 EP1381711 B1 EP 1381711B1
Authority
EP
European Patent Office
Prior art keywords
coating
iii
sol
compounds
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01991656A
Other languages
German (de)
French (fr)
Other versions
EP1381711A2 (en
Inventor
Bernhard Walter
Gerhard Schmidmayer
Jürgen Salomon
Frank JÖRDENS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BSH Hausgeraete GmbH
Original Assignee
BSH Bosch und Siemens Hausgeraete GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BSH Bosch und Siemens Hausgeraete GmbH filed Critical BSH Bosch und Siemens Hausgeraete GmbH
Publication of EP1381711A2 publication Critical patent/EP1381711A2/en
Application granted granted Critical
Publication of EP1381711B1 publication Critical patent/EP1381711B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing

Definitions

  • the present invention relates to a method of preventing or at least reducing the yellowing of metallic surfaces (e.g., stainless steel, copper, brass and bronze) exposed to elevated temperatures.
  • metallic surfaces e.g., stainless steel, copper, brass and bronze
  • protective layers by wet chemical methods. These include, on the one hand, the application of water glass to metallic surfaces and the application of layers by means of the sol-gel process (see, for example, DE-A 197 14 949, Applicant: INM). Such layers act as a diffusion barrier for oxygen. In order to avoid interference colors, they are applied in thicknesses over 1 ⁇ m of baked-in thickness (DE-A 197 14 949). Thinner layers e.g. on a sol-gel basis lead to optically disturbing interferences.
  • Sol-gel processes are used in particular for the application of vitreous layers.
  • the technique of the sol-gel process is well known to those skilled in the art and is described in detail, for example, in Brinker-Scherer, The Physics and Chemistry of Sol-Gel Processing, Sol-Gel Science, Academic Press (1990).
  • Sol-gel processes are hydrolysis-condensation reactions (for example of silanes such as R n SiX 4-n or a mixture of several such silanes, where R is, for example, hydrogen or an aliphatic or aromatic radical and X is a hydrolyzable radical, such as Alkoxy or phenoxy) in which, after complete removal of the reaction product by dehydration (chemically in the sense of condensation, water from the solvent, if present), with simultaneous branching and crosslinking of this product, structures with, for example, Si-O bonds are formed ,
  • the particle size (particle diameter) in the structures is 100 nm or less.
  • Si-O layers These glassy layers based on Si and O will hereinafter be referred to as Si-O layers.
  • Such a sol-gel process is described for silanes of the general formula R n SiX 4-n in DE-A 197 14 949.
  • the glass-like layers described therein improve not only the corrosion / tarnish protection but also the possibility of cleaning and, depending on the thickness, also the scratch sensitivity of the substrate. However, they are susceptible to cracking, probably due to shrinkage processes and differences in the expansion coefficients, at layer thicknesses of 2 ⁇ m and above. This crack sensitivity is based on the fact that the thus treated layers at temperatures above about 350 ° C due to outgassing the organic components lose their flexibility. In addition, complicated geometries can not be coated in terms of production technology with these thickness tolerances. If the layers are applied with a smaller thickness (below 1000 nm), they are not sensitive to the formation of cracks and can also be applied controllably via dilutions, but show interference colors, which the user regularly views as undesirable.
  • thicker sol-gel layers are on surfaces of stainless steel, but also on other metals such as copper, brass and bronze, especially in the case of their use in the home (ovens, stoves , etc.), but technically and practically uninteresting, since the cracking leads to loss of function.
  • the vitreous Si-O layers require temperatures which are above the start-up temperature of the respective metal, for example conventional stainless steels (the start-up temperatures usually approach 200 ⁇ 20 ° C. for steel).
  • structure of the protective effect are on the one hand densification processes of the layer, wherein the compacted layer then acts as a diffusion barrier for oxygen, but on the other hand meant chemical reactions at the interface to steel or metal / alloy, which prevent the formation of visually disturbing oxide layers ,
  • the effect of the network converters is to lower the compaction temperatures of the layers.
  • the build-up of the protective effect and thus the protection against oxygen can be generated at lower temperatures compared to sol-gel processes without the use of network converters.
  • This in turn causes the temporal or reversed in temperature order: the tarnish protection layer can form at times or at temperatures before or below which visible tarnish colors occur.
  • network converters has a significant disadvantage: it usually reduces the chemical resistance of the layers. If, therefore, chemically highly stable (glassy) layers are to be obtained, they must be baked in an oxygen-free atmosphere (for example under nitrogen or possibly also argon as protective gas) without the need for network converters. However, this in turn requires a relatively high cost, which makes a sol-gel process under inert gas atmosphere economically less interesting.
  • sol-gel processes based on suitable Ti, Zr, Al and / or B compounds are not used. This is partly because the build up of the protective effect does not take place at temperatures below the start-up temperature, meaning that the stainless steel / metal / alloy already yellows / starts during the protective treatment.
  • a second object of the present inventors was to provide a process which would provide good corrosion / tarnish protection of the stainless steel or other metals and alloys even at continuous use temperatures up to 450 ° C, preferably up to 500 ° C and even to 550 ° C, while maintaining the metallic original impression and the possibility of a simple or improved cleaning of the substrate, ie metal or alloy, while ensuring the occurrence of interference colors at low Layer thicknesses preferably prevented, but at least significantly reduced. Due to the low layer thicknesses, the problem of keeping the crack-sensitivity of the coating low is also solved.
  • the thin, translucent layer of 100 nm to less than 1 .mu.m thickness obtained on the basis of Si, Zr, Ti, B, Al compounds, obtained according to step (iii), is applied on the basis of Si compounds ,
  • a variant of this method also comprises the optional step (i) and subsequently carrying out step (ii) simultaneously with the coating step (iii), wherein step (ii) represents the introduction of a second phase and the layer is less than 1000 nm thick , preferably 800 nm or less, 600 nm or less, 500 nm or less, or 400 nm or less.
  • one aspect of the present invention relates to the methods outlined above.
  • Another aspect of the present invention relates to a component, e.g. a metal sheet of chromium-nickel steel, which has been subjected to such a process.
  • step (i) is not necessary even if the baking takes place in an inert or non-oxidizing atmosphere (then, according to the prior art, no network converter is necessary).
  • step (i) is indispensable in the remaining cases if the task (s) to be resolved are to be provided with surfaces free of tarnish colors and if the aforementioned preconditions are not met ( no use of special steel as described in the penultimate paragraph, no network converters, no working in a non-oxidizing atmosphere).
  • the metallic surfaces to be treated are preferably those of stainless steels, in particular surfaces of steel grades 1.4301 and 1.4016 (chromium-nickel or chromium steel), which are otherwise untreated at working temperatures of 200.degree and higher in the air atmosphere and, as a result, turn yellow during substep (iii) (in the absence of network transducers).
  • a first step (i) of the method according to the invention is a treatment of the metallic surface to increase its start-up temperature and thus to achieve the first of the above three objects.
  • Step (i) of the preferred embodiment ( ⁇ ) may be by any method in which the metal can form a tarnish before it becomes a discoloring oxide layer.
  • this step is the process described in EP-A 1 022 357.
  • step (i) comprises the steps of heating the metallic surface up to 550 ° C and then pickling the heated surface with mineral acid (as described in EP-A 1 022 357). It is particularly preferred to increase the start-up temperature of the metallic surface to about 300 ° C, so that the start-up temperature is above the temperature at which the protective effect of the example Si-O layer occurs, because after such a step (i) (and In the subsequent step (ii)), step (iii) can be carried out in an oxygen atmosphere without network converters.
  • step (ii) by means of which the metallic surface is roughened, and step (iii), a conventional coating process, e.g. a sol-gel process, one after the other, with the result that the tarnish protection of the treated metal / alloy such as steel, copper, brass or bronze is not lost even at temperatures up to 550 ° C.
  • a conventional coating process e.g. a sol-gel process
  • the organic constituents eg methyl, ethyl, 1-propyl, isopropyl residues, for chemistry in general and the organic residues in particular see below, page 9
  • the organic constituents eg methyl, ethyl, 1-propyl, isopropyl residues, for chemistry in general and the organic residues in particular see below, page 9
  • the organic constituents eg methyl, ethyl, 1-propyl, isopropyl residues, for chemistry in general and the organic residues in particular see below, page 9
  • Surface energy For the expert, it requires only little effort to test at which temperature the burnout has to be made according to this preferred embodiment.
  • An exact temperature range, or even value can not be determined because it depends on numerous parameters known to those skilled in the art (e.g., chemical qualitative and quantitative composition). Burning out regularly takes place at a temperature which is above the (later) application temperatures.
  • the interference colors of the layers which occur at low layer thicknesses can be suppressed by mechanical and / or chemical and / or physical roughening of the (noble) steel surface.
  • Physical roughening is defined according to the invention as the (physical) introduction of second phases (such as light-scattering particles or pores).
  • step (i) to be used pickling a pure cleaning process for removing the oxide layer without itself in the (substrate) surface to be treated to form a microstructure), but also the incorporation of light scattering particles and / or pores (physically).
  • the pores are preferably produced by air-filled particle interspaces.
  • Particularly suitable as light-scattering particles are TiO 2 and ZrO 2, in general all those particles whose refractive index is greater than that of the respective layer.
  • the geometries of the mechanical, chemical or physical roughening which break the interferences according to the invention are of the order of 2 to 1000 nm, preferably in the range of 15 to 500 nm, in the range of 40 to 300 nm, in the range of 50-250 nm or in a range of 100-200 nm (ranges in each case based on the diameter).
  • Preferred ranges for the chemical and mechanical roughnesses are 50-1000 nm, in particular 200-500 nm.
  • Preferred ranges for the (light-scattering) particles are 2 to 30 nm, in particular 5 to 25 or 10-20 nm (depending essentially on the type of particles and their refractive index).
  • Preferred areas for the pores are 2 - 100 nm, in particular 5 - 50 nm.
  • step (ii) When using the light-diffusing particles or pores in step (ii) to prevent interference, attention must be paid to a certain ratio between Me (e.g., Si) of the matrix on the one hand and pores on the other. It is essential that the volume fraction of particles / pores in the fired layer is 0.05-20%, more preferably 0.1-15%, most preferably 1-5%.
  • Me e.g., Si
  • Suitable particles are, for example, Al 2 O 3 , TiO 2 , ZrO 2 and SiO 2 .
  • a blowing agent is added which escapes leaving pores behind at the latest during the process of baking, ie during the conversion of the airgel into the coating. Or one lowers the concentration of the starting substances for the hydrolysis-condensation reactions (for example the silanes) in order to be able to incorporate pores (air) into the matrix. Or one controls the sol-gel process so that it leads without particle addition by incomplete cross-linking / compression to a pore-containing layer.
  • the coated according to the present invention layers are transparent, so do not change the metallic surface in appearance.
  • the organic radicals R and X generally have 1 to 16 carbon atoms, with 1 to 12, in particular 1 to 8 carbon atoms being preferred (for the aryl radicals, of course, only 6 or 10 carbon atoms are preferred). Particular preference is given to radicals having 1 to 4 (alkyl, alkenyl, alkynyl) or 6 (aryl) or 7 to 10 (aralkyl, alkaryl) carbon atoms.
  • two, three or more compounds of the general formula R n MeX 4-n or R n MeX 3-n are used in combination, wherein the ratio R: Me (corresponding to n) on a molar basis is preferably 0.2 on average to 1.5.
  • hydrolysis and condensation reactions are more preferred. Mann carried out in a solvent mixture of water and an organic solvent such as methanol, ethanol, acetone, ethyl acetate, DMSO or dimethyl sulfone.
  • the organic solvent may also be a mixture of two or more solvents.
  • the solvents mentioned and usable according to the invention are all miscible with water, so that the hydrolysis can proceed without phase separation.
  • the coating can be applied to the metallic surfaces in various known ways: by dipping, spinning, spraying, flooding or rubbing; the metallic surface in the bath of e.g. Dipping silanes is a preferred process.
  • the thickness with which the layers are applied according to the invention is in a range from 100 to below 1000 nm, more preferably in a range from 200 to 850 nm, particularly preferably in a range from 300 to 750 nm, most preferably at 350 to 600 nm. But layer thicknesses of 100 to 300 nm, more preferably 100 to 200 nm, are preferred for the purposes of the present invention.
  • chromium steel 1.4016 (no tarnish colors) was treated with a 5% solution of Dynasil GH 02 (The Dynasil solution is according to the manufacturer, the Degussa Hüls, on hydrolyzed and partially condensed silanes) dip-coated in 1-butanol, dried and baked at 550 ° C. The steel did not run after treatment even at a temperature of 500 ° C (10h hold time). No interference colors were observed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Materials For Photolithography (AREA)

