EP1373593B1 - Method and device for gas phase diffusion coating of metal components - Google Patents

Method and device for gas phase diffusion coating of metal components Download PDF

Info

Publication number
EP1373593B1
EP1373593B1 EP02711763A EP02711763A EP1373593B1 EP 1373593 B1 EP1373593 B1 EP 1373593B1 EP 02711763 A EP02711763 A EP 02711763A EP 02711763 A EP02711763 A EP 02711763A EP 1373593 B1 EP1373593 B1 EP 1373593B1
Authority
EP
European Patent Office
Prior art keywords
coating
period
time
concentration
component surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02711763A
Other languages
German (de)
French (fr)
Other versions
EP1373593A2 (en
Inventor
Thomas Dautl
Markus Niedermeier
Horst Pillhöfer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines GmbH filed Critical MTU Aero Engines GmbH
Publication of EP1373593A2 publication Critical patent/EP1373593A2/en
Application granted granted Critical
Publication of EP1373593B1 publication Critical patent/EP1373593B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/06Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases
    • C23C10/16Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases more than one element being diffused in more than one step
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/06Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases

Definitions

  • the invention relates to a method for gas phase diffusion coating of metallic components, in particular components of gas turbines, in which a component surface to be coated with a metal halide as Be Anlagenungsurrgsgas to form a defined over a predetermined thickness and a predetermined coating metal content in wt .-% in the component surface diffusion layer in Contact is brought, wherein a defined coating temperature leads to a defined coating time and with a correlating thereto nominal concentration of the metal halide on the component surface.
  • a metal halide as Be istungsurrgsgas to form a defined over a predetermined thickness and a predetermined coating metal content in wt .-% in the component surface diffusion layer in Contact
  • Such diffusion layers generally serve as hot gas corrosion and oxidation protective layers or as a primer for thermal barrier coatings.
  • EP 1 013 794 A2 a gas phase diffusion coating method in which a surface to be coated is brought into contact with a constant concentration of a metal halide as a coating gas.
  • the coating chamber is purged with inert gas prior to introducing the halide for cleaning, wherein the inert gas pressure can be varied or pulsed in this purging process.
  • the problem underlying the present invention is to provide a method of the type described above, with which diffusion layers with a defined layer thickness and a defined coating metal content in wt .-% in the component surface as economically as possible, i. while saving on coating time.
  • the solution to this problem is according to the invention characterized in that the metal halide over a first (coating) period above the nominal concentration, first concentration and at least one second (coating) period at least one at or below the Nominal concentration lying, second concentration is set at the component surface, wherein the first and the at least one second period are selected so that the sum of which is shorter than the coating time with nominal concentration.
  • the high coating metal content at the component surface leads in the second period by diffusion processes to a higher coating metal content in the component depth and degradation on the component surface, which at the end of the second period to a diffusion layer with the desired coating metal content in wt .-% in the component surface and the desired layer thickness leads.
  • the high, first concentration in the first period is generated by an excess of metal halide and in the second period by dilution (supply of inert gas or hydrogen) canceled.
  • the metal halide may be formed by reacting a halogen or a halide with a coating metal present in a donor source, wherein the halide is powder or granular in the donor source or, alternatively, supplied by a feeder to the reaction space in which the components are disposed can be. In the latter case can the second concentration can be adjusted by reducing the supply of halogen or halide.
  • the metal halide may preferably contain F or Cl.
  • Al and / or Cr and optionally further elements such as Si, Hf, Y can be provided as the coating metal in order to protect the coated component surfaces against oxidation or corrosion.
  • a diffusion layer having a layer thickness of 50 to 100 ⁇ m and a coating metal content of 25 to 32% by weight is formed in the component surface.
  • the first time period having the first concentration above the nominal concentration of between 5 (2) and 6 (10) hours and the at least one second time period having the below the nominal concentration, the second concentration between 3 (1) and 4 (6) Hours are set.
  • a second concentration can be set to approximately zero in a second period of time, so that the layer thickness increases as a result of diffusion of the coating metal atoms already present in the component surface.
  • the at least one second concentration may e.g. by introducing an inert gas, such as argon, or hydrogen into the reaction space in which the components to be coated are arranged, or by reducing the supply of supplied halogen or halide.
  • an inert gas such as argon
  • Pt can be electrodeposited on the component surface and, if necessary, heat-treated, since diffusion layers, which in addition to the coating metal still contain Pt or Pd, provide even better protection against High temperature oxidation and corrosion.
  • a PtAl diffusion layer has good efficiency when the Al content in the surface is in the range of 18 to 25% by weight.
  • the diffusion layer Prior to formation of the diffusion layer, other elements such as Pt, Si, Y, Hf or mixtures of the MCrAlY type (with Ni, Co as M) as a slurry or plasma sprayed layer may also be deposited on the device surface to provide specific properties of the diffusion layer, e.g. Oxidation resistance or ductility, to further improve.
  • other elements such as Pt, Si, Y, Hf or mixtures of the MCrAlY type (with Ni, Co as M) as a slurry or plasma sprayed layer may also be deposited on the device surface to provide specific properties of the diffusion layer, e.g. Oxidation resistance or ductility, to further improve.
  • the pressure of the coating gas can be changed at least temporarily in the first and / or second time period, wherein this can preferably take place intermittently.
  • suction from a reaction vessel receiving the components to be coated or from a retort in which at least one reaction vessel is arranged it is possible to switch between atmospheric pressure and negative pressure.
  • the negative pressure is preferably set to a pressure in the range of normal pressure to 100 mbar.
  • the change in pressure causes an improved penetration of the coating metal, especially for cavities to be coated, and leads to shorter coating times.
