EP1367633B1 - Spectromètre de masse - Google Patents

Spectromètre de masse Download PDF

Info

Publication number
EP1367633B1
EP1367633B1 EP03253412A EP03253412A EP1367633B1 EP 1367633 B1 EP1367633 B1 EP 1367633B1 EP 03253412 A EP03253412 A EP 03253412A EP 03253412 A EP03253412 A EP 03253412A EP 1367633 B1 EP1367633 B1 EP 1367633B1
Authority
EP
European Patent Office
Prior art keywords
ion guide
ions
mass spectrometer
ion
transient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03253412A
Other languages
German (de)
English (en)
Other versions
EP1367633A2 (fr
EP1367633A3 (fr
Inventor
Robert Harold Bateman
Kevin Giles
Steve Pringle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micromass UK Ltd
Original Assignee
Micromass UK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB0212508A external-priority patent/GB0212508D0/en
Application filed by Micromass UK Ltd filed Critical Micromass UK Ltd
Publication of EP1367633A2 publication Critical patent/EP1367633A2/fr
Publication of EP1367633A3 publication Critical patent/EP1367633A3/fr
Application granted granted Critical
Publication of EP1367633B1 publication Critical patent/EP1367633B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/06Electron- or ion-optical arrangements
    • H01J49/062Ion guides
    • H01J49/065Ion guides having stacked electrodes, e.g. ring stack, plate stack