Description

Die vorliegende Erfindung betrifft ein Verfahren, die Vergilbung bzw. Verfärbung von metallischen Oberflächen (z.B. rostfreiem Stahl, Kupfer, Messing und Bronze), die erhöhten Temperaturen ausgesetzt werden, zu verhindern oder wenigstens zu reduzieren.The present invention relates to a method of preventing or at least reducing the yellowing of metallic surfaces (e.g., stainless steel, copper, brass and bronze) exposed to elevated temperatures.

Übliche rostfreie Stähle wie zum Beispiel die Sorten 1.4301 (Chrom-Nickel-Stahl) und 1.4016 (Chrom-Stahl) korrodieren bei Temperaturen von 200°C - 230°C an Luftatmosphäre. An der Oberfläche bilden sich durch den Einbau von Sauerstoff Oxidschichten, die zu einer für den Anwender oft unerwünschten Verfärbung, zum Beispiel Gelbfärbung (Anlauf-Farben), führen. In diesem Zusammenhang ist insbesondere an solche Haushaltsgeräte zu denken, die auf Grund ihrer Funktion hohen Temperaturen (von z.B. bis 500°C) ausgesetzt werden müssen (z.B. Öfen und Herde, insbesondere Pyrolyseöfen; Einschubteile wie Gitterroste oder Backbleche; Abdeckungen).Conventional stainless steels such as grades 1.4301 (chrome nickel steel) and 1.4016 (chrome steel) corrode at temperatures of 200 ° C - 230 ° C in air atmosphere. Oxygen layers form on the surface as a result of the incorporation of oxygen, which leads to discoloration which is often undesirable to the user, for example yellowing (tarnish colors). In this context, particular consideration should be given to those household appliances which by their function have to be exposed to high temperatures (for example, up to 500 ° C) (for example ovens and stoves, in particular pyrolysis ovens, slide-in parts such as gratings or baking trays, covers).

Es existieren Verfahren, die Korrosionsbeständigkeit durch Behandlung der Stahl-Oberflächen zu steigern. Zu solchen Verfahren zählen die Glühbehandlungen in inerter Atmosphäre gekoppelt mit Beizvorgängen, wie sie in der japanischen Patentanmeldung (Anmelde-Nr. JP 06079990, offengelegt am 19.04.94) beschrieben sind. Weiterhin läßt sich die Korrosionsbeständigkeit durch elektrolytisches Polieren erhöhen.There are methods of increasing corrosion resistance by treating the steel surfaces. Such methods include annealing treatments in an inert atmosphere coupled with pickling operations as described in Japanese Patent Application (Application No. JP 06079990, published on 19.04.94). Furthermore, the corrosion resistance can be increased by electrolytic polishing.

Aus der EP 00 101 186.5 (veröffentlicht als EP-A 1 022 357) ist zusätzlich bekannt, dass durch gezielte Oxidations- und Beiz-Vorgänge das Anlaufen von rostfreien Stählen in Folge der im Haushalt üblicher Weise auftretenden Temperaturen bis 350°C unterdrückt werden kann. Ansonsten ist bisher keine Qualität beschrieben, die ohne das Aufbringen einer Schutzschicht thermisch bedingte Verfärbungen bei Temperaturen von über ca. 230°C im Dauergebrauch vermeidet.From EP 00 101 186.5 (published as EP-A 1 022 357) it is additionally known that the tarnishing of stainless steels can be suppressed by selective oxidation and pickling processes as a result of the temperatures occurring in the usual household up to 350 ° C , Otherwise, no quality is described so far, which avoids thermally induced discoloration at temperatures of about 230 ° C in continuous use without the application of a protective layer.

Dementsprechend ist ein anderer Ansatz, Anlauf-Farben zu unterdrücken, die Aufbringung von Schutzschichten mittels nasschemischer Verfahren. Hierzu zählen einerseits die Applikation von Wasserglas auf metallische Oberflächen als auch die Aufbringung von Schichten mittels des Sol-Gel-Prozesses (siehe z.B. DE-A 197 14 949, Anmelder: INM). Derartige Schichten wirken als Diffusionssperre für Sauerstoff. Auch um Interferenz-Farben zu vermeiden, werden sie in Dicken über 1 µm eingebrannter Dicke aufgebracht (DE-A 197 14 949). Dünnere Schichten z.B. auf Sol-Gel-Basis führen zu optisch störenden Interferenzen.Accordingly, another approach to suppress tarnish is to apply protective layers by wet chemical methods. These include, on the one hand, the application of water glass to metallic surfaces and the application of layers by means of the sol-gel process (see, for example, DE-A 197 14 949, Applicant: INM). Such layers act as a diffusion barrier for oxygen. In order to avoid interference colors, they are applied in thicknesses over 1 μm of baked-in thickness (DE-A 197 14 949). Thinner layers e.g. on a sol-gel basis lead to optically disturbing interferences.

