EP1373799B1 - Burner for a gas and air mixture - Google Patents

Burner for a gas and air mixture Download PDF

Info

Publication number
EP1373799B1
EP1373799B1 EP02719999A EP02719999A EP1373799B1 EP 1373799 B1 EP1373799 B1 EP 1373799B1 EP 02719999 A EP02719999 A EP 02719999A EP 02719999 A EP02719999 A EP 02719999A EP 1373799 B1 EP1373799 B1 EP 1373799B1
Authority
EP
European Patent Office
Prior art keywords
burner
flame
ring disks
ring
stabilisation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02719999A
Other languages
German (de)
French (fr)
Other versions
EP1373799A1 (en
Inventor
Jochen Volkert
Peter Goebel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GVP Gesellschaft zur Vermarktung der Porenbrennertechnik mbH
Original Assignee
GVP Gesellschaft zur Vermarktung der Porenbrennertechnik mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GVP Gesellschaft zur Vermarktung der Porenbrennertechnik mbH filed Critical GVP Gesellschaft zur Vermarktung der Porenbrennertechnik mbH
Publication of EP1373799A1 publication Critical patent/EP1373799A1/en
Application granted granted Critical
Publication of EP1373799B1 publication Critical patent/EP1373799B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/40Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water tube or tubes
    • F24H1/43Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water tube or tubes helically or spirally coiled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass
    • F23C99/006Flameless combustion stabilised within a bed of porous heat-resistant material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/12Radiant burners
    • F23D14/14Radiant burners using screens or perforated plates
    • F23D14/145Radiant burners using screens or perforated plates combustion being stabilised at a screen or a perforated plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/12Radiant burners
    • F23D14/16Radiant burners using permeable blocks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/70Baffles or like flow-disturbing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2203/00Gaseous fuel burners
    • F23D2203/10Flame diffusing means
    • F23D2203/101Flame diffusing means characterised by surface shape
    • F23D2203/1012Flame diffusing means characterised by surface shape tubular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2203/00Gaseous fuel burners
    • F23D2203/10Flame diffusing means
    • F23D2203/108Flame diffusing means with stacked sheets or strips forming the outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2212/00Burner material specifications
    • F23D2212/10Burner material specifications ceramic
    • F23D2212/101Foam, e.g. reticulated