Definitions

  • the present invention relates to a mass spectrometer and a method of mass spectrometry
  • Mass spectrometers having an RF ion guide which comprises a multipole rod set wherein ions are radially confined within the ion guide by the application of an RF voltage to the rods.
  • the RF voltage applied between neighbouring electrodes produces a pseudo-potential well or valley which radially confines ions within the ion guide.
  • RF ion guides are used, for example, to transport ions from an atmospheric pressure ion source through a vacuum chamber maintained at an intermediate pressure e.g. 0.001-10 mbar to a mass analyser maintained in a vacuum chamber at a relatively low pressure.
  • Mass analysers which must be operated in a low pressure vacuum chamber include quadrupole ion traps, quadrupole mass filters, Time of Flight mass analysers, magnetic sector mass analysers and Fourier Transform Ion Cyclotron Resonance ("FTICR”) mass analysers.
  • the RF ion guides can efficiently transport ions despite the ions undergoing many collisions with gas molecules which cause the ions to be scattered and to lose energy since the RF radial confinement ensures that ions are not lost from the ion guide.
  • US 5206506 discloses an ion processing unit having a perforated electrode sheet.
  • WO 01/1520/ discloses a multiple stage mass spectrometer.
  • US 5818055 discloses an ion guide for introducing ions into an ion trap.
  • WO 99/38185 discloses an ion transmission device for a mass spectrometer.
  • the mass spectrometer comprises:
  • a characteristic of the preferred ion guide that distinguishes it from other ion guides is that ions exit the ion guide in a pulsed manner. This will be true irrespective of whether the ion beam entering the ion guide is continuous or pulsed.
  • the preferred ion guide may be used to convert a continuous beam of ions into a pulsed beam of ions.
  • the preferred ion guide may be used to transport a series of ion packets without allowing the ions to become dispersed and merged one with the next.
  • the pulsed nature of ions emitted from the ion guide advantageously allows the detection system to be phase locked with the ion pulses.
  • the detection system response may be modulated or pulsed in the same way the ion beam is modulated or pulsed. This provides a means of improving the signal to noise of the ion detection system since any continuous noise, white noise or DC offset in the detection system can be essentially eliminated from the detected signal.
  • the preferred ion guide may be advantageously interfaced with a discontinuous mass analyser.
  • the pulsing of an orthogonal acceleration Time of Flight mass spectrometer may be arranged to be synchronised with the frequency of a DC potential waveform passing along the ion guide to maximise the duty cycle for ions of a particular range of mass to charge ratios.
  • the range of masses for which the duty cycle is maximised will be determined by the distance from the exit of the ion guide to the orthogonal acceleration region, the energy of the ions and the phase shift between that of the travelling DC waveform applied to the ion guide and that of the pulsing of the orthogonal acceleration Time of Flight mass spectrometer.
  • a mass spectrometer having an ion guide downstream of a device which repeatedly generates or releases packets of ions in a substantially pulsed manner.
  • the device may comprise a pulsed ion source, such as a Laser Desorption or ablation source or a Matrix Assisted Laser Desorption Ionisation ("MALDI") ion source.
  • the device may comprise an ion trap wherein ions are released from the ion trap in a pulsed manner.
  • the mass spectrometer comprises :
  • the device may comprise a continuous ion source e.g. an Electrospray (“ESI”) ion source, an Atmospheric Pressure Chemical Ionisation (“APCI”) ion source, an Atmospheric Pressure Photo Ionisation (“APPI”) ion source, an Inductively Coupled Plasma (“ICP”) ion source, an Electron Impact (“EI”) ion source, an Chemical Ionisation (“CI”) ion source, a Fast Atom Bombardment (“FAB”) ion source or a Liquid Secondary Ions Mass Spectrometry (“LSIMS”) ion source.
  • ESI Electrospray
  • APCI Atmospheric Pressure Chemical Ionisation
  • APPI Atmospheric Pressure Photo Ionisation
  • ICP Inductively Coupled Plasma
  • EI Electron Impact
  • CI Chemical Ionisation
  • FAB Fast Atom Bombardment
  • LIMS Liquid Secondary Ions Mass Spectrometry
  • the device may according to a less preferred embodiment comprise a pulsed ion source in combination with a dispersing means for dispersing ions emitted by the pulsed ion source.
  • the dispersed ions may therefore arrive at the ion guide in a substantially continuous or pseudo-continuous manner.
  • ions being transmitted through the ion guide are preferably substantially not fragmented within the ion guide. Accordingly, at least 50%, 60%, 70%, 80%, 90% or 95% of the ions entering the ion guide are arranged to have, in use, an energy less than 10 eV for a singly charged ion or less than 20 eV for a doubly charged ion such that the ions are substantially not fragmented within the ion guide.
  • a potential barrier between two or more trapping regions may be removed so that the two or more trapping regions become a single trapping region.
  • a potential barrier between two or more trapping regions may be lowered so that at least some ions are able to move between the two or more trapping regions.
  • One or more transient DC voltages or one or more transient DC voltage waveforms are progressively applied to the electrodes so that ions trapped within one or more axial trapping regions are urged along the ion guide.
  • An axial voltage gradient may be maintained along at least a portion of the length of the ion guide wherein the axial voltage gradient varies with time whilst ions are being transmitted through the ion guide.
  • the ion guide may comprise a first electrode held at a first reference potential, a second electrode held at a second reference potential, and a third electrode held at a third reference potential, wherein:
  • the second electrode is at the second reference potential and the third electrode is at the third reference potential;
  • the first electrode is at the first potential and the third electrode is at the third reference potential;
  • the third time t 3 the first electrode is at the first potential and the second electrode is at the second potential.
  • the second electrode is at the second reference potential and the third electrode is at the third reference potential;
  • the first electrode is no longer supplied with the first DC voltage so that the first electrode is returned to the first reference potential and the third electrode is at the third reference potential;
  • the second electrode is no longer supplied with the second DC voltage so that the second electrode is returned to the second reference potential and the first electrode is at the first reference potential.
  • the first, second and third reference potentials are preferably substantially the same.
  • the first, second and third DC voltages may be substantially the same.
  • the first, second and third potentials may also be substantially the same.
  • the ion guide may comprise 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or >30 segments, wherein each segment comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or >30 electrodes and wherein the electrodes in a segment are maintained at substantially the same DC potential.
  • a plurality of segments may be maintained at substantially the same DC potential.
  • Each segment may be maintained at substantially the same DC potential as the subsequent nth segment wherein n is 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or >30.
  • Ions are preferably confined radially within the ion guide by an AC or RF electric field. Ions are preferably radially confined within the ion guide in a pseudo-potential well and are constrained axially by a real potential barrier or well.
  • the transit time of ions through the ion guide is selected from the group consisting of: (i) less than or equal to 20 ms; (ii) less than or equal to 10 ms; (iii) less than or equal to 5 ms; (iv) less than or equal to 1 ms; and (v) less than or equal to 0.5 ms.
  • the ion guide is preferably maintained at a pressure selected from the group consisting of: (i) greater than or equal to 0.0001 mbar; (ii) greater than or equal to 0.0005 mbar; (iii) greater than or equal to 0.001 mbar; (iv) greater than or equal to 0.005 mbar; (v) greater than or equal to 0.01 mbar; (vi) greater than or equal to 0.05 mbar; (vii) greater than or equal to 0.1 mbar; (viii) greater than or equal to 0.5 mbar; (ix) greater than or equal to 1 mbar; (x) greater than or equal to 5 mbar; and (xi) greater than or equal to 10 mbar.
  • the ion guide is preferably maintained at a pressure selected from the group consisting of: (i) less than or equal to 10 mbar; (ii) less than or equal to 5 mbar; (iii) less than or equal to 1 mbar; (iv) less than or equal to 0.5 mbar; (v) less than or equal to 0.1 mbar; (vi) less than or equal to 0.05 mbar; (vii) less than or equal to 0.01 mbar; (viii) less than or equal to 0.005 mbar; (ix) less than or equal to 0.001 mbar; (x) less than or equal to 0.0005 mbar; and (xi) less than or equal to 0.0001 mbar.
  • the ion guide is preferably maintained, in use, at a pressure selected from the group consisting of: (i) between 0.0001 and 10 mbar; (ii) between 0.0001 and 1 mbar; (iii) between 0.0001 and 0.1 mbar; (iv) between 0.0001 and 0.01 mbar; (v) between 0.0001 and 0.001 mbar; (vi) between 0.001 and 10 mbar; (vii) between 0.001 and 1 mbar; (viii) between 0.001 and 0.1 mbar; (ix) between 0.001 and 0.01 mbar; (x) between 0.01 and 10 mbar; (xi) between 0.01 and 1 mbar; (xii) between 0.01 and 0.1 mbar; (xiii) between 0.1 and 10 mbar; (xiv) between 0.1 and 1 mbar; and (xv) between 1 and 10 mbar.
  • the ion guide is maintained, in use, at a pressure such that a viscous drag is imposed upon ions passing through the ion guide.
  • one or more transient DC voltages or one or more transient DC voltage waveforms are initially provided at a first axial position and are then subsequently provided at second, then third different axial positions along the ion guide.
  • one or more transient DC voltages or one or more transient DC voltage waveforms move in use from one end of the ion guide to another end of the ion guide so that ions are urged along the ion guide.
  • the one or more transient DC voltages may create:
  • the amplitude of the one or more transient DC voltages or the one or more transient DC voltage waveforms may remain substantially constant with time.
  • the amplitude of the one or more transient DC voltages or the one or more transient DC voltage waveforms may vary with time.
  • the amplitude of the one or more transient DC voltages or the one or more transient DC voltage waveforms may either: (i) increase with time; (ii) increase then decrease with time; (iii) decrease with time; or (iv) decrease then increase with time.
  • the ion guide may comprise an upstream entrance region, a downstream exit region and an intermediate region, wherein:
  • the entrance and/or exit region may comprise a proportion of the total axial length of the ion guide selected from the group consisting of: (i) ⁇ 5%; (ii) 5-10%; (iii) 10-15%; (iv) 15-20%; (v) 20-25%; (vi) 25-30%; (vii) 30-35%; (viii) 35-40%; and (ix) 40-45%.
  • the first and/or third amplitudes are substantially zero and the second amplitude is substantially non-zero.
  • the second amplitude is preferably larger than the first amplitude and/or the second amplitude is preferably larger than the third amplitude.
  • the one or more transient DC voltages or one or more transient DC voltage waveforms pass in use along the ion guide with a first velocity and wherein the first velocity: (i) remains substantially constant; (ii) varies; (iii) increases; (iv) increases then decreases; (v) decreases; (vi) decreases then increases; (vii) reduces to substantially zero; (viii) reverses direction; or (ix) reduces to substantially zero and then reverses direction.
  • the one or more transient DC voltages or the one or more transient DC voltage waveforms may cause ions within the ion guide to pass along the ion guide with a second velocity.
  • the difference between the first velocity and the second velocity is preferably less than or equal to 100 m/s, 90 m/s, 80 m/s, 70 m/s, 60 m/s, 50 m/s, 40 m/s, 30 m/s, 20 m/s, 10 m/s, 5 m/s or 1 m/s.
  • the first velocity is selected from the group consisting of: (i) 10-250 m/s; (ii) 250-500 m/s; (iii) 500-750 m/s; (iv) 750-1000 m/s; (v) 1000-1250 m/s; (vi) 1250-1500 m/s; (vii) 1500-1750 m/s; (viii) 1750-2000 m/s; (ix) 2000-2250 m/s; (x) 2250-2500 m/s; (xi) 2500-2750 m/s; and (xii) 2750-3000 m/s.
  • the second velocity is selected from the group consisting of: (i) 10-250 m/s; (ii) 250-500 m/s; (iii) 500-750 m/s; (iv) 750-1000 m/s; (v) 1000-1250 m/s; (vi) 1250-1500 m/s; (vii) 1500-1750 m/s; (viii) 1750-2000 m/s; (ix) 2000-2250 m/s; (x) 2250-2500 m/s; (xi) 2500-2750 m/s; and (xii) 2750-3000 m/s.
  • the second velocity is preferably substantially the same as the first velocity.
  • the one or more transient DC voltages or the one or more transient DC voltage waveforms preferably have a frequency, and wherein the frequency: (i) remains substantially constant; (ii) varies; (iii) increases; (iv) increases then decreases; (v) decreases; or (vi) decreases then increases.
  • the one or more transient DC voltages and the one or more transient DC voltage waveforms preferably have a wavelength, and wherein the wavelength: (i) remains substantially constant; (ii) varies; (iii) increases; (iv) increases then decreases; (v) decreases; or (vi) decreases then increases.
  • two or more transient DC voltages or two or more transient DC voltage waveforms pass simultaneously along the ion guide.
  • the two or more transient DC voltages or the two or more transient DC voltage waveforms may be arranged to move: (i) in the same direction; (ii) in opposite directions; (iii) towards each other; (iv) away from each other.
  • one or more transient DC voltages or one or more transient DC voltage waveforms are repeatedly generated and passed in use along the ion guide, and wherein the frequency of generating the one or more transient DC voltages or the one or more transient DC voltage waveforms: (i) remains substantially constant; (ii) varies; (iii) increases; (iv) increases then decreases; (v) decreases; or (vi) decreases then increases.
  • the mass spectrometer preferably further comprises a Time of Flight mass analyser comprising an electrode for injecting ions into a drift region, the electrode being arranged to be energised in use in a substantially synchronised manner with the pulses of ions emerging from the exit of the ion guide.
  • a Time of Flight mass analyser comprising an electrode for injecting ions into a drift region, the electrode being arranged to be energised in use in a substantially synchronised manner with the pulses of ions emerging from the exit of the ion guide.
  • the mass spectrometer may further comprise an ion trap arranged downstream of the ion guide, the ion trap being arranged to store and/or release ions from the ion trap in a substantially synchronised manner with the pulses of ions emerging from the exit of the ion guide.
