EP1368847A2 - Verfahren zur verbesserung des wasserhaushalts von brennstoffzellen - Google Patents

Verfahren zur verbesserung des wasserhaushalts von brennstoffzellen

Info

Publication number
EP1368847A2
EP1368847A2 EP02715437A EP02715437A EP1368847A2 EP 1368847 A2 EP1368847 A2 EP 1368847A2 EP 02715437 A EP02715437 A EP 02715437A EP 02715437 A EP02715437 A EP 02715437A EP 1368847 A2 EP1368847 A2 EP 1368847A2
Authority
EP
European Patent Office
Prior art keywords
chamber
water
cathode gas
cooling
cooling medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02715437A
Other languages
English (en)
French (fr)
Inventor
Erich Erdle
Alfred Koch
Gerhard Konrad
Ottmar Schmid
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daimler AG
Original Assignee
DaimlerChrysler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaimlerChrysler AG filed Critical DaimlerChrysler AG
Publication of EP1368847A2 publication Critical patent/EP1368847A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a method for improving the water balance of fuel cells, in particular low-pressure fuel cells.
  • Fuel cells are electrochemical units that generate electrical energy by converting chemical energy onto catalytic surfaces of electrodes.
  • Main types of electrochemical cells include:
  • the cathode comprises at least one electrode support layer, which serves as a support for the catalyst.
  • anode electrode on which the oxidation reaction takes place through the release of electrons.
  • the anode consists of at least one support layer and catalyst layer.
  • At least one matrix which is arranged between the cathode and anode and serves as a support for the electrolyte.
  • the electrolyte can be in a solid or liquid phase and as a gel.
  • the solid-state electrolyte is advantageously converted into a
  • At least one separator plate which is arranged between the MEAs and is used for collecting reactants and oxidants in electrochemical cells
  • Anode gas chambers which are arranged between the anode-side separator plate and the MEA and through which the anode gas flows,
  • Cathode gas chambers which are arranged between the separator plate on the cathode side and the MEA and through which the cathode gas flows,
  • Cooling chambers through which a cooling medium flows and which serve to cool the cells
  • MEA membrane electrode assemblies
  • a fuel cell stack is created, hereinafter also referred to as a stack.
  • the anode gas chamber is separated from the cathode gas chamber by the membrane electrode unit, comprising an anode, a cathode and an electrolyte.
  • a cooling chamber is provided for cooling the cell, through which a cooling medium flows.
  • the electrical power supply runs in a series connection from cell to cell.
  • the fluid management of the oxidants and reactants takes place via collection and distribution channels to the individual cells in a parallel connection.
  • H2 + 1 O 2 -> H 2 O + process heat + electrical current.
  • Excess reactant and oxidant fluid is carried out of the cells.
  • the product water must be removed from the cell to maintain the efficiency of the electrochemical reaction. The electrolyte state should not be negatively affected.
  • the electrolyte resistance strongly depends on the water content of the electrolyte. To keep the voltage drop across the cell as low as possible, the electrolyte resistance should be minimized during cell operation. In order to meet this requirement, homogeneous drainage of the product water is sought.
  • the product water is usually discharged by means of the steam loading of the reaction gases. If the reaction gases are supersaturated, the liquid water is also pressed out of the gas chambers of the cells by means of the dynamic pressure of the reaction gases. A smoothing of the product water discharge over the cell surface is usually achieved by pre-moistening the dry reaction gases before entering the cell. This pre-moistening prevents the electrolyte from drying out in the gas inlet area of the cell. If the electrolyte dries out, the cell will fail.
  • FIG. 2 The exemplary structure of a fuel cell system with separate pre-humidification of the reaction gases is shown in FIG. 2.
  • the anode and cathode gases are pre-moistened in a humidifier before entering the fuel cell.
  • H2O separation via a porous layer adjacent to the cathode chamber is also known.
  • An exemplary embodiment is shown in FIG. 3.
  • the cooling chamber and the cathode chamber are arranged adjacent to one another by the porous layer, for example a porous separator plate.
  • Water usually flows through the cooling chamber. Because of the diffusion through the porous separator plate, this arrangement allows, on the one hand, the humidification of the cathode gas in the line entry area. On the other hand, the liquid water in the supersaturated area of the cell surface is transported out of the cathode gas chamber through the porous layer.
  • This arrangement partially compensates for the water load across the cell surface and thus also homogenizes the water content in the electrolyte, although despite these measures there is a high water vapor partial pressure difference between the cathode gas inlet and outlet.
  • the desired minimum of the electrolyte resistance is achieved in such cells only in parts of the cell area. Additional, separate anode gas humidification is also required here.
  • the water for this is usually obtained from the cathode gas.
  • This version cannot be used at temperatures below 0 ° C without frost protection measures for the cooling medium, water.
  • additional water for example from separate water tanks, must be fed to the cooling circuit, which is particularly undesirable in mobile applications. At operating temperatures above 65 ° C, more water is then discharged via the fuel cell exhaust air than is generated by the fuel cell process.
  • the object of the invention is to find a method with which it is possible to achieve a homogeneous electrolyte state over the entire cell area of the fuel cell for a wide temperature range without any technical measures or effort.
  • a water exchange between the cathode gas and the cooling medium is realized with an aqueous cooling medium which has a temperature-dependent water vapor partial pressure which is lower than that of water, via the porous separator plate arranged between the cathode gas chamber and the cooling chamber.
  • the porous separator plate arranged between the cathode gas chamber and the cooling chamber.
  • the inventive method humidifies and dehumidifies the electrolyte in a cell area.
  • a porous separator plate with the function described above can also be arranged on the anode side.
  • Another advantage is that a homogeneous electrolyte state can be achieved even at temperatures above 65 ° C without additional measures, e.g. a water tank will be needed.
  • the mass flow of dehumidification predominates - product water is transported from the cathode gas chamber in the direction of the cooling chamber - the mass flow of humidification - water is transported from the cooling chamber to humidify the cathode gas in the direction of the cathode gas chamber.
  • a balance between the water vapor partial pressure in the cathode gas and the water vapor partial pressure in the cooling medium is thus established for a specific operating temperature of the fuel cell.
  • Inorganic solutions for example buffer solutions or organic solutions, for example glycols, glycerol or salts of organic acids, can advantageously be used as the cooling medium.
  • the cooling medium can be a non-corrosive aqueous solution, emulsion or suspension. These solutions have a lower temperature-dependent water vapor partial pressure than pure water.
  • the method according to the invention can be used without additional frost protection measures at temperatures below 0 ° C.
  • the surface of the separator plate facing the cathode gas space can be hydrophilic and the surface facing the cooling chamber can be hydrophobic. This prevents the cooling medium from reaching the cathode gas space through the pores of the separator plate from the cooling chamber. It is also achieved that the product water formed in the cathode gas space can be transported through the pores into the cooling chamber.
  • the water transport between the cooling chamber and the cathode gas chamber can, however, also be influenced by the liquid level in the porous separator plate or by the mass transport path length of the water vapor in the porous separator plate, which can be adjusted by the pressure within the cooling chamber and / or cathode gas chamber.
  • Another way of influencing the water transport between the cooling chamber and the cathode gas chamber is to design the pore diameter.