Definitions

  • the invention relates to a burner for a gas / air mixture.
  • a burner for a gas / air mixture known is for example from the DE 43 22 109 A1 a burner for a gas / air mixture known.
  • the combustion takes place axially in a housing with a constant cross-section, which is filled with a total of a porous material. It forms no on the porous material outgoing flame front.
  • the combustion takes place exclusively within the space filled with the porous material. There are no free flames extending from an outer surface of the porous agent into the environment. This is also called a volume burner.
  • a gas / air mixture can be burned with low emissions.
  • a burner is known in which a perforated tube is surrounded radially with a cylindrical body made of catalytic material. It is a surface burner, ie the flames extend from one surface into the environment.
  • the US 4,900,245 describes an infrared burner in which a nozzle tube is surrounded by a cylindrical member made of a ceramic foam.
  • the cylindrical element serves to uniformly distribute the gas on its surface. The gas is burned on the surface of the cylindrical member. On the surface of a flame detector is provided. When the flame goes out, it will automatically re-ignite.
  • the DE 195 08 908 A1 describes a burner tube in which a plurality of radially circumferential slots is provided. The flames fan out from the slots.
  • a gas burner known from the GB 2 231 949 A is a gas burner known.
  • a combustible gas mixture is passed through a porous ceramic disc and burned.
  • the disk can be arranged downstream of a layer sequence in the flow direction, which is formed from flat and wavy annular discs.
  • the gas is burned on an outer surface surrounding the layer sequence.
  • the EP 0 382 674 describes an infrared burner in which a porous layer formed of ceramic fibers is applied to a cylinder made of a wire mesh. Again, it is a surface burner. Other surface burners are eg from the DE 297 15 119 41 ,of the US 4,679,528 , of the US 5240411 or the US 5 147 201 known.
  • the object of the invention is to eliminate the disadvantages of the prior art.
  • a volume burner is to be specified which has improved heat extraction and with which combustion of a gas / air mixture with low emission values can be carried out at the same time.
  • Another aim is to provide a volume burner whose modulability is improved over known volume and surface burners.
  • the burner according to the invention has an excellent heat extraction. It is attributed to improved heat transfer by convection and radiation. A gas / air mixture can be burned with particularly low emission values because of improved homogenization in the entire modulation range.
  • gas / air mixture herein means a combustible gas, e.g. Natural gas, propane gas and the like, understood with air or other suitable oxidant mixture, the mixing ratio is selected so that combustion is possible.
  • the diameter of the openings provided in the nozzle tube is expediently chosen so that a flashback into the nozzle tube is not possible.
  • the apertures may have a diameter in the range of 0.5 to 2.0 mm, preferably 1.3 to 1.5 mm.
  • the combustion of the gas takes place essentially in the means for stabilizing the flame.
  • no free flames are formed on an outer surface surrounding the means for stabilizing the flame.
  • the means for stabilizing the flame has the function to limit the combustion chamber and at the same time to equalize and lower the flame temperature. Another function is the stabilization of the flame in the transition region between the nozzle tube and the combustion chamber by a stepwise Increase the Peclet number.
  • the means for stabilizing the flame is not directly surrounded by a housing. The heat can be uncoupled unhindered. Because of the radial arrangement of the means for stabilizing the flame, a particularly large area for the heat extraction is achieved.
  • the coupling-out surface can correspond, for example, to the surface of a cylinder jacket.
  • the radial arrangement of the means for stabilizing the flame also has the advantage that the expanded combustion gases can be removed rapidly by a volume of communicating flow channels which is realized radially outwards. There is no accumulation of heat in the means for stabilizing the flame, which further improves the heat extraction. Because of the radial expansion of the cross-sections of the flow channels due to the radial arrangement of the means for stabilizing the flame, the convection velocity of the combustion gases slows down. The flame is thus additionally stabilized fluidically. The modulability of the burner is further increased.
  • the inlet downstream of a fan for transporting the gas / air mixture into the nozzle tube ensures that a sufficient amount of gas / air mixture through the nozzle tube is always supplied to the means for stabilizing the flame.
  • the nozzle tube may be formed of a refractory ceramic, which is preferably made of ceramic fibers.
  • the refractory ceramic expediently has a porosity of 75 to 95 vol.%.
  • Such a ceramic is characterized in practical use by longevity.
  • a ceramic produced using ceramic fibers has a long service life because of its particularly good breaking strength.
  • the ceramic is expediently composed of about 50% by weight of aluminum oxide and 50% by weight of silicon oxide.
  • the nozzle tube may also be made of other suitable materials, eg refractory metals, quartz glass, glass ceramic, foamed ceramic and the like.
  • the means for stabilizing the flame may be a porous medium having a pore size which allows the formation of a flame.
  • the means for stabilizing the flame is expediently formed from a multiplicity of annular disks extending radially from the nozzle tube and arranged at an axial distance from one another.
  • the annular discs may be frictionally held on the nozzle tube.
  • the annular discs may be formed from first and second annular discs, wherein a ring radius of the first annular discs is smaller than the annular radius of the second annular discs.
  • the ring radius of the second annular discs is expediently at least twice as large as the ring radius of the first annular discs.
  • the term "ring radius” is understood here to mean the difference between an inner radius and an outer radius of the annular disc.
  • the first and the second annular discs are accommodated alternately in the axial direction on the nozzle tube. Due to the alternating sequence of the first and the second annular disks, a radially inner first flame stabilizing zone and a radially outer second flame stabilizing zone without intermediate first annular disks are advantageously formed.
  • the Peclet number of the first flame stabilization zone is expediently smaller than the Peclet number of the second flame stabilization zone.
  • the proposed inward-outward increase of the Peclet number occurs in the prescribed embodiment discontinuous. Nevertheless, it has surprisingly been found that even the provision of two flame stabilization zones enables the realization of a burner with outstanding dynamics.
  • the Peclet number ideally increases continuously radially from the inside to the outside.
  • the Peclet number is chosen so that in the means for stabilizing the flame combustion takes place in the manner of a volume burner.
  • the Peclet number of the nozzle tube is chosen so that a flashback into the nozzle tube is impossible. Because of the definition of the Peclet number and the effect and functioning of volume burners is supplemented to the DE 43 22 109 A1 , the disclosure of which is hereby incorporated by reference.
  • the surface of the annular discs is expediently corrugated, so that between two adjacent annular discs from the nozzle tube to the outer peripheral edge of the annular discs extending flow channels are formed.
  • the wave crest lines of the waves extend, preferably curved, from the center to the peripheral edge of the annular disks, so that preferably two curved, continuous flow channels are formed between two adjacent annular disks from the nozzle pipe to the outer peripheral edge of the annular disks.
  • flow channels are formed in the means for stabilizing, the cross-section of which increases radially from the inside to the outside.
  • the Peclet number expediently increases radially outwardly in the means for stabilizing. It has been found that such a design brings about a particularly good decoupling of the heat generated by the combustion and an increase in the modulability. Furthermore, it has been found that the radial increase of the cross section from the inside to the outside can significantly reduce a sound emission caused by thermoacoustical excitation.
  • the proposed burner is particularly quiet during operation. In particular, it does not come to low-frequency vibrations, which can lead to destruction of the nozzle tube or the means for stabilizing the flame.
  • the surface of the annular disks advantageously has a plurality of further openings.
  • the further openings may be rectangular, slit-like or round.
  • the opening area of the further openings is expediently approximately 1 mm 2 .
  • the annular discs may be made of a refractory, preferably having a lattice-like structure, ceramic produced. This may be a fabric made of mullite fibers, which is received in a matrix formed from alumina.
  • the annular discs are arranged between two provided in the vicinity of the ends of the nozzle tube further made of a refractory ceramic discs.
  • the other annular disks limit the combustion chamber terminal. They have the function of thermal insulation. They are suitably made of a porous alumina ceramic, which, however, has no openings.
  • the means for stabilizing the flame may also be made of a three-dimensional metal mesh, a porous ceramic or the like.
  • the nozzle tube has a Peclet number of ⁇ 65 and the means for stabilizing the flame has a Peclet number of> 65. This ensures that the flame in the nozzle tube is prevented from hitting back. At the same time is one Combustion possible on the means to stabilize the flame.
  • the means for stabilizing the flame is surrounded by a particularly advantageous embodiment feature of a heat exchanger.
  • the decoupled from the means for stabilizing the flame heat is transferred with high efficiency to a circulating in the heat exchanger liquid medium.
  • the heat exchanger can in turn be surrounded by a housing.
  • FIG. 1 an inlet 2 for a gas / air mixture is provided in a housing half shell 1 of a fan not shown in detail here.
  • a blower outlet 3 is located opposite a baffle plate 5 received in an antechamber 4.
  • the baffle plate 5 has the function to ensure a homogeneous flow rate as possible at the inlet cross-section 6 of a nozzle tube 7.
  • the nozzle tube 7 has a plurality of radially extending apertures 8 with a diameter of about 1.0 to 2.0 mm. The openings 8 are uniformly distributed over the lateral surface of the nozzle tube 7.
  • annular discs 9 On the outer circumferential surface of the nozzle tube 7 are received annular discs 9, which are advantageously formed corrugated in cross section.
  • the annular discs 9 are axially spaced from each other. Between two adjacent annular disks 9 flow channels 10 are formed.
  • further annular disks 11 are received on the outer circumferential surface of the nozzle tube 7.
  • the further annular disks 11 are made of a thermally insulating ceramic, e.g. a highly porous alumina ceramic. They have no breakthroughs.
  • the further annular disks 11 define in the axial direction a combustion chamber containing the annular disks 10.
  • the reference numeral 12 tubes of a heat exchanger are designated. The tubes 12 and the nozzle tube 7 with the annular disks 9 and 11 received thereon are accommodated in a common housing G.
  • Fig. 2 shows a plan view of an annular disc 9, which is received on the nozzle tube 7.
  • the annular disk 9 is made of a ceramic having a lattice-like structure.
  • a ceramic can be made by impregnating a fabric made of mullite fibers with an aluminum oxide slurry by sintering the impregnated mullite fiber composite after drying the slurry. In this case formed further breakthroughs are designated 15. It has proven to be particularly useful to form the surface of the annular disc 9 corrugated.
  • the wave crest lines are the Fig. 2 indicated by the reference numeral 13. They run from the nozzle tube 7 curved to the peripheral edge 14 of the annular disc 9, so that a Schaufelradieri structure is formed.
  • the annular discs 9 each have an odd number of wave crest lines 13. If such annular discs 9 are arranged in succession so that their wave crest lines 13 are aligned in axial succession, flow channels 10 are formed whose cross-section increases from the nozzle tube 7 to the peripheral edge 14 out. Such flow channels 10 facilitate the discharge of the expanding hot combustion gases. A particularly efficient combustion and an effective heat extraction are achieved.
  • the annular discs 9 may also be made of a nonwoven fabric made of mullite fibers.
  • the fleece is dimensionally stable. It can be made by pressing mullite fibers.
  • the shape is expediently designed so that the annular discs have a corrugation.
  • the required apertures which may be in the form of holes or slots, may be made by statute.
  • the dimensionally stable mullite nonwoven is impregnated with an alumina slurry, dried and then sintered. The result is a dimensionally stable heat-resistant annular disc with the desired shape.
  • the annular discs may also be provided with a catalytically active coating according to a further embodiment feature.
  • a coating may contain lead, platinum or other suitable metals.
  • a burner with such catalytically coated annular disks has particularly low emission values.
  • first annular discs 16 and second annular discs 17 are received on the nozzle tube 7.
  • the first 16 and second annular discs 17 have radially outwardly extending corrugations 18.
  • flow channels 10 are formed, the cross section widens radially from the inside out.
  • a ring radius R1 of the first annular discs 16 is about half as large as a ring radius R2 of the second annular discs 17.
  • the term "ring radius" is present in the difference between an inner radius and an outer radius of the annular disc Understood. For explanation will be on Fig. 4 referenced, in which the ring radii R1, R2 are shown.
  • Fig. 4 It can be seen that the alternating sequence of the first annular discs 16 with the second annular discs 17 forms a first flame stabilization zone B1.
  • the annular sections of the second annular discs 17 extending over the first flame stabilization zone B1 form a radially outer second flame stabilization zone B2.
  • a Peclet number of a zone A formed by the nozzle tube 7 is ⁇ than 65. This reliably avoids flashback of flames into the nozzle tube 7.
  • a Peclet number of the flame stabilizing zones B1, B2 is> 65, the Peclet number of the second flame stabilizing zone B2 being greater than the Peclet number of the first flame stabilizing zone B1.
  • combustion takes place in the means for stabilizing the flame formed by the annular disks 9, 16, 17.
  • Virtually no flames extend from a surface surrounding the means for stabilizing the flame.
  • the proposed burner has excellent dynamics, that is, it can be modulated in a wider range than previously known volume or surface burners.
  • the means for stabilizing the flame can also be formed from spirally arranged radially extending from the nozzle tube surfaces. It can also be designed in the form of turbine blade-like or Schaufelradtechnikr annular discs.

Abstract

A burner for a gas/air mixture with an inlet ( 2 ) for the gas/air mixture, wherein a jet tube ( 7 ) is located downstream of the inlet ( 2 ). The jet tube ( 7 ) has a jacket surface with a plurality of breakthroughs ( 8 ) and is surrounded radially a flame stabilizing device.

Description

Die Erfindung betrifft einen Brenner für ein Gas/Luft-Gemisch.The invention relates to a burner for a gas / air mixture.

Nach dem Stand der Technik ist z.B. aus der DE 43 22 109 A1 ein Brenner für ein Gas/Luft-Gemisch bekannt. Dabei erfolgt die Verbrennung axial in einem Gehäuse mit konstantem Querschnitt, welches insgesamt mit einem porösen Material ausgefüllt ist. Es bildet sich keine über das poröse Material herausgehende Flammenfront. Die Verbrennung findet ausschließlich innerhalb des mit dem porösen Material gefüllten Raums statt. Es bilden sich keine freien Flammen, die sich von einer äußeren Oberfläche bzw. Grenzfläche des porösen Mittels in die Umgebung erstrecken. Man spricht hier auch von einem Volumenbrenner. Mit dem bekannten Brenner kann ein Gas/Luft-Gemisch mit niedrigen Emissionswerten verbrannt werden.According to the prior art is for example from the DE 43 22 109 A1 a burner for a gas / air mixture known. The combustion takes place axially in a housing with a constant cross-section, which is filled with a total of a porous material. It forms no on the porous material outgoing flame front. The combustion takes place exclusively within the space filled with the porous material. There are no free flames extending from an outer surface of the porous agent into the environment. This is also called a volume burner. With the known burner, a gas / air mixture can be burned with low emissions.