  • the lower, second concentration can also be set in the second period.
  • Fig. 1 shows a device for carrying out the method with a heatable retort 1, in which at least one reaction container 2 is arranged.
  • a plurality of reaction vessels 2 can be arranged above and / or next to one another in the retort 1.
  • a plurality of schematically illustrated components 3 of a gas turbine, such as turbine blades are arranged with their surfaces 4 to be coated and kept suitable. The components 3 are aligned substantially radially.
  • the reaction vessel 2 has a centrally arranged distribution device 5 with apertures 6 shown enlarged in the drawing, which are distributed over the height thereof and around its circumference substantially uniformly. Instead of the openings 6, it is also possible to provide tubes extending radially outwards into the reaction vessel 2, each having a plurality of openings or nozzles.
  • the reaction vessel 2 further comprises at least one semi-permeable seal 7 through which gases can escape from the reaction vessel 2. In the present case, the reaction vessel 2 is provided with a circumferential on the outer circumference 8 semipermeable seal 7.
  • a halogen or halide for generating the coating gas by reaction with the coating metal and / or inert gas and / or hydrogen can be fed through the central distributor device 5 evenly into the reaction vessel 2 from its center flows and escapes through the semipermable seal 7.
  • the retort 1 has a feed line 10 through which inert gas, such as argon, is supplied to the purge prior to the start of the process to substantially remove O 2 to prevent oxidation.
  • the turbine blades 3 made of a nickel or cobalt-based alloy with an aluminum diffusion layer having an Al content at the surface of 25 to 32 wt .-% and a layer thickness of 60 to 90 microns to protect against hot gas oxidation be coated.
  • a plurality of vanes e.g. 100 pieces, arranged in the reaction space 2 and held in a suitable manner, so that the surface 4 to be coated for the coating gas is freely accessible.
  • a plurality of dispenser sources 12 are provided for the coating metal Al selected here in the form of containers which contain the powdered or granular coating metal.
  • the donor sources 12 are arranged as close as possible to the turbine blades 3, in order to achieve the desired high, first concentration in the first period.
  • the selected coating metal AlCr is present as granules in an amount sufficient so that several batches of turbine blades can be coated successively.
  • an F-containing halide which reacts at the coating temperature with the coating metal to form a metal halide (coating gas).
  • an inert gas such as argon
  • an inert gas is added to the retort 1 via the supply line 10 for rinsing in order to make the retort 1 substantially free of O 2 and H 2 O in order to avoid oxidation.
  • the reaction vessel 2 no gas is initially supplied via the supply line 9. From a temperature of about 700 ° C, the retort 1 via the supply line 10 and the reaction chamber 2 via the supply line 9 and the manifold 5 hydrogen (H 2 ) is supplied. From a temperature of 1000 ° C, the hydrogen supply to the reaction space 2 is terminated.
  • this temperature After reaching the coating temperature of 1080 ° C, this temperature is maintained for a first period of about six hours. Under these conditions, there is a concentration of the metal halide that results in an Al content of about 38% by weight in the component surface.
  • the invention requires a total of only 10 hours for the production of the diffusion layer with the desired layer parameters.
  • an inert gas is supplied to the reaction space 2 via the feed line 9 and the distributor device 5 at the beginning of the second period for adjusting the second concentration of the metal halide at the component surface 4 which is below the nominal concentration.
  • the diffusion layer against hot gas oxidation and corrosion may contain an Al diffusion layer Pt or Pd, wherein in such an embodiment, for example, first deposited Pt with a layer thickness of eg 5 microns galvanically on the component surface and optionally heat treated. Subsequently, the method according to the invention is carried out in the manner described above. Due to the high driving force of the method according to the invention due to the high Al concentration in the first coating period, Al can diffuse into the component surface through the Pt layer.
  • a PtAl diffusion layer can be produced with a layer thickness of 70 microns, which at 5 microns depth an Al content of about 24 wt .-% and a Pt content of about 21 wt .-% and in 15 microns depth has an Al content of about 23% by weight and a Pt content of about 18% by weight and thus has an advantageous ratio between Al and Pt.
  • Fig. 2 a diagram is shown in which, by way of example for Al, the coating metal content is shown in percent by weight over the layer thickness after the end of the first period, ie the coating with the first concentration above the nominal concentration.
  • the high driving force associated with the high concentration results in an Al content of 38% in the surface of the device which is above the desired Al content in the range of 25 to 32% by weight.
  • the layer thickness S of the diffusion layer is only slight after the end of the first period and is far below the desired layer thickness of 50 to 100 ⁇ m.
  • FIG. 3 The diagram shown is the Al content over the layer thickness after the end of the second period, ie applied to the end of the coating process.
  • the desired Al content 28% by weight is established on the component surface.
  • the distribution of Al is significantly more uniform and leads to an increase in the layer thickness up to the desired range of 50 to 100 microns.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Chemical Vapour Deposition (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Gasphasendiffusionsbeschichten von metallischen Bauteilen, wie insbesondere Bauteile von Gasturbinen, bei dem eine zu beschichtende Bauteiloberfläche mit einem Metallhalogenid als Beschichturrgsgas zur Bildung einer über eine vorgegebene Schichtdicke und einen vorgegebenen Beschichtungsmetallgehalt in Gew.-% in der Bauteiloberfläche definierte Diffusionsschicht in Kontakt gebracht wird, wobei eine definierte Beschichtungstemperatur zu einer definierten Beschichtungsdauer und mit einer hierzu korrelierenden Nennkonzentration des Metallhalogenids an der Bauteiloberfläche führt.The invention relates to a method for gas phase diffusion coating of metallic components, in particular components of gas turbines, in which a component surface to be coated with a metal halide as Beschichtungsurrgsgas to form a defined over a predetermined thickness and a predetermined coating metal content in wt .-% in the component surface diffusion layer in Contact is brought, wherein a defined coating temperature leads to a defined coating time and with a correlating thereto nominal concentration of the metal halide on the component surface.