  • the equilibrium between the water vapor partial pressure of the cathode gas and the water vapor partial pressure of the cooling medium can be set.
  • the water vapor partial pressure in the pores is set approximately according to the equation:
  • T temperature of the cooling medium
  • RD special gas constant of water vapor
  • a membrane separator with a membrane for moistening the anode gas is present.
  • the cooling medium is guided in the membrane separator along one side of the membrane and the dry anode gas is guided along the other side of the membrane. Due to the water vapor partial pressure difference between the two media, there is a water transport from the cooling medium to the anode gas, whereby this is moistened.
  • the membrane separator the product water absorbed by the cooling medium within the fuel cell is thus used to moisten the anode gas. A separate humidification of the anode gas is therefore not required.
  • the cooling chambers of the electrochemical cell stack, the membrane separator and a metering device for metering the cooling medium are connected in a circuit for the cooling medium. This ensures a continuous supply of cooling medium to the fuel cell stack.
  • the metering device advantageously ensures that only a certain part of the cooling medium emerging from the fuel cell stack is fed to the membrane separator. This allows the humidification of the dry anode gas to be set in a defined manner.
  • Another circuit for the anode gas is advantageously present, in which the electrochemical fuel cell stack and the membrane separator are connected.
  • anode gas that was not consumed in the fuel cell stack can be reused by leading it from the fuel cell stack to the membrane separator.
  • anode gas it is also possible for the anode gas to be metered into the fuel cell stack in sufficient quantity so that no excess anode gas is produced after the fuel cell stack. A return of the anode gas from the fuel cell stack to the membrane separator can thus be dispensed with.
  • 1 shows a structure of a fuel cell according to the prior art, as explained in the introduction to the description
  • 2 shows a structure of a fuel cell with a porous separator plate according to the prior art, as explained in the introduction to the description
  • FIG. 3 shows a structure of a fuel cell system with separate pre-humidification of the anode and cathode gases according to the prior art, as explained in the introduction to the description,
  • FIG. 4 shows an inventive construction of a fuel cell system with a membrane separator for moistening the anode gas
  • FIG. 5 shows a comparison of the vapor pressure curves of different mixing ratios of a glycerol-water solution
  • FIG. 6 shows the voltage curve of a fuel cell with a glycerol-water solution as cooling medium.
  • the cooling chamber 4 of the fuel cell stack 1, a metering valve 10 and a water separator 9 (e.g. membrane separator) for water separation are connected in a circuit 7 for the cooling medium.
  • the membrane separator 9 comprises two chambers 17, 18 separated by a membrane 16.
  • the membrane 16 serves to allow the water contained in the cooling medium to pass from the chamber 17 into the chamber 18. Humidification of the anode gas flowing through the chamber 18 is thereby achieved.
  • the metering valve 10 is connected between the fuel cell stack 1 and the membrane separator 9. After flowing through the cooling chamber 4 of the fuel cell stack 1 through the metering valve 10, the cooling medium thus reaches the chamber 17 of the membrane separator 9, where the water contained in the cooling medium is separated off.
  • a compensating vessel 11 is advantageously connected downstream of the membrane separator 9. This expansion tank 11 is used to compensate for volume fluctuations in the cooling medium, caused by the water content, which varies depending on the temperature (operating temperature of the fuel cell).
  • a connection 12 is made between the metering valve 10 and the compensating vessel 11, so that it is possible to pass only a partial flow of the cooling medium emerging from the fuel cell stack 1 into the membrane separator 9.
  • a heat exchanger 14 connected in front of the fuel cell stack 1 ensures that the cooling medium is brought to the corresponding operating temperature of the fuel cell stack 1.
  • the cooling medium is transported from the membrane separator 9 through the heat exchanger 14 into the cooling chamber 4 of the fuel cell stack 1.
  • the cooling chamber 4 is separated from the cathode gas chamber 3 by means of a porous separator plate 6, whereby water exchange between the chambers is achieved.
  • the anode gas chamber 2 of the fuel cell stack 1 and the chamber 18 of the membrane separator 9 are connected in a further circuit 8.
  • the chamber 18 of the membrane separator 9 is arranged in front of the anode gas chamber 2 of the fuel cell stack 1, as seen in the flow direction of the anode gas. It is thus possible that unused anode gas from the fuel cell stack 1 can be reused.
  • a metering device 15 (for example a jet pump) connected in front of the membrane separator 9 enables fresh, unused anode gas to be added to the circuit 8.
  • the anode gas can be recycled by means of of the circuit 8 are eliminated.
  • the flow of the fluids in the fuel cell can largely be chosen arbitrarily.
  • An exemplary flow guide is shown in FIG. 4.
  • the cathode gas flows in countercurrent to the anode gas and in cocurrent to the cooling medium.
  • FIG. 5 shows the vapor pressure curves for various mixing ratios of a glycerol-water solution.
  • the vapor pressure is plotted against the temperature.
  • the vapor pressure of the solution decreases with increasing glycerin concentration.
  • At a temperature of 80 ° C the vapor pressure for pure water about 474 mbar.
  • At a glycerol concentration of 60% the vapor pressure drops to approx. 370 mbar.
  • a glycerin-water solution with a glycerin concentration of 90% has a vapor pressure of approx. 130 mbar.
  • a higher concentration of glycerin in the glycerin-water solution lowers the freezing point of the solution.
  • the freezing point of a glycerol-water solution with a glycerol concentration of 63% is approx. -40 ° C.
  • Such a solution can thus be used as a cooling medium in the method according to the invention without additional frost protection measures.
  • the voltage curve of a fuel cell is shown in FIG. 6.
  • a long-term test is shown in which the cell voltage is plotted against the measurement time. The test was carried out at a cell temperature of 70 ° C. and a current density of 0.5 A / cm 2 .
  • the left curve in the diagram shows the course of the cell voltage, using pure water as the cooling medium. The cell voltage drops by 0.4 mV / h, furthermore a large fluctuation range of the cell voltage can be seen.
  • the middle curve in the diagram shows the voltage curve of a fuel cell in which a glycerol-water solution with a glycerol concentration of 60% was used as the cooling medium.
  • the voltage fluctuations over time have been significantly reduced in this experiment. This is due to the fact that a homogeneous electrolyte state was created over the entire cell area.
  • a drop in the cell voltage of 0.2 mV / h a smaller drop in the cell voltage is observed than in the experiment with pure water as the cooling medium.
  • the right curve again shows the voltage curve of the fuel cell in which pure water was used as the cooling medium.
  • a large fluctuation range of the cell voltage and a stronger voltage drop of 0.4 mV / h can be observed.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Verbesserung des Wasserhaushalts eines elektrochemischen zellenstapels, welcher umfasst: - einer Membran-Elektroden-Einheit (MEA) aus einer Anode, einer Kathode und einer dazwischen angeordneten Elektrolyten, - eine Anodengaskammer zur Verteilung des Anodengases an die Membran-Elektroden-Einheit, wobei das Anodengas Wasserstoff enthält sowie un- oder teilbefeuchtet ist, - eine Kathodengaskammer zur Verteilung des Kathodengases an die Membran-Elektroden-Einheit, wobei das Kathodengas Sauerstoff enthält; - eine Kühlkammer zur Verteilung eines Kühlmediums zur Kühlung des Zellenstapels, wobei die Kühlkammer und die Kathodengaskammer 3 durch eine poröse Separatorplatte 6 getrennt sind. Gemäß der Erfindung wird mit einem wässrigen Kühlmedium, welches einen gegen-über Wasser niedrigeren temperaturabhängigen Wasserdampfpartialdruck aufweist, über die zwischen Kathodengaskammer 3 und Kühlkammer 4 angeordnete poröse Separatorplatte 6 ein Wasseraustausch zwischen dem Kathodengas und dem Kühlmedium realisiert.