Aus der JP 59195022 A (Patent Abstracts of Japan) ist ein Brenner bekannt, bei dem ein mit Durchbrüchen versehenes Rohr radial mit einem aus katalytischem Material hergestellten Zylinderkörper umgeben ist. Es handelt sich dabei um einen Oberflächenbrenner, d.h. die Flammen erstrecken sich von einer Oberfläche in die Umgebung.From the JP 59195022 A (Patent Abstracts of Japan), a burner is known in which a perforated tube is surrounded radially with a cylindrical body made of catalytic material. It is a surface burner, ie the flames extend from one surface into the environment.

Die US 4,900,245 beschreibt ein Infrarotbrenngerät, bei dem ein Düsenrohr von einem zylindrischen Element umgeben ist, das aus einen keramischen Schaum hergestellt ist. Das zylindrische Element dient der gleichmäßigen Verteilung des Gases an dessen Oberfläche. Das Gas wird an der Oberfläche des zylindrischen Elements verbrannt. An der Oberfläche ist ein Flammendetektor vorgesehen. Beim Erlöschen der Flamme erfolgt automatisch eine erneute Zündung.The US 4,900,245 describes an infrared burner in which a nozzle tube is surrounded by a cylindrical member made of a ceramic foam. The cylindrical element serves to uniformly distribute the gas on its surface. The gas is burned on the surface of the cylindrical member. On the surface of a flame detector is provided. When the flame goes out, it will automatically re-ignite.

Die DE 195 08 908 A1 beschreibt ein Brennerrohr, bei dem eine Vielzahl radial umlaufender Schlitze vorgesehen ist. Aus den Schlitzen treten fächerförmig die Flammen aus.The DE 195 08 908 A1 describes a burner tube in which a plurality of radially circumferential slots is provided. The flames fan out from the slots.

Aus der GB 2 231 949 A ist ein Gasbrenner bekannt. Dabei wird ein brennbares Gasgemisch durch eine poröse keramische Scheibe geführt und verbrannt. Der Scheibe kann in Strömungsrichtung eine Schichtabfolge nachgeordnet sein, die aus flachen und gewellten Ringscheiben gebildet ist. In diesem Fall wird das Gas an einer die Schichtabfolge umgebenden äußeren Oberfläche verbrannt.From the GB 2 231 949 A is a gas burner known. In this case, a combustible gas mixture is passed through a porous ceramic disc and burned. The disk can be arranged downstream of a layer sequence in the flow direction, which is formed from flat and wavy annular discs. In this case, the gas is burned on an outer surface surrounding the layer sequence.

Die EP 0 382 674 beschreibt einen Infrarotbrenner, bei dem auf einen aus einem Drahtgeflecht hergestellten Zylinder eine poröse aus keramischen Fasern gebildete Schicht aufgebracht ist. Auch dabei handelt es sich um einen Oberflächenbrenner. Weitere Oberflächenbrenner sind z.B. aus der DE 297 15 119 41 ,der US 4,679,528 , der US 5240411 oder der US 5 147 201 bekannt.The EP 0 382 674 describes an infrared burner in which a porous layer formed of ceramic fibers is applied to a cylinder made of a wire mesh. Again, it is a surface burner. Other surface burners are eg from the DE 297 15 119 41 ,of the US 4,679,528 , of the US 5240411 or the US 5 147 201 known.

Aufgabe der Erfindung ist es, die Nachteile nach dem Stand der Technik zu beseitigen. Es soll insbesondere ein Volumenbrenner angegeben werden, welcher eine verbesserte Wärmeauskopplung aufweist und mit dem gleichzeitig eine Verbrennung eines Gas/Luft-Gemischs mit niedrigen Emissionswerten durchführbar ist. Weiteres Ziel ist es, einen Volumenbrenner anzugeben dessen Modulierbarkeit gegenüber bekannten Volumen- und Oberflächenbrenner verbessert ist.The object of the invention is to eliminate the disadvantages of the prior art. In particular, a volume burner is to be specified which has improved heat extraction and with which combustion of a gas / air mixture with low emission values can be carried out at the same time. Another aim is to provide a volume burner whose modulability is improved over known volume and surface burners.

Diese Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst. Zweckmäßige Ausgestaltungen ergeben sich aus den Merkmalen der Ansprüche 2 bis 22.This object is solved by the features of claim 1. Advantageous embodiments emerge from the features of claims 2 to 22.

Der erfindungsgemäße Brenner weist eine hervorragende Wärmeauskopplung auf. Sie wird auf einen verbesserten Wärmeübergang durch Konvektion und Strahlung zurückgeführt. Ein Gas/Luft-Gemisch kann wegen verbesserter Homogenisierung im gesamten Modulationsbereich mit besonders niedrigen Emissionswerten verbrannt werden.The burner according to the invention has an excellent heat extraction. It is attributed to improved heat transfer by convection and radiation. A gas / air mixture can be burned with particularly low emission values because of improved homogenization in the entire modulation range.

Unter dem Begriff "Gas/Luft-Gemisch" wird vorliegend ein aus einem brennbaren Gas, z.B. Erdgas, Propangas und dgl., mit Luft oder einem anderen geeigneten Oxidationsmittel bestehendes Gemisch verstanden, wobei das Mischungsverhältnis so gewählt ist, dass eine Verbrennung möglich ist.The term "gas / air mixture" herein means a combustible gas, e.g. Natural gas, propane gas and the like, understood with air or other suitable oxidant mixture, the mixing ratio is selected so that combustion is possible.

Der Durchmesser der im Düsenrohr vorgesehenen Durchbrüche ist zweckmäßigerweise so gewählt, dass ein Flammenrückschlag in das Düsenrohr nicht möglich ist. Die Durchbrüche können einen Durchmesser im Bereich von 0,5 bis 2,0 mm, vorzugsweise 1,3 bis 1,5 mm, aufweisen.The diameter of the openings provided in the nozzle tube is expediently chosen so that a flashback into the nozzle tube is not possible. The apertures may have a diameter in the range of 0.5 to 2.0 mm, preferably 1.3 to 1.5 mm.

Die Verbrennung des Gases findet im Wesentlichen im Mittel zum Stabilisieren der Flamme statt. Insbesondere werden an einer das Mittel zum Stabilisieren der Flamme einhüllenden äußeren Oberfläche keine freien Flammen gebildet. Das Mittel zum Stabilisieren der Flamme hat die Funktion, den Brennraum zu begrenzen und gleichzeitig die Flammentemperatur zu vergleichmäßigen und zu erniedrigen. Eine weitere Funktion besteht in der Stabilisierung der Flamme im Übergangsbereich zwischen Düsenrohr und dem Verbrennungsraum durch eine stufenweise Erhöhung der Peclet-Zahl. Das Mittel zum Stabilisieren der Flamme ist nicht unmittelbar von einem Gehäuse umgeben. Die Wärme kann ungehindert ausgekoppelt werden. Wegen der radialen Anordnung des Mittels zum Stabilisieren der Flamme wird eine besonders große Fläche für die Wärmeauskopplung erreicht. Die Auskopplungsfläche kann z.B. der Fläche eines Zylindermantels entsprechen. Die radiale Anordnung des Mittels zum Stabilisieren der Flamme hat ferner den Vorteil, dass durch ein dabei verwirklichtes radial nach außen hin zunehmendes Volumen an kommunizierenden Strömungskanälen die expandierenden Verbrennungsgase rasch abgeführt werden können. Es entsteht im Mittel zum Stabilisieren der Flamme kein Wärmestau, was die Wärmeauskopplung weiter verbessert. Wegen der durch die radiale Anordnung des Mittels zur Stabilisierung der Flamme bedingten radialen Erweiterung der Querschnitte der Strömungskanäle kommt es zu einer Verlangsamung der Konvektionsgeschwindigkeit der Verbrennungsgase. Die Flamme wird damit strömungsmechanisch zusätzlich stabilisiert. Die Modulierbarkeit des Brenners wird weiter erhöht.The combustion of the gas takes place essentially in the means for stabilizing the flame. In particular, no free flames are formed on an outer surface surrounding the means for stabilizing the flame. The means for stabilizing the flame has the function to limit the combustion chamber and at the same time to equalize and lower the flame temperature. Another function is the stabilization of the flame in the transition region between the nozzle tube and the combustion chamber by a stepwise Increase the Peclet number. The means for stabilizing the flame is not directly surrounded by a housing. The heat can be uncoupled unhindered. Because of the radial arrangement of the means for stabilizing the flame, a particularly large area for the heat extraction is achieved. The coupling-out surface can correspond, for example, to the surface of a cylinder jacket. The radial arrangement of the means for stabilizing the flame also has the advantage that the expanded combustion gases can be removed rapidly by a volume of communicating flow channels which is realized radially outwards. There is no accumulation of heat in the means for stabilizing the flame, which further improves the heat extraction. Because of the radial expansion of the cross-sections of the flow channels due to the radial arrangement of the means for stabilizing the flame, the convection velocity of the combustion gases slows down. The flame is thus additionally stabilized fluidically. The modulability of the burner is further increased.