Sol-Gel-Prozesse werden insbesondere zur Aufbringung glasartiger Schichten verwendet. Die Technik des Sol-Gel-Prozesses ist dem einschlägigen Fachmann durchaus bekannt und zum Beispiel in Brinker-Scherer, The Physics and Chemistry of Sol-Gel Processing, Sol-Gel Science, Academic Press (1990), ausführlich beschrieben. Bei Sol-Gel-Prozessen handelt es sich um Hydrolyse-Kondensations-Reaktionen (z.B. von Silanen wie RnSiX4-n oder ein Gemisch von mehreren solcher Silane, wobei R z.B. Wasserstoff oder ein aliphatischer oder aromatischer Rest und X ein hydrolysierbarer Rest wie Alkoxy oder Phenoxy sein können), bei denen nach vollständigem Wasserentzug des Reaktionsprodukts (chemisch im Sinne der Kondensation; Wasser aus dem Lösungsmittel, sofern vorhanden, liegt noch vor) unter gleichzeitiger Verzweigung und Vernetzung dieses Produkts Strukturen mit beispielsweise Si-O-Bindungen gebildet werden. Die Teilchengröße (Teilchendurchmesser) in den Strukturen ist 100 nm oder weniger. Durch Entzug des Lösungsmittels wird ein Gel (mit erhöhter Viskosität und erhöhtem Vernetzungsgrad) gebildet, das anschließend zum Aerogel getrocknet und schließlich durch weiteres Erhitzen (bei etwa 500°C) zu einer (im Fall der Verwendung von Silanen: glasartigen) Schicht wird, die sowohl Silicium als auch Sauerstoff (in einem stöchiometrischen Verhältnis von etwa 1:2) enthält. Diese glasartigen Schichten auf der Basis von Si und O werden nachfolgend als Si-O-Schichten bezeichnet.Sol-gel processes are used in particular for the application of vitreous layers. The technique of the sol-gel process is well known to those skilled in the art and is described in detail, for example, in Brinker-Scherer, The Physics and Chemistry of Sol-Gel Processing, Sol-Gel Science, Academic Press (1990). Sol-gel processes are hydrolysis-condensation reactions (for example of silanes such as R n SiX 4-n or a mixture of several such silanes, where R is, for example, hydrogen or an aliphatic or aromatic radical and X is a hydrolyzable radical, such as Alkoxy or phenoxy) in which, after complete removal of the reaction product by dehydration (chemically in the sense of condensation, water from the solvent, if present), with simultaneous branching and crosslinking of this product, structures with, for example, Si-O bonds are formed , The particle size (particle diameter) in the structures is 100 nm or less. Removal of the solvent forms a gel (of increased viscosity and increased degree of crosslinking), which is then dried to airgel and finally (by heating at about 500 ° C) to become (in the case of silanes: glassy) a layer which becomes contains both silicon and oxygen (in a stoichiometric ratio of about 1: 2). These glassy layers based on Si and O will hereinafter be referred to as Si-O layers.

Ein solcher Sol-Gel-Prozess ist für Silane der allgemeinen Formel RnSiX4-n in der DE-A 197 14 949 beschrieben. Die dort beschriebenen glasartigen Schichten verbessern neben dem Korrosions-/Anlaufschutz auch die Möglichkeit der Reinigung und je nach Dicke auch die Kratzempfindlichkeit des Substrats. Sie sind allerdings, vermutlich aufgrund von Schrumpfungsprozessen und Unterschieden bei den Ausdehnungskoeffizienten, bei Schichtdicken von 2 µm und darüber rissempfindlich. Diese Rissempfindlichkeit beruht darauf, dass die so behandelten Schichten bei Temperaturen von über ca. 350°C aufgrund des Ausgasens der organischen Bestandteile ihre Flexibilität verlieren. Außerdem lassen sich kompliziertere Geometrien produktionstechnisch mit diesen Dickentoleranzen nicht beschichten. Werden die Schichten mit geringerer Dicke (unter 1000 nm) aufgetragen, sind sie zwar nicht empfindlich bzgl. der Bildung von Rissen und lassen sich über Verdünnungen auch beherrschbar applizieren, zeigen jedoch Interferenz-Farben, die der Anwender regelmäßig als unerwünscht ansieht.Such a sol-gel process is described for silanes of the general formula R n SiX 4-n in DE-A 197 14 949. The glass-like layers described therein improve not only the corrosion / tarnish protection but also the possibility of cleaning and, depending on the thickness, also the scratch sensitivity of the substrate. However, they are susceptible to cracking, probably due to shrinkage processes and differences in the expansion coefficients, at layer thicknesses of 2 μm and above. This crack sensitivity is based on the fact that the thus treated layers at temperatures above about 350 ° C due to outgassing the organic components lose their flexibility. In addition, complicated geometries can not be coated in terms of production technology with these thickness tolerances. If the layers are applied with a smaller thickness (below 1000 nm), they are not sensitive to the formation of cracks and can also be applied controllably via dilutions, but show interference colors, which the user regularly views as undesirable.

Auf Grund der Neigung zur Bildung von Rissen sind dickere Sol-Gel-Schichten (Schichtdicke > 2000 nm) auf Oberflächen von rostfreiem Stahl, aber auch auf anderen Metallen wie Kupfer, Messing und Bronze, insbesondere im Fall ihrer Verwendung im Haushalt (Öfen, Herde, etc.), jedoch technisch und praktisch uninteressant, da die Rißbildung zum Funktionsverlust führt.Due to the tendency to form cracks, thicker sol-gel layers (layer thickness> 2000 nm) are on surfaces of stainless steel, but also on other metals such as copper, brass and bronze, especially in the case of their use in the home (ovens, stoves , etc.), but technically and practically uninteresting, since the cracking leads to loss of function.

Die glasartigen Si-O-Schichten benötigen zum Aufbau ihrer Schutzwirkung Temperaturen, die oberhalb der Anlauftemperatur des jeweiligen Metalls, z.B. üblicher rostfreier Stähle (Edelstähle), liegen (die Anlauftemperaturen bewegen sich beim Stahl üblicher Weise um 200 ± 20°C). Mit dem Ausdruck "Aufbau der Schutzwirkung" sind einerseits Verdichtungsprozesse der Schicht, wobei die verdichtete Schicht dann als Diffusionsbarriere für Sauerstoff wirkt, andererseits aber auch chemische Reaktionen an der Grenzfläche zum Stahl bzw. Metall/Legierung gemeint, welche den Aufbau von visuell störenden Oxidschichten verhindern.To build up their protective effect, the vitreous Si-O layers require temperatures which are above the start-up temperature of the respective metal, for example conventional stainless steels (the start-up temperatures usually approach 200 ± 20 ° C. for steel). By the term "structure of the protective effect" are on the one hand densification processes of the layer, wherein the compacted layer then acts as a diffusion barrier for oxygen, but on the other hand meant chemical reactions at the interface to steel or metal / alloy, which prevent the formation of visually disturbing oxide layers ,

Entscheidend ist, sofern in sauerstoffhaltiger Atmosphäre (z.B. Luft) gearbeitet wird, dass der Aufbau der Schutzwirkung bei Temperaturen bzw. zu Zeiten erfolgt (ist), unterhalb derer bzw. bevor visuell sichtbare Anlauf Farben auftreten (konnten). Wie im vorhergehenden Absatz festgestellt, ist das ohne weitere Hilfsmittel nicht der Fall. Aus diesem Grunde werden bei Sol-Gel-Prozessen (insbesondere im Fall der Verwendung von Silanen zum Aufbau von Si-O-Schichten) solche Hilfsmittel in Form von Alkalien (als Netzwerkwandler) zugesetzt. Übliche Alkaliquellen sind die in der DE-A 197 14 949 (Spalte 3, letzter Absatz) genannten, insbesondere NaOH, KOH, Mg(OH)2, Ca(OH)2. Diese Netzwerkwandler werden in das Si-O-Netzwerk eingebaut und unterbrechen dieses, so dass sich das so modifizierte Si-O-Netzwerk in Abhängigkeit der Konzentration der verwendeten Alkalie(n) mehr oder weniger stark dem Wasserglas nähert. Die Wirkung der Netzwerkwandler besteht u.a. darin, die Verdichtungstemperaturen der Schichten zu .senken. Mit anderen Worten: der Aufbau der Schutzwirkung und damit der Schutz vor Sauerstoff kann bei niedrigeren Temperaturen erzeugt werden, verglichen mit Sol-Gel-Prozessen ohne Verwendung von Netzwerkwandlern. Das wiederum bewirkt, dass die zeitliche bzw. temperaturmäßige Reihenfolge umgedreht wird: die Anlaufschutzschicht kann sich zu Zeiten bzw. bei Temperaturen ausbilden, ehe bzw. unterhalb derer sichtbare Anlauf-Farben auftreten.It is crucial, if working in oxygen-containing atmosphere (eg air), that the structure of the protective effect at temperatures or at times takes place (is) below which or before visually visible tarnish colors (could) occur. As noted in the previous paragraph, this is not the case without further resources. For this reason, in the case of sol-gel processes (especially in the case of the use of silanes for the formation of Si-O layers), such auxiliaries are added in the form of alkalis (as network converters). Typical alkali sources are those mentioned in DE-A 197 14 949 (column 3, last paragraph), in particular NaOH, KOH, Mg (OH) 2 , Ca (OH) 2 . These network converters are incorporated into the Si-O network and interrupt it, so that the so modified Si-O network more or less closely approaches the water glass depending on the concentration of the used alkali (s). Among other things, the effect of the network converters is to lower the compaction temperatures of the layers. In other words, the build-up of the protective effect and thus the protection against oxygen can be generated at lower temperatures compared to sol-gel processes without the use of network converters. This in turn causes the temporal or reversed in temperature order: the tarnish protection layer can form at times or at temperatures before or below which visible tarnish colors occur.