Description

Verfahren zur Verbesserung des Wasserhaushalts von Brennstoffzellen
Die Erfindung betrifft ein Verfahren zur Verbesserung des Wasserhaushalts von Brennstoffzellen, insbesondere Niederdruck-Brennstoffzellen.
Brennstoffzellen sind elektrochemische Einheiten, die elektrische Energie mittels Umsetzung von chemischer Energie an katalytischen Oberflächen von Elektroden erzeugen.
Elektrochemische Zellen dieser Art umfassen folgenden Hauptkomponenten:
- eine Kathodenelektrode, an der durch Zugabe von Elektronen die Reduktionsreaktion stattfindet. Die Kathode umfasst mindestens eine Elektrodenträgerschicht, die als Träger für den Katalysator dient.
- eine Anodenelektrode, an der die Oxidationsreaktion durch Abgabe von Elektronen stattfindet. Die Anode besteht ebenso wie die Kathode aus mindestens einer Trägerschicht und Katalysatorschicht.
- mindestens eine Matrix, die zwischen Kathode und Anode angeordnet ist und als Träger für den Elektrolyten dient. Der Elektrolyt kann in fester oder flüssiger Pha- se sowie als Gel vorliegen. Vorteilhaft wird der Elektrolyt in fester Phase in eine
Matrix eingebunden, so dass ein sogenannter Festelektrolyt entsteht.
- mindestens eine Separatorplatte, die zwischen den MEAs angeordnet ist und zur Reaktanten- und Oxidantensammlung in elektrochemischen Zellen dient, - Anodengaskammern, die zwischen der anodenseitigen Separatorplatte und der MEA angeordnet und vom Anodengas durchströmt werden,
- Kathodengaskammern, die zwischen der kathodenseitigen Separatorplatte und der MEA angeordnet und vom Kathodengas durchströmt werden,
- Kühlkammern, welche von einem Kühlmedium durchströmt werden und der Kühlung der Zellen dienen,
- Dichtelemente, die sowohl eine Vermischung der Fluide in den elektrochemischen Zellen verhindern, als auch ein Austreten der Fluide aus der Zelle zur Umgebung verhindern
- Sammel- und Verteilerkanäle zur Zu- und Abführung der Edukte oder Produkte sowie der Kühlmedien.
Diese drei zuerst aufgeführten Komponenten werden auch als Membran-Elektroden- Einheit (MEA) bezeichnet, wobei auf einer Seite der Matrix die Kathodenelektrode und auf der anderen Seite die Anodenelektrode aufgebracht ist.
Werden Brennstoffzellen aufeinander gestapelt, so entsteht ein Brennstoffzellenstapel, im weiteren auch als Stapel bezeichnet. In Fig. 1 ist beispielhaft der Aufbau einer Brennstoffzelle gemäß dem Stand der Technik dargestellt. Die Anodengaskammer ist dabei durch die Membran-Elektrodeneinheit, umfassend eine Anode, eine Kathode und einen Elektrolyten, von der Kathodengaskammer getrennt. Zur Kühlung der Zelle ist eine Kühlkammer vorhanden, die von einem Kühlmedium durchströmt wird.
Die elektrische Stromführung verläuft in einer Reihenschaltung von Zelle zu Zelle. Das Fluid-Management des Oxidanten und Reaktanten erfolgt über Sammel- und Verteilerkanäle zu den einzelnen Zellen in einer Parallelschaltung.
In Brennstoffzellen auf der Basis von Wasserstoff und Sauerstoff erfolgt die Summenreaktion gemäß nachfolgender Gleichung
H2+ 1 O2 -> H2O + Prozesswärme + elektrischer Strom. Überschüssiges Reaktant- und Oxidant-Fluid wird aus den Zellen geführt. Des Weiteren muss das Produktwasser zur Aufrechterhaltung der Effizienz der elektrochemischen Reaktion aus der Zelle abgeführt werden. Dabei sollte der Elektrolytzustand nicht negativ beeinflusst werden.
Bei wässrigen Elektrolyten ist der Eiektrolytwiderstand stark vom Wassergehalt des Elektrolyten abhängig. Um einen möglichst geringen Spannungsabfall über der Zelle zu erhalten, sollte im Betrieb der Zelle der Elektrolytwiderstand minimiert werden. Um diese Anforderung zu erfüllen, wird eine homogene Abführung des Produktwassers angestrebt.
Üblicherweise erfolgt der Produktwasseraustrag mittels der Wasserdampfbeladung der Reaktionsgase. Bei Übersättigung der Reaktionsgase wird das Flüssigwasser auch mittels des Staudrucks der Reaktionsgase aus den Gaskammern der Zellen gedrückt. Eine Glättung des Produktwasseraustrags über die Zellfläche wird üblicherweise dadurch erreicht, dass die trockenen Reaktionsgase vor Eintritt in die Zelle vorbefeuchtet werden. Diese Vorbefeuchtung verhindert, dass der Elektrolyt im Gaseintrittsbereich der Zelle austrocknet. Ein Austrocknen des Elektrolyten führt zum Ausfall der Zelle. Der beispielhafte Aufbau eines Brennstoffzellensystems mit separater Vorbefeuchtung der Reaktionsgase ist in Fig. 2 dargestellt. Hierbei wird das Anoden- und das Kathodengas vor Eintritt in die Brennstoffzelle jeweils in einem Befeuchter vorbefeuchtet.