Vorteilhafterweise ist dem Einlass ein Gebläse zum Transport des Gas/Luft-Gemischs in das Düsenrohr nachgeordnet. Dadurch wird gewährleistet, dass stets eine ausreichende Menge an Gas/Luft-Gemisch durch das Düsenrohr dem Mittel zum Stabilisieren der Flamme zugeführt wird.Advantageously, the inlet downstream of a fan for transporting the gas / air mixture into the nozzle tube. This ensures that a sufficient amount of gas / air mixture through the nozzle tube is always supplied to the means for stabilizing the flame.

Das Düsenrohr kann aus einer feuerfesten Keramik, die vorzugsweise aus Keramikfasern hergestellt ist, gebildet sein. Die feuerfeste Keramik weist zweckmäßigerweise ein Porosität von 75 bis 95 Vol.% auf. Eine solche Keramik zeichnet sich im praktischen Einsatz durch Langlebigkeit aus. Insbesondere eine unter Verwendung von Keramikfasern hergestellte Keramik weist wegen ihrer besonders guten Bruchfestigkeit eine hohe Standzeit auf. Die Keramik ist zweckmäßigerweise zusammengesetzt aus etwa 50 Gew.% Aluminiumoxid und 50 Gew.% Siliziumoxid. Das Düsenrohr kann selbstverständlich auch aus anderen geeigneten Materialien, z.B. hitzebeständigen Metallen, Quarzglas, Glaskeramik, Schaumkeramik und dgl. hergestellt sein.The nozzle tube may be formed of a refractory ceramic, which is preferably made of ceramic fibers. The refractory ceramic expediently has a porosity of 75 to 95 vol.%. Such a ceramic is characterized in practical use by longevity. In particular, a ceramic produced using ceramic fibers has a long service life because of its particularly good breaking strength. The ceramic is expediently composed of about 50% by weight of aluminum oxide and 50% by weight of silicon oxide. Of course, the nozzle tube may also be made of other suitable materials, eg refractory metals, quartz glass, glass ceramic, foamed ceramic and the like.

Das Mittel zum Stabilisieren der Flamme kann ein poröses Medium sein mit einer Porengröße, welches die Bildung einer Flamme ermöglicht.The means for stabilizing the flame may be a porous medium having a pore size which allows the formation of a flame.

Das Mittel zum Stabilisieren der Flamme ist zweckmäßigerweise gebildet aus einer Vielzahl radial vom Düsenrohr sich erstreckender und mit einem axialen Abstand voneinander angeordneter Ringscheiben. Die Ringscheiben können reibschlüssig auf dem Düsenrohr gehalten sein.The means for stabilizing the flame is expediently formed from a multiplicity of annular disks extending radially from the nozzle tube and arranged at an axial distance from one another. The annular discs may be frictionally held on the nozzle tube.

Die Ringscheiben können aus ersten und zweiten Ringscheiben gebildet sein, wobei ein Ringradius der ersten Ringscheiben kleiner als der Ringradius der zweiten Ringscheiben ist. Der Ringradius der zweiten Ringscheiben ist zweckmäßigerweise zumindest doppelt so groß wie der Ringradius der ersten Ringscheiben. Unter dem Begriff "Ringradius" wird vorliegend die Differenz zwischen einem inneren Radius und einem äußeren Radius der Ringscheibe verstanden.The annular discs may be formed from first and second annular discs, wherein a ring radius of the first annular discs is smaller than the annular radius of the second annular discs. The ring radius of the second annular discs is expediently at least twice as large as the ring radius of the first annular discs. The term "ring radius" is understood here to mean the difference between an inner radius and an outer radius of the annular disc.

Nach einer weiteren Ausgestaltung sind die ersten und die zweiten Ringscheiben abwechselnd in axialer Richtung auf dem Düsenrohr aufgenommen. Durch die Wechselfolge der ersten und der zweiten Ringscheiben ist vorteilhafterweise eine radial innenliegende erste Flammenstabilisierungszone sowie eine radial außenliegende zweite Flammenstabilisierungszone ohne zwischenliegende erste Ringscheiben gebildet. Die Peclet-Zahl der ersten Flammenstabilisierungszone ist zweckmäßigerweise kleiner als die Peclet-Zahl der zweiten Flammenstabilisierungszone. Die vorgeschlagene von innen nach außen erfolgende Zunahme der Peclet-Zahl erfolgt beim vorgeschriebenen Ausführungsbeispiel unstetig. Es hat sich gleichwohl überraschenderweise gezeigt, dass schon das Vorsehen zweier Flammenstabilisierungszonen die Realisierung eines Brenners mit einer hervorragenden Dynamik ermöglicht.According to a further embodiment, the first and the second annular discs are accommodated alternately in the axial direction on the nozzle tube. Due to the alternating sequence of the first and the second annular disks, a radially inner first flame stabilizing zone and a radially outer second flame stabilizing zone without intermediate first annular disks are advantageously formed. The Peclet number of the first flame stabilization zone is expediently smaller than the Peclet number of the second flame stabilization zone. The proposed inward-outward increase of the Peclet number occurs in the prescribed embodiment discontinuous. Nevertheless, it has surprisingly been found that even the provision of two flame stabilization zones enables the realization of a burner with outstanding dynamics.

Selbstverständlich ist es auch möglich, eine Abfolge einer Vielzahl von Flammenstabilisierungszonen im Mittel zum Stabilisieren der Flamme zu realisieren. Die Peclet-Zahl nimmt dabei im Idealfall kontinuierlich radial von innen nach außen zu. In jedem Fall ist die Peclet-Zahl so gewählt, dass im Mittel zum Stabilisieren der Flamme eine Verbrennung nach Art eines Volumenbrenners stattfindet. Die Peclet-Zahl des Düsenrohrs ist dagegen so gewählt, dass ein Flammenrückschlag in das Düsenrohr unmöglich ist. Wegen der Definition der Peclet-Zahl und der Wirkungs- und Funktionsweise von Volumenbrennern wird ergänzend auf die DE 43 22 109 A1 hingewiesen, deren Offenbarungsgehalt hiermit einbezogen wird.Of course, it is also possible to realize a sequence of a plurality of flame-stabilizing zones in the means for stabilizing the flame. The Peclet number ideally increases continuously radially from the inside to the outside. In any case, the Peclet number is chosen so that in the means for stabilizing the flame combustion takes place in the manner of a volume burner. The Peclet number of the nozzle tube, however, is chosen so that a flashback into the nozzle tube is impossible. Because of the definition of the Peclet number and the effect and functioning of volume burners is supplemented to the DE 43 22 109 A1 , the disclosure of which is hereby incorporated by reference.

Die Fläche der Ringscheiben ist zweckmäßigerweise gewellt, so dass zwischen zwei benachbarten Ringscheiben vom Düsenrohr zum äußeren Umfangsrand der Ringscheiben verlaufende Strömungskanäle gebildet sind. Die Wellenkammlinien der Wellen verlaufen, vorzugsweise gekrümmt, vom Zentrum zum Umfangsrand der Ringscheiben, so dass zwischen zwei benachbarten Ringscheiben vom Düsenrohr zum äußeren Umfangsrand der Ringscheiben verlaufende, vorzugsweise gekrümmte, durchgehende Strömungskanäle gebildet sind.The surface of the annular discs is expediently corrugated, so that between two adjacent annular discs from the nozzle tube to the outer peripheral edge of the annular discs extending flow channels are formed. The wave crest lines of the waves extend, preferably curved, from the center to the peripheral edge of the annular disks, so that preferably two curved, continuous flow channels are formed between two adjacent annular disks from the nozzle pipe to the outer peripheral edge of the annular disks.