Derartige Diffusionsschichten dienen im allgemeinen als Heißgaskorrosions- und -oxidationsschutzschichten oder als Haftgrund für Wärmedämmschichten.Such diffusion layers generally serve as hot gas corrosion and oxidation protective layers or as a primer for thermal barrier coatings.

So zeigt EP 1 013 794 A2 ein Verfahren zur Gasphasendiffusionsbeschichtung, bei dem eine zu beschichtende Oberfläche mit einer konstanten Konzentration eines Metallhalogenids als Beschichtungsgas in Kontakt gebracht wird. Dabei wird die Beschichtungskammer vor dem Einleiten des Halogenids zur Reinigung mit Inertgas gespült, wobei bei diesem Spülvorgang der Inertgasdruck variiert bzw. gepulst werden kann.So shows EP 1 013 794 A2 a gas phase diffusion coating method in which a surface to be coated is brought into contact with a constant concentration of a metal halide as a coating gas. In this case, the coating chamber is purged with inert gas prior to introducing the halide for cleaning, wherein the inert gas pressure can be varied or pulsed in this purging process.

Es wird dabei von einer Nennkonzentration des Metallhalogenids an der Bauteiloberfläche bei einem bekannten Verfahren ausgegangen, die für die Bildung einer Diffusionsschicht mit einer Schichtdicke im Bereich von 50 bis 100 µm und einem Beschichtungsmetallgehalt von 25 bis 32 Gew.-% in der Bauteiloberfläche zu einer definierten, reproduzierbaren Beschichtungsdauer von 14 Stunden führt. Alternative Diffusionsschichten mit anderen Schichtdickenbereichen und/oder Beschichtungsmetallgehalten können zu Beschichtungsdauern von z.B. 20 h führen. Bei einem schwerer zu beschichtenden Werkstoff, wie z.B. einer einkristallin erstarrten Ni-Basislegierung, ist bei ansonsten gleichen Verhältnissen eine längere Beschichtungsdauer erforderlich.It is assumed that a nominal concentration of the metal halide on the component surface in a known method, which for the formation of a diffusion layer with a layer thickness in the range of 50 to 100 microns and a coating metal content of 25 to 32 wt .-% in the component surface to a defined , reproducible coating time of 14 hours leads. Alternative diffusion layers with different layer thickness ranges and / or coating metal contents can lead to coating times of, for example, 20 h. In the case of a material that is harder to coat, such as a monocrystalline solidified Ni-base alloy, a longer coating time is required under otherwise identical conditions.

Das der vorliegende Erfindung zugrundeliegende Problem besteht darin, ein Verfahren der eingangs beschriebenen Gattung zu schaffen, mit dem Diffusionsschichten mit einer definierten Schichtdicke und einem definierten Beschichtungsmetallgehalt in Gew.-% in der Bauteiloberfläche möglichst wirtschaftlich, d.h. unter Einsparung von Beschichtungszeit, hergestellt werden können.The problem underlying the present invention is to provide a method of the type described above, with which diffusion layers with a defined layer thickness and a defined coating metal content in wt .-% in the component surface as economically as possible, i. while saving on coating time.

Die Lösung dieses Problems ist im Hinblick auf das Verfahren erfindungsgemäß dadurch gekennzeichnet, dass für das Metallhalogenid über einen ersten (Beschichtungs-)Zeitraum eine über der Nennkonzentration liegende, erste Konzentration und über wenigstens einen zweiten (Beschichtungs-)Zeitraum wenigstens eine bei oder unter der Nennkonzentration liegende, zweite Konzentration an der Bauteiloberfläche eingestellt wird, wobei der erste und der wenigstens eine zweite Zeitraum so gewählt werden, dass deren Summe kürzer als die Beschichtungsdauer mit Nennkonzentration ist.The solution to this problem is according to the invention characterized in that the metal halide over a first (coating) period above the nominal concentration, first concentration and at least one second (coating) period at least one at or below the Nominal concentration lying, second concentration is set at the component surface, wherein the first and the at least one second period are selected so that the sum of which is shorter than the coating time with nominal concentration.

Bei diesem Verfahren erweist sich als vorteilhaft, dass durch die hohe, erste Konzentration des Metallhalogenids an der Bauteiloberfläche im ersten Zeitraum gleich zu Beginn des Verfahrens ein großer Konzentrationsunterschied zum Bauteil besteht, das im allgemeinen zunächst nur wenig oder kein mit dem Beschichtungsmetall identisches Element, z.B. Al,Cr enthält. Dieses führt aufgrund der großen Triebkraft zu einem schnellen Einbringen einer großen Anzahl von Beschichtungsmetallatomen in die Oberfläche des Bauteils. Nach Ende des ersten Zeitraums weist die Bauteiloberfläche somit einen extrem hohen Gehalt an Beschichtungsmetalletomen auf, der jedoch nur über eine geringe Schichtdicke vorliegt. Der hohe Beschichtungsmetallgehalt an der Bauteiloberfläche führt im zweiten Zeitraum durch Diffusionsvorgänge zu einem höheren Beschichtungsmetallgehalt in der Bauteiltiefe und zu einem Abbau an der Bauteiloberfläche, was nach Ende des zweiten Zeitraums zu einer Diffusionsschicht mit dem gewünschten Beschichtungsmetallgehalt in Gew.-% in der Bauteiloberfläche und der gewünschten Schichtdicke führt.In this method, it proves to be advantageous that due to the high, first concentration of the metal halide on the component surface in the first period equal to the beginning of the process, there is a large difference in concentration to the component, which generally initially little or no identical to the coating metal element, eg Al, Cr contains. Due to the high driving force, this leads to rapid introduction of a large number of coating metal atoms into the surface of the component. After the end of the first period, the component surface thus has an extremely high content of coating metal atoms, which, however, is present only over a small layer thickness. The high coating metal content at the component surface leads in the second period by diffusion processes to a higher coating metal content in the component depth and degradation on the component surface, which at the end of the second period to a diffusion layer with the desired coating metal content in wt .-% in the component surface and the desired layer thickness leads.

Die hohe, erste Konzentration im ersten Zeitraum wird durch ein Überangebot an Metallhalogenid erzeugt und im zweiten Zeitraum durch Verdünnung (Zufuhr von Inertgas oder Wasserstoff) wieder aufgehoben.The high, first concentration in the first period is generated by an excess of metal halide and in the second period by dilution (supply of inert gas or hydrogen) canceled.

Das Metallhalogenid kann durch Reaktion eines Halogens oder eines Halogenids mit einem in einer Spenderquelle vorliegendem Beschichtungsmetall erzeugt werden, wobei das Halogen bzw. Halogenid pulver- oder granulatförmig in der Spenderquelle vorliegen oder alternativ durch eine Zuführeinrichtung dem Reaktionsraum, in dem die Bauteile angeordnet sind, zugeführt werden kann. Im letztgenannten Fall kann die zweite Konzentration durch eine Verringerung des Angebots an Halogen bzw. Halogenid eingestellt werden.The metal halide may be formed by reacting a halogen or a halide with a coating metal present in a donor source, wherein the halide is powder or granular in the donor source or, alternatively, supplied by a feeder to the reaction space in which the components are disposed can be. In the latter case can the second concentration can be adjusted by reducing the supply of halogen or halide.

Das Metallhalogenid kann bevorzugt F oder Cl enthalten.The metal halide may preferably contain F or Cl.

Als Beschichtungsmetall kann Al und/oder Cr sowie gegebenenfalls weitere Elemente wie Si, Hf, Y bereitgestellt werden, um die beschichteten Bauteiloberflächen gegen Oxidation bzw. Korrosion zu schützen.Al and / or Cr and optionally further elements such as Si, Hf, Y can be provided as the coating metal in order to protect the coated component surfaces against oxidation or corrosion.