  • the mass spectrometer may further comprise a mass filter arranged downstream of the ion guide, wherein a mass to charge ratio transmission window of the mass filter is varied in a substantially synchronised manner with the pulses of ions emerging from the exit of the ion guide.
  • the ion guide may comprise an ion funnel comprising a plurality of electrodes having apertures therein through which ions are transmitted, wherein the diameter of the apertures becomes progressively smaller or larger.
  • the ion guide may comprise an ion tunnel comprising a plurality of electrodes having apertures therein through which ions are transmitted, wherein the diameter of the apertures remains substantially constant.
  • the ion guide may comprise a stack of plate, ring or wire loop electrodes.
  • Each electrode preferably has an aperture through which ions are transmitted in use.
  • Each electrode preferably has a substantially circular aperture.
  • Each electrode preferably has a single aperture through which ions are transmitted in use.
  • the diameter of the apertures of at least 50%, 60%, 70%, 80%, 90% or 95% of the electrodes forming the ion guide is preferably selected from the group consisting of: (i) less than or equal to 10 mm; (ii) less than or equal to 9 mm; (iii) less than or equal to 8 mm; (iv) less than or equal to 7 mm; (v) less than or equal to 6 mm; (vi) less than or equal to 5 mm; (vii) less than or equal to 4 mm; (viii) less than or equal to 3 mm; (ix) less than or equal to 2 mm; and (x) less than or equal to 1 mm.
  • At least 50%, 60%, 70%, 80%, 90% or 95% of the electrodes forming the ion guide have apertures which are substantially the same size or area.
  • the ion guide may comprise a segmented rod set.
  • the ion guide may consist of: (i) 10-20 electrodes; (ii) 20-30 electrodes; (iii) 30-40 electrodes; (iv) 40-50 electrodes; (v) 50-60 electrodes; (vi) 60-70 electrodes; (vii) 70-80 electrodes; (viii) 80-90 electrodes; (ix) 90-100 electrodes; (x) 100-110 electrodes; (xi) 110-120 electrodes; (xii) 120-130 electrodes; (xiii) 130-140 electrodes; (xiv) 140-150 electrodes; or (xv) more than 150 electrodes.
  • the thickness of at least 50%, 60%, 70%, 80%, 90% or 95% of the electrodes is selected from the group consisting of: (i) less than or equal to 3 mm; (ii) less than or equal to 2.5 mm; (iii) less than or equal to 2.0 mm; (iv) less than or equal to 1.5 mm; (v) less than or equal to 1.0 mm; and (vi) less than or equal to 0.5 mm.
  • the ion guide preferably has a length selected from the group consisting of: (i) less than 5 cm; (ii) 5-10 cm; (iii) 10-15 cm; (iv) 15-20 cm; (v) 20-25 cm; (vi) 25-30 cm; and (vii) greater than 30 cm.
  • At least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 95% of the electrodes are connected to both a DC and an AC or RF voltage supply.
  • axially adjacent electrodes are supplied with AC or RF voltages having a phase difference of 180°.
  • a method of mass spectrometry as claimed in claim 70 comprises:
  • a method of mass spectrometry as claimed in claim 71 comprises:
  • the method further comprises synchronising the energisation of an electrode for injecting ions into a drift region of a Time of Flight mass analyser to pulses of ions emerging from the exit of the ion guide.
  • the method further comprises synchronising the storing and/or releasing of ions in an ion trap arranged downstream of the ion guide with the pulses of ions emerging from the exit of the ion guide.
  • the method further comprises synchronising varying the mass to charge ratio transmission window of a mass filter arranged downstream of the ion guide with the pulses of ions emerging from the exit of the ion guide.
  • a repeating pattern of electrical DC potentials may be superimposed along the length of the ion guide so that a DC periodic waveform is formed.
  • the DC potential waveform is arranged to travel along the ion guide in the direction and at a velocity at which it is desired to move ions along the ion guide.
  • the preferred ("travelling wave”) ion guide may comprise an AC or RF ion guide such as a multipole rod set or stacked ring set which is segmented in the axial direction so that independent transient DC potentials may be applied to each segment.
  • the transient DC potentials are superimposed on top of the RF confining voltage and any constant DC offset voltage.
  • the DC potentials are changed temporally to generate a travelling DC potential wave in the axial direction.
  • a voltage gradient is generated between segments which acts to push or pull ions in a certain direction. As the voltage gradient moves in the required direction so do the ions.
  • the individual DC voltages on each of the segments may be programmed to create a required waveform. Furthermore, the individual DC voltages on each of the segments may be programmed to change in synchronism so that the DC potential waveform is maintained but shifted in the direction in which it is required to move the ions.
  • the DC potential waveform may be superimposed on any nominally imposed constant axial DC voltage offset. No constant axial DC voltage gradient is required although the travelling DC wave may less preferably be provided in conjunction with an axial DC voltage gradient.
  • the transient DC voltage applied to each segment may be above or below that of a constant DC voltage offset applied to the electrodes forming the ion guide.
  • the transient DC voltage causes the ions to move in the axial direction.
  • the transient DC voltages applied to each segment may be programmed to change continuously or in a series of steps.
  • the sequence of voltages applied to each segment may repeat at regular intervals or at intervals that may progressively increase or decrease.
  • the time over which the complete sequence of voltages is applied to a particular segment of the ion guide is the cycle time T.
  • the inverse of the cycle time is the wave frequency f.
  • the distance along the AC or RF ion guide over which the travelling DC waveform repeats itself is the wavelength ⁇ .
  • the wavelength divided by the cycle time is the velocity V wave of the travelling DC potential wave.
  • the velocity of the ions will be equal to that of the travelling DC potential wave.
  • the travelling DC wave velocity may be controlled by selection of the cycle time. If the cycle time T progressively increases then the velocity of the travelling DC wave will progressively decrease.
  • the optimum velocity of the travelling DC potential wave may depend upon the mass of the ions and the pressure and composition of the background gas.
  • the travelling wave ion guide may be used at intermediate pressures between 0.0001 and 100 mbar, preferably between 0.001 and 10 mbar, for which the gas density will be sufficient to impose a viscous drag on the ions.
  • the gas at these pressures will appear as a viscous medium to the ions and will act to slow the ions.
  • the viscous drag resulting from frequent collisions with gas molecules will prevent the ions from building up excessive velocity. Consequently the ions will tend to ride on the travelling DC wave rather than run ahead of the wave and execute excessive oscillations within the travelling or translating potential wells which could lead to ion fragmentation.
  • the presence of the gas will impose a maximum velocity at which the ions will travel through the gas for a given field strength.
  • the energy of the ions will be dependent upon their mass and the square of their velocity. If fragmentation is to be avoided then the energy of the ions is preferably kept below a particular value usually below 5-10 eV. This consideration may impose a limit on the travelling wave velocity.
  • the repetition rate of the ion guide can be tailored to that of a mass analyser in terms of scan rates and acquisition times.
  • the repetition rate may be high enough to prevent pulsing across the mass range.
  • the repetition frequency may be compatible with the reaction monitoring dwell times.
  • the repetition frequency may be synchronised with the pusher pulses of the Time of Flight mass analyser to maximise ion sampling duty cycle and hence sensitivity.
  • the travelling wave ion guide provides a means of ensuring ions exit the RF ion guide and of reducing their transit times.
  • the preferred embodiment relates to an AC or RF ion guide 1 comprising a plurality of electrodes 2. Ions arrive at an entrance 3 to the ion guide 1 and leave the ion guide 1 via an exit 4.
  • the ion guide 1 may comprise a plurality of segments, each segment comprising one or more electrodes 2.
  • the DC voltage applied to each segment may be programmed to change continuously or in a series of steps.
  • the sequence of DC voltages applied to each segment may repeat at regular intervals or at intervals which may progressively increase or decrease.
  • the time over which the complete sequence of DC voltages is applied to a particular segment is the cycle time T.
  • the inverse of the cycle time is the wave frequency f.
  • the velocity of the DC potential waveform which is progressively applied along the length of the ion guide 1 is arranged to substantially equal that of the ions arriving at the ion guide.
  • the travelling wave velocity may be controlled by selection of the cycle time. If the cycle time T progressively increases then the velocity of the DC potential waveform will progressively decrease.
  • the optimum velocity of the travelling DC potential waveform may depend on the mass of the ions and the pressure and composition of the gas in the ion guide 1.
  • the travelling wave ion guide 1 may be operated at intermediate pressures between 0.0001 and 100 mbar, preferably between 0.001 and 10 mbar, wherein the gas density will be sufficient to impose a viscous drag on the ions.
  • the gas at these pressures will appear as a viscous medium to the ions and will act to slow the ions.
  • the viscous drag resulting from frequent collisions with gas molecules prevents the ions from building up excessive velocity. Consequently, the ions will tend to ride on or with the travelling DC potential waveform rather than run ahead of the DC potential waveform and execute excessive oscillations within the potential wells which are being translated along the length of the ion guide 1.
  • the presence of a gas in the ion guide 1 imposes a maximum velocity at which the ions will travel through the gas for a given field strength.
  • the energy of the ions will be dependent upon their mass and the square of their velocity. If fragmentation is not desired, then the energy of the ions is preferably kept below about 5-10 eV. This may impose a limit on the velocity of the DC potential waveform. Consequently, the optimum DC potential wave velocity will vary with the mass of the ion, the gas pressure and whether it is desired to transport ions with minimal fragmentation or to fragment ions.
  • a feature of the preferred ion guide 1 is that it emits a pulsed beam of ions.
  • the repetition rate of the pulses of ions can be tailored to a mass analyser downstream of the ion guide 1 in terms of scan rates and acquisition times. For example, in a scanning quadrupole system the repetition rate can be made high enough to prevent pulsing across the mass range.
  • the repetition frequency In a triple quadrupole tandem mass spectrometer operating in a MRM mode the repetition frequency may be made compatible with the reaction monitoring dwell times. With a quadrupole Time of Flight tandem mass spectrometer, the repetition frequency may be synchronised with the pusher pulses on the Time of Flight mass analyser to maximise ion sampling duty cycle and hence sensitivity.
  • the pulses of ions emitted from the ion guide 1 may also be synchronised with the operation of an ion trap or mass filter.
  • the transient DC potential waveform applied to the ion guide 1 may comprise a square wave.
  • the amplitude of the DC waveform may become progressively attenuated towards the entrance of the ion guide 1 i.e. the amplitude of the travelling potential DC waveform may grow to its full amplitude over the first few segments of the travelling wave ion guide 1. This allows ions to be introduced into the ion guide 1 with minimal disruption to their sequence.
  • a continuous ion beam arriving at the entrance 3 to the ion guide 1 will advantageously exit the ion guide 1 as a series of pulses.
  • One example of an advantage to be gained from converting a continuous beam of ions into a pulsed beam of ions is that it allows the detection system to be phase locked with the ion pulses.
  • the detection system response may be modulated or pulsed in the same way the ion beam is modulated or pulsed. This provides a means of improving the signal to noise of the ion detection system since any continuous noise, white noise, or DC offset in the detection system may be substantially eliminated from the detected signal.
  • an advantage to be gained from converting a continuous beam of ions into a pulsed beam of ions is that gained when the travelling wave ion guide 1 is interfaced to a discontinuous mass analyser.
  • the pulsing of an orthogonal acceleration Time of Flight mass spectrometer may be synchronised with the travelling wave frequency to maximise the duty cycle for ions having a particular range of mass to charge ratios.
  • the range of masses for which the duty cycle is maximised will be determined by the distance from the exit of the travelling wave ion guide 1 to the orthogonal acceleration region, the energy of the ions and the phase shift between that of the travelling waveform and that of the pulsing of the orthogonal acceleration Time of Flight mass spectrometer.
  • a further advantage of the preferred ion guide 1 is that a pulse of ions arriving at the entrance to the travelling wave ion guide 1 can be arranged to also exit the ion guide 1 as a pulse of ions.
  • the pulse of ions arriving at the travelling wave ion guide 1 is preferably synchronised with the travelling waveform so that the ions arrive at the optimum phase of that waveform. In other words, the arrival of the ion pulse should preferably coincide with a particular phase of the waveform.
  • This characteristic of the travelling wave ion guide 1 is an advantage when used with a pulsed ion source, such as a laser ablation source or MALDI source or when ions have been released from an ion trap and it is desired to substantially prevent the pulse of ions from becoming dispersed and broadened.
  • the preferred embodiment is therefore particularly advantageous for transporting ions to an ion trap or to a discontinuous mass analyser such as a quadrupole ion trap, FTICR mass analyser or Time of Flight mass analyser.
  • An ion guide 1 comprises a stacked ring AC or RF ion guide.
  • the complete stacked ring set is preferably 180 mm long and is made from 120 stainless steel rings each preferably 0.5 mm thick and spaced apart by 1 mm.
  • the internal aperture in each ring is preferably 5 mm in diameter.
  • the frequency of the RF supply is preferably 1.75 MHz and the peak RF voltage may be varied up to 500.