Andererseits hat die Verwendung der Netzwerkwandler aber einen wesentlichen Nachteil: sie verringert in der Regel die chemische Beständigkeit der Schichten. Wenn also chemisch besonders beständige (glasartige) Schichten erhalten werden sollen, müssen diese in sauerstofffreier Atmosphäre (z.B. unter Stickstoff oder eventuell auch Argon als Schutzgas) unter Verzicht auf Netzwerkwandler eingebrannt werden. Dies erfordert jedoch wiederum einen relativ hohen Aufwand, der einen Sol-Gel-Prozess unter Schutzgas-Atmosphäre wirtschaftlich wenig interessant macht.On the other hand, however, the use of network converters has a significant disadvantage: it usually reduces the chemical resistance of the layers. If, therefore, chemically highly stable (glassy) layers are to be obtained, they must be baked in an oxygen-free atmosphere (for example under nitrogen or possibly also argon as protective gas) without the need for network converters. However, this in turn requires a relatively high cost, which makes a sol-gel process under inert gas atmosphere economically less interesting.

Im Gegensatz zum Einsatz von Silanen bei Sol-Gel-Prozessen werden Sol-Gel-Prozesse auf der Basis von geeigneten Ti-, Zr-, Al- und/oder B-Verbindungen nicht verwendet. Dies unter anderem deshalb, da der Aufbau der Schutzwirkung bei Temperaturen nicht unterhalb der Anlauftemperatur erfolgt, der rostfreie Stahl/das Metall/die Legierung also schon während der Schutzbehandlung vergilbt/anläuft.In contrast to the use of silanes in sol-gel processes, sol-gel processes based on suitable Ti, Zr, Al and / or B compounds are not used. This is partly because the build up of the protective effect does not take place at temperatures below the start-up temperature, meaning that the stainless steel / metal / alloy already yellows / starts during the protective treatment.

Eine Aufgabe, die sich die Erfinder deshalb angesichts des Standes der Technik gestellt haben, bestand darin, ein Verfahren bereit zu stellen, das es ermöglicht, Oberflächen rostfreien Stahls, aber auch von anderen Metallen oder Legierungen wie Kupfer, Messing und Bronze, ohne Verwendung von Netzwerkwandlern zu beschichten und dennoch zu verhindern, dass sich die Anlaufschutzschicht erst zu Zeiten bzw. bei Temperaturen ausbildet, nachdem bzw. oberhalb derer sichtbare Anlauf-Farben bereits aufgetreten sind. Nach Durchführung eines solchen Verfahrens soll der metallische Originaleindruck der Oberfläche erhalten bleiben, auch wenn der Sol-Gel-Prozess auf der Basis von geeigneten Ti-, Zr-, Al- und/oder B-Verbindungen durchgeführt wird.One object which the inventors have faced in the light of the prior art, therefore, was to provide a method which makes it possible to produce surfaces of stainless steel, but also of other metals or alloys, such as copper, brass and bronze, without the use of To coat network converters and yet prevent the tarnish protection layer forms only at times or at temperatures, after or above which visible tarnish colors have already occurred. After carrying out such a process, the original metallic impression of the surface should be retained, even if the sol-gel process is carried out on the basis of suitable Ti, Zr, Al and / or B compounds.

Eine zweite Aufgabe der Erfinder bestand darin, ein Verfahren bereit zu stellen, das sowohl einen guten Korrosions-/Anlaufschutz des rostfreien Stahls bzw. der anderen Metalle und Legierungen selbst bei Dauereinsatz-Temperaturen bis 450°C, vorzugsweise bis 500°C und sogar bis 550°C, unter gleichzeitigem Erhalt des metallischen Originaleindrucks und der Möglichkeit einer einfachen bzw. verbesserten Reinigung des Substrats, d.h. Metalls bzw. Legierung, gewährleistet und gleichzeitig das Auftreten von Interferenz-Farben bei geringen Schichtdicken bevorzugter Weise verhindert, mindestens aber deutlich verringert. Auf Grund der geringen Schichtdicken ist das Problem, die Rissempfindlichkeit der Beschichtung gering zu halten, gleichfalls gelöst.A second object of the present inventors was to provide a process which would provide good corrosion / tarnish protection of the stainless steel or other metals and alloys even at continuous use temperatures up to 450 ° C, preferably up to 500 ° C and even to 550 ° C, while maintaining the metallic original impression and the possibility of a simple or improved cleaning of the substrate, ie metal or alloy, while ensuring the occurrence of interference colors at low Layer thicknesses preferably prevented, but at least significantly reduced. Due to the low layer thicknesses, the problem of keeping the crack-sensitivity of the coating low is also solved.

Schließlich war eine letzte Aufgabe der Erfinder, ein Verfahren bereit zu stellen, das beide zuvor genannten Aufgaben gleichzeitig in einem Verfahren löst.Finally, a final task of the inventors was to provide a method which solves both of the aforementioned objects simultaneously in one method.

Die Erfinder der vorliegenden Anmeldung haben nunmehr herausgefunden, dass es zur Lösung dieser Aufgaben eines Verfahrens mit den folgenden Schritten bedarf:

  • gegebenenfalls Schritt (i), der eine Behandlung der metallischen Oberfläche vorsieht, um ihre Anlauftemperatur zu erhöhen und damit die erste der oben genannten drei Aufgaben zu lösen;
  • Schritt (ii), der eine mechanische und/oder chemische Aufrauhung der zu beschichtenden metallischen Oberfläche beinhaltet, um die zweite der oben genannten Aufgaben zu lösen; und schließlich
  • Schritt (iii), der die Beschichtung der aufgerauhten Oberfläche mittels z.B. eines Sol-Gel-Prozesses umfasst, wobei die Schicht in einer Dicke von weniger als 1000 nm, vorzugsweise 800 um oder weniger, 600 um oder weniger, 500 nm oder weniger, oder 400 nm oder weniger, aufgetragen wird, und das die dritte Aufgabe löst, wenn es Schritt (ii) nachfolgt.
The inventors of the present application have now found that, in order to solve these objects, a method requires the following steps:
  • optionally, step (i), which provides a treatment of the metallic surface to increase its start-up temperature and thus to accomplish the first of the above three objects;
  • Step (ii) involving mechanical and / or chemical roughening of the metallic surface to be coated in order to achieve the second of the above-mentioned objects; and finally
  • Step (iii) comprising coating the roughened surface by, for example, a sol-gel process, the layer being in a thickness of less than 1000 nm, preferably 800 μm or less, 600 μm or less, 500 nm or less, or 400 nm or less, and that solves the third object if it succeeds step (ii).

Dabei wird die nach Schritt (iii) erhaltene dünne, transluzente Schicht von 100 nm bis weniger als 1 µm Dicke auf Basis von Si-, Zr-, Ti-, B-, Al- Verbindungen, bevorzugte Weise auf Basis von Si- Verbindungen aufgebracht.In this case, the thin, translucent layer of 100 nm to less than 1 .mu.m thickness obtained on the basis of Si, Zr, Ti, B, Al compounds, obtained according to step (iii), is applied on the basis of Si compounds ,

Eine Variante dieses Verfahrens umfasst ebenfalls den fakultativen Schritt (i) sowie daran anschließend den Schritt (ii) gleichzeitig mit dem Beschichtungsschritt (iii) durchzuführen, wobei Schritt (ii) das Einbringen einer Zweitphase darstellt und die Schicht in einer Dicke von weniger als 1000 nm, vorzugsweise 800 nm oder weniger, 600 nm oder weniger, 500 nm oder weniger, oder 400 nm oder weniger, aufgetragen wird.A variant of this method also comprises the optional step (i) and subsequently carrying out step (ii) simultaneously with the coating step (iii), wherein step (ii) represents the introduction of a second phase and the layer is less than 1000 nm thick , preferably 800 nm or less, 600 nm or less, 500 nm or less, or 400 nm or less.

Somit betrifft ein Aspekt der vorliegenden Erfindung die oben skizzierten Verfahren. Ein weiterer Aspekt der vorliegenden Erfindung betrifft ein Bauteil, also z.B. ein Metallblech aus Chrom-Nickel-Stahl, das einem solchen Verfahren unterzogen worden ist.Thus, one aspect of the present invention relates to the methods outlined above. Another aspect of the present invention relates to a component, e.g. a metal sheet of chromium-nickel steel, which has been subjected to such a process.

Nachfolgend werden die Verfahren näher beschrieben:

  • Ggf. kann auf Schritt (i) verzichtet werden, ohne dass die Lösung der oben definierten Aufgaben gefährdet würde. Dies kann nämlich dadurch geschehen, dass ein Sonderstahl zur Verwendung ausgewählt wird, der (selbst in Sauerstoff haltiger Atmosphäre) relativ spät anläuft. Beispiele solcher Sonderstähle sind Cronifer 45 bzw. Cronifer 2 von Krupp VDM.
The methods are described in more detail below:
  • Possibly. Step (i) can be dispensed with without jeopardizing the solution to the above defined tasks. This can be done by using a special steel for use is selected, which starts (even in oxygen-containing atmosphere) relatively late. Examples of such special steels are Cronifer 45 and Cronifer 2 from Krupp VDM.