Ebenfalls bekannt ist die H2θ-Separation über eine an der Kathodenkammer anliegende poröse Schicht. Eine beispielhafte Ausführung ist in Fig. 3 dargestellt. Hierbei sind die Kühlkammer und die Kathodenkammer getrennt durch die poröse Schicht, z.B. eine poröse Separatorplatte benachbart zueinander angeordnet. Die Kühlkammer wird üblicherweise von Wasser durchströmt. Aufgrund der Diffusion durch die poröse Separatorplatte erlaubt diese Anordnung zum einen die Befeuchtung des Kathodengases im Zeileintrittsbereich. Zum anderen wird das flüssige Wasser im übersättigten Bereich der Zellfläche aus der Kathodengaskammer durch die poröse Schicht transportiert. Durch diese Anordnung wird teilweise ein Ausgleich der Wasserbeladung über die Zellfläche und damit auch eine Homogenisierung des Wassergehalts im Elektrolyten geschaffen, wobei trotz dieser Maßnahmen eine hohe Wasserdampfpartialdruckdiffe- renz zwischen Kathodengaseintritt und -austritt vorliegt. Das angestrebte Minimum des Elektrolytwiderstandes wird in solchen Zellen nur in Teilbereichen der Zellfläche erreicht. Auch ist hier eine zusätzliche, separate Anodengasbefeuchtung erforderlich. Das Wasser hierfür wird üblicherweise aus dem Kathodengas gewonnen. Ein Nachteil ist, dass diese Ausführung nicht bei Temperaturen unterhalb 0 °C ohne Frost- schutzmassnahmen des Kühlmediums Wasser eingesetzt werden kann. Außerdem muss bei einer Betriebstemperatur oberhalb 65 °C zusätzliches Wasser, z.B. aus separaten Wassertanks, dem Kühlkreislauf zugeführt werden, was insbesondere im mobilen Einsatzgebiet unerwünscht ist. Bei Betriebstemperaturen oberhalb 65 °C wird dann über die Brennstoffzellenabluft mehr Wasser ausgetragen als durch den Brennstoffzellenprozess erzeugt wird.
Aufgabe der Erfindung ist es, ein Verfahren zu finden, mit dem es ohne gerätetechnische Maßnahmen oder Aufwand möglich ist, für einen weiten Temperaturbereich einen homogenen Elektrolytzustand über die gesamte Zellfläche der Brennstoffzelle zu erreichen.
Die Aufgabe wird mit dem Gegenstand des Patentsanspruchs 1 gelöst. Vorteilhafte Ausführungen sind Gegenstand von Unteransprüchen.
Erfindungsgemäß wird mit einem wässrigen Kühlmedium, welches einen gegenüber Wasser niedrigeren temperaturabhängigen Wasserdampfpartialdruck aufweist, über die zwischen Kathodengaskammer und Kühlkammer angeordnete poröse Separatorplatte ein Wasseraustausch zwischen dem Kathodengas und dem Kühlmedium realisiert. Im Eintrittsbereich der Brennstoffzelle kommt es aufgrund der Wasser- dampfpartialdruckdifferenz zwischen dem Kühlmedium in der Kühlkammer und dem trockenen Kathodengas im Kathodengasraum durch die poröse Separatorplatte zu einem Wassertransport vom Kühlmedium in Richtung des Kathodengases. Somit wird das trockene Kathodengas befeuchtet. Im weiteren Zellbereich entsteht in der Kathodengaskammer aufgrund der Brennstoffzellenreaktion Produktwasser, wodurch der Wasserdampfpartialdruck im Kathodengas ansteigt. Überschreitet der Wasserdampfpartialdruck des Kathodengases den Wasserdampfpartialdruck des Kühlmediums, so kommt es durch die poröse Separatorplatte zu einem Wassertransport vom Kathodengas in Richtung des Kühlmediums. Es stellt sich somit über der gesamten Zellfläche ein weitgehend homogener Elektrolytzustand ein.
Außerdem wird mit dem erfindungsgemäßen Verfahren eine Befeuchtung und Entfeuchtung des Elektrolyten in einer Zellfläche verwirklicht.
Zur weiteren Homogenisierung des Wassergehalts des Elektrolyten kann anodensei- tig ebenfalls eine poröse Separatorplatte mit oben beschriebener Funktion angeordnet werden.
Ein weiterer Vorteil ist, dass auch für Temperaturen oberhalb 65°C ein homogener Elektrolytzustand erreicht werden kann, ohne dass zusätzliche Maßnahmen, z.B. ein Wassertank benötigt werden.
Bei geeigneter Wahl des Kühlmediums ist es möglich, eine ausgeglichene Wasserbilanz innerhalb der Zelle zu erreichen. Dabei überwiegt der Massenstrom der Entfeuchtung - Produktwasser wird von der Kathodengaskammer in Richtung der Kühl- kammer transportiert - dem Massenstrom der Befeuchtung - Wasser wird aus der Kühlkammer zur Befeuchtung des Kathodengases in Richtung der Kathodengaskammer transportiert. Dadurch kommt es im Kühlmedium zu einem Anstieg des Wassergehalts. Es stellt sich somit für eine bestimmte Betriebstemperatur der Brennstoffzelle ein Gleichgewicht zwischen dem Wasserdampfpartialdruck in dem Kathodengas und dem Wasserdampfpartialdruck in dem Kühlmedium ein.
Als Kühlmedium können vorteilhaft anorganische Lösungen, z.B. Pufferlösungen oder organische Lösungen, z.B. Glykole, Glycerin oder Salze organischer Säuren eingesetzt werden. Des weiteren kann das Kühlmedium eine nichtkorrosive wässrige Lösung, Emulsion oder Suspension sein. Diese Lösungen weisen einen niedrigeren temperaturabhängigen Wasserdampfpartialdruck auf als reines Wasser. Dadurch ist ein Einsatz des erfindungsgemäßen Verfahrens ohne zusätzliche Frostschutzmaßnahmen bei Temperaturen unterhalb 0°C möglich. In einer vorteilhaften Ausführung kann die dem Kathodengasraum zugewandte Oberfläche der Separatorplatte hydrophil und die der Kühlkammer zugewandte Oberfläche hydrophob sein. Dadurch wird verhindert, dass das Kühlmedium durch die Poren der Separatorplatte von der Kühlkammer in den Kathodengasraum gelangt. Außerdem wird erreicht, dass das in dem Kathodengasraum gebildete Produktwasser durch die Poren in die Kühlkammer transportiert werden kann.