Für eine gute Wirksamkeit wird eine Diffusionsschicht mit einer Schichtdicke von 50 bis 100 µm und einem Beschichtungsmetallgehalt von 25 bis 32 Gew.-% in der Bauteiloberfläche gebildet.For good effectiveness, a diffusion layer having a layer thickness of 50 to 100 μm and a coating metal content of 25 to 32% by weight is formed in the component surface.

Bevorzugt kann der erste Zeitraum mit der über der Nennkonzentration liegenden, ersten Konzentration zwischen 5 (2) und 6 (10) Stunden und der wenigstens eine zweite Zeitraum mit der unter der Nennkonzentration liegendem, zweiten Konzentration zwischen 3 (1) und 4 (6) Stunden eingestellt werden.Preferably, the first time period having the first concentration above the nominal concentration of between 5 (2) and 6 (10) hours and the at least one second time period having the below the nominal concentration, the second concentration between 3 (1) and 4 (6) Hours are set.

Durch die große Triebkraft während des ersten Zeitraums und die damit verbundene hohe Einbringung von Beschichtungsmetallatomen in die Bauteiloberfläche kann eine zweite Konzentration in einem zweiten Zeitraum auf annähernd null eingestellt werden, so dass die Schichtdicke durch Diffusion der bereits in der Bauteiloberfläche vorliegenden Beschichtungsmetallatome zunimmt.Due to the great driving force during the first period and the associated high introduction of coating metal atoms into the component surface, a second concentration can be set to approximately zero in a second period of time, so that the layer thickness increases as a result of diffusion of the coating metal atoms already present in the component surface.

Die wenigstens eine zweite Konzentration kann z.B. durch Zuführen von einem Inertgas, wie Argon, oder Wasserstoff in den Reaktionsraum in dem die zu beschichtenden Bauteile angeordnet sind, oder durch Verringerung des Angebots von zugeleitetem Halogen oder Halogenid eingestellt werden.The at least one second concentration may e.g. by introducing an inert gas, such as argon, or hydrogen into the reaction space in which the components to be coated are arranged, or by reducing the supply of supplied halogen or halide.

Vor Bildung der Diffusionsschicht kann Pt auf der Bauteiloberfläche galvanisch abgeschieden und ggf. wärmebehandelt werden, da Diffusionsschichten, die neben dem Beschichtungsmetall noch Pt oder Pd enthalten, einen noch besseren Schutz gegen Hochtemperaturoxidation und Korrosion bieten. Bei Al als Beschichtungsmetall weist eine PtAl-Diffusionsschicht eine gute Wirksamkeit auf, wenn der Al-Gehalt in der Oberfläche im Bereich von 18 bis 25 Gew.-% liegt.Before the formation of the diffusion layer, Pt can be electrodeposited on the component surface and, if necessary, heat-treated, since diffusion layers, which in addition to the coating metal still contain Pt or Pd, provide even better protection against High temperature oxidation and corrosion. For Al as a coating metal, a PtAl diffusion layer has good efficiency when the Al content in the surface is in the range of 18 to 25% by weight.

Vor Bildung der Diffusionsschicht können auch andere Elemente wie Pt, Si, Y, Hf oder Mischungen vom Typ MCrAlY (mit Ni, Co als M) als Schlicker oder plasmagespritzte Schicht auf der Bauteiloberfläche aufgebracht werden, um spezifische Eigenschaften der Diffusionsschicht, wie z.B. Oxidationsbeständigkeit oder Duktilität, weiter zu verbessern.Prior to formation of the diffusion layer, other elements such as Pt, Si, Y, Hf or mixtures of the MCrAlY type (with Ni, Co as M) as a slurry or plasma sprayed layer may also be deposited on the device surface to provide specific properties of the diffusion layer, e.g. Oxidation resistance or ductility, to further improve.

Der Druck des Beschichtungsgases kann im ersten und/oder zweiten Zeitraum zumindest zeitweise geändert werden, wobei dieses vorzugsweise intermittierend erfolgen kann. Durch Absaugen aus einem die zu beschichtenden Bauteile aufnehmenden Reaktionsbehälter bzw. aus einer Retorte, in der wenigstens ein Reaktionsbehälter angeordnet ist, kann zwischen Normaldruck und Unterdruck gewechselt werden. Der Unterdruck wird vorzugsweise auf einen Druck im Bereich von Normaldruck bis 100 mbar eingestellt. Das Verändern des Drucks bewirkt besonders bei zu beschichtenden Hohlräumen ein verbessertes Eindringen des Beschichtungsmetalls und führt zu kürzeren Beschichtungszeiten. Durch Absenken des Druckes lässt sich auch die geringere, zweite Konzentration im zweiten Zeitraum einstellen.The pressure of the coating gas can be changed at least temporarily in the first and / or second time period, wherein this can preferably take place intermittently. By suction from a reaction vessel receiving the components to be coated or from a retort in which at least one reaction vessel is arranged, it is possible to switch between atmospheric pressure and negative pressure. The negative pressure is preferably set to a pressure in the range of normal pressure to 100 mbar. The change in pressure causes an improved penetration of the coating metal, especially for cavities to be coated, and leads to shorter coating times. By lowering the pressure, the lower, second concentration can also be set in the second period.

Weitere Ausgestaltungen der Erfindung sind in den Unteransprüchen beschrieben.Further embodiments of the invention are described in the subclaims.

Im folgenden wird die Erfindung anhand eines Ausführungsbeispiels unter Bezugnahme auf eine Zeichnung näher erläutert. Es zeigt:

Fig. 1
eine Vorrichtung zur Durchführung des erfindungsgemäßen Verfah- rens zum Gasdiffusionsbeschichten,
Fig. 2
ein Diagramm, in dem der Al-Gehalt über der Schichtdicke am Ende des ersten Zeitraums dargestellt ist, und
Fig. 3
ein Diagramm, in dem Al-Gehalt über der Schichtdicke am Ende des zweiten Zeitraums dargestellt ist.
In the following the invention with reference to an embodiment will be explained in more detail with reference to a drawing. It shows:
Fig. 1
an apparatus for carrying out the method according to the invention for gas diffusion coating,
Fig. 2
a diagram in which the Al content over the layer thickness at the end of the first period is shown, and
Fig. 3
a diagram showing Al content over the layer thickness at the end of the second period.