Nach einer weiteren Ausgestaltung sind im Mittel zum Stabilisieren Strömungskanäle ausgebildet, deren Querschnitt sich radial von innen nach außen vergrößert. Die Peclet-Zahl nimmt zweckmäßigerweise im Mittel zum Stabilisieren radial nach außen hin zu. Es hat sich gezeigt, dass eine solche Ausbildung eine besonders gute Auskopplung der durch die Verbrennung erzeugten Wärme sowie eine Erhöhung der Modulierbarkeit bewirkt. Weiterhin hat es sich gezeigt, dass durch die radiale Zunahme des Querschnitts von innen nach außen eine durch thermoakkustische Anregung bedingte Schallemission erheblich vermindert werden kann. Der vorgeschlagene Brenner ist im Betrieb besonders leise. Es kommt insbesondere nicht zu niederfrequenten Schwingungen, welche zu einer Zerstörung des Düsenrohrs oder des Mittels zum Stabilisieren der Flamme führen können.According to a further embodiment, flow channels are formed in the means for stabilizing, the cross-section of which increases radially from the inside to the outside. The Peclet number expediently increases radially outwardly in the means for stabilizing. It has been found that such a design brings about a particularly good decoupling of the heat generated by the combustion and an increase in the modulability. Furthermore, it has been found that the radial increase of the cross section from the inside to the outside can significantly reduce a sound emission caused by thermoacoustical excitation. The proposed burner is particularly quiet during operation. In particular, it does not come to low-frequency vibrations, which can lead to destruction of the nozzle tube or the means for stabilizing the flame.

Die Fläche der Ringscheiben weist vorteilhafterweise eine Vielzahl weiterer Durchbrüche auf. Die weiteren Durchbrüche können rechteckig, schlitzartig oder rund ausgebildet sein. Die Öffnungsfläche der weiteren Durchbrüche beträgt zweckmä-βigerweise etwa 1 mm2. Die Ringscheiben können aus einer feuerfesten, vorzugsweise eine gitterartige Struktur aufweisenden, Keramik hergestellt sein. Dabei kann es sich um ein aus Mullit-Fasern hergestelltes Gewebe handeln, welches in einer aus Aluminiumoxid gebildeten Matrix aufgenommen ist.The surface of the annular disks advantageously has a plurality of further openings. The further openings may be rectangular, slit-like or round. The opening area of the further openings is expediently approximately 1 mm 2 . The annular discs may be made of a refractory, preferably having a lattice-like structure, ceramic produced. This may be a fabric made of mullite fibers, which is received in a matrix formed from alumina.

Nach einem weiteren Ausgestaltungsmerkmal sind die Ringscheiben zwischen zwei in der Nähe der Enden des Düsenrohrs vorgesehenen weiteren aus einer feuerfesten Keramik hergestellten Ringscheiben angeordnet. Die weiteren Ringscheiben begrenzen endständig den Brennraum. Sie haben die Funktion einer thermischen Isolierung. Sie sind zweckmäßigerweise aus einer porösen Aluminiumoxid-Keramik hergestellt, welche allerdings keine Durchbrüche aufweist.According to a further embodiment feature, the annular discs are arranged between two provided in the vicinity of the ends of the nozzle tube further made of a refractory ceramic discs. The other annular disks limit the combustion chamber terminal. They have the function of thermal insulation. They are suitably made of a porous alumina ceramic, which, however, has no openings.

Das Mittel zur Stabilisierung der Flamme kann auch aus einem dreidimensionalen Metallgeflecht, einer porösen Keramik oder dgl. hergestellt sein. In jedem Fall ist es zweckmäßig, dass das Düsenrohr eine Peclet-Zahl von < 65 und das Mittel zum Stabilisieren der Flamme eine Peclet-Zahl von > 65 aufweist. Dadurch wird sicher gewährleistet, dass ein Rückschlagen der Flamme in das Düsenrohr verhindert wird. Gleichzeitig ist eine Verbrennung im Mittel zum Stabilisieren der Flamme möglich.The means for stabilizing the flame may also be made of a three-dimensional metal mesh, a porous ceramic or the like. In any case, it is desirable that the nozzle tube has a Peclet number of <65 and the means for stabilizing the flame has a Peclet number of> 65. This ensures that the flame in the nozzle tube is prevented from hitting back. At the same time is one Combustion possible on the means to stabilize the flame.

Das Mittel zur Stabilisierung der Flamme ist nach einem besonders vorteilhaften Ausgestaltungsmerkmal von einem Wärmetauscher umgeben. Die aus dem Mittel zur Stabilisierung der Flamme ausgekoppelte Wärme wird mit hoher Effektivität auf ein im Wärmetauscher zirkulierendes flüssiges Medium übertragen. Der Wärmetauscher kann wiederum von einem Gehäuse umgeben sein.The means for stabilizing the flame is surrounded by a particularly advantageous embodiment feature of a heat exchanger. The decoupled from the means for stabilizing the flame heat is transferred with high efficiency to a circulating in the heat exchanger liquid medium. The heat exchanger can in turn be surrounded by a housing.

Nachfolgend werden ein Ausführungsbeispiele der Erfindung anhand der Zeichnung näher erläutert. Es zeigen:

Fig. 1
eine schematische Seitenansicht eines Brenners,
Fig. 2
eine Draufsicht auf eine Ringscheibe gemäß Fig. 1,
Fig. 3
eine perspektivische Ansicht eines Brenners,
Fig. 4
eine Querschittsansicht nach Fig. 3 und
Fig. 5
eine Detailansicht nach Fig. 4.
Hereinafter, an embodiment of the invention will be explained in more detail with reference to the drawing. Show it:
Fig. 1
a schematic side view of a burner,
Fig. 2
a plan view of an annular disc according to Fig. 1 .
Fig. 3
a perspective view of a burner,
Fig. 4
a cross-sectional view after Fig. 3 and
Fig. 5
a detailed view after Fig. 4 ,

In Fig. 1 ist in einer Gehäusehalbschale 1 eines hier nicht im Detail gezeigten Gebläses ein Einlass 2 für ein Gas/Luft-Gemisch vorgesehen. Ein Gebläseauslass 3 liegt einer in einer Vorkammer 4 aufgenommen Prallplatte 5 gegenüber. Die Prallplatte 5 hat die Funktion eine möglichst homogene Strömungsgeschwindigkeit am Eintrittsquerschnitt 6 eines Düsenrohrs 7 zu gewährleisten. Das Düsenrohr 7 weist eine Vielzahl radial verlaufender Durchbrüche 8 mit einem Durchmesser von etwa 1,0 bis 2,0 mm auf. Die Durchbrüche 8 sind gleichmäßig über die Mantelfläche des Düsenrohrs 7 verteilt.In Fig. 1 an inlet 2 for a gas / air mixture is provided in a housing half shell 1 of a fan not shown in detail here. A blower outlet 3 is located opposite a baffle plate 5 received in an antechamber 4. The baffle plate 5 has the function to ensure a homogeneous flow rate as possible at the inlet cross-section 6 of a nozzle tube 7. The nozzle tube 7 has a plurality of radially extending apertures 8 with a diameter of about 1.0 to 2.0 mm. The openings 8 are uniformly distributed over the lateral surface of the nozzle tube 7.

Auf der äußeren Mantelfläche des Düsenrohrs 7 aufgenommen sind Ringscheiben 9, welche vorteilhafterweise im Querschnitt gewellt ausgebildet sind. Die Ringscheiben 9 sind axial voneinander beabstandet. Zwischen zwei benachbarten Ringscheiben 9 sind Strömungskanäle 10 gebildet. In der Nähe der Enden des Düsenrohrs 7 sind weitere Ringscheiben 11 auf der äußeren Mantelfläche des Düsenrohrs 7 aufgenommen. Die weiteren Ringscheiben 11 sind aus einer thermisch isolierenden Keramik, z.B. einer hoch porösen Aluminiumoxid-Keramik, hergestellt. Sie weisen keine Durchbrüche auf. Die weiteren Ringscheiben 11 begrenzen in axialer Richtung einen die Ringscheiben 10 enthaltenden Brennraum. Mit dem Bezugszeichen 12 sind Rohre eines Wärmetauschers bezeichnet. Die Rohre 12 und das Düsenrohr 7 mit den darauf aufgenommenen Ringscheiben 9 und 11 sind in einem gemeinsamen Gehäuse G untergebracht.On the outer circumferential surface of the nozzle tube 7 are received annular discs 9, which are advantageously formed corrugated in cross section. The annular discs 9 are axially spaced from each other. Between two adjacent annular disks 9 flow channels 10 are formed. In the vicinity of the ends of the nozzle tube 7 further annular disks 11 are received on the outer circumferential surface of the nozzle tube 7. The further annular disks 11 are made of a thermally insulating ceramic, e.g. a highly porous alumina ceramic. They have no breakthroughs. The further annular disks 11 define in the axial direction a combustion chamber containing the annular disks 10. The reference numeral 12 tubes of a heat exchanger are designated. The tubes 12 and the nozzle tube 7 with the annular disks 9 and 11 received thereon are accommodated in a common housing G.