Es versteht sich für den einschlägigen Fachmann von selbst, dass Schritt (i) auch dann nicht nötig ist, wenn das Einbrennen in inerter bzw. nicht-oxidierender Atmosphäre erfolgt (dann ist gemäß Stand der Technik auch kein Netzwerkwandler nötig).
Schritt (i) ist in den übrigen Fällen jedoch unverzichtbar, wenn die gestellte(n) Aufgabe(n) gelöst werden soll(en), Oberflächen frei von Anlauf-Farben zur Verfügung zu stellen, und wenn die zuvor genannten Vorbedingungen nicht erfüllt werden (keine Verwendung von Sonderstahl im Sinne der Ausführung im vorletzten Absatz; keine Netzwerkwandler; kein Arbeiten in nicht-oxidierender Atmosphäre).
It goes without saying for the person skilled in the art that step (i) is not necessary even if the baking takes place in an inert or non-oxidizing atmosphere (then, according to the prior art, no network converter is necessary).
However, step (i) is indispensable in the remaining cases if the task (s) to be resolved are to be provided with surfaces free of tarnish colors and if the aforementioned preconditions are not met ( no use of special steel as described in the penultimate paragraph, no network converters, no working in a non-oxidizing atmosphere).

Vorzugsweise handelt es sich bei den zu behandelnden metallischen Oberflächen um solche von rostfreien Stählen, insbesondere um Oberflächen der Stahl-Sorten 1.4301 und 1.4016 (Chrom-Nickel- bzw. Chrom-Stahl), die andernfalls, also unbehandelt, bei Arbeitstemperaturen von 200°C und höher an der Luftatmosphäre oxidieren und sich infolgedessen während des Teilschritts (iii) (in Abwesenheit von Netzwerkwandlern) gelb verfärben.The metallic surfaces to be treated are preferably those of stainless steels, in particular surfaces of steel grades 1.4301 and 1.4016 (chromium-nickel or chromium steel), which are otherwise untreated at working temperatures of 200.degree and higher in the air atmosphere and, as a result, turn yellow during substep (iii) (in the absence of network transducers).

Nach den Erkenntnissen, die die Erfinder der vorliegenden Erfindung gewonnen haben, lassen sich chemisch beständige (weil Netzwerkwandler freie) Sol-Gel-Schichten auf Substrate aufbringen, auch ohne dass sich Anlauf-Farben herausbilden, wenn/weil die Substrate bzw. deren Oberflächen nach dem oben genannten Schritt (i) Anlauftemperaturen aufweisen, die deutlich über 200°C, z.B. bei 250°C, bevorzugter Weise bei 300°C, liegen. Das heisst, entsprechend einer bevorzugten Ausführungsform (α) der vorliegenden Erfindung besteht ein erster Schritt (i) des erfindungsgemäßen Verfahrens in einer Behandlung der metallischen Oberfläche, um ihre Anlauftemperatur zu erhöhen und damit die erste der oben genannten drei Aufgaben zu lösen.According to the findings, which the inventors of the present invention have obtained, chemically resistant (because network converter free) sol-gel layers can be applied to substrates, even without tarnish colors forming, if / because the substrates or their surfaces after the above-mentioned step (i) have start-up temperatures significantly above 200 ° C, eg at 250 ° C, preferably at 300 ° C, are. That is, according to a preferred embodiment (α) of the present invention, a first step (i) of the method according to the invention is a treatment of the metallic surface to increase its start-up temperature and thus to achieve the first of the above three objects.

Schritt (i) der bevorzugten Ausführungsform (α) kann durch jedes Verfahren erfolgen, bei dem das Metall einen Anlaufschutz ausbilden kann, ehe es zu einer verfärbenden Oxidschicht kommt. Bevorzugter Weise handelt es sich bei diesem Schritt um das Verfahren, das in der EP-A 1 022 357 beschrieben ist. Vorzugsweise umfaßt Schritt (i) die Schritte, die metallische Oberfläche auf bis zu 550°C zu erhitzen und die erhitzte Oberfläche anschließend mit Mineralsäure zu beizen (wie in der EP-A 1 022 357 beschrieben). Besonders bevorzugt ist es, die Anlauftemperatur der metallischen Oberfläche auf etwa 300°C zu erhöhen, so dass die Anlauftemperatur oberhalb der Temperatur liegt, bei der die Schutzwirkung der z.B. Si-O-Schicht eintritt, denn nach einem solchen Schritt (i) (und dem sich anschließenden Schritt (ii)) kann Schritt (iii) in SauerstoffAtmosphäre unter Verzicht auf Netzwerkwandler durchgeführt werden.Step (i) of the preferred embodiment (α) may be by any method in which the metal can form a tarnish before it becomes a discoloring oxide layer. Preferably, this step is the process described in EP-A 1 022 357. Preferably, step (i) comprises the steps of heating the metallic surface up to 550 ° C and then pickling the heated surface with mineral acid (as described in EP-A 1 022 357). It is particularly preferred to increase the start-up temperature of the metallic surface to about 300 ° C, so that the start-up temperature is above the temperature at which the protective effect of the example Si-O layer occurs, because after such a step (i) (and In the subsequent step (ii)), step (iii) can be carried out in an oxygen atmosphere without network converters.

Im Nachfolgenden wird dieser Schritt als "Schritt, die Anlauftemperatur zu erhöhen" oder als "Schritt zur Erhöhung der Anlauftemperatur" bezeichnet. Daran schließen sich dann Schritt (ii), mittels dessen die metallische Oberfläche aufgerauht wird, und Schritt (iii), ein üblicher Beschichtungsprozess, z.B. ein Sol-Gel-Prozess, nacheinander bzw. gleichzeitig, mit dem Ergebnis an, dass der Anlaufschutz des/der so behandelten Metalls/Legierung wie des Stahls, Kupfers, Messings oder Bronze auch bei Temperaturen bis 550°C nicht verloren geht.Hereinafter, this step will be referred to as a "step to increase the startup temperature" or a "step to increase the startup temperature". This is followed by step (ii), by means of which the metallic surface is roughened, and step (iii), a conventional coating process, e.g. a sol-gel process, one after the other, with the result that the tarnish protection of the treated metal / alloy such as steel, copper, brass or bronze is not lost even at temperatures up to 550 ° C.

Gemäß einer bevorzugten Ausführungsform der vorliegenden Erfindung werden die organischen Bestandteile (z.B. Methyl-, Ethyl-, 1-Propyl-, Isopropyl-Reste; zur Chemie im Allgemeinen und den organischen Resten im Speziellen siehe weiter unten, Seite 9) der Schichten nicht vollständig ausgebrannt. Dann erhält man eine reinigungsfreundliche, gegen Anlaufen beständige Oberfläche niedriger. Oberflächenenergie. Für den Fachmann erfordert es nur geringen Aufwand auszutesten, bei welcher Temperatur das Ausbrennen gemäß dieser bevorzugten Ausführungsform zu erfolgen hat. Ein genauer Temperaturbereich oder sogar Wert lässt sich nicht festlegen, da dieser von zahlreichen, dem Fachmann geläufigen Parametern (z.B. chemisch qualitative und quantitative Zusammensetzung) abhängt. Regelmäßig erfolgt das Ausbrennen bei einer Temperatur, die oberhalb der (späteren) Anwendungstemperaturen liegt. Das heisst, soll das Oberflächen behandelte Metall in einen Herd eingebaut werden, bei dem es einer Temperatur von bis zu 450°C ausgesetzt werden soll, soll das Ausbrennen bei Temperaturen von 450°C oder oberhalb von 450°C, vorzugsweise bei etwa 470, bei etwa 480, bei etwa 490 oder bei etwa 500°C, erfolgen.According to a preferred embodiment of the present invention, the organic constituents (eg methyl, ethyl, 1-propyl, isopropyl residues, for chemistry in general and the organic residues in particular see below, page 9) of the layers are not completely burned out , Then you get a cleaning-friendly, tarnish-resistant surface lower. Surface energy. For the expert, it requires only little effort to test at which temperature the burnout has to be made according to this preferred embodiment. An exact temperature range, or even value, can not be determined because it depends on numerous parameters known to those skilled in the art (e.g., chemical qualitative and quantitative composition). Burning out regularly takes place at a temperature which is above the (later) application temperatures. That is, if the surface treated metal is to be installed in a hearth where it is to be exposed to a temperature of up to 450 ° C, the burnout at temperatures of 450 ° C or above 450 ° C, preferably at about 470, at about 480, at about 490 or at about 500 ° C, take place.