Fig. 1 zeigt eine Vorrichtung zur Durchführung des Verfahrens mit einer beheizbaren Retorte 1, in der wenigstens ein Reaktionsbehälter 2 angeordnet ist. Je nach Größe können mehrere Reaktionsbehälter 2 über und/oder nebeneinander in der Retorte 1 angeordnet werden. In dem in der vorliegenden Ausgestaltung rotationssymmetrisch ausgebildeten Reaktionsbehälter 2 werden mehrere schematisch dargestellte Bauteile 3 einer Gasturbine, wie z.B. Turbinenschaufeln, mit ihren zu beschichtenden Oberflächen 4 angeordnet und geeignet gehalten. Die Bauteile 3 sind im wesentlichen radial ausgerichtet. Fig. 1 shows a device for carrying out the method with a heatable retort 1, in which at least one reaction container 2 is arranged. Depending on the size, a plurality of reaction vessels 2 can be arranged above and / or next to one another in the retort 1. In the rotationally symmetrical design of the reaction vessel 2 in the present embodiment, a plurality of schematically illustrated components 3 of a gas turbine, such as turbine blades, are arranged with their surfaces 4 to be coated and kept suitable. The components 3 are aligned substantially radially.

Der Reaktionsbehälter 2 weist eine zentral angeordnete Verteilereinrichtung 5 mit in der Zeichnung vergrößert dargestellten Öffnungen 6 auf, die über deren Höhe und um deren Umfang im wesentlichen gleichmäßig verteilt sind. Anstelle der Öffnungen 6 können auch sich radial nach außen in den Reaktionsbehälter 2 erstreckende Rohre vorgesehen werden, die jeweils eine Vielzahl von Öffnungen oder Düsen aufweisen. Der Reaktionsbehälter 2 weist ferner wenigstens eine semipermeable Dichtung 7 auf, durch die Gase aus dem Reaktionsbehälter 2 austreten können. Vorliegend ist der Reaktionsbehälter 2 mit einer am äußeren Umfang 8 umlaufenden semipermeablen Dichtung 7 versehen.The reaction vessel 2 has a centrally arranged distribution device 5 with apertures 6 shown enlarged in the drawing, which are distributed over the height thereof and around its circumference substantially uniformly. Instead of the openings 6, it is also possible to provide tubes extending radially outwards into the reaction vessel 2, each having a plurality of openings or nozzles. The reaction vessel 2 further comprises at least one semi-permeable seal 7 through which gases can escape from the reaction vessel 2. In the present case, the reaction vessel 2 is provided with a circumferential on the outer circumference 8 semipermeable seal 7.

Durch eine in die zentrale Verteilereinrichtung 5 mündende Zuleitung 9 kann ein Halogen oder Halogenid zur Erzeugung des Beschichtungsgases durch Reaktion mit dem Beschichtungsmetall und/oder Inertgas und/oder Wasserstoff zugeführt werden, das durch die zentrale Verteilereinrichtung 5 gleichmäßig in den Reaktionsbehälter 2 von dessen Zentrum aus strömt und über die semipermable Dichtung 7 entweicht. Die Retorte 1 weist eine Zuleitung 10 auf, durch die vor Beginn des Verfahrens Inertgas, wie z.B. Argon, zur Spülung zugeführt wird, um O2 zur Vermeidung von Oxidationen im wesentlichen zu entfernen.Through a feed line 9 opening into the central distributor device 5, a halogen or halide for generating the coating gas by reaction with the coating metal and / or inert gas and / or hydrogen can be fed through the central distributor device 5 evenly into the reaction vessel 2 from its center flows and escapes through the semipermable seal 7. The retort 1 has a feed line 10 through which inert gas, such as argon, is supplied to the purge prior to the start of the process to substantially remove O 2 to prevent oxidation.

Bei der vorliegenden Ausgestaltung des Verfahrens sollen die Turbinenschaufeln 3 aus einer Nickel- oder Cobalt-Basislegierung aus mit einer Aluminiumdiffusionsschicht mit einem Al-Gehalt an der Oberfläche von 25 bis 32 Gew.-% und einer Schichtdicke von 60 bis 90 µm zum Schutz gegen Heißgasoxidation beschichtet werden. Dazu wird eine Vielzahl von Leitschaufeln, z.B. 100 Stück, in dem Reaktionsraum 2 angeordnet und auf geeignete Weise gehalten, so dass die zu beschichtende Oberfläche 4 für das Beschichtungsgas jeweils frei zugänglich ist.In the present embodiment of the method, the turbine blades 3 made of a nickel or cobalt-based alloy with an aluminum diffusion layer having an Al content at the surface of 25 to 32 wt .-% and a layer thickness of 60 to 90 microns to protect against hot gas oxidation be coated. To do this, a plurality of vanes, e.g. 100 pieces, arranged in the reaction space 2 and held in a suitable manner, so that the surface 4 to be coated for the coating gas is freely accessible.

In dem Reaktionsraum 2 sind mehrere Spenderquellen 12 für das hier gewählte Beschichtungsmetall Al in Form von Behältern vorgesehen, die das pulver- oder granulatförmige Beschichtungsmetall enthalten. Die Spenderquellen 12 sind möglichst nahe an den Turbinenschaufeln 3 angeordnet, um die gewünschte hohe, erste Konzentration im ersten Zeitraum zu erzielen. Das gewählte Beschichtungsmetall AlCr liegt als Granulat in ausreichender Menge vor, so dass mehrere Chargen von Turbinenschaufeln nacheinander beschichtet werden können. Zusätzlich befindet sich in der Spenderquelle 12 ein F enthaltendes Halogenid, das bei Beschichtungstemperatur mit dem Beschichtungsmetall unter Bildung eines Metallhalogenids (Beschichtungsgas) reagiert.In the reaction space 2, a plurality of dispenser sources 12 are provided for the coating metal Al selected here in the form of containers which contain the powdered or granular coating metal. The donor sources 12 are arranged as close as possible to the turbine blades 3, in order to achieve the desired high, first concentration in the first period. The selected coating metal AlCr is present as granules in an amount sufficient so that several batches of turbine blades can be coated successively. Additionally, in the donor source 12 is an F-containing halide which reacts at the coating temperature with the coating metal to form a metal halide (coating gas).