Fig. 2 zeigt eine Draufsicht auf eine Ringscheibe 9, welche auf dem Düsenrohr 7 aufgenommen ist. Die Ringscheibe 9 ist aus einer eine gitterartige Struktur aufweisenden Keramik hergestellt. Eine solche Keramik kann durch Imprägnieren eines aus Mullit-Fasern hergestellten Gewebes mit einem Aluminium-oxid-Schlicker hergestellt werden, indem nach dem Trocknen des Schlickers der imprägnierte Mullit-Faserverbund gesintert wird. Dabei gebildete weitere Durchbrüche sind mit 15 bezeichnet. Es hat sich als besonders zweckmäßig erwiesen, die Fläche der Ringscheibe 9 gewellt auszubilden. Die Wellenkammlinien sind der Fig. 2 mit dem Bezugszeichen 13 angedeutet. Sie verlaufen vom Düsenrohr 7 gekrümmt zum Umfangsrand 14 der Ringscheibe 9, so dass eine schaufelradartige Struktur entsteht. Vorteilhafterweise weisen die Ringscheiben 9 jeweils eine ungerade Anzahl an Wellenkammlinien 13 auf. Wenn derartige Ringscheiben 9 so nacheinander angeordnet werden, dass deren Wellenkammlinien 13 in axial hintereinander ausgerichtet sind, werden Strömungskanäle 10 gebildet, deren Querschnitt sich vom Düsenrohr 7 zum Umfangsrand 14 hin vergrößert. Derartige Strömungskanäle 10 erleichtern den Austrag der expandierenden heißen Verbrennungsgase. Eine besonders effiziente Verbrennung sowie eine effektive Wärmeauskopplung werden erreicht. Fig. 2 shows a plan view of an annular disc 9, which is received on the nozzle tube 7. The annular disk 9 is made of a ceramic having a lattice-like structure. Such a ceramic can be made by impregnating a fabric made of mullite fibers with an aluminum oxide slurry by sintering the impregnated mullite fiber composite after drying the slurry. In this case formed further breakthroughs are designated 15. It has proven to be particularly useful to form the surface of the annular disc 9 corrugated. The wave crest lines are the Fig. 2 indicated by the reference numeral 13. They run from the nozzle tube 7 curved to the peripheral edge 14 of the annular disc 9, so that a Schaufelradartige structure is formed. Advantageously, the annular discs 9 each have an odd number of wave crest lines 13. If such annular discs 9 are arranged in succession so that their wave crest lines 13 are aligned in axial succession, flow channels 10 are formed whose cross-section increases from the nozzle tube 7 to the peripheral edge 14 out. Such flow channels 10 facilitate the discharge of the expanding hot combustion gases. A particularly efficient combustion and an effective heat extraction are achieved.

Die Ringscheiben 9 können auch hergestellt sein aus einem Mullit-Fasern hergestellten Vlies. Das Vlies ist formstabil. Es kann durch Verpressen von Mullit-Fasern hergestellt werden. Dabei ist die Form zweckmäßigerweise so gestaltet, dass die Ringscheiben eine Wellung aufweisen. Die erforderlichen Durchbrüche, die in Form von Löchern oder Schlitzen ausgebildet sein können, können durch Satzung hergestellt werden. Anschließend wird das formstabile Mullit-Vlies mit einem Aluminiumoxid-Schlicker imprägniert, getrocknet und dann gesintert. Es entsteht eine formstabile hitzebeständige Ringscheibe mit der gewünschten Form.The annular discs 9 may also be made of a nonwoven fabric made of mullite fibers. The fleece is dimensionally stable. It can be made by pressing mullite fibers. The shape is expediently designed so that the annular discs have a corrugation. The required apertures, which may be in the form of holes or slots, may be made by statute. Subsequently, the dimensionally stable mullite nonwoven is impregnated with an alumina slurry, dried and then sintered. The result is a dimensionally stable heat-resistant annular disc with the desired shape.

Die Ringscheiben können nach einem weiteren Ausgestaltungsmerkmal auch mit einer katalytisch wirksamen Beschichtung versehen sein. Eine solche Beschichtung kann Blei, Platin oder andere geeignete Metalle enthalten. Ein Brenner mit derartigen katalytisch beschichteten Ringscheiben weist besonders geringe Emissionswerte auf.The annular discs may also be provided with a catalytically active coating according to a further embodiment feature. Such a coating may contain lead, platinum or other suitable metals. A burner with such catalytically coated annular disks has particularly low emission values.

In den Fig. 3 bis 5 ist eine weitere Ausführungsform eines Brenners gezeigt. Dabei sind auf dem Düsenrohr 7 erste Ringscheiben 16 und zweite Ringscheiben 17 aufgenommen. Die ersten 16 und die zweiten Ringscheiben 17 weisen radial schräg nach außen verlaufende Wellungen 18 auf. Durch die Wellungen 18 werden Strömungskanäle 10 gebildet, deren Querschnitt sich radial von innen nach außen erweitert. Ein Ringradius R1 der ersten Ringscheiben 16 ist etwa halb so groß wie ein Ringradius R2 der zweiten Ringscheiben 17. Unter dem Begriff "Ringradius" wird vorliegend die Differenz zwischen einem inneren Radius und einem äußeren Radius der Ringscheibe verstanden. Zur Erläuterung wird auf Fig. 4 verwiesen, in denen die Ringradien R1, R2 gezeigt sind.In the Fig. 3 to 5 a further embodiment of a burner is shown. In this case, first annular discs 16 and second annular discs 17 are received on the nozzle tube 7. The first 16 and second annular discs 17 have radially outwardly extending corrugations 18. Through the corrugations 18 flow channels 10 are formed, the cross section widens radially from the inside out. A ring radius R1 of the first annular discs 16 is about half as large as a ring radius R2 of the second annular discs 17. The term "ring radius" is present in the difference between an inner radius and an outer radius of the annular disc Understood. For explanation will be on Fig. 4 referenced, in which the ring radii R1, R2 are shown.

Wie aus Fig. 4 ersichtlich ist, bildet die Wechselfolge der ersten Ringscheiben 16 mit den zweiten Ringscheiben 17 eine ersten Flammenstabilisierungszone B1. Die über die erste Flammenstabilisierungszone B1 sich erstreckenden Ringabschnitte der zweiten Ringscheiben 17 bilden eine radial außenliegende zweite Flammenstabilisierungszone B2. - Eine Peclet-Zahl einer durch das Düsenrohr 7 gebildeten Zone A ist < als 65. Damit wird sicher ein Rückschlagen von Flammen in das Düsenrohr 7 vermieden. Eine Peclet-Zahl der Flammenstabilisierungszonen B1, B2 ist > als 65, wobei die Peclet-Zahl der zweiten Flammenstabilisierungszone B2 größer als die Peclet-Zahl der ersten Flammenstabilisierungszone B1 ist.How out Fig. 4 It can be seen that the alternating sequence of the first annular discs 16 with the second annular discs 17 forms a first flame stabilization zone B1. The annular sections of the second annular discs 17 extending over the first flame stabilization zone B1 form a radially outer second flame stabilization zone B2. A Peclet number of a zone A formed by the nozzle tube 7 is <than 65. This reliably avoids flashback of flames into the nozzle tube 7. A Peclet number of the flame stabilizing zones B1, B2 is> 65, the Peclet number of the second flame stabilizing zone B2 being greater than the Peclet number of the first flame stabilizing zone B1.

Bei den erfindungsgemäßen Brennern findet die Verbrennung im durch die Ringscheiben 9, 16, 17 gebildeten Mittel zum Stabilisieren der Flamme statt. Es erstrecken sich praktisch keinerlei Flammen von einer das Mittel zum Stabilisieren der Flamme umhüllenden Oberfläche. Der vorgeschlagene Brenner weist eine hervorragende Dynamik auf, d.h., er kann in einem weiteren Bereich als bisher bekannte Volumen- oder Oberflächenbrenner moduliert werden.In the burners according to the invention, combustion takes place in the means for stabilizing the flame formed by the annular disks 9, 16, 17. Virtually no flames extend from a surface surrounding the means for stabilizing the flame. The proposed burner has excellent dynamics, that is, it can be modulated in a wider range than previously known volume or surface burners.