Der Wassertransport zwischen der Kühlkammer und der Kathodengaskammer kann aber auch über den Flüssigkeitsspiegel in der porösen Separatorplatte oder durch die Stofftransportweglänge des Wasserdampfes in der porösen Separatorplatte, die durch den Druck innerhalb der Kühlkammer und/oder Kathodengaskammer eingestellt werden kann, beeinflusst werden.
Eine weitere Möglichkeit zur Beeinflussung des Wassertransports zwischen der Kühlkammer und der Kathodengaskammer besteht in der Gestaltung des Porendurchmessers. Dadurch kann das Gleichgewicht zwischen Wasserdampfpartialdruck des Kathodengases und dem Wasserdampfpartialdruck des Kühlmediums eingestellt werden. Die Einstellung des Wasserdampfpartialdruckes in den Poren erfolgt nähe- rungsweise nach der Gleichung:
mit
Q : Oberflächenspannung r : Porenradius
PD : Wasserdampfdruck in der Pore
PD : Sättigungsdampfdruck in der Pore qF : Dichte des Kühlmediums
T : Temperatur des Kühlmediums RD : spezielle Gaskonstante von Wasserdampf in einer vorteilhatten Ausführung der Erfindung ist ein Membranseparator mit einer Membran zur Befeuchtung des Anodengases vorhanden. In dem Membranseparator wird entlang der einen Seite der Membran das Kühlmedium und entlang der anderen Seite der Membran das trockene Anodengas geführt. Aufgrund der Wasserdampf- partialdruckdifferenz zwischen den beiden Medien kommt es zu einem Wassertransport vom Kühlmedium zum Anodengas, wodurch dieses befeuchtet wird. Mittels des Membranseparators wird somit das von dem Kühlmedium innerhalb der Brennstoffzelle aufgenommene Produktwasser zur Befeuchtung des Anodengases verwendet. Eine separate Befeuchtung des Anodengases wird somit nicht benötigt. In einerweiteren vorteilhaften Ausführung der Erfindung sind die Kühlkammern des elektrochemischen Zellenstapels, der Membranseparator und eine Dosiervorrichtung zur Dosierung des Kühlmediums in einem Kreislauf für das Kühlmedium geschaltet. Somit wird eine kontinuierliche Versorgung des Brennstoffzellenstapels mit Kühlmedium gewährleistet. Die Dosiervorrichtung sorgt vorteilhaft dafür, dass nur ein be- stimmter Teil des aus dem Brennstoffzellenstapel austretenden Kühlmediums dem Membranseparator zugeführt wird. Dadurch lässt sich die Befeuchtung des trockenen Anodengases definiert einstellen.
Vorteilhaft ist ein weiterer Kreislauf für das Anodengas vorhanden, in den der elektro- chemische Brennstoffzellenstapel und der Membranseparator geschaltet sind. Somit kann Anodengas, welches in dem Brennstoffzellenstapel nicht verbraucht wurde wiederverwendet werden, in dem es vom Brennstoffzellenstapel zum Membranseparator geführt wird.
Es ist aber auch möglich, dass das Anodengas dem Brennstoffzellenstapel in ausreichender Menge zudosiert wird, so dass nach dem Brennstoffzellenstapel kein überschüssiges Anodengas anfällt. Somit kann auf eine Rückführung des Anodengases vom Brennstoffzellenstapel zum Membranseparator verzichtet werden.
Weitere vorteilhafte Ausführungen der Erfindungen werden im folgenden anhand von Zeichnungen näher erläutert. Es zeigen:
Fig. 1 einen Aufbau einer Brennstoffzelle gemäß dem Stand der Technik, wie in der Beschreibungseinleitung erläutert, Fig. 2 einen Aufbau einer Brennstoffzelle mit poröser Separatorplatte gemäß dem Stand der Technik, wie in der Beschreibungseinleitung erläutert,
Fig. 3 einen Aufbau eines Brennstoffzellensystems mit separater Vorbefeuchtung des Anoden- und Kathodengases gemäß dem Stand der Technik, wie in der Beschreibungseinleitung erläutert,
Fig. 4 einen erfindungsgemäßen Aufbau eines Brennstoffzellensystems mit einem Membranseparator zur Befeuchtung des Anodengases,
Fig. 5 einen Vergleich der Dampfdruckkurven verschiedener Mischungsverhältnisse einer Glycerin-Wasser-Lösung, Fig. 6 den Spannungsverlauf einer Brennstoffzelle mit einer Glycerin-Wasser-Lösung als Kühlmedium.
Fig. 4 zeigt einen erfindungsgemäßen Aufbau eines Brennstoffzellensystems. In einem Kreislauf 7 für das Kühlmedium sind die Kühlkammer 4 des Brennstoffzellensta- pels 1 , ein Dosierventil 10 und ein Wasserseparator 9 (z.B. Membranseparator) zur Wasserabtrennung geschaltet. Der Membranseparator 9 umfasst zwei durch eine Membran 16 getrennte Kammern 17, 18. Die Membran 16 dient dazu, dass das im Kühlmedium enthaltene Wasser von der Kammer 17 in die Kammer 18 gelangen kann. Dadurch wird eine Befeuchtung des die Kammer 18 durchströmenden An- odengases erreicht.