Es wurde weiterhin gefunden, dass sich die bei geringen Schichtdicken auftretenden Interferenz-Farben der Schichten durch mechanische und/oder chemische und/oder physikalische Aufrauhung der (Edel-)Stahl-Oberfläche unterdrücken lassen. Physikalische Aufrauhung wird erfindungs gemäß definiert als das (physikalische) Einbringen von Zweitphasen (wie von Licht streuenden Teilchen oder Poren). Beispiele für die verschiedenen Arten der Aufrauhung sind Schleifen oder Strahlen, insbesondere Sand- oder Kugelstrahlen (mechanisch), Ätzen, z.B. mit Säuren wie Phosphor-, Schwefel- oder Salzsäure (chemisch) zur Erzeugung einer Mikrostruktur in der zu behandelnden Oberfläche (im Gegensatz zum Ätzen ist das in der EP-A 1 022 357 beschriebene und erfindungsgemäß als Schritt (i) zu verwendende Beizen ein reiner Reinigungsprozess zum Abtragen der Oxidschicht, ohne in der zu behandelnden (Substrat-) Oberfläche selbst eine Mikrostruktur auszubilden), aber auch der Einbau von Licht streuenden Teilchen und/oder Poren (physikalisch).It has furthermore been found that the interference colors of the layers which occur at low layer thicknesses can be suppressed by mechanical and / or chemical and / or physical roughening of the (noble) steel surface. Physical roughening is defined according to the invention as the (physical) introduction of second phases (such as light-scattering particles or pores). Examples of the different types of roughening are Grinding or blasting, in particular sand or shot peening (mechanical), etching, for example with acids such as phosphoric, sulfuric or hydrochloric acid (chemical) to produce a microstructure in the surface to be treated (in contrast to the etching is that in EP-A 1 022 357 and according to the invention as step (i) to be used pickling a pure cleaning process for removing the oxide layer without itself in the (substrate) surface to be treated to form a microstructure), but also the incorporation of light scattering particles and / or pores (physically).

Die Poren werden bevorzugter Weise durch mit Luft gefüllte Teilchenzwischenräume erzeugt. Diese Teilchenzwischenräume weiss der Fachmann einzubauen (siehe dazu auch den übernächsten Absatz). Als Licht streuende Teilchen kommen insbesondere TiO2 und ZrO2 in Betracht, allgemein alle solchen Teilchen, deren Brechungsindex größer ist als der der jeweiligen Schicht. In jedem Fall liegen die erfindungsgemäß die Interferenzen brechenden Geometrien der mechanischen, chemischen bzw. physikalischen Aufrauhungen in der Größenordnung von 2 - 1000 nm, vorzugsweise in einem Bereich von 15 - 500 nm, in einem Bereich von 40 - 300 nm, in einem Bereich von 50 - 250 nm bzw. in einem Bereich von 100 - 200 nm (Bereichsangaben jeweils bezogen auf den Durchmesser). Dabei sind bevorzugte Bereiche für die chemischen und mechanischen Rauhigkeiten 50 - 1000 nm, insbesondere 200 - 500 nm. Bevorzugte Bereiche für die (Licht streuenden) Teilchen (erste Form der physikalischen Aufrauhung) liegen bei 2 - 30 nm, insbesondere bei 5 - 25 oder 10 - 20 nm (abhängig im Wesentlichen von der Art von Teilchen und von deren Brechungsindex). Dabei sind bevorzugte Bereiche für die Poren (zweite Form der physikalischen Aufrauhung) 2 - 100 nm, insbesondere 5 - 50 nm.The pores are preferably produced by air-filled particle interspaces. The expert knows how to install these interparticle spaces (see also the next but one paragraph). Particularly suitable as light-scattering particles are TiO 2 and ZrO 2, in general all those particles whose refractive index is greater than that of the respective layer. In any case, the geometries of the mechanical, chemical or physical roughening which break the interferences according to the invention are of the order of 2 to 1000 nm, preferably in the range of 15 to 500 nm, in the range of 40 to 300 nm, in the range of 50-250 nm or in a range of 100-200 nm (ranges in each case based on the diameter). Preferred ranges for the chemical and mechanical roughnesses are 50-1000 nm, in particular 200-500 nm. Preferred ranges for the (light-scattering) particles (first form of physical roughening) are 2 to 30 nm, in particular 5 to 25 or 10-20 nm (depending essentially on the type of particles and their refractive index). Preferred areas for the pores (second form of physical roughening) are 2 - 100 nm, in particular 5 - 50 nm.

Bei der Verwendung der Licht streuenden Teilchen bzw. Poren in Schritt (ii) zur Verhinderung der Interferenzen muss auf ein bestimmtes Verhältnis zwischen Me (z.B. Si) der Matrix einerseits und Teilchen bzw. Poren andererseits geachtet werden. Wesentlich ist, dass der Volumenanteil von Teilchen/Poren in der gebrannten Schicht 0,05 - 20% beträgt, bevorzugter Weise 0,1 - 15%, besonders bevorzugter Weise aber 1 - 5%.When using the light-diffusing particles or pores in step (ii) to prevent interference, attention must be paid to a certain ratio between Me (e.g., Si) of the matrix on the one hand and pores on the other. It is essential that the volume fraction of particles / pores in the fired layer is 0.05-20%, more preferably 0.1-15%, most preferably 1-5%.

Dem Fachmann ist es völlig geläufig, Poren oder Licht streuende Teilchen wie auch mechanische oder chemische Rauhigkeiten in die Schichten einzuführen. Dennoch sei das Verfahren für den Fall der Poren und Teilchen grob skizziert. Teilchen lassen sich dadurch einbauen, dass während des Sol-Gel-Prozesses Licht streuende Teilchen zugegeben werden, die schliesslich auf Grund ihres Brechungsindex (der verschieden ist von dem der Matrix, also der Schicht) und geringen Größe von etwa 2 - 30 nm (z.B. 20 nm; angegeben als Teilchendurchmesser) das Auftreten der Interferenz-Farben verhindern oder zumindest deren Intensität deutlich verringern können. Geeignete Teilchen sind z.B. Al2O3, TiO2, ZrO2 und SiO2.It is well known to those skilled in the art to introduce pore or light scattering particles as well as mechanical or chemical roughness into the layers. Nevertheless, the procedure for the case of pores and particles is roughly sketched. Particles can be incorporated by adding light-scattering particles during the sol-gel process Finally, due to their refractive index (which is different from that of the matrix, ie the layer) and small size of about 2 - 30 nm (eg 20 nm, indicated as particle diameter) prevent the occurrence of interference colors or at least significantly reduce their intensity , Suitable particles are, for example, Al 2 O 3 , TiO 2 , ZrO 2 and SiO 2 .

Handelt es sich um die einzubauenden Poren zur Vermeidung der Interferenz-Farben, bestehen grundsätzlich drei Optionen, dies zu erreichen. Erstens setzt man während des Sol-Gel-Prozesses ein Treibmittel zu, das spätestens während des Vorgangs des Einbrennens, also während der Umwandlung des Aerogels in die Beschichtung, unter Zurücklassen von Poren entweicht. Oder man senkt die Konzentration der Ausgangssubstanzen für die Hydrolyse-Kondensations-Reaktionen (z.B. der Silane), um auf diese Weise Poren (Luft) in die Matrix einbauen zu können. Oder man steuert den Sol-Gel-Prozess so, dass er ohne Teilchenzusatz durch unvollständige Vernetzung/Verdichtung zu einer Poren haltigen Schicht führt.When it comes to the pores to be installed to avoid the interference colors, there are basically three options for achieving this. First, during the sol-gel process, a blowing agent is added which escapes leaving pores behind at the latest during the process of baking, ie during the conversion of the airgel into the coating. Or one lowers the concentration of the starting substances for the hydrolysis-condensation reactions (for example the silanes) in order to be able to incorporate pores (air) into the matrix. Or one controls the sol-gel process so that it leads without particle addition by incomplete cross-linking / compression to a pore-containing layer.

Die gemäß der vorliegenden Erfindung aufgetragenen Schichten sind transparent, verändern die metallische Oberfläche in ihrem Aussehen also nicht.The coated according to the present invention layers are transparent, so do not change the metallic surface in appearance.

Zur Chemie des Sol-Gel-Prozesses gemäß der vorliegenden ErfindungOn the chemistry of the sol-gel process according to the present invention

Ausgangsverbindungen für die Hydrolyse und anschließende Kondensation sind erfindungsgemäß Verbindungen der allgemeinen Formel RnMeX4-n, wobei X und R wie in der DE-A 197 14 949 (Spalte 2, Zeilen 18 - 34; Spalte 3, Zeilen 1 - 9) definiert sind, wobei n 0, 1, 2 oder 3 ist, und wobei Me ausgewählt ist aus Si, Al, Zr, B und Ti. Im Fall von Me = Al oder B versteht es sich für den Fachmann, dass die oben genannte Formel wegen der Dreiwertigkeit der Zentralatome A1 und B RnMeX3-n, sein muss. Bevorzugt sind Verbindungen mit Me = Si; mit R = Wasserstoff, Methyl-, Ethyl-, i-Propyl-, n-Propyl-, Vinyl-, Allyl- oder Phenylrest, wobei nicht alle R gleich sein müssen; mit X = OH, Methoxy-, Ethoxy- oder Phenoxyrest oder Hal (F, Cl, Br, I, bevorzugt Cl und Br), wobei nicht alle X gleich sein müssen; und mit n = 0, 1 oder 2. Die organischen Reste R bzw. X haben in der Regel 1 bis 16 Kohlenstoffatome, wobei 1 bis 12, insbesondere 1 bis 8 Kohlenstoffatome bevorzugt sind (für die Arylreste gilt natürlich nur, dass 6 bzw. 10 Kohlenstoffatome bevorzugt sind). Besonders bevorzugt sind Reste mit 1 bis 4 (Alkyl, Alkenyl, Akinyl) bzw. 6 (Aryl) bzw. 7 bis 10 (Aralkyl, Alkaryl) Kohlenstoffatomen.Starting compounds for the hydrolysis and subsequent condensation according to the invention are compounds of the general formula R n MeX 4-n , where X and R are as described in DE-A 197 14 949 (column 2, lines 18-34, column 3, lines 1-9). where n is 0, 1, 2 or 3 and Me is selected from Si, Al, Zr, B and Ti. In the case of Me = Al or B, it will be understood by those skilled in the art that the above formula because of the triviality of the central atoms A1 and BR n MeX 3-n , must be. Preference is given to compounds with Me = Si; with R = hydrogen, methyl, ethyl, i-propyl, n-propyl, vinyl, allyl or phenyl, where not all R must be the same; with X = OH, methoxy, ethoxy or phenoxy or Hal (F, Cl, Br, I, preferably Cl and Br), wherein not all X must be the same; and with n = 0, 1 or 2. The organic radicals R and X generally have 1 to 16 carbon atoms, with 1 to 12, in particular 1 to 8 carbon atoms being preferred (for the aryl radicals, of course, only 6 or 10 carbon atoms are preferred). Particular preference is given to radicals having 1 to 4 (alkyl, alkenyl, alkynyl) or 6 (aryl) or 7 to 10 (aralkyl, alkaryl) carbon atoms.