Das Mittel zum Stabilisieren der Flamme kann auch aus spiralförmig angeordneten radial vom Düsenrohr sich erstreckenden Flächen gebildet sein. Es kann auch in Form turbinenschaufelartiger oder schaufelradartiger Ringscheiben ausgebildet sein.The means for stabilizing the flame can also be formed from spirally arranged radially extending from the nozzle tube surfaces. It can also be designed in the form of turbine blade-like or Schaufelradartiger annular discs.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
GebläsehalbschaleBlower half shell
22
Einlassinlet
33
Gebläseauslassblower
44
Vorkammerantechamber
55
Prallplatteflapper
66
EinlassquerschnittInlet cross-section
77
Düsenrohrnozzle tube
88th
Durchbruchbreakthrough
99
Ringscheibewasher
1010
Strömungskanalflow channel
1111
weitere Ringscheibeanother ring disk
1212
Rohrpipe
1313
WellenkammlinieCrest line
1414
Umfangsrandcircumferential edge
1515
weitere Durchbrüchefurther breakthroughs
1616
erste Ringscheibefirst annular disc
1717
zweite Ringscheibesecond annular disc
1818
Wellungcurl
AA
ZoneZone
B1B1
erste Flammenstabilisierungszonefirst flame stabilization zone
B2B2
zweite Flammenstabilisierungszonesecond flame stabilization zone
R1R1
erster Ringradiusfirst ring radius
R2R2
zweiter Ringradiussecond ring radius
GG
Gehäusecasing

Claims (22)

  1. Burner for a gas/air mixture with an inlet (2, 6) for the gas/air mixture, wherein a jet tube (7) is provided down-current after the inlet (2, 6), the jet tube (7) having a jacket surface with a plurality of breakthroughs (8), wherein a zone A created by the yet tube (7) has a Péclet number preventing flames from backfiring in the yet tube (7), and wherein the jet tube (7) is surrounded radially by a flane-stabilisation means (9, 16, 17).
  2. Burner as defined, in one of the preceding claims, wherein the combustion of the gas takes place primarily in the flame-stabilisation means (9, 16, 17).
  3. Burner as defined in claim 1 or 2, wherein a blower to transport the gas/air mixture into the jet tube (7) is located after the inlet (2).
  4. Burner as defined in one of the preceding claims, wherein the jet tube (7) is made from a fireproof ceramic material, preferably from ceramic fibers.
  5. Burner as defined in claim 4, wherein the fireproof ceramic material has a porosity of 75 to 95 vol. %.
  6. Burner as defined in one of the preceding claims, wherein the flame-stabilisation means is created from foam ceramic material.
  7. Burner as defined in one of the preceding claims, wherein the flame-stabilisation means consists of a plurality of ring disks (9, 16, 17) arranged radially from the jet tube (7) and spaced at an axial distance from each other.
  8. Burner as defined in one of the preceding claims, wherein the ring disks (9, 16, 17) are created from first (16) and second ring disks (17), and wherein a ring radius (R1) of the first ring disks (16) is smaller than a ring radius (R2) of the second ring disks (17).
  9. Burner as defined in one of the preceding claims, wherein a ring radius (R1) of the second ring disks (17) is at least twice as large as the ring radius (R1) of the first ring disks (16).
  10. Burner as defined in one of the preceding claims, wherein the first (16) and the second ring disks (17) are placed alternately on the jet tube (7) in axial direction.
  11. Burner as defined in one of the preceding claims, wherein the alternating succession of the first (16) and the second ring disks (17) creates a first flame-stabilisation zone (B1) located radially inside as well as a second flame-stabilisation zone (B2) located radially outside without first ring disks (16) in between.
  12. Burner as defined in one of the preceding claims, wherein the Péclet number of the first flame-stabilisation zone (B1) is less than the Péclet number of the second flame-stabilisation zone (B2).
  13. Burner as defined in one of the preceding claims, wherein the surface of the ring disks (9, 16, 17) is rippled so that current flow canals (19) are created between twc adjacent ring disks (9, 16, 17) from the jet tube (7) to the outside circumference edge (14) of the ring disks (9, 16, 17).
  14. Burner as defined in one of the preceding claims, wherein wave crest lines (13) of the ripples (18) run, preferably bent, from the centre to the circumference edge (L4) of the ring disks (9, 16, 17) so that continuous, preferably bent, current flow canals (10) are created between two adjacent ring disks (9, 16, 17) from the jet tube (7) to the circumference edge (14).
  15. Burner as defined in one of the preceding claims, wherein a cross section of the current flow canals (10) increases radially from the inside to the outside.
  16. Burner as defined in one of the preceding claims, wherein the Péclet number in the flame-stabilisation means increases radially towards the outside.
  17. Burner as defined in one of the preceding claims, wherein the surface of the ring disks (9, 16, 17) has a plurality of additional breakthroughs (15).
  18. Burner as defined in one of the preceding claims, wherein the ring disks (9, 16, 17) are made from a fireproof ceramic material, preferably of a mesh-type structure.
  19. Burner as defined in claim 17, wherein the ceramic material is created from mullite fibers on an aluminium oxide matrix.
  20. Burner as defined in one of the preceding claims, wherein the ring disks (9, 16, 17) are arranged between two additional, fireproof ceramic ring disks (11) located in the vicinity of the ends of the jet tube (7).
  21. Burner as defined in one of the preceding claims, wherein the jet tube (7) has a Péclet number of < 65 and the means (9, 16, 17) of stabilisation of the flame has a Pellet number of > 65.
  22. Burner as defined in one of the preceding claims, wherein the means (9, 16, 17) of stabilisation of the flame is surrounded by a heat exchanger (12).
EP02719999A 2001-03-26 2002-03-25 Burner for a gas and air mixture Expired - Lifetime EP1373799B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10114903 2001-03-26
DE10114903A DE10114903A1 (en) 2001-03-26 2001-03-26 Burner for a gas / air mixture
PCT/EP2002/003342 WO2002077525A1 (en) 2001-03-26 2002-03-25 Burner for a gas and air mixture

Publications (2)

Publication Number Publication Date
EP1373799A1 EP1373799A1 (en) 2004-01-02
EP1373799B1 true EP1373799B1 (en) 2008-08-13

Family

ID=7679149

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02719999A Expired - Lifetime EP1373799B1 (en) 2001-03-26 2002-03-25 Burner for a gas and air mixture

Country Status (7)