  • the stacked ring ion guide 1 may be mounted in an enclosed collision cell chamber positioned between two quadrupole mass filters in a triple quadrupole mass spectrometer. The pressure in the enclosed collision cell chamber may be varied up to 0.01 mbar.
  • the stacked ring RF ion guide is preferably electrically divided into 15 segments each 12 mm long and consisting of 8 rings. Three different DC voltages may be connected to every third segment so that a sequence of voltages applied to the first three segments is repeated a further four times along the whole length of the stacked ring set.
  • the three DC voltages applied to every third segment may be independently programmed up to 40 volts.
  • the sequence of voltages applied to each segment preferably creates a waveform with a potential hill, repeated five times throughout the length of the stacked ring set.
  • the wavelength of the travelling waveform is preferably 36 mm (3 x 12 mm).
  • the cycle time for the sequence of voltages on any one segment is preferably 23 ⁇ sec and hence the wave velocity is preferably 1560 m/s (36 mm/23 ⁇ s).
  • the operation of a travelling wave ion guide 1 will now be described with reference to Fig. 3.
  • the preferred embodiment preferably comprises 120 electrodes but 48 electrodes are shown in Fig. 3 for ease of illustration.
  • Alternate electrodes are preferably fed with opposite phases of a RF supply (preferably 1 MHz and 500 V p-p).
  • the ion guide 1 may be divided into separate groups of electrodes (6 groups of electrodes are shown in Fig. 3).
  • the electrodes in each group may be fed from separate secondary windings on a coupling transformer as shown in Fig. 3. These are connected so that all the even-numbered electrodes are 180° out of phase with all the odd-numbered electrodes. Therefore, at the point in the RF cycle when all the odd numbered electrodes are at the peak positive voltage, all the even-numbered electrodes are at the peak negative voltage.
  • Electrodes #1, #3, #5, #43, #45 and #47 may be connected to one pole of the secondary winding CT8 and electrodes #2, #4, #6, #44, #46 and #48 may be connected to the opposite end of winding CT7 to ensure the correct RF phasing of the electrodes.
  • windings CT1-6 are referred to a different DC reference point shown schematically by the 2-gang switch in Fig. 3 so that the first through sixth sets of electrodes of the central groups of electrodes can be supplied with a DC potential selected by the switch, as well as the RF potentials.
  • winding CT6 of the transformer may be connected to the DC supply biasing all the first electrodes (e.g. electrodes #7, #13, #19 etc.) of the central groups relative to all other electrodes.
  • winding CT5 is connected to the DC supply, biasing all the second electrodes (e.g. electrodes #8, #14, #20 etc.) while the first electrodes (e.g. electrodes #7, #13, #19 etc.) are returned to 0 V DC.
  • each transformer winding CT1-8 may be fed by a Digital to Analogue Converter which can apply the desired DC potential to the winding under computer control.
  • Typical operating conditions may have an RF peak-to-peak voltage of 500 V, an RF frequency of 1 MHz, a DC bias of +5 V (for positive ions) and a switching frequency of 10-100 kHz.
  • the ion therefore becomes contained or otherwise trapped in a potential well between the potential barriers on electrodes #7 and #13. Further rotation of the switch moves this potential well from electrodes #7-13 to electrodes #8-14, then #9-15, through to #12-18. A further cycle of the switch moves this potential well in increments of one electrode from electrodes #12-18 through to electrodes #18-24. The process repeats thereby pushing the ion along the ion guide 1 in its potential well until it emerges into the RF only exit group of electrodes #43-48 and then subsequently leaves the ion guide 1.
  • the travelling wave ion guide 1 therefore carries individual packets of ions along its length in the travelling potential wells while simultaneously the strong focusing action of the RF field tends to confine the ions to the axial region.
  • a mass spectrometer having two quadrupole mass filters/analysers and a collision cell.
  • a travelling wave ion guide 1 may be provided upstream of the first mass filter/analyser.
  • a transient DC potential waveform may be applied to the travelling wave ion guide 1 having a wavelength of 14 electrodes.
  • the DC voltage is preferably applied to neighbouring pairs of electrodes 2 and is preferably stepped in pairs. Hence, according to the preferred embodiment there are seven steps in one cycle. Therefore, at any one time there are two electrodes with a transient applied DC voltage followed by 12 electrodes with no applied DC voltage followed by two electrodes with a transient applied DC voltage followed by 12 electrodes with no applied DC voltage etc.
  • a buffer gas (typically nitrogen or helium) may be introduced into the travelling wave ion guide 1. If the ion guide 1 is used to interface a relatively high pressure source to a high-vacuum mass analyser or is used as a collision cell then gas will already be present in the ion guide 1.
  • the buffer gas is a viscous medium and is preferably provided to dampen the motion of the ions. The presence of gas tends to thermalise the ion translational energies. Therefore, ions entering the ion guide 1 may become thermalised by collisional cooling irrespective of the kinetic energy possessed by the ions and they will be confined in their potential wells as they travel through the ion guide 1.
  • the travelling wave ion guide 1 advantageously allows the ion transit time to be controlled unlike other ion guides and in particular allows a MALDI-TOF instrument to be operated in a very efficient way with virtually a 100% ion transmission and analysis efficiency.
  • a sample to be analysed is coated on a target 10 and is bombarded with photons from a laser 11. Ions so produced pass through an aperture in an extraction electrode 12 and then through a travelling wave ion guide 1 according to the preferred embodiment. On exiting the travelling wave ion guide 1 they pass through an exit electrode 13 and enter the pulser 14 of a Time of Flight mass analyser 15.
  • a linear or a reflecting Time of Flight mass analyser 15 may be provided. An orthogonal reflecting type is preferred and is shown in Fig. 4. Operation of the pulser 14 and Time of Flight mass analyser 15 is conventional.
  • Gas e.g. nitrogen
  • An accelerating region is preferably provided between the target 10 and the extraction electrode 12 and a 10 V potential gradient may be provided to accelerate positive ions as shown.
  • This region is preferably followed by a field-free region 16 between the extraction electrode 12 and the entrance of the travelling wave ion guide 1.
  • the length of the field free region 16 is 250 mm.
  • Another accelerating field may be provided between the travelling wave ion guide exit electrode 13 and the Time of Flight pulser 14, as shown.
  • a 40 V potential gradient may, for example, be provided in this region.
  • the accelerating fields and the field-free region 16 interact with the operation of the travelling wave ion guide 1 to enable a mode of operation which is highly efficient.
  • the ion source, acceleration regions and field-free region 16 are preferably maintained at relatively high vacuum.
  • ions ejected from the MALDI target 10 will have a range of velocities typically between about 0.5 and 2.0 times the speed of sound, on average about 300-400 m/s. This spread in velocities accounts for the relatively large spread in ion energies.
  • the ions then enter a field-free drift region 16 between the extraction electrode 12 and the entrance of the travelling wave ion guide 1 in which they begin to separate according to their mass to charge ratios because of the different mass-dependent velocities imparted to them during the prior acceleration stage. Consequently, the lightest ions arrive first at the entrance to the travelling wave ion guide 1. These ions will enter the travelling wave ion guide 1 and become trapped in a DC potential well. As that DC potential well moves or is translated along the length of travelling wave ion guide 1, a second DC potential well opens behind it into which some slightly heavier ions will become trapped. These ions will have taken slightly longer to reach the travelling wave ion guide entrance because they will have moved slightly more slowly through the field free region 16 than the lightest ions.
  • the combined effect of the accelerating region, field-free region 16 and the travelling DC potential wells of the travelling wave ion guide 1 results in a series of DC potential wells reaching the end of the travelling wave ion guide 1 with each potential well or trapping region containing ions of similar mass to charge ratios.
  • the first potential well or trapping region arriving at the exit of the travelling wave ion guide 1 will contain the lightest ions, the following potential wells or trapping regions will contain ions of steadily increasing mass to charge ratios and the last potential well or trapping region will contain the heaviest ions from any particular laser pulse.
  • the ions Since the ions remain trapped in their potential wells during their passage or translation through the traveling wave ion guide 1, the ions preferably do not mix with ions in different potential wells. Since gas is present in the travelling wave ion guide 1 this results in collisional cooling of the ions in each potential well whilst the travelling potential well continues to push the ions forward at a velocity equal to that of the potential well. Consequently, by the time the ions reach the end of the travelling wave ion guide 1 the ions in each potential well will have lost most of their initial velocity spread even though they have a bulk velocity equal to that of the potential well. In other words, their initial relatively large spread in energy is reduced to that of the thermal energy of the buffer gas.
  • the front potential barrier disappears and the rear potential barrier pushes the ions out of the travelling wave ion guide 1 into another accelerating field between the exit of the travelling wave ion guide 1 and the pusher electrodes of the Time of Flight mass analyser 15.
  • a gradient of about 40 V may be applied. This field rapidly accelerates the ions into the pusher region 14, but because they all start with similar (very low) kinetic energy and because the potential well contains only ions having a limited range of masses, the ions do not significantly separate in space during this acceleration.
  • the slowest ions released from the potential well will therefore still enter the pusher region 14 before the fastest ions can exit the pusher region 14. Consequently, if the pusher voltage is applied at this precise time then all the ions contained in a particular potential well or trapping region can be analysed by the Time of Flight mass analyser 15 without loss.
  • a single TOF push synchronised with but delayed from the arrival of a potential well at the exit of the travelling wave ion guide 1 may be used to analyse all the ions in a potential well.
  • the preferred embodiment is therefore capable of mass analysing all the ions from a given laser pulse with virtually a 100% efficiency.
  • the preferred embodiment can be yet further refined by varying the travelling wave ion guide switching speed during the arrival of ions at the travelling wave ion guide 1 following a laser pulse.
  • the collection of ions into individual potential wells will proceed with least disruption to their grouping by mass to charge ratio if the velocity of the potential wells is arranged to substantially match the velocities of the ions arriving at the entrance to the travelling wave ion guide 1.
  • the ions arriving at the travelling wave ion guide 1 from each laser pulse will have progressively slower velocities as the elapsed time from the laser pulse increases as their velocity is simply the length of the field free region 16 from the target plate 10 to the travelling wave ion guide 1 divided by the elapsed time.
  • the velocity of the potential wells in the travelling wave ion guide 1 may be continuously reduced so as to continuously match the velocity of the ions arriving at the entrance of the travelling wave ion guide 1. This can be achieved by arranging the travelling wave ion guide switching time intervals to increase linearly with elapsed time from the laser pulse.
  • the velocities of the ions within potential wells within the travelling wave ion guide 1 will also preferably continuously reduce. Since the ions have a natural tendency to slow due to the viscous drag of the collision gas, by appropriate selection of gas type and pressure the natural slowing of ions due to viscous drag can be made to substantially match the slowing velocity of the potential wells in the travelling wave ion guide 1 thereby reducing the chances of any ions fragmenting unintentionally in the ion guide 1.
  • Another advantage of this arrangement is that the energy of the ions leaving the travelling wave ion guide 1 is approximately constant (otherwise, the energy of the ions would increase with the increasing mass of the ions in the later arriving potential wells).
  • the ions therefore leave the travelling wave ion guide 1 with substantially the velocity of the potential barriers moving along the travelling wave ion guide 1. If the traveling DC wave velocity is kept constant then ions with higher masses will have greater kinetic energies than ions with lower masses.
  • ions entering an orthogonal Time of Flight mass analyser 15 should preferably all have approximately the same energy in order to avoid spatial separation of ions when they arrive at the ion detector 17. It is therefore necessary for all ions to have substantially the same energy in order to ensure that all the ions ultimately hit the ion detector 17.
  • the delay between the arrival of a potential well at the exit of the travelling wave ion guide 1 and the operation of the Time of Flight pulser 14 is preferably increased in synchronism with the increased switching time intervals of the travelling wave ion guide operation.
  • a theoretical treatment of the effect of gas collisions in the travelling wave ion guide 1 or the transport of ions in the potential well shows that the potential well translation velocity (i.e. the switching speed of the travelling wave ion guide) should be reduced exponentially during the time the laser desorbed ions are arriving at the travelling wave ion guide.
  • Fig. 5 illustrates how ions of differing mass to charge ratios will arrive at the travelling wave ion guide 1 shown in Fig. 4 as a function of time T 1 .
  • Fig. 5 also illustrates the exit time T 2 of the ions from the travelling wave ion guide 1 and the arrival time T 3 of the ions at the orthogonal acceleration Time of Flight mass analyser 15.
  • the length L 2 (m) of the travelling wave ion guide is 0.25 m.
  • V 3 38.647
  • the path length L 3 (m) from the travelling wave ion guide 1 to the orthogonal acceleration pusher region is 0.15 m.
  • the flight time T x from the exit of the travelling wave ion guide 1 to the orthogonal acceleration pusher region 14: T x 72 L 3 m E 3
  • T 3 T 2 + T x