Das Dosierventil 10 ist zwischen dem Brennstoffzellenstapel 1 und dem Membranseparator 9 geschaltet. Das Kühlmedium gelangt somit nach Durchströmen der Kühlkammer 4 des Brennstoffzellenstapels 1 durch das Dosierventil 10 in die Kammer 17 des Membranseparators 9, wo das im Kühlmedium enthaltene Wasser abgetrennt wird.
Dem Membranseparator 9 ist stromabwärts vorteilhaft ein Ausgleichsgefäß 11 nachgeschaltet. Dieses Ausgleichsgefäß 11 dient dazu, Volumenschwankungen des Kühlmediums, hervorgerufen durch den temperaturabhängig (Betriebstemperatur der Brennstoffzelle) variierenden Wasseranteil, auszugleichen. Zwischen dem Dosierventil 10 und dem Ausgleichgefäß 11 ist eine Verbindung 12 ausgeführt, so dass es möglich ist, nur einen Teilstrom des aus dem Brennstoffzellenstapel 1 austretenden Kühlmediums in den Membranseparator 9 zu leiten.
Ein vor den Brennstoffzellenstapel 1 geschalteter Wärmetauscher 14 sorgt dafür, dass das Kühlmedium auf die entsprechende Betriebstemperatur des Brennstoffzellenstapels 1 gebracht wird. Mittels einer in den Kreislauf 7 geschalteten Pumpe 13 wird das Kühlmedium vom Membranseparator 9 durch den Wärmetauscher 14 in die Kühlkammer 4 des Brennstoffzellenstapels 1 transportiert. In dem Brennstoffzellen- Stapel 1 ist die Kühlkammer 4 von der Kathodengaskammer 3 mittels einer porösen Separatorplatte 6 getrennt, wodurch ein Wasseraustausch zwischen den Kammern erreicht wird.
Die Anodengaskammer 2 des Brennstoffzellenstapels 1 und die Kammer 18 des Membranseparators 9 sind in einen weiteren Kreislauf 8 geschaltet. Die Kammer 18 des Membranseparators 9 ist dabei vor - in Strömungsrichtung des Anodengases gesehen - der Anodengaskammer 2 des Brennstoffzellenstapels 1 angeordnet. Somit ist es möglich, dass unverbrauchtes Anodengas aus dem Brennstoffzellenstapel 1 wiederverwendet werden kann. Eine vor den Membranseparator 9 geschaltete Do- siervorrichtung 15 (z.B. Treibstrahlpumpe) ermöglicht die Zugabe von frischem, un- verbrachtem Anodengas in den Kreislauf 8. In vorteilhaften Ausführungen in denen das Anodengas nicht vollständig in der Brennstoffzelle verbraucht wird, kann die Rückführung des Anodengases mittels des Kreislaufs 8 entfallen.
Die Strömungsführung der Fluide in der Brennstoffzelle kann weitgehend beliebig gewählt werden. Eine beispielhafte Strömungsführung ist in Fig. 4 dargestellt. Hierbei strömt das Kathodengas im Gegenstrom zu dem Anodengas und im Gleichstrom zu dem Kühlmedium.
In Fig. 5 sind die Dampfdruckkurven für verschiedene Mischungsverhältnisse einer Glycerin-Wasser-Lösung dargestellt. Dabei ist der Dampfdruck über der Temperatur aufgetragen. Mit zunehmender Glycerin-Konzentration nimmt der Dampfdruck der Lösung ab. Bei einer Temperatur von 80°C beträgt der Dampfdruck für reines Was- ser ca. 474 mbar. Bei einer Glycerin-Konzentration von 60% sinkt der Dampfdruck auf ca. 370 mbar. Eine Glycerin-Wasser-Lösung mit einer Glycerin-Konzentration von 90% weist einen Dampfdruck von ca. 130 mbar auf. Eine größere Konzentration von Glycerin in der Glycerin-Wasser-Lösung bewirkt eine Absenkung des Gefrierpunktes der Lösung. So beträgt der Gefrierpunkt einer Glycerin-Wasser-Lösung mit einer Glycerin-Konzentration von 63% ca. -40°C. Eine solche Lösung ist somit ohne zusätzliche Frostschutzmassnahmen als Kühlmedium in dem erfindungsgemäßen Verfahren einsetzbar.
Der Spannungsverlauf einer Brennstoffzelle ist in Fig. 6 dargestellt. Hierbei ist ein Langzeitversuch dargestellt, bei dem die Zellspannung über der Messzeit aufgetragen ist. Der Versuch wurde bei einer Zellentemperatur von 70°C und einer Stromdichte von 0,5 A/cm2 durchgeführt. Die linke Kurve in dem Diagramm zeigt den Verlauf der Zellspannung, wobei als Kühlmedium reines Wasser verwendet wurde. Die Zellspannung fällt dabei mit 0,4 mV/h ab, des weiteren ist eine große Schwankungsbreite der Zellspannung zu erkennen.
Die mittlere Kurve in dem Diagramm zeigt den Spannungsverlauf einer Brennstoffzelle bei der als Kühlmedium eine Glycerin-Wasser-Lösung mit einer Glycerin- Konzentration von 60% verwendet wurde. Die Spannungsschwankungen im Zeitver- lauf sind bei diesem Experiment deutlich reduziert wurden. Dies ist darauf zurückzuführen, dass ein über die gesamte Zellfläche homogener Elektrolytzustand geschaffen wurde. Außerdem ist mit einem Abfall der Zellenspannung von 0,2 mV/h ein geringerer Abfall der Zellenspannung zu beobachten als bei dem Experiment mit reinem Wasser als Kühlmedium. Die rechte Kurve zeigt wiederum den Spannungsverlauf der Brennstoffzelle bei der als Kühlmedium reines Wasser verwendet wurde. Hier ist wiederum eine große Schwankungsbreite der Zellenspannung sowie ein stärkerer Spannungsabfall von 0,4 mV/h zu beobachten.