Country Link
US (1) US6997701B2 (en)
EP (1) EP1373799B1 (en)
JP (1) JP2004522128A (en)
CN (1) CN1535367A (en)
AT (1) ATE404819T1 (en)
DE (2) DE10114903A1 (en)
WO (1) WO2002077525A1 (en)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004092646A1 (en) * 2003-04-16 2004-10-28 Sgl Carbon Ag Porous burner comprising a silicon-carbide porous body
DE102004057271B4 (en) * 2004-11-26 2008-04-24 Webasto Ag Assembly for a heater and methods of making the same
US20090165733A1 (en) * 2007-12-26 2009-07-02 Ferguson Mark A Inwardly firing burner and uses thereof
DE102009039276A1 (en) 2009-08-28 2011-03-10 Bekon Energy Technologies Gmbh & Co. Kg Reactor module for endothermic reactions and reactor with a plurality of such reactor modules
TWI450439B (en) 2009-10-22 2014-08-21 Atomic Energy Council A combustion apparatus appliable to high temperature fuel cells
US11073280B2 (en) 2010-04-01 2021-07-27 Clearsign Technologies Corporation Electrodynamic control in a burner system
CN102798123B (en) * 2011-05-26 2016-05-04 中山炫能燃气科技股份有限公司 A kind of infrared metal heater and preparation method thereof
SE536738C2 (en) * 2012-11-02 2014-07-01 Heatcore Ab Heat exchanger plate for plate heat exchanger, plate heat exchanger comprising such heat exchanger plates and heating device comprising plate heat exchanger
KR101400834B1 (en) * 2013-01-23 2014-05-29 주식회사 경동나비엔 Combustion apparatus
US10571124B2 (en) 2013-02-14 2020-02-25 Clearsign Combustion Corporation Selectable dilution low NOx burner
CN107448943B (en) 2013-02-14 2020-11-06 美一蓝技术公司 Perforated flame holder and burner comprising a perforated flame holder
US10458649B2 (en) 2013-02-14 2019-10-29 Clearsign Combustion Corporation Horizontally fired burner with a perforated flame holder
US11953201B2 (en) 2013-02-14 2024-04-09 Clearsign Technologies Corporation Control system and method for a burner with a distal flame holder
CA2892229A1 (en) 2013-02-14 2014-08-21 Clearsign Combustion Corporation Startup method and mechanism for a burner having a perforated flame holder
US10125983B2 (en) 2013-02-14 2018-11-13 Clearsign Combustion Corporation High output porous tile burner
US10119704B2 (en) 2013-02-14 2018-11-06 Clearsign Combustion Corporation Burner system including a non-planar perforated flame holder
WO2015112950A1 (en) 2014-01-24 2015-07-30 Clearsign Combustion Corporation LOW NOx FIRE TUBE BOILER
US10386062B2 (en) 2013-02-14 2019-08-20 Clearsign Combustion Corporation Method for operating a combustion system including a perforated flame holder
US11460188B2 (en) 2013-02-14 2022-10-04 Clearsign Technologies Corporation Ultra low emissions firetube boiler burner
WO2015042614A1 (en) 2013-09-23 2015-03-26 Clearsign Combustion Corporation Burner system employing multiple perforated flame holders, and method of operation
CA2922014A1 (en) 2013-09-23 2015-03-26 Clearsign Combustion Corporation Porous flame holder for low nox combustion
WO2015054323A1 (en) 2013-10-07 2015-04-16 Clearsign Combustion Corporation Pre-mixed fuel burner with perforated flame holder
WO2015057740A1 (en) 2013-10-14 2015-04-23 Clearsign Combustion Corporation Flame visualization control for electrodynamic combustion control
EP3066385A4 (en) 2013-11-08 2017-11-15 Clearsign Combustion Corporation Combustion system with flame location actuation
WO2015123381A1 (en) 2014-02-14 2015-08-20 Clearsign Combustion Corporation Down-fired burner with a perforated flame holder
US9791171B2 (en) 2014-07-28 2017-10-17 Clearsign Combustion Corporation Fluid heater with a variable-output burner including a perforated flame holder and method of operation
US9885496B2 (en) 2014-07-28 2018-02-06 Clearsign Combustion Corporation Fluid heater with perforated flame holder
US9828288B2 (en) 2014-08-13 2017-11-28 Clearsign Combustion Corporation Perforated burner for a rotary kiln
US9702547B2 (en) 2014-10-15 2017-07-11 Clearsign Combustion Corporation Current gated electrode for applying an electric field to a flame
WO2016134061A1 (en) 2015-02-17 2016-08-25 Clearsign Combustion Corporation Perforated flame holder with adjustable fuel nozzle
WO2016134180A1 (en) * 2015-02-18 2016-08-25 Clearsign Combustion Corporation Burner with a perforated flame holder support structure
US10088153B2 (en) 2015-12-29 2018-10-02 Clearsign Combustion Corporation Radiant wall burner including perforated flame holders
CN112432166B (en) 2016-01-13 2023-10-27 美一蓝技术公司 Perforated flame holder with gaps between groups of tiles
EP4317781A3 (en) 2016-04-29 2024-04-03 ClearSign Technologies Corporation Burner system with discrete transverse flame stabilizers
US10514165B2 (en) 2016-07-29 2019-12-24 Clearsign Combustion Corporation Perforated flame holder and system including protection from abrasive or corrosive fuel
US10539326B2 (en) 2016-09-07 2020-01-21 Clearsign Combustion Corporation Duplex burner with velocity-compensated mesh and thickness
WO2018085152A1 (en) 2016-11-04 2018-05-11 Clearsign Combustion Corporation Plasma pilot
WO2018208695A1 (en) 2017-05-08 2018-11-15 Clearsign Combustion Corporation Combustion system including a mixing tube and a perforated flame holder
US11519635B2 (en) 2018-08-24 2022-12-06 Gas Technology Institute Gas fired process heater with ultra-low pollutant emissions
US11639792B2 (en) * 2020-06-24 2023-05-02 Rheem Manufacturing Company Single-piece refractory for a water heating assembly
CN116734246A (en) * 2020-10-09 2023-09-12 黄强初 Full premix burner

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3088271A (en) * 1961-02-06 1963-05-07 Minnesota Mining & Mfg Reaction milieu and afterburner incorporating same
US3216478A (en) * 1962-04-13 1965-11-09 Electro Refractories & Abrasiv Radiant gas burner tile
US3324924A (en) * 1965-03-22 1967-06-13 Du Pont Radiant heating devices
US3936003A (en) * 1973-12-03 1976-02-03 Raytheon Company Multiport high density burner
US4519770A (en) * 1980-06-30 1985-05-28 Alzeta Corp. Firetube boiler heater system
NL8304041A (en) * 1983-11-24 1985-06-17 Remeha Fabrieken Bv BOILER WITH VERTICAL BURNER TUBE.
US4889481A (en) * 1988-08-16 1989-12-26 Hi-Tech Ceramics, Inc. Dual structure infrared surface combustion burner
US4900245A (en) * 1988-10-25 1990-02-13 Solaronics Infrared heater for fluid immersion apparatus
US4878837A (en) * 1989-02-06 1989-11-07 Carrier Corporation Infrared burner
GB2231949A (en) * 1989-05-26 1990-11-28 Burco Dean Appliances Ltd Gas burner
US5249953A (en) * 1989-06-16 1993-10-05 Hercules Canada, Inc. Gas distributing and infrared radiating block assembly
US5147201A (en) * 1990-11-19 1992-09-15 Institute Of Gas Technology Ultra-low pollutant emissions radiant gas burner with stabilized porous-phase combustion
US5240411A (en) * 1992-02-10 1993-08-31 Mor-Flo Industries, Inc. Atmospheric gas burner assembly
DE4322109C2 (en) * 1993-07-02 2001-02-22 Franz Durst Burner for a gas / air mixture
DE4324644A1 (en) * 1993-07-22 1995-01-26 Gossler Kg Oscar Ceramic combustion carrier element for surface burner and method for its production
DE19508908A1 (en) * 1995-03-11 1996-09-12 Bosch Gmbh Robert Heating device, esp. for water heater
DE29715119U1 (en) * 1996-08-23 1997-11-06 Vaillant Joh Gmbh & Co Water heater

Also Published As

Publication number Publication date
DE10114903A1 (en) 2002-10-17
DE50212635D1 (en) 2008-09-25
JP2004522128A (en) 2004-07-22
WO2002077525A1 (en) 2002-10-03
EP1373799A1 (en) 2004-01-02
ATE404819T1 (en) 2008-08-15
US20040091831A1 (en) 2004-05-13
US6997701B2 (en) 2006-02-14
CN1535367A (en) 2004-10-06

Similar Documents

Publication Publication Date Title
EP1373799B1 (en) Burner for a gas and air mixture
EP2467642B1 (en) Radiant burner
EP1279898B1 (en) Premix burner with high flame stability
EP0331885A1 (en) Exhaust gas filter
DE19847042B4 (en) Highly porous burner mat for gas and / or oil burners
DE19527583C2 (en) Burners, especially for heating systems
DE10233340B4 (en) Pore burner and cooking device containing at least one pore burner
DE3538634C2 (en) Radiant heating device and method
DE19711681B4 (en) Catalytic combustion device
DE3343617A1 (en) ULTRASONIC SPRAYER BURNER FOR SMALLER HEATERS
WO2003069225A1 (en) Infrared radiator embodied as a surface radiator
DE102004032609B4 (en) Filter and cooling element
EP0442318B1 (en) Particle filter regenerable by combusting for exhaust gases of internal combustion engines
EP0534104B1 (en) Radiant tube with jacket
EP0549851B1 (en) Soot filter for diesel engines
EP1756402A1 (en) Filter device for an exhaust gas system of an internal combustion engine, and method for producing such a filter device
CH673521A5 (en)
DE19718885C2 (en) gas burner
DE102011119163A1 (en) Burner device for the combustion chamber of a burner, in particular for raising an internal combustion engine of a motor vehicle
EP1715247A1 (en) Burner
DE19950894A1 (en) Combustion chamber, for heater in motor vehicle, for example, has openings in inner jacket of forming completely or partially a porous fine structure, and end of inner pipe protruding into flame tube has closed end face base
WO2001051780A1 (en) Thermally insulated exhaust gas cleaning system
DE3007436C2 (en) Blue burner
DE4412185B4 (en) Burners for liquid or gaseous fuels, in particular for oil
WO2000063619A1 (en) Combustion chamber of a heating device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031009

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F23D 14/14 20060101AFI20080226BHEP

Ipc: F23D 14/16 20060101ALI20080226BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50212635

Country of ref document: DE

Date of ref document: 20080925

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: GLN GRESSET & LAESSER NEUCHATEL CABINET DE CONSEIL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080813

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080813

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080813

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20090323

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090113

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20090324

Year of fee payment: 8

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20090325

Year of fee payment: 8

Ref country code: GB

Payment date: 20090324

Year of fee payment: 8

26N No opposition filed

Effective date: 20090514

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090428

Year of fee payment: 8

Ref country code: IT

Payment date: 20090326

Year of fee payment: 8

BERE Be: lapsed

Owner name: GVP G.- ZUR VERMARKTUNG DER PORENBRENNERTECHNIK M

Effective date: 20090331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090318

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20101001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081114

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100325

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20101130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101001

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101001

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100325

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080813