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Claims (74)

  1. Spectromètre de masse comportant :
    un dispositif générant ou libérant des paquets d'ions de manière répétée et sensiblement pulsée ; et
    un guide d'ions (1) comportant une pluralité d'électrodes (2), ledit guide d'ions (1) étant agencé pour recevoir les paquets d'ions générés ou libérés par ledit dispositif et dans lequel, pendant l'utilisation, un ou plusieurs paquets d'ions générés ou libérés par ledit dispositif sont piégés dans une ou plusieurs zones de piégeage axiales à l'intérieur dudit guide d'ions (1), et dans lequel ladite ou lesdites zones de piégeage axiales sont translatées le long d'au moins une portion de la longueur axiale dudit guide d'ions (1) et les ions sont alors libérés de ladite ou desdites zones de piégeage axiales de sorte que les ions sortent dudit guide d'ions (1) de manière sensiblement pulsée ;
    ledit spectromètre de masse étant caractérisé en ce qu'il comporte en outre :
    un moyen d'appliquer progressivement une ou plusieurs tensions continues transitoires ou une ou plusieurs formes d'ondes transitoires en tension continue auxdites électrodes (2) de sorte que les ions piégés à l'intérieur d'une ou de plusieurs zones de piégeage axiales soient poussés le long dudit guide d'ions (1) ; et
    un détecteur d'ions (17), ledit détecteur d'ions (17) étant agencé pour être sensiblement en verrouillage de phase, pendant l'utilisation, avec les impulsions d'ions émises depuis la sortie (4) du guide d'ions (1).
  2. Spectromètre de masse selon la revendication 1, dans lequel ledit dispositif comporte une source d'ions pulsée (10, 11).
  3. Spectromètre de masse selon la revendication 2, dans lequel ladite source d'ions pulsée (10, 11) est choisie parmi le groupe formé de : (i) une source d'ions à désorption-ionisation laser assistée par matrice ("MALDI") ; et (ii) une source d'ions à désorption-ionisation laser ("LDI").
  4. Spectromètre de masse selon la revendication 1, dans lequel ledit dispositif (10, 11) comporte un piège à ions agencé en amont dudit guide d'ions.
  5. Spectromètre de masse comportant :
    un dispositif générant ou fournissant des ions de manière sensiblement continue ; et
    un guide d'ions (1) comportant une pluralité d'électrodes (2), ledit guide d'ions (1) étant agencé pour recevoir lesdits ions dudit dispositif et dans lequel, pendant l'utilisation, lesdits ions reçus dudit dispositif sont piégés dans une ou plusieurs zones de piégeage axiales à l'intérieur dudit guide d'ions (1), et dans lequel ladite ou lesdites zones de piégeage axiales sont translatées le long d'au moins une portion de la longueur axiale dudit guide d'ions (1) et les ions sont alors libérés de ladite ou desdites zones de piégeage axiales de sorte que les ions sortent dudit guide d'ions (1) de manière sensiblement pulsée ;
    ledit spectromètre de masse étant caractérisé en ce qu'il comporte en outre :
    un moyen d'appliquer progressivement une ou plusieurs tensions continues transitoires ou une ou plusieurs formes d'ondes transitoires en tension continue auxdites électrodes (2) de sorte que les ions piégés à l'intérieur d'une ou de plusieurs zones de piégeage axiales soient poussés le long dudit guide d'ions (2) ; et
    un détecteur d'ions (17), ledit détecteur d'ions (17) étant agencé pour être sensiblement en verrouillage de phase, pendant l'utilisation, avec les impulsions d'ions émises depuis la sortie (4) du guide d'ions (1).
  6. Spectromètre de masse selon la revendication 5, dans lequel ledit dispositif comporte une source d'ions continue.
  7. Spectromètre de masse selon la revendication 6, dans lequel ladite source d'ions continue est choisie parmi le groupe formé de : (i) une source d'ions à électrospray ("ESI") ; (ii) une source d'ions à ionisation chimique à pression atmosphérique ("APCI') ; (iii) une source d'ions à photo-ionisation à pression atmosphérique ("APPI") ; (iv) une source d'ions à plasma à couplage inductif ("ICP") ; (v) une source d'ions à impact d'électrons ("EI") ; (vi) une source d'ions à ionisation chimique ("CI") ; (vii) une source d'ions à bombardement d'atomes rapides ("FAB") ; et (viii) une source d'ions pour spectrométrie de masse à ions secondaires et matrice liquide ("LSIMS").
  8. Spectromètre de masse selon la revendication 5, dans lequel ledit dispositif comporte une source d'ions pulsée (10, 11) combinée à un moyen de dispersion (16) afin de disperser les ions émis par ladite source d'ions pulsée.
  9. Spectromètre de masse selon la revendication 8, dans lequel lesdits ions arrivent audit guide d'ions (1) d'une manière sensiblement continue ou pseudo-continue.
  10. Spectromètre de masse selon l'une quelconque des revendications précédentes, dans lequel les ions en cours de transmission à travers ledit guide d'ions (1) ne sont pratiquement pas fragmentés à l'intérieur dudit guide d'ions.
  11. Spectromètre de masse selon l'une quelconque des revendications précédentes, dans lequel il est fait en sorte qu'au moins 50%, 60%, 70%, 80%, 90% ou 95% des ions entrant dans ledit guide d'ions (1) possèdent, pendant l'utilisation, une énergie inférieure à 10 eV pour un ion simplement chargé ou inférieure à 20 eV pour un ion doublement chargé, de telle manière que lesdits ions ne soient pratiquement pas fragmentés à l'intérieur dudit guide d'ions.
  12. Spectromètre de masse selon l'une quelconque des revendications précédentes, dans lequel une barrière de potentiel entre deux zones de piégeage ou plus est supprimée, de sorte que lesdites deux zones de piégeage ou plus deviennent une seule zone de piégeage.
  13. Spectromètre de masse selon l'une quelconque des revendications précédentes, dans lequel une barrière de potentiel entre deux zones de piégeage ou plus est abaissée, de sorte qu'au moins certains ions soient en mesure de se déplacer entre lesdites deux zones de piégeage ou plus.
  14. Spectromètre de masse selon l'une quelconque des revendications précédentes, dans lequel, pendant l'utilisation, un gradient axial de tension est entretenu le long d'au moins une portion de la longueur dudit guide d'ions (1) et dans lequel ledit gradient axial de tension varie avec le temps alors que les ions sont en cours de transmission à travers ledit guide d'ions.
  15. Spectromètre de masse selon l'une quelconque des revendications précédentes, dans lequel ledit guide d'ions comporte une première électrode maintenue à un premier potentiel de référence, une deuxième électrode maintenue à un deuxième potentiel de référence et une troisième électrode maintenue à un troisième potentiel de référence, dans lequel :
    à un premier instant t1, une première tension continue est fournie à ladite première électrode de sorte que ladite première électrode soit maintenue à un premier potentiel au-dessus ou en-dessous dudit premier potentiel de référence ;
    à un deuxième instant ultérieur t2, une deuxième tension continue est fournie à ladite deuxième électrode de sorte que ladite deuxième électrode soit maintenue à un deuxième potentiel au-dessus ou en-dessous dudit deuxième potentiel de référence ;
    à un troisième instant ultérieur t3, une troisième tension continue est fournie à ladite troisième électrode de sorte que ladite troisième électrode soit maintenue à un troisième potentiel au-dessus ou en-dessous dudit troisième potentiel de référence.
  16. Spectromètre de masse selon la revendication 15, dans lequel :
    audit premier instant t1, ladite deuxième électrode est audit deuxième potentiel de référence et ladite troisième électrode est audit troisième potentiel de référence ;
    audit deuxième instant t2, ladite première électrode est audit premier potentiel et ladite troisième électrode est audit troisième potentiel de référence ;
    audit troisième instant t3, ladite première électrode est audit premier potentiel et ladite deuxième électrode est audit deuxième potentiel.
  17. Spectromètre de masse selon la revendication 15, dans lequel :
    audit premier instant t1, ladite deuxième électrode est audit deuxième potentiel de référence et ladite troisième électrode est audit troisième potentiel de référence ;
    audit deuxième instant t2, ladite première électrode n'est plus alimentée par ladite première tension continue de sorte que ladite première électrode revient audit premier potentiel de référence et ladite troisième électrode est audit troisième potentiel de référence ; et
    audit troisième instant t3, ladite deuxième électrode n'est plus alimentée par ladite deuxième tension continue de sorte que ladite deuxième électrode revient audit deuxième potentiel de référence et ladite première électrode est audit premier potentiel de référence.
  18. Spectromètre de masse selon la revendication 15, 16 ou 17, dans lequel lesdits premier, deuxième et troisième potentiels de référence sont sensiblement les mêmes.
  19. Spectromètre de masse selon l'une quelconque des revendications 15 à 18, dans lequel lesdites première, deuxième et troisième tensions continues sont sensiblement les mêmes.
  20. Spectromètre de masse selon l'une quelconque des revendications 15 à 19, dans lequel lesdits premier, deuxième et troisième potentiels sont sensiblement les mêmes.
  21. Spectromètre de masse selon l'une quelconque des revendications précédentes, dans lequel ledit guide d'ions (1) comporte 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ou >30 segments, dans lequel chaque segment comporte 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ou >30 électrodes (2) et dans lequel les électrodes dans un segment sont maintenues sensiblement au même potentiel continu.
  22. Spectromètre de masse selon la revendication 21, dans lequel une pluralité de segments sont maintenus sensiblement au même potentiel continu.
  23. Spectromètre de masse selon la revendication 21 ou 22, dans lequel chaque segment est maintenu sensiblement au même potentiel continu que le nème segment suivant, où n vaut 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ou >30.