Claims

Patentansprüche
1. Verfahren zur Verbesserung des Wasserhaushalts eines elektrochemischen Zellenstapels, welcher umfasst: - eine Membran-Elektroden-Einheit (MEA) aus einer Anode, einer Kathode und einem dazwischen angeordneten Elektrolyten, eine Anodengaskammer zur Verteilung eines Anodengases an die Membran-Elektroden-Einheit, wobei das Anodengas Wasserstoff enthält sowie un- oder teilbefeuchtet ist, - eine Kathodengaskammer (3) zur Verteilung eines Kathodengases an die
Membran-Elektroden-Einheit, wobei das Kathodengas Sauerstoff enthält, eine Kühlkammer zur Verteilung eines Kühlmediums zur Kühlung des Zellenstapels, wobei die Kühlkammer und die Kathodengaskammer (3) durch eine poröse Separatorplatte (6) getrennt sind, dadurch gekennzeichnet, dass mit einem wässrigen Kühlmedium, welches einen gegenüber Wasser niedrigeren temperaturabhängigen Wasserdampfpartialdruck aufweist, über die zwischen Kathodengaskammer (3) und Kühlkammer (4) angeordnete poröse Separatorplatte (6) ein Wasseraustausch zwischen dem Kathodengas und dem Kühlmedium realisiert wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die zwischen Kathodengaskammer (3) und Kühlkammer (4) angeordnete poröse Separatorplatte (6) kathodenseitig eine hydrophile Oberfläche und eine der Kühlkammer zugewandte hydrophobe Oberfläche aufweist.
3. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeich- net, dass als Kühlmedium anorganische Lösungen wie Pufferlösungen oder organische Lösungen wie Glykole oder Salze organischer Säuren verwendet werden.
4. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass mittels des Durchmessers der Poren der porösen Separatorplatte (6) der Wasseraustausch zwischen der Kathodengaskammer und der Kühlkammer eingestellt wird.
5. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Wasseraustausch zwischen der Kathodengaskammer und der Kühlkammer durch den Druck innerhalb der Kathodengaskammer und/oder
Kühlkammer eingestellt wird.
6. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass zur Dosierung des Kühlmediums eine Dosiervorrichtung (10) vorhanden ist.
7. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass ein Wasserseparator (9) zur Befeuchtung des Anodengases vorhanden ist.
8. Verfahren nach einem Anspruch 7, dadurch gekennzeichnet, dass der Wasserseparator (9) als Membranseparator ausgebildet ist, wobei entlang der einen Seite der Membran (16) das Kühlmedium und entlang der anderen Seite der
Membran das trockene Anodengas geführt wird.
9. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass ein Kreislauf (8) für das Anodengas vorhanden ist, in den der elektrochemische Zellenstapel (1 ) und der Membranseparator (9) zur Befeuchtung des Anodengases geschaltet sind.
10. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass ein Kreislauf (7) für das Kühlmedium vorhanden ist, in den die Kühlkammer (4) des elektrochemischen Zellenstapels (1 ), der Membranseparator (9) und die Dosiervorrichtung (10) zur Dosierung des Kühlmediums zum Membranseparator (9) geschaltet sind.
EP02715437A 2001-01-26 2002-01-16 Verfahren zur verbesserung des wasserhaushalts von brennstoffzellen Withdrawn EP1368847A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10103568 2001-01-26
DE10103568A DE10103568A1 (de) 2001-01-26 2001-01-26 Verfahren zur Verbesserung des Wasserhaushalts von Brennstoffzellen
PCT/EP2002/000360 WO2002059992A2 (de) 2001-01-26 2002-01-16 Verfahren zur verbesserung des wasserhaushalts von brennstoffzellen

Publications (1)

Publication Number Publication Date
EP1368847A2 true EP1368847A2 (de) 2003-12-10

Family

ID=7671868

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02715437A Withdrawn EP1368847A2 (de) 2001-01-26 2002-01-16 Verfahren zur verbesserung des wasserhaushalts von brennstoffzellen

Country Status (6)