Besonders bevorzugt sind Verbindungen mit Me = Si; mit R = Wasserstoff, Methyl-, Ethyl-, oder Phenylrest, wobei nicht alle R gleich sein müssen; mit X = OH, Methoxy-, Ethoxy- oder Phenoxyrest, wobei nicht alle X gleich sein müssen; und mit n = 0 oder 1.Particularly preferred are compounds with Me = Si; with R = hydrogen, methyl, ethyl, or phenyl, where not all R must be the same; with X = OH, methoxy, ethoxy or phenoxy, wherein not all X must be the same; and with n = 0 or 1.

Mindestens eine Verbindung der allgemeinen Formel RnMeX4-n muss eine Verbindung sein, bei der n = 2, 1 oder 0 ist bzw. mindestens eine Verbindung der allgemeinen Formel RnMeX3-n muss eine Verbindung sein, bei der n = 1 oder 0 ist, da ansonsten keine Schichtausbildung möglich ist (bei n = 3 bzw. 2 hat das z.B. Silan/Boran nur einen hydrolysierbaren Rest X und kann folglich nur mit einem Molekül reagieren).At least one compound of the general formula R n MeX4-n must be a compound in which n = 2, 1 or 0 or at least one compound of the general formula R n MeX 3-n must be a compound in which n = 1 or 0, since otherwise no layer formation is possible (at n = 3 or 2, for example, silane / borane has only one hydrolyzable radical X and consequently can only react with one molecule).

Vorzugsweise werden zwei, drei oder mehr Verbindungen der allgemeinen Formel RnMeX4-n bzw. RnMeX3-n in Kombination eingesetzt, wobei das Verhältnis R:Me (entsprechend n) auf molarer Basis bevorzugter Weise im Durchschnitt bei 0,2 bis 1,5 liegt.Preferably, two, three or more compounds of the general formula R n MeX 4-n or R n MeX 3-n are used in combination, wherein the ratio R: Me (corresponding to n) on a molar basis is preferably 0.2 on average to 1.5.

Die Hydrolyse- und Kondensationsreaktionen (Sol-Gel-Prozesse) werden bevorzugter. Weise in einem Lösungsmittel-Gemisch aus Wasser und einem organischen Lösungsmittel wie Methanol, Ethanol, Aceton, Ethylacetat, DMSO oder Dimethylsulfon durchgeführt. Das organische Lösungsmittel kann auch ein Gemisch aus zwei oder mehreren Lösungsmitteln sein. Die genannten und erfindungsgemäß brauchbaren Lösungsmittel sind alle mit Wasser mischbar, so dass die Hydrolyse ohne Phasentrennung ablaufen kann.The hydrolysis and condensation reactions (sol-gel processes) are more preferred. Mann carried out in a solvent mixture of water and an organic solvent such as methanol, ethanol, acetone, ethyl acetate, DMSO or dimethyl sulfone. The organic solvent may also be a mixture of two or more solvents. The solvents mentioned and usable according to the invention are all miscible with water, so that the hydrolysis can proceed without phase separation.

Die Beschichtung(szusammensetzung) kann auf verschiedene bekannte Weisen auf die metallischen Oberflächen aufgetragen werden: durch Tauchen, Schleudern, Sprühen, Fluten oder Einreiben; die metallische Oberfläche in das Bad der z.B. Silane einzutauchen, ist ein bevorzugtes Verfahren.The coating (composition) can be applied to the metallic surfaces in various known ways: by dipping, spinning, spraying, flooding or rubbing; the metallic surface in the bath of e.g. Dipping silanes is a preferred process.

Die Dicke, mit der die Schichten erfindungsgemäß aufgetragen werden, liegen in einem Bereich von 100 bis unter 1000 nm, bevorzugter Weise in einem Bereich von 200 bis 850 nm, besonders bevorzugter Weise in einem Bereich von 300 bis 750 nm, ganz besonders bevorzugter Weise bei 350 bis 600 nm. Aber auch Schichtdicken von 100 bis 300 nm, besser 100 bis 200 nm, sind bevorzugt im Sinne der vorliegenden Erfindung.The thickness with which the layers are applied according to the invention is in a range from 100 to below 1000 nm, more preferably in a range from 200 to 850 nm, particularly preferably in a range from 300 to 750 nm, most preferably at 350 to 600 nm. But layer thicknesses of 100 to 300 nm, more preferably 100 to 200 nm, are preferred for the purposes of the present invention.

Beispielexample

Nach dem in der EP-A 1 022 357 beschriebenen Verfahren gebeizter (Schritt (i)) und anschließend Kugel gestrahlter (Schritt (ii)) Chrom-Stahl 1.4016 (ohne Anlauf-Farben) wurde mit einer 5%igen Lösung von Dynasil GH 02 (die Dynasil-Lösung basiert laut Angabe des Herstellers, der Degussa Hüls, auf hydrolysierten und teilkondensierten Silanen) in 1-Butanol tauchbeschichtet, getrocknet und bei 550°C eingebrannt. Der Stahl lief nach der Behandlung auch bei einer Temperatur von 500°C (10 h Haltezeit) nicht an. Es wurden keine Interferenz-Farben beobachtet.After the process described in EP-A 1 022 357 (step (i)) and then shot blasted (step (ii)) chromium steel 1.4016 (no tarnish colors) was treated with a 5% solution of Dynasil GH 02 (The Dynasil solution is according to the manufacturer, the Degussa Hüls, on hydrolyzed and partially condensed silanes) dip-coated in 1-butanol, dried and baked at 550 ° C. The steel did not run after treatment even at a temperature of 500 ° C (10h hold time). No interference colors were observed.

Claims (10)

  1. Method of coating metallic surfaces of ovens, cookers and the insert parts as well as coverings thereof, excluding lithographic plates, characterised in that the method comprises either, in this sequence,
    (a) a step (ii), which includes a mechanical and/or chemical roughening of the metallic surface to be coated, and
    (b) a step (iii), which includes coating of the roughened surface, wherein the coating is applied in a thickness of 100 nm to less than 1 micron, or
    (c) the introduction of a second phase as step (ii) simultaneously with the coating step (iii), wherein the coating is applied in a thickness of 100 nm to less than 1 micron, and
    (d) the thin, translucent coating, which is obtained after step (iii), of 100 nm to less than 1 micron thickness on the basis of Si, Zi, Pi, B, Al compounds, in preferred manner is applied on the basis of Si compounds.
  2. The method according to claim 1, characterised in that the introduction of the second phase is carried out by inclusion of light-dispersing particles, particularly TiO2, Al2O3, ZiO2 and/or SiO2.
  3. The method according to claim 2, characterised in that the geometry of the mechanical and chemical roughening lies in an order of magnitude of 50 - 1000 nm or 200 - 500 nm and that the geometry for introduction of the second phase of physical roughening lies in the range of 2 - 100 nm, particularly 5 - 50, 2 - 30, 5 - 25 or 10 - 20 nm.
  4. The method according to one of the preceding claims, characterised in that the metallic surface to be coated is a steel surface, in preferred manner a surface containing chromium and/or nickel.
  5. The method according to one of the preceding claims, characterised in that the coating is applied in a thickness which lies in a range of 200 to 850 nm, in preferred manner in a range of 300 to 750 nm and in particularly preferred manner in a range of 350 to 600 nm.
  6. The method according to one of the preceding claims, characterised in that preceding the steps (iii) and (iii) is a step (i) which provides a treatment of the metallic surface in order to increase the tarnishing temperature of this metallic surface to approximately 300° C so that the tarnishing temperature lies above the temperature at which the protective effect of, for example, the Si-O coating occurs.
  7. The method according to claim 6, characterised in that the step (i) comprises the steps of heating the metallic surface up to 550° C and subsequently pickling the heated surface in mineral acid.
  8. The method according to claim 6 or 7, characterised in that the coating is carried out in step (iii) in a wet-chemical manner, preferably by means of a sol-gel process.
  9. The method according to one of the preceding claims, characterised in that as starting compounds in step (iii), particularly for the sol-gel process, use is made of compounds of the general formula RnMeX4-n or RnMeX3-n, wherein X is hydrolysable groups or hydroxyl groups, wherein R is hydrogen, alkyl, alkenyl and alkinyl groups with up to 12 carbon atoms and aryl, aralkyl and alkaryl groups with 6 to 10 carbon atoms and n is 0, 1 or 2, with the proviso that at least one compound with n = 1 or 2 is used and wherein Me is selected from Si, Al, Zr, B and Ti.
  10. Components treated by means of the method according to one of the preceding claims.
EP01991656A 2000-12-19 2001-12-19 Method for improving metal surfaces to prevent thermal tarnishing Expired - Lifetime EP1381711B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10064134A DE10064134A1 (en) 2000-12-19 2000-12-19 Process for finishing metallic surfaces to avoid thermal tarnishing
DE10064134 2000-12-19
PCT/DE2001/004824 WO2002050330A2 (en) 2000-12-19 2001-12-19 Method for improving metal surfaces to prevent thermal tarnishing