Vor Beginn des Verfahrens wird in die Retorte 1 über die Zuleitung 10 ein Inertgas, wie Argon, zur Spülung zugeführt, um die Retorte 1 zur Vermeidung von Oxidationen im wesentlichen frei von O2 und H2O zu machen. Während des anschließenden Aufheizvorgangs 1 auf die Beschichtungstemperatur im Bereich von 1000 bis 1100 °C, vorzugsweise 1080 °C, wird dem Reaktionsbehälter 2 zunächst kein Gas über die Zuleitung 9 zugeführt. Ab einer Temperatur von etwa 700 °C wird der Retorte 1 über die Zuleitung 10 und dem Reaktionsraum 2 über die Zuleitung 9 bzw. die Verteilereinrichtung 5 Wasserstoff (H2) zugeführt. Ab einer Temperatur von 1000 °C wird die Wasserstoffzufuhr zum Reaktionsraum 2 beendet.Before starting the process, an inert gas, such as argon, is added to the retort 1 via the supply line 10 for rinsing in order to make the retort 1 substantially free of O 2 and H 2 O in order to avoid oxidation. During the subsequent heating process 1 to the coating temperature in the range of 1000 to 1100 ° C, preferably 1080 ° C, the reaction vessel 2, no gas is initially supplied via the supply line 9. From a temperature of about 700 ° C, the retort 1 via the supply line 10 and the reaction chamber 2 via the supply line 9 and the manifold 5 hydrogen (H 2 ) is supplied. From a temperature of 1000 ° C, the hydrogen supply to the reaction space 2 is terminated.

Nach Erreichen der Beschichtungstemperatur von 1080 °C wird diese Temperatur über einen ersten Zeitraum von etwa sechs Stunden gehalten. Bei diesen Bedingungen liegt eine Konzentration des Metallhalogenids vor, die zu einem Al-Gehalt von etwa 38 Gew.-% in der Bauteiloberfläche führt.After reaching the coating temperature of 1080 ° C, this temperature is maintained for a first period of about six hours. Under these conditions, there is a concentration of the metal halide that results in an Al content of about 38% by weight in the component surface.

Unmittelbar im Anschluß daran wird dem Reaktionsraum 2 mit Beginn des zweiten Zeitraums über die Zuleitung 9 und die Verteilereinrichtung 5 Wasserstoff zugeführt, wodurch die Konzentration an Metallhalogenid an den zu beschichtenden Oberflächen 4 der Turbinenschaufeln 3 deutlich herabgesetzt wird. Dieses erfolgt zum einen durch die Verdünnung im Reaktionsbehälter 2 und zum anderen dadurch, dass durch den Wasserstoffüberschuss das Beschichtungsgas bildenden Metallhalogenid zu Wasserstoffhalogeniden reagieren. Diese Bedingungen werden während des zweiten Zeitraums über vier Stunden gehalten. Nach Beendigung des zweiten Zeitraums werden die Retorte 1 und der Reaktionsraum 2 durch Zuleiten von 1 m3/h Inertgas (Argon) über die Zuleitung 10 bzw. 9 auf Raumtemperatur abgekühlt.Immediately thereafter, hydrogen is supplied to the reaction space 2 at the beginning of the second period via the feed line 9 and the distributor device 5, as a result of which the concentration of metal halide on the surfaces 4 of the turbine blades 3 to be coated is markedly reduced. This takes place on the one hand by the dilution in the reaction vessel 2 and on the other hand by the fact that the metal halide forming the coating gas due to the excess of hydrogen reacts to form hydrogen halides. These conditions are maintained for four hours during the second period. After completion of the second period, the retort 1 and the reaction chamber 2 are cooled by supplying 1 m 3 / h of inert gas (argon) via the supply line 10 or 9 to room temperature.

Somit sind durch die Erfindung insgesamt nur 10 Stunden zur Herstellung der Diffusionsschicht mit den gewünschten Schichtparametern erforderlich.Thus, the invention requires a total of only 10 hours for the production of the diffusion layer with the desired layer parameters.

In einer alternativen Ausgestaltung des Verfahrens wird zu Beginn des zweiten Zeitraums zur Einstellung der unter der Nennkonzentration liegenden, zweiten Konzentration des Metallhalogenids an der Bauteiloberfläche 4 dem Reaktionsraum 2 über die Zuleitung 9 und die Verteilereinrichtung 5 ein Inertgas zugeführt.In an alternative embodiment of the method, an inert gas is supplied to the reaction space 2 via the feed line 9 and the distributor device 5 at the beginning of the second period for adjusting the second concentration of the metal halide at the component surface 4 which is below the nominal concentration.

Zur weiteren Verbesserung der Wirksamkeit der Diffusionsschicht gegen Heißgasoxidation und -korrosion kann eine Al-Diffusionsschicht Pt oder Pd enthalten, wobei bei einer solchen Ausgestaltung z.B. zunächst Pt mit einer Schichtdicke von z.B. 5 µm galvanisch auf der Bauteiloberfläche abgeschieden und ggf. wärmebehandelt wird. Im Anschluß daran wird das erfindungsgemäße Verfahren in der oben beschriebenen Weise durchgeführt. Aufgrund der großen Triebkraft des erfindungsgemäßen Verfahrens infolge der hohen Al-Konzentration im ersten Beschichtungszeitraum kann Al durch die Pt-Schicht in die Bauteiloberfläche diffundieren. Auf diese Weise läßt sich eine PtAl-Diffusionsschicht mit einer Schichtdicke von 70 µm herstellen, die in 5 µm Tiefe einen Al-Gehalt von etwa 24 Gew.-% und einen Pt-Gehalt von etwa 21 Gew.-% und in 15 µm Tiefe einen Al-Gehalt von etwa 23 Ges.-% und einen Pt-Gehalt von etwa 18 Gew.-% besitzt und somit ein vorteilhaftes Verhältnis zwischen Al und Pt aufweist.To further improve the effectiveness of the diffusion layer against hot gas oxidation and corrosion may contain an Al diffusion layer Pt or Pd, wherein in such an embodiment, for example, first deposited Pt with a layer thickness of eg 5 microns galvanically on the component surface and optionally heat treated. Subsequently, the method according to the invention is carried out in the manner described above. Due to the high driving force of the method according to the invention due to the high Al concentration in the first coating period, Al can diffuse into the component surface through the Pt layer. In this way, a PtAl diffusion layer can be produced with a layer thickness of 70 microns, which at 5 microns depth an Al content of about 24 wt .-% and a Pt content of about 21 wt .-% and in 15 microns depth has an Al content of about 23% by weight and a Pt content of about 18% by weight and thus has an advantageous ratio between Al and Pt.