  24. Spectromètre de masse selon l'une quelconque des revendications précédentes, dans lequel les ions sont confinés radialement à l'intérieur dudit guide d'ions (1) par un champ électrique alternatif ou radiofréquence.
  25. Spectromètre de masse selon l'une quelconque des revendications précédentes, dans lequel les ions sont confinés radialement à l'intérieur dudit guide d'ions (1) dans un puits de pseudo-potentiel et contraints axialement par une barrière ou un puits de potentiel réel.
  26. Spectromètre de masse selon l'une quelconque des revendications précédentes, dans lequel le temps de transit des ions à travers ledit guide d'ions (1) est choisi parmi le groupe formé de : (i) inférieur ou égal à 20 ms ; (ii) inférieur ou égal à 10 ms ; (iii) inférieur ou égal à 5 ms ; (iv) inférieur ou égal à 1 ms ; et (v) inférieur ou égal à 0,5 ms.
  27. Spectromètre de masse selon l'une quelconque des revendications précédentes, dans lequel ledit guide d'ions (1) est maintenu à une pression choisie parmi le groupe formé de : (i) supérieure ou égale à 0,0001 mbar ; (ii) supérieure ou égale à 0,0005 mbar ; (iii) supérieure ou égale à 0,001 mbar ; (iv) supérieure ou égale à 0,005 mbar ; (v) supérieure ou égale à D,01 mbar ; (vi) supérieure ou égale à 0,05 mbar ; (vii) supérieure ou égale à 0,1 mbar ; (viii) supérieure ou égale à 0,5 mbar ; (ix) supérieure ou égale à 1 mbar ; (x) supérieure ou égale à 5 mbar ; (xi) supérieure ou égale à 10 mbar.
  28. Spectromètre de masse selon l'une quelconque des revendications précédentes, dans lequel ledit guide d'ions (1) est maintenu à une pression choisie parmi le groupe formé de : (i) inférieure ou égale à 10 mbar ; (ii) inférieure ou égale à 5 mbar ; (iii) inférieure ou égale à 1 mbar ; (iv) inférieure ou égale à 0,5 mbar ; (v) inférieure ou égale à 0,1 mbar ; (vi) inférieure ou égale à 0,05 mbar ; (vii) inférieure ou égale à 0,01 mbar ; (viii) inférieure ou égale à 0,005 mbar ; (ix) inférieure ou égale à 0,001 mbar ; (x) inférieure ou égale à 0,0005 mbar ; et (xi) inférieure ou égale à 0,0001 mbar.
  29. Spectromètre de masse selon l'une quelconque des revendications précédentes, dans lequel ledit guide d'ions (1) est maintenu, pendant l'utilisation, à une pression choisie parmi le groupe formé de : (i) entre 0,0001 et 10 mbar ; (ii) entre 0,0001 et 1 mbar ; (iii) entre 0,0001 et 0,1 mbar ; (iv) entre 0,0001 et 0,01 mbar ; (v) entre 0,0001 et 0,001 mbar ; (vi) entre 0,001 et 10 mbar ; (vii) entre 0,001 et 1 mbar ; (viii) entre 0,001 et 0,1 mbar ; (ix) entre 0,001 et 0,01 mbar ; (x) entre 0,01 et 10 mbar ; (xi) entre 0,01 et 1 mbar ; (xii) entre 0,01 et 0,1 mbar ; (xiii) entre 0,1 et 10 mbar ; (xiv) entre 0,1 et 1 mbar ; et (xv) entre 1 et 10 mbar ;
  30. Spectromètre de masse selon l'une quelconque des revendications précédentes, dans lequel ledit guide d'ions (1) est maintenu, pendant l'utilisation, à une pression telle qu'une traînée visqueuse soit imposée aux ions passant à travers lequel ledit guide d'ions.
  31. Spectromètre de masse selon l'une quelconque des revendications précédentes, dans lequel, pendant l'utilisation, une ou plusieurs tensions continues transitoires ou une ou plusieurs formes d'ondes transitoires en tension continue sont initialement fournies à une première position axiale et sont ensuite fournies à une deuxième, puis à une troisième position axiale le long dudit guide d'ions (1).
  32. Spectromètre de masse selon l'une quelconque des revendications précédentes, dans lequel, pendant l'utilisation, une ou plusieurs tensions continues transitoires ou une ou plusieurs formes d'ordes transitoires en tension continue se déplacent depuis une extrémité dudit guide d'ions (1) vers l'autre extrémité dudit guide d'ions de sorte que les ions soient poussés le long dudit guide d'ions (1).
  33. Spectromètre de masse selon la revendication 31 ou 32, dans lequel ladite ou lesdites tensions continues transitoires créent : (i) une colline ou barrière de potentiel ; (ii) un puits de potentiel ; (iii) des collines ou barrières de potentiel multiples ; (iv) des puits de potentiel multiples ; (v) une combinaison d'une colline ou barrière de potentiel et d'un puits de potentiel ; ou (vi) une combinaison de collines ou barrières de potentiel multiples et de puits de potentiel multiples.
  34. Spectromètre de masse selon la revendication 31 ou 32, dans lequel ladite ou lesdites formes d'ondes transitoires en tension continue comprennent une forme d'onde répétitive.
  35. Spectromètre de masse selon la revendication 34, dans lequel ladite ou lesdites formes d'ondes transitoires en tension continue comprennent une onde carrée.
  36. Spectromètre de masse selon l'une quelconque des revendications 31 à 35, dans lequel l'amplitude de ladite ou desdites tensions continues transitoires, ou de ladite ou desdites formes d'ondes transitoires en tension continue, reste sensiblement constante dans le temps.
  37. Spectromètre de masse selon l'une quelconque des revendications 31 à 35, dans lequel l'amplitude de ladite ou desdites tensions continues transitoires, ou de ladite ou desdites formes d'ondes transitoires en tension continue, varie avec le temps.
  38. Spectromètre de masse selon la revendication 37, l'amplitude de ladite ou desdites tensions continues transitoires, ou de ladite ou desdites formes d'ondes transitoires en tension continue : (i) augmente avec le temps ; (ii) augmente puis diminue avec le temps ; (iii) diminue avec le temps ; ou (iv) diminue puis augmente avec le temps.
  39. Spectromètre de masse selon la revendication 37, dans lequel ledit guide d'ions (1) comporte une zone d'entrée en amont, une zone de sortie en aval et une zone intermédiaire, où :
    dans ladite zone d'entrée, l'amplitude de ladite ou desdites tensions continues transitoires, ou de ladite ou desdites formes d'ondes transitoires en tension continue, possède une première amplitude ;
    dans ladite zone intermédiaire, l'amplitude de ladite ou desdites tensions continues transitoires, ou de ladite ou desdites formes d'ondes transitoires en tension continue, possède une deuxième amplitude ; et
    dans ladite zone de sortie, l'amplitude de ladite ou desdites tensions continues transitoires, ou de ladite ou desdites formes d'ondes transitoires en tension continue, possède une troisième amplitude.
  40. Spectromètre de masse selon la revendication 39, dans lequel la zone d'entrée et/ou la zone de sortie englobent une proportion de la longueur axiale totale dudit guide d'ions choisie parmi le groupe formé de : (i) < 5% ; (ii) 5-10% ; (iii) 10-15% ; (iv) 15-20% ; (v) 20-25% ; (vi) 25-30% ; (vii) 30-35% ; (viii) 35-40% ; et (ix) 40-45%.
  41. Spectromètre de masse selon la revendication 39 ou 40, dans lequel lesdites première et/ou troisième amplitudes sont sensiblement nulles et ladite deuxième amplitude est sensiblement non nulle.
  42. Spectromètre de masse selon la revendication 39, 40 ou 41, dans lequel ladite deuxième amplitude est plus grande que ladite première amplitude et/ou ladite deuxième amplitude est plus grande que ladite troisième amplitude.
  43. Spectromètre de masse selon l'une quelconque des revendications précédentes, dans lequel une ou plusieurs tensions continues transitoires ou une ou plusieurs formes d'ondes transitoires en tension continue passent pendant l'utilisation le long dudit guide d'ions (1) à une première vitesse.
  44. Spectromètre de masse selon la revendication 43, dans lequel ladite première vitesse : (i) reste sensiblement constante ; (ii) varie ; (iii) augmente ; (iv) augmente puis diminue ; (v) diminue ; (vi) diminue puis augmente ; (vii) se réduit jusqu'à être sensiblement nulle ; (viii) change de sens ; ou (ix) se réduit jusqu'à être sensiblement nulle puis change de sens.
  45. Spectromètre de masse selon la revendication 43 ou 44, dans lequel ladite ou lesdites tensions continues transitoires ou ladite ou lesdites formes d'ondes transitoires en tension continue conduisent les ions à l'intérieur dudit guide d'ions (1) à passer le long dudit guide d'ions à une deuxième vitesse.
  46. Spectromètre de masse selon la revendication 45, dans lequel la différence entre ladite première vitesse et ladite deuxième vitesse est inférieure ou égale à 100 m/s, 90 m/s, 80 m/s, 70 m/s, 60 m/s, 50 m/s, 40 m/s, 30 m/s, 20 m/s, 10 m/s, 5 m/s ou 1 m/s.
  47. Spectromètre de masse selon l'une quelconque des revendications 43 à 46, dans lequel ladite première vitesse est choisie parmi le groupe formé de : (i) 10-250 m/s ; (ii) 250-500 m/s ; (iii) 500-750 m/s ; (iv) 750-1000 m/s ; (v) 1000-1250 m/s ; (vi) 1250-1500 m/s ; (vii) 1500-1750 m/s ; (viii) 1750-2000 m/s ; (ix) 2000-2250 m/s ; (x) 2250-2500 m/s ; (xi) 2500-2750 m/s ; et (xii) 2750-3000 m/s.
  48. Spectromètre de masse selon la revendication 45, 46 ou 47, dans lequel ladite deuxième vitesse est choisie parmi le groupe formé de : (i) 10-250 m/s; (ii) 250-500 m/s ; (iii) 500-750 m/s ; (iv) 750-1000 m/s ; (v) 1000-1250 m/s ; (vi) 1250-1500 m/s ; (vii) 1500-1750 m/s ; (viii) 1750-2000 m/s ; (ix) 2000-2250 m/s ; (x) 2250-2500 m/s ; (xi) 2500-2750 m/s ; et (xii) 2750-3000 m/s.
  49. Spectromètre de masse selon la revendication 45, dans lequel ladite deuxième vitesse est sensiblement la même que ladite première vitesse.
  50. Spectromètre de masse selon l'une quelconque des revendications 31 à 49, dans lequel ladite ou lesdites tensions continues transitoires ou ladite ou lesdites formes d'ondes transitoires en tension continue possèdent une fréquence, et dans lequel ladite fréquence : (i) reste sensiblement constante ; (ii) varie ; (iii) augmente ; (iv) augmente puis diminue ; (v) diminue ; ou (vi) diminue puis augmente.
  51. Spectromètre de masse selon l'une quelconque des revendications 31 à 50, dans lequel ladite ou lesdites tensions continues transitoires ou ladite ou lesdites formes d'ondes transitoires en tension continue possèdent une longueur d'onde, et dans lequel ladite longueur d'onde : (i) reste sensiblement constante ; (ii) varie ; (iii) augmente ; (iv) augmente puis diminue ; (v) diminue ; ou (vi) diminue puis augmente.