Publications (2)

Publication Number Publication Date
EP1381711A2 EP1381711A2 (en) 2004-01-21
EP1381711B1 true EP1381711B1 (en) 2007-06-06

Family

ID=7668357

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01991656A Expired - Lifetime EP1381711B1 (en) 2000-12-19 2001-12-19 Method for improving metal surfaces to prevent thermal tarnishing

Country Status (5)

Country Link
US (2) US20030232206A1 (en)
EP (1) EP1381711B1 (en)
DE (2) DE10064134A1 (en)
ES (1) ES2287183T3 (en)
WO (1) WO2002050330A2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8569665B2 (en) * 2006-10-17 2013-10-29 Meyer Intellectual Properties Limited Cookware with tarnish protected copper exterior
DE102008013166A1 (en) * 2008-03-07 2009-09-10 Iplas Innovative Plasma Systems Gmbh Method for producing an interference color-free protective layer
JP5899615B2 (en) * 2010-03-18 2016-04-06 株式会社リコー Insulating film manufacturing method and semiconductor device manufacturing method
FR2988404B1 (en) * 2012-03-21 2015-02-13 Centre Techn Ind Mecanique METHOD FOR DEPOSITING ANTI-CORROSION COATING
US20160310984A1 (en) * 2013-12-18 2016-10-27 Poligrat Gmbh Method for the production of colored stainless steel surfaces
DE102014210671A1 (en) * 2014-06-05 2015-12-17 BSH Hausgeräte GmbH METHOD FOR PREVENTING INTERFERENCE COLORS ON THIN-COATED METAL SURFACES

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55127561A (en) * 1979-03-26 1980-10-02 Canon Inc Image forming member for electrophotography
US5192410A (en) * 1988-07-28 1993-03-09 Nippon Steel Corporation Process for manufacturing multi ceramic layer-coated metal plate
JPH03130356A (en) * 1989-10-13 1991-06-04 Masuzo Hamamura Rust-and corrosion-preventive working method effective over a long term
US5272295A (en) * 1991-01-23 1993-12-21 Sumitomo Electric Industries, Ltd. Electric contact and method for producing the same
US5420400A (en) * 1991-10-15 1995-05-30 The Boeing Company Combined inductive heating cycle for sequential forming the brazing
EP0690517B1 (en) * 1994-05-30 2003-10-01 Canon Kabushiki Kaisha Rechargeable lithium battery
EP0798130B1 (en) * 1996-03-29 2000-06-07 Agfa-Gevaert N.V. Lithographic plates with coating
JP4104026B2 (en) * 1996-06-20 2008-06-18 財団法人国際科学振興財団 Method for forming oxidation passivated film, fluid contact parts and fluid supply / exhaust system
EP0831538A3 (en) * 1996-09-19 1999-07-14 Canon Kabushiki Kaisha Photovoltaic element having a specific doped layer
TW338729B (en) * 1996-09-30 1998-08-21 Kawasaki Steel Co Hot roll stainless steel tape and the manufacturing method
DE19645043A1 (en) * 1996-10-31 1998-05-07 Inst Neue Mat Gemein Gmbh Process for the production of substrates with high-temperature and UV-stable, transparent, colored coatings
US5869141A (en) * 1996-11-04 1999-02-09 The Boeing Company Surface pretreatment for sol coating of metals
DE19708808B4 (en) * 1997-03-04 2010-10-21 Biedermann, Bianca Method and device for applying transparent protective layers to objects
US5881972A (en) * 1997-03-05 1999-03-16 United Technologies Corporation Electroformed sheath and airfoiled component construction
DE19714949A1 (en) * 1997-04-10 1998-10-15 Inst Neue Mat Gemein Gmbh Process for providing a metallic surface with a glass-like layer
DE19719948A1 (en) * 1997-05-13 1998-11-19 Inst Neue Mat Gemein Gmbh Production of nano-structured mouldings and coatings
JP3404286B2 (en) * 1998-04-16 2003-05-06 日本パーカライジング株式会社 Metal surface treatment method, and metal member having a surface obtained by the surface treatment method
ES2162546B1 (en) * 1999-01-22 2003-05-01 Bsh Fabricacion Sa METHOD AND INSTALLATION FOR THE SURFACE TREATMENT OF STAINLESS STEEL.

Also Published As

Publication number Publication date
WO2002050330A2 (en) 2002-06-27
US20030232206A1 (en) 2003-12-18
DE50112610D1 (en) 2007-07-19
WO2002050330A3 (en) 2003-11-20
ES2287183T3 (en) 2007-12-16
EP1381711A2 (en) 2004-01-21
US20060057284A1 (en) 2006-03-16
DE10064134A1 (en) 2002-06-27

Similar Documents

Publication Publication Date Title
DE60121007T3 (en) SUBSTRATE WITH A PHOTOCATALYTIC COATING
DE102007036407B4 (en) Process for producing a coated three-dimensionally shaped glass ceramic pane
DE69911431T2 (en) WATER REPELLENT COMPOSITION, METHOD FOR PRODUCING A COATING AND PRODUCT WITH THIS COATING
EP1342702B1 (en) Glass body with a porous coating
WO2006114321A1 (en) Anti-reflection coating and method for applying same
EP1979399B1 (en) Pyrolysis resistant coating finish
DE69710678T2 (en) Water-repellent glass pane and process for its manufacture
DE10342398A1 (en) Protective layer for a body and method and arrangement for the production of protective layers
EP0914486A1 (en) Coating substrate
DE69108167T2 (en) Sol-gel process for the production of silicon carbide and substrate protection.
DE102009017547A1 (en) Infrared radiation reflecting glass or glass ceramic pane
DE102004026344A1 (en) Method for producing a hydrophobic coating, device for carrying out the method and substrate having a hydrophobic coating
EP1381711B1 (en) Method for improving metal surfaces to prevent thermal tarnishing
EP1987548A1 (en) Semiconductor component and method for producing it and use for it
EP3008226B1 (en) Method for the surface treatment of corten steel
WO2010112122A1 (en) Reflector
EP1958008A1 (en) Reflector with a protective layer made of sol-gel lacquer
EP2673393B1 (en) Protective coating for components of aerospace engineering and their manufacture
DE3601500C2 (en)
EP0550819A1 (en) Glass ceramic article decorated with coloured ceramic paint, in particular glass ceramic sheet and method to remove vague contours from glass ceramic articles decorated with coloured ceramic paint
EP2620522A2 (en) Method for producing a ceramic anti-adhesive coating and corresponding item with such an anti-adhesive coating
EP3917992A1 (en) Doped alkali silicate protective layers on metal
EP1559810A2 (en) Process for the preparation of a ceramic protective layer
DE102012108398B4 (en) Hob, Aperture, Geräteeinhausung and fireplace or furnace panel with a hologram and method for its or their preparation, and use of a substrate on which a phase hologram is applied
DE2453227C2 (en) METHOD FOR METALIZING CERAMIC OR GLASS SUPPORT BODIES

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BSH BOSCH UND SIEMENS HAUSGERAETE GMBH

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT SE

17P Request for examination filed

Effective date: 20040521

17Q First examination report despatched

Effective date: 20050427

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070606

REF Corresponds to:

Ref document number: 50112610

Country of ref document: DE

Date of ref document: 20070719

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070906

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2287183

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080307

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50112610

Country of ref document: DE

Owner name: BSH HAUSGERAETE GMBH, DE

Free format text: FORMER OWNER: BSH BOSCH UND SIEMENS HAUSGERAETE GMBH, 81739 MUENCHEN, DE

Effective date: 20150402

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: BSH HAUSGERATE GMBH

Effective date: 20150527

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: BSH HAUSGERATE GMBH

Effective date: 20151022

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 50112610

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191231

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20191219

Year of fee payment: 19

Ref country code: IT

Payment date: 20191216

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20200122

Year of fee payment: 19

Ref country code: GB

Payment date: 20191220

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50112610

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201219

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201219

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210701

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201220