In der Fig. 2 ist ein Diagramm dargestellt, in dem beispielhaft für Al der Beschichtungsmetallgehalt in Ges.-% über der Schichtdicke nach Ende des ersten Zeitraums, d.h. der Beschichtung mit der über der Nennkonzentration liegenden, ersten Konzentration, dargestellt ist. Die mit der hohen Konzentration verbundende große Triebkraft führt zu einem Al-Gehalt von 38% in der Oberfläche des Bauteils, der über dem gewünschten Al-Gehalt im Bereich von 25 bis 32 Gew.-% liegt. Die Schichtdicke S der Diffusionsschicht ist nach Ende des ersten Zeitraums nur gering und liegt weit unter der gewünschten Schichtdicke von 50 bis 100 µm.In the Fig. 2 a diagram is shown in which, by way of example for Al, the coating metal content is shown in percent by weight over the layer thickness after the end of the first period, ie the coating with the first concentration above the nominal concentration. The high driving force associated with the high concentration results in an Al content of 38% in the surface of the device which is above the desired Al content in the range of 25 to 32% by weight. The layer thickness S of the diffusion layer is only slight after the end of the first period and is far below the desired layer thickness of 50 to 100 μm.

In dem in Fig. 3 dargestellten Diagramm ist der Al-Gehalt über der Schichtdicke nach Ende des zweiten Zeitraums, d.h. zum Ende des Beschichtungsverfahrens, aufgetragen. Durch die Diffusion der Al-Atome in das Bauteil hinein stellt sich an der Bauteiloberfläche der gewünschte Al-Gehalt von 28 Gew.-% ein. Die Verteilung von Al ist deutlich gleichmäßiger und führt zu einem Anwachsen der Schichtdicke bis in dengewünschten Bereich von 50 bis 100 µm.In the in Fig. 3 The diagram shown is the Al content over the layer thickness after the end of the second period, ie applied to the end of the coating process. As a result of the diffusion of the Al atoms into the component, the desired Al content of 28% by weight is established on the component surface. The distribution of Al is significantly more uniform and leads to an increase in the layer thickness up to the desired range of 50 to 100 microns.

Claims (17)

  1. Method for gas phase diffusion coating of metal components, in which a component surface to be coated is brought into contact with a metal halide as the coating gas for formation of a diffusion layer defined via a given layer thickness and a given coating metal content in wt.% in the component surface, wherein a defined coating temperature leads to a defined coating duration with a nominal concentration of the metal halide on the component surface correlating therewith, characterized in that over a first period of time a first concentration lying above the nominal concentration and over at least one second period of time at least one second concentration lying at or below the nominal concentration is established on the component surface, wherein the first and the at least one second period of time are chosen so that their sum is shorter than the coating duration with the nominal concentration.
  2. Method according to claim 1, characterized in that the metal halide is produced by reaction of a halogen or a halide with a coating metal present in a donor source.
  3. Method according to claim 1 or 2, characterized in that the metal halide contains F or Cl.
  4. Method according to one or more of the preceding claims, characterized in that Al and/or Cr or alloys of these are provided as the coating metal.
  5. Method according to claim 4, characterized in that the coating metal additionally contains one or more of the elements Si, Pt, Pd, Hf and Y.
  6. Method according to one or more of the preceding claims, characterized in that a diffusion layer with a layer thickness of from 25 to 100 µm is formed.
  7. Method according to one or more of the preceding claims, characterized in that a diffusion layer with a coating metal content of from 25 to 32 wt.% is formed in the component surface.
  8. Method according to claim 6 and 7, characterized in that the first period of time is set at between 5 and 6 hours and the at least one second period of time is set at between 3 and 4 hours.
  9. Method according to one or more of claims 1 to 7, characterized in that the first period of time is set at between 2 and 10 hours and the at least one second period of time is set at between 1 and 6 hours.
  10. Method according to one or more of the preceding claims, characterized in that a coating temperature in the range of from 900 to 1,200 °C is maintained during the first and second period of time.
  11. Method according to claim 10, characterized in that a coating temperature in the range of from 1,000 to 1,100 °C is maintained during the first and second period of time.
  12. Method according to one or more of the preceding claims, characterized in that a second concentration is established as approximately zero in a second period of time.
  13. Method according to one or more of the preceding claims, characterized in that the at least one second concentration is established by supplying an inert gas or hydrogen or by reducing the amount of halogen or halide supplied.
  14. Method according to one or more of the preceding claims, characterized in that Pt is deposited by electroplating on the component surface before formation of the diffusion layer.
  15. Method according to one or more of the preceding claims, characterized in that at least one element, such as Pt, Si, Y or Hf, or mixtures or alloys, such as MCrAlY (with Ni and/or Co as M) is deposited on the component surface as a slip or by plasma spraying before formation of the diffusion layer.
  16. Method according to one or more of the preceding claims, characterized in that in the first and/or second period of time the pressure of the coating gas is changed at least occasionally.
  17. Method according to one or more of the preceding claims, characterized in that the second concentration is established by lowering the pressure.
EP02711763A 2001-01-11 2002-01-09 Method and device for gas phase diffusion coating of metal components Expired - Lifetime EP1373593B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10101070 2001-01-11
DE10101070A DE10101070C1 (en) 2001-01-11 2001-01-11 Process for gas phase diffusion coating of metallic components
PCT/DE2002/000030 WO2002055754A2 (en) 2001-01-11 2002-01-09 Method and device for gas phase diffusion coating of metal components

Publications (2)

Publication Number Publication Date
EP1373593A2 EP1373593A2 (en) 2004-01-02
EP1373593B1 true EP1373593B1 (en) 2009-10-21

Family

ID=7670286

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02711763A Expired - Lifetime EP1373593B1 (en) 2001-01-11 2002-01-09 Method and device for gas phase diffusion coating of metal components

Country Status (7)