  52. Spectromètre de masse selon l'une quelconque des revendications précédentes, dans lequel au moins deux tensions continues transitoires ou au moins deux formes d'ondes transitoires en tension continue passent simultanément le long dudit guide d'ions (1).
  53. Spectromètre de masse selon la revendication 52, dans lequel il est fait en sorte que lesdites au moins deux tensions continues transitoires ou lesdites au moins deux formes d'ondes transitoires en tension continue se déplacent : (i) dans la même direction ; (ii) dans des directions opposées ; (iii) l'une vers l'autre ; (iv) en s'éloignant l'une de l'autre.
  54. Spectromètre de masse selon l'une quelconque des revendications précédentes, dans lequel une ou plusieurs tensions continues transitoires ou une ou plusieurs formes d'ondes transitoires en tension continue sont générées de manière répétée et acheminées pendant l'utilisation le long dudit guide d'ions (1), et dans lequel la fréquence de génération de ladite ou desdites tensions continues transitoires, ou de ladite ou desdites formes d'ondes transitoires en tension continue : (i) reste sensiblement constante ; (ii) varie ; (iii) augmente ; (iv) augmente puis diminue ; (v) diminue ; ou (vi) diminue puis augmente.
  55. Spectromètre de masse selon l'une quelconque des revendications précédentes, comportant en outre un analyseur de masse à temps de vol (15) comportant une électrode afin d'injecter des ions dans une zone de dérive, ladite électrode étant agencée pour être alimentée pendant l'utilisation de manière sensiblement synchronisée avec les impulsions d'ions émises depuis la sortie (4) du guide d'ions (1).
  56. Spectromètre de masse selon l'une quelconque des revendications précédentes, comportant en outre un piège à ions agencé en aval dudit guide d'ions (1), ledit piège à ions étant agencé pour stocker et/ou libérer des ions depuis ledit piège à ions de manière sensiblement synchronisée avec les impulsions d'ions émises depuis la sortie (4) du guide d'ions.
  57. Spectromètre de masse selon l'une quelconque des revendications précédentes, comportant en outre un filtre de masse agencé en aval dudit guide d'ions (1), dans lequel on fait varier une fenêtre spectrale de rapport masse sur charge dudit filtre de masse, de manière sensiblement synchronisée avec les impulsions d'ions émises depuis la sortie (4) du guide d'ions.
  58. Spectromètre de masse selon l'une quelconque des revendications précédentes, dans lequel ledit guide d'ions (1) est choisi parmi le groupe formé de : (i) un entonnoir à ions comportant une pluralité d'électrodes dotées d'ouvertures à travers lesquelles les ions sont transmis, dans lequel le diamètre desdites ouvertures devient progressivement plus petit ou plus grand ; (ii) un tunnel à ions comportant une pluralité d'électrodes (2) dotées d'ouvertures à travers lesquelles les ions sont transmis, dans lequel le diamètre desdites ouvertures reste sensiblement constant ; et (iii) un empilement d'électrodes en forme de plaque, d'anneau ou de boucle de fil.
  59. Spectromètre de masse selon l'une quelconque des revendications précédentes, dans lequel chaque électrode (2) est dotée d'une ouverture à travers laquelle les ions sont transmis pendant l'utilisation.
  60. Spectromètre de masse selon l'une quelconque des revendications précédentes, dans lequel chaque électrode (2) est dotée d'une ouverture sensiblement circulaire.
  61. Spectromètre de masse selon l'une quelconque des revendications précédentes, dans lequel chaque électrode (2) est dotée d'une ouverture unique à travers laquelle les ions sont transmis pendant l'utilisation.
  62. Spectromètre de masse selon la revendication 59, 60 ou 61, dans lequel le diamètre des ouvertures d'au moins 50%, 60%, 70%, 80%, 90% ou 95% des électrodes (2) formant ledit guide d'ions (1) est choisi parmi le groupe formé de : (i) inférieur ou égal à 10 mm ; (ii) inférieur ou égal à 9 mm ; (iii) inférieur ou égal à 8 mm ; (iv) inférieur ou égal à 7 mm ; (v) inférieur ou égal à 6 mm ; (vi) inférieur ou égal à 5 mm ; (vii) inférieur ou égal à 4 mm ; (viii) inférieur ou égal à 3 mm ; (ix) inférieur ou égal à 2 mm ; et (x) inférieur ou égal à 1 mm.
  63. Spectromètre de masse selon l'une quelconque des revendications précédentes, dans lequel au moins 50%, 60%, 70%, 80%, 90% ou 95% des électrodes (2) formant le guide d'ions (1) sont dotées d'ouvertures ayant sensiblement la même taille ou surface.
  64. Spectromètre de masse selon l'une quelconque des revendications 1 à 57, dans lequel ledit guide d'ions (1) comprend un ensemble de barreaux segmentés.
  65. Spectromètre de masse selon l'une quelconque des revendications précédentes, dans lequel ledit guide d'ions (1) consiste en : (i) 10 à 20 électrodes ; (ii) 20 à 30 électrodes ; (iii) 30 à 40 électrodes ; (iv) 40 à 50 électrodes ; (v) 50 à 60 électrodes ; (vi) 60 à 70 électrodes ; (vii) 70 à 80 électrodes ; (viii) 80 à 90 électrodes ; (ix) 90 à 100 électrodes ; (x) 100 à 110 électrodes ; (xi) 110 à 120 électrodes ; (xii) 120 à 130 électrodes ; (xiii) 130 à 140 électrodes ; (xiv) 140 à 150 électrodes ; ou (xv) plus de 150 électrodes ;
  66. Spectromètre de masse selon l'une quelconque des revendications précédentes, dans lequel l'épaisseur d'au moins 50%, 60%, 70%, 80%, 90% ou 95% desdites électrodes (2) est choisie parmi le groupe formé de : (i) inférieure ou égale à 3 mm ; (ii) inférieure ou égale à 2,5 mm ; (iii) inférieure ou égale à 2,0 mm ; (iv) inférieure ou égale à 1,5 mm ; (v) inférieure ou égale à 1,0 mm ; et (vi) inférieure ou égale à 0,5 mm.
  67. Spectromètre de masse selon l'une quelconque des revendications précédentes, dans lequel ledit guide d'ions (1) présente une longueur choisie parmi le groupe formé de : (i) inférieure à 5 cm ; (ii) 5 à 10 cm ; (iii) 10 à 15 cm ; (iv) 15 à 20 cm ; (v) 20 à 25 cm ; (vi) 25 à 30 cm ; et (vii) supérieure à 30 cm.
  68. Spectromètre de masse selon l'une quelconque des revendications précédentes, dans lequel au moins 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% ou 95% desdites électrodes (2) sont connectées à la fois à une alimentation en tension continue et à une alimentation en tension alternative ou radiofréquence.
  69. Spectromètre de masse selon l'une quelconque des revendications précédentes, dans lequel des électrodes (2) axialement adjacentes sont alimentées par des tensions alternatives ou radiofréquences présentant un déphasage de 180°.
  70. Procédé de spectrométrie de masse comportant :
    la génération ou la libération de paquets d'ions de manière répétée et sensiblement pulsée ;
    la réception d'un ou plusieurs paquets d'ions dans un guide d'ions (1) comportant une pluralité d'électrodes (2) ;
    le piégeage dudit ou desdits paquets d'ions dans une ou plusieurs zones de piégeage axiales à l'intérieur dudit guide d'ions (1) ;
    la translation de ladite ou desdites zones de piégeage axiales le long d'au moins une portion de la longueur axiale dudit guide d'ions (1) ;
    la libération d'ions depuis ladite ou lesdites zones de piégeage axiales de sorte que les ions sortent dudit guide d'ions (1) de manière sensiblement pulsée ;
    ledit procédé étant caractérisé en ce qu'il comporte en outre :
    l'application progressive d'une ou de plusieurs tensions continues transitoires, ou d'une ou de plusieurs formes d'ondes transitoires en tension continue, auxdites électrodes (2) de sorte que les ions piégés à l'intérieur d'une ou de plusieurs zones de piégeage axiales soient poussés le long dudit guide d'ions (1) ; et
    le verrouillage de phase d'un détecteur d'ions (17) avec les impulsions d'ions émises depuis la sortie (4) du guide d'ions (1).
  71. Procédé de spectrométrie de masse comportant :
    la génération ou la fourniture d'ions de manière sensiblement continue ;
    la réception desdits ions dans un guide d'ions (1) comportant une pluralité d'électrodes (2) ;
    le piégeage desdits ions dans une ou plusieurs zones de piégeage axiales à l'intérieur dudit guide d'ions (1) ; la translation de ladite ou desdites zones de piégeage axiales le long d'au moins une portion de la longueur axiale dudit guide d'ions (1) ;
    la libération d'ions depuis ladite ou lesdites zones de piégeage axiales de sorte que les ions sortent dudit guide d'ions (1) de manière sensiblement pulsée ;
    ledit procédé étant caractérisé en ce qu'il comporte en outre :
    l'application progressive d'une ou de plusieurs tensions continues transitoires, ou d'une ou de plusieurs formes d'ondes transitoires en tension continue, auxdites électrodes (2) de sorte que les ions piégés à l'intérieur d'une ou de plusieurs zones de piégeage axiales soient poussés le long dudit guide d'ions (1) ; et
    le verrouillage de phase d'un détecteur d'ions (17) avec les impulsions d'ions émises depuis la sortie (4) du guide d'ions (1).
  72. Procédé selon la revendication 70 ou 71, comprenant en outre la synchronisation, avec les impulsions d'ions émises depuis la sortie (4) du guide d'ions (1), de l'alimentation d'une électrode afin d'injecter des ions dans une zone de dérive d'un analyseur de masse à temps de vol (15).
  73. Procédé selon la revendication 70, 71 ou 72, comprenant en outre la synchronisation, avec les impulsions d'ions émises depuis la sortie (4) du guide d'ions (1), du stockage et/ou de la libération d'ions dans un piège à ions agencé en aval dudit guide d'ions (1).
  74. Procédé selon l'une quelconque des revendications 70 à 73, comprenant en outre la synchronisation, avec les impulsions d'ions émises depuis la sortie (4) du guide d'ions (1), de la variation de la fenêtre spectrale de rapport masse sur charge d'un filtre de masse agencé en aval dudit guide d'ions (1).
EP03253412A 2002-05-30 2003-05-30 Spectromètre de masse Expired - Lifetime EP1367633B1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB0212508A GB0212508D0 (en) 2002-05-30 2002-05-30 Mass spectrometer
GB0212508 2002-05-30
GB0308411 2003-04-11
GB0308411A GB0308411D0 (en) 2002-05-30 2003-04-11 Mass spectrometer