Country Link
US (1) US20040058206A1 (de)
EP (1) EP1368847A2 (de)
JP (1) JP2004529458A (de)
AU (1) AU2002225011A1 (de)
DE (1) DE10103568A1 (de)
WO (1) WO2002059992A2 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4085652B2 (ja) * 2001-08-21 2008-05-14 株式会社エクォス・リサーチ 燃料電池
JP3656596B2 (ja) * 2001-12-03 2005-06-08 日産自動車株式会社 燃料電池システム
DE10310564A1 (de) * 2002-05-29 2003-12-11 P21 Power For The 21St Century Plattenelement für eine Brennstoffzelle, Brennstoffzellenanordnung sowie Verfahren zum Herstellen eines Plattenelements
ITMI20032531A1 (it) * 2003-12-19 2005-06-20 Nuvera Fuel Cells Europ Srl Cella a combustione a membrana alimentata in
US20070087240A1 (en) * 2005-10-18 2007-04-19 General Hydrogen Corporation Fuel cell fluid dissipater
US20070087239A1 (en) * 2005-10-18 2007-04-19 General Hydrogen Corporation Fuel cell fluid management system
EP3644421A1 (de) * 2018-10-25 2020-04-29 Ecole Polytechnique Federale De Lausanne (EPFL) EPFL-TTO Elektrochemischer reaktor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2670146B2 (ja) * 1989-06-16 1997-10-29 三菱重工業株式会社 燃料電池原料ガスの調湿装置
DE4132536A1 (de) * 1991-09-30 1993-04-01 Siemens Ag Verfahren und vorrichtung zur einstellung des wassergehalts des elektrolyten in saueren bzw. alkalischen brennstoffzellen
GB2268619B (en) * 1992-07-01 1995-06-28 Rolls Royce & Ass A fuel cell
JPH08185877A (ja) * 1994-12-28 1996-07-16 Toyota Motor Corp 燃料電池システム
US5503944A (en) * 1995-06-30 1996-04-02 International Fuel Cells Corp. Water management system for solid polymer electrolyte fuel cell power plants
DE19802490C2 (de) * 1998-01-23 2002-01-24 Xcellsis Gmbh Verwendung eines Paraffins als Kühlmittel für Brennstoffzellen
US6331366B1 (en) * 1999-06-23 2001-12-18 International Fuel Cells Llc Operating system for a fuel cell power plant
US6284399B1 (en) * 1999-09-17 2001-09-04 Plug Power Llc Fuel cell system having humidification membranes
US6428916B1 (en) * 1999-12-20 2002-08-06 Utc Fuel Cells, Llc Coolant treatment system for a direct antifreeze cooled fuel cell assembly

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02059992A2 *

Also Published As

Publication number Publication date
JP2004529458A (ja) 2004-09-24
WO2002059992A2 (de) 2002-08-01
DE10103568A1 (de) 2002-08-14
AU2002225011A1 (en) 2002-08-06
WO2002059992A3 (de) 2003-07-31
US20040058206A1 (en) 2004-03-25

Similar Documents

Publication Publication Date Title
DE69328874T2 (de) Feststoffpolymerzellensystem mit wasserentfernung an der anode
DE69906551T2 (de) Brennstoffzellensystem mit umgebungsdruck
DE102007026331B4 (de) Brennstoffzellensystem mit verbessertem Feuchtemanagement und dessen Verwendung in einem Fahrzeug
DE102015122144A1 (de) Befeuchter mit integriertem Wasserabscheider für ein Brennstoffzellensystem, Brennstoffzellensystem sowie Fahrzeug mit einem solchen
DE102004006025B4 (de) Brennstoffzellenstapel mit einer integrierten Einheit aus Luftkühler, Filter und Befeuchtungseinrichtung
DE102006046104B4 (de) Brennstoffzellensystem und Verfahren zum Ablassen von Stickstoff
DE102006019114A1 (de) Brennstoffzellenbetriebsverfahren zur verbesserten Wasserstoff- und Sauerstoffverwendung
DE102013225368A1 (de) Brennstoffzellensystem und verfahren zum befeuchten und kühlen desselben
DE102007024838A1 (de) Steuerung mehrerer Druckregimes, um RF-Abweichungen bei Übergängen zu minimieren
DE102010048253B4 (de) Verfahren zur Rekonditionierung eines Brennstoffzellenstapels
EP1358690B1 (de) Brennstoffzellenstapel
DE102014205029A1 (de) Konditionierungseinheit zur Konditionierung eines Betriebsmediums sowie Brennstoffzellenanordnung mit einer solchen
WO2002059992A2 (de) Verfahren zur verbesserung des wasserhaushalts von brennstoffzellen
DE112010002798T5 (de) Verringern des verlusts von flüssigem elektrolyt aus einerhochtemperatur-polymerelektrolytmembran-brennstoffzelle
EP4008035B1 (de) Befeuchter, brennstoffzellenvorrichtung mit befeuchter sowie kraftfahrzeug
DE102009043208B4 (de) Materialauslegung, um eine Leistungsfähigkeit einer Brennstoffzelle bei hoher Mittentemperatur mit ultradünnen Elektroden zu ermöglichen
EP2153486B1 (de) Hochtemperatur-polymerelektrolyt-brennstoffzellensystem sowie verfahren zum betreiben desselben
DE102008009130B4 (de) Verfahren zum Reduzieren flüssiger Wassertröpfchen in einem Anodeneinlass zu einem Brennstoffzellenstapel und entsprechend ausgebildetes Brennstoffzellensystem
DE102006054795B4 (de) Wassermanagement von PEM-Brennstoffzellenstapeln unter Verwendung von oberflächenaktiven Stoffen
DE102020100599A1 (de) Verfahren für einen Froststart eines Brennstoffzellensystems, Brennstoffzellensystem und Kraftfahrzeug mit einem solchen
WO2020030346A1 (de) Befeuchter, brennstoffzellenvorrichtung mit befeuchter sowie kraftfahrzeug
DE102021127197B3 (de) Anordnung für eine Brennstoffzellenvorrichtung
EP4037812B1 (de) Befeuchter, brennstoffzellenvorrichtung sowie kraftfahrzeug mit einer brennstoffzellenvorrichtung
DE112012001206T5 (de) Brennstoffzellen-System
DE102019126301A1 (de) Befeuchter sowie Brennstoffzellenvorrichtung mit Befeuchter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHMID, OTTMAR

Inventor name: KONRAD, GERHARD

Inventor name: KOCH, ALFRED

Inventor name: ERDLE, ERICH

17P Request for examination filed

Effective date: 20040129

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20050802