Country Link
US (1) US7294361B2 (en)
EP (1) EP1373593B1 (en)
JP (1) JP4060186B2 (en)
CA (1) CA2434211C (en)
DE (2) DE10101070C1 (en)
ES (1) ES2335481T3 (en)
WO (1) WO2002055754A2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10224632A1 (en) * 2002-06-04 2003-12-24 Mtu Aero Engines Gmbh Process for the internal coating of gas turbine blades
DE10258560A1 (en) * 2002-12-14 2004-07-08 Mtu Aero Engines Gmbh Method and device for CVD coating of workpieces
US7026011B2 (en) 2003-02-04 2006-04-11 General Electric Company Aluminide coating of gas turbine engine blade
FR2853329B1 (en) 2003-04-02 2006-07-14 Onera (Off Nat Aerospatiale) PROCESS FOR FORMING ON METAL A PROTECTIVE COATING CONTAINING ALUMINUM AND ZIRCONIUM
DE102004002365A1 (en) * 2004-01-15 2005-08-11 Behr Gmbh & Co. Kg Process for treatment of metallic bodies involves heat treatment under a hydrogen, rare gas or nitrogen atmosphere and gas diffusion post-treatment, useful in production of fuel cell components, especially for automobiles
DE102004034312A1 (en) * 2004-07-15 2006-02-02 Mtu Aero Engines Gmbh Sealing arrangement and method for producing a sealing body for a sealing arrangement
US20080182026A1 (en) * 2007-01-31 2008-07-31 Honeywell International, Inc. Reactive element-modified aluminide coating for gas turbine airfoils
DE102008053540A1 (en) * 2008-10-28 2010-04-29 Mtu Aero Engines Gmbh High temperature anti-corrosion layer and method of manufacture
DE102010039233A1 (en) 2010-08-12 2012-02-16 Behr Gmbh & Co. Kg Producing a layer heat exchanger with cover- and separator plates fixed to a layer block with outwardly lying collection boxes, comprises covering the surface of the used steel base materials by an aluminum containing protective layer
FR2992977B1 (en) * 2012-07-03 2017-03-10 Snecma PROCESS AND TOOLS FOR DEPOSITING A STEAM-PHASE METAL COATING ON SUPER-ALLOY PARTS

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4714624A (en) * 1986-02-21 1987-12-22 Textron/Avco Corp. High temperature oxidation/corrosion resistant coatings
US5217757A (en) 1986-11-03 1993-06-08 United Technologies Corporation Method for applying aluminide coatings to superalloys
US5071678A (en) 1990-10-09 1991-12-10 United Technologies Corporation Process for applying gas phase diffusion aluminide coatings
GB2274253B (en) * 1993-01-14 1997-04-16 Boc Group Plc Gas separation apparatus
DE4340060C1 (en) 1993-11-24 1995-04-20 Linde Ag Process for gas carburising
JP3029546B2 (en) 1994-03-09 2000-04-04 株式会社荏原製作所 Chromium diffusion-penetration heat-resistant alloy and its manufacturing method
US6129991A (en) * 1994-10-28 2000-10-10 Howmet Research Corporation Aluminide/MCrAlY coating system for superalloys
JP3390776B2 (en) 1995-03-20 2003-03-31 新次 辻 Surface modification method for steel using aluminum diffusion dilution
DE19730007C1 (en) * 1997-07-12 1999-03-25 Mtu Muenchen Gmbh Method and device for the gas phase diffusion coating of workpieces made of heat-resistant material with a coating material
US6224941B1 (en) * 1998-12-22 2001-05-01 General Electric Company Pulsed-vapor phase aluminide process for high temperature oxidation-resistant coating applications

Also Published As

Publication number Publication date
DE50213942D1 (en) 2009-12-03
US7294361B2 (en) 2007-11-13
WO2002055754A3 (en) 2003-10-30
EP1373593A2 (en) 2004-01-02
US20040112287A1 (en) 2004-06-17
CA2434211C (en) 2010-06-08
ES2335481T3 (en) 2010-03-29
JP2004517216A (en) 2004-06-10
WO2002055754A2 (en) 2002-07-18
JP4060186B2 (en) 2008-03-12
DE10101070C1 (en) 2002-10-02
CA2434211A1 (en) 2002-07-18

Similar Documents

Publication Publication Date Title
EP1616979B1 (en) Applying a protective coating on a substrate and method for manufacturing the protective layer
DE2801016C2 (en) Article made from a superalloy body with a coating of a powder applied by flame spraying and a process for its production
DE69117129T2 (en) Process for applying aluminide coatings by gas phase diffusion
DE19807636C1 (en) Process for producing a corrosion and oxidation resistant slip layer
DE60114973T2 (en) CVD aluminizing process for producing a modified platinum aluminide coating for improved high temperature performance
EP0883697B1 (en) Device and method for preparing and/or coating the surfaces of hollow construction elements
EP1373593B1 (en) Method and device for gas phase diffusion coating of metal components
DE2621753A1 (en) PROCESS FOR THE PRODUCTION OF ALUMINIDE COATINGS ON NICKEL, COBALT AND IRON BASED ALLOYS
DE2414992A1 (en) COATING SYSTEM FOR SUPER ALLOYS
DE69810431T2 (en) A coated superalloy substrate and method for coating a superalloy substrate
EP2695964B1 (en) Protective coating tailored to a component
DE602004000818T3 (en) Aluminide coating for gas turbine blade
EP3438414B1 (en) Blade for a flow machine with different diffusion protection layers and method for production
EP1097249B1 (en) Method for producing a plating for a metal component
EP2352856B1 (en) High temperature corrosion protective coating and method therefore
EP0389959B1 (en) Method for applying corrosion and abrasion protective coatings
EP2840166B1 (en) Intermetallic anti-wear protective coating for titanium materials
EP2551369B1 (en) Method for producing a localised diffusion coating and reactor for same
DE102007008278A1 (en) Gas turbine component coating and method and apparatus for providing a coating
EP1088907B1 (en) Method for producing a plating for a metal component
DE102018212480A1 (en) Additive manufacturing process with selective irradiation and simultaneous application as well as heat treatment
DE3810851C2 (en) Process for the production of molded parts
DE2756825C3 (en) Process for the production of diffusion coatings
EP1367144A1 (en) Process for removing portions of a metallic article
DE102018213395A1 (en) METHOD FOR PROVIDING A METALLIC SURFACE WITH A CHROME DIFFUSION PROTECTIVE LAYER

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020903

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20040308

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH CY DE ES FR GB IT LI

17Q First examination report despatched

Effective date: 20040308

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50213942

Country of ref document: DE

Date of ref document: 20091203

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2335481

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100722

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190124

Year of fee payment: 18

Ref country code: FR

Payment date: 20190123

Year of fee payment: 18

Ref country code: ES

Payment date: 20190215

Year of fee payment: 18

Ref country code: IT

Payment date: 20190121

Year of fee payment: 18

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200109

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210120

Year of fee payment: 20

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20210602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200110

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50213942

Country of ref document: DE