Publications (3)

Publication Number Publication Date
EP1367633A2 EP1367633A2 (fr) 2003-12-03
EP1367633A3 EP1367633A3 (fr) 2004-06-23
EP1367633B1 true EP1367633B1 (fr) 2006-09-06

Family

ID=26247074

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03253412A Expired - Lifetime EP1367633B1 (fr) 2002-05-30 2003-05-30 Spectromètre de masse

Country Status (5)

Country Link
EP (1) EP1367633B1 (fr)
AT (1) ATE339011T1 (fr)
CA (1) CA2430531C (fr)
DE (1) DE60308096T2 (fr)
GB (1) GB2391697B (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008527663A (ja) * 2005-01-17 2008-07-24 マイクロマス ユーケー リミテッド 質量分析計
US11114290B1 (en) 2020-05-07 2021-09-07 Thermo Finnigan Llc Ion funnels and systems incorporating ion funnels
US11581179B2 (en) 2020-05-07 2023-02-14 Thermo Finnigan Llc Ion funnels and systems incorporating ion funnels

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7071467B2 (en) 2002-08-05 2006-07-04 Micromass Uk Limited Mass spectrometer
GB2400489B (en) * 2002-08-05 2005-02-23 Micromass Ltd Mass spectrometer
GB0514964D0 (en) 2005-07-21 2005-08-24 Ms Horizons Ltd Mass spectrometer devices & methods of performing mass spectrometry
US7960694B2 (en) * 2004-01-09 2011-06-14 Micromass Uk Limited Mass spectrometer
GB0416288D0 (en) 2004-07-21 2004-08-25 Micromass Ltd Mass spectrometer
GB0426900D0 (en) * 2004-12-08 2005-01-12 Micromass Ltd Mass spectrometer
DE102005021836A1 (de) 2005-05-11 2006-11-16 Geoforschungszentrum Potsdam Verfahren und Vorrichtung zum massenselektiven Ionentransport
GB0511333D0 (en) * 2005-06-03 2005-07-13 Micromass Ltd Mass spectrometer
DE102006016896B4 (de) * 2006-04-11 2009-06-10 Bruker Daltonik Gmbh Orthogonal-Flugzeitmassenspektrometer geringer Massendiskriminierung
DE102006040000B4 (de) * 2006-08-25 2010-10-28 Bruker Daltonik Gmbh Speicherbatterie für Ionen
GB0624993D0 (en) * 2006-12-14 2007-01-24 Micromass Ltd Mass spectrometer
GB201104665D0 (en) 2011-03-18 2011-05-04 Shimadzu Res Lab Europe Ltd Ion analysis apparatus and methods
CN107658203B (zh) 2011-05-05 2020-04-14 岛津研究实验室(欧洲)有限公司 操纵带电粒子的装置
GB201117158D0 (en) 2011-10-05 2011-11-16 Micromass Ltd Ion guide
GB201118270D0 (en) 2011-10-21 2011-12-07 Shimadzu Corp TOF mass analyser with improved resolving power
EP2965342B1 (fr) 2013-03-06 2020-08-05 Micromass UK Limited Décalage temporel pour la numérisation améliorée de l'analyse d'ions
GB201304039D0 (en) * 2013-03-06 2013-04-17 Micromass Ltd Time shift improved IMS digitisation
GB201304037D0 (en) * 2013-03-06 2013-04-17 Micromass Ltd Optimised ion mobility separation timescales for targeted ions
US9523658B2 (en) 2013-03-06 2016-12-20 Micromass Uk Limited Optimised ion mobility separation timescales for targeted ions
US9196467B2 (en) * 2013-03-11 2015-11-24 1St Detect Corporation Mass spectrum noise cancellation by alternating inverted synchronous RF
GB201621587D0 (en) * 2016-12-19 2017-02-01 Shimadzu Corp A transport device for transporting charged particles
EP3561853A1 (fr) 2018-04-26 2019-10-30 Tofwerk AG Ensemble de guide d'ions
GB201819372D0 (en) 2018-11-28 2019-01-09 Shimadzu Corp Apparatus for analysing ions
EP4095525A1 (fr) 2021-05-27 2022-11-30 Tofwerk AG Procédé et ensemble de guide d'ions pour moduler un flux d'ions
US11605532B2 (en) 2021-05-27 2023-03-14 Tofwerk Ag Method and ion guide assembly for modulating a stream of ions

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5206506A (en) * 1991-02-12 1993-04-27 Kirchner Nicholas J Ion processing: control and analysis
US6011259A (en) * 1995-08-10 2000-01-04 Analytica Of Branford, Inc. Multipole ion guide ion trap mass spectrometry with MS/MSN analysis
DE19628179C2 (de) * 1996-07-12 1998-04-23 Bruker Franzen Analytik Gmbh Vorrichtung und Verfahren zum Einschuß von Ionen in eine Ionenfalle
EP1090412B1 (fr) * 1998-05-29 2014-03-05 PerkinElmer Health Sciences, Inc. Spectrometrie de masse avec guides d'ions multipolaires
WO2001015201A2 (fr) * 1999-08-26 2001-03-01 University Of New Hampshire Spectrometre de masse a plusieurs etapes
US6545268B1 (en) * 2000-04-10 2003-04-08 Perseptive Biosystems Preparation of ion pulse for time-of-flight and for tandem time-of-flight mass analysis
GB2375653B (en) * 2001-02-22 2004-11-10 Bruker Daltonik Gmbh Travelling field for packaging ion beams
CA2391140C (fr) * 2001-06-25 2008-10-07 Micromass Limited Spectrometre de masse

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008527663A (ja) * 2005-01-17 2008-07-24 マイクロマス ユーケー リミテッド 質量分析計
US11114290B1 (en) 2020-05-07 2021-09-07 Thermo Finnigan Llc Ion funnels and systems incorporating ion funnels
US11581179B2 (en) 2020-05-07 2023-02-14 Thermo Finnigan Llc Ion funnels and systems incorporating ion funnels

Also Published As

Publication number Publication date
CA2430531C (fr) 2012-01-10
DE60308096T2 (de) 2007-03-01
ATE339011T1 (de) 2006-09-15
EP1367633A2 (fr) 2003-12-03
EP1367633A3 (fr) 2004-06-23
DE60308096D1 (de) 2006-10-19
GB2391697A (en) 2004-02-11
CA2430531A1 (fr) 2003-11-30
GB0312480D0 (en) 2003-07-09
GB2391697B (en) 2004-07-28

Similar Documents

Publication Publication Date Title
US7095013B2 (en) Mass spectrometer
EP1367633B1 (fr) Spectromètre de masse
US6794641B2 (en) Mass spectrometer
US6800846B2 (en) Mass spectrometer
EP1505632B1 (fr) Spectromètre de masse
CA2565455C (fr) Guide d&#39;ions pour spectrometre de masse
US6534764B1 (en) Tandem time-of-flight mass spectrometer with damping in collision cell and method for use
JP6223397B2 (ja) 質量スペクトル分析の方法及び質量分析計
US7205538B2 (en) Mass spectrometer
US9035246B2 (en) Ion guide with orthogonal sampling
US6987264B1 (en) Mass spectrometry with multipole ion guides
EP1057209B1 (fr) Spectrometrie de masse a guide d&#39;ions multipolaire
JP4995349B2 (ja) イオン移動度分光計
WO2013076307A2 (fr) Spectromètre à ions présentant un cycle de travail élevé
JP2008523554A (ja) 質量分析計
WO2012175517A2 (fr) Analyse ciblée pour une spectrométrie de masse tandem
WO2008059246A2 (fr) Procédé de mise en œuvre d&#39;un piège à ions a réflexions multiples
EP1367632B1 (fr) Spectromètre de masse
CA2436583C (fr) Spectrometre de masse
GB2399678A (en) Mass spectrometer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MICROMASS UK LIMITED

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

RIC1 Information provided on ipc code assigned before grant

Ipc: 7H 01J 49/40 A

Ipc: 7H 01J 49/42 B

17P Request for examination filed

Effective date: 20041210

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060906

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060906

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060906

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060906

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060906

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060906

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060906

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060906

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060906

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060906

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060906

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60308096

Country of ref document: DE

Date of ref document: 20061019

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061206

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061206

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070219

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061207

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060906

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060906

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070307

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220426

Year of fee payment: 20

Ref country code: DE

Payment date: 20220420

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60308096

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20230529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20230529