EP1367561B1 - Thermoakustische Wellenerzeuger - Google Patents

Thermoakustische Wellenerzeuger Download PDF

Info

Publication number
EP1367561B1
EP1367561B1 EP03101535A EP03101535A EP1367561B1 EP 1367561 B1 EP1367561 B1 EP 1367561B1 EP 03101535 A EP03101535 A EP 03101535A EP 03101535 A EP03101535 A EP 03101535A EP 1367561 B1 EP1367561 B1 EP 1367561B1
Authority
EP
European Patent Office
Prior art keywords
thermo
wave generator
heat
acoustic wave
generator according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03101535A
Other languages
English (en)
French (fr)
Other versions
EP1367561A1 (de
Inventor
Jean-Edmond Chaix
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TechnicAtome SA
Original Assignee
TechnicAtome SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0206421A external-priority patent/FR2839905B1/fr
Priority claimed from FR0350084A external-priority patent/FR2853470B1/fr
Application filed by TechnicAtome SA filed Critical TechnicAtome SA
Publication of EP1367561A1 publication Critical patent/EP1367561A1/de
Application granted granted Critical
Publication of EP1367561B1 publication Critical patent/EP1367561B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K15/00Acoustics not otherwise provided for
    • G10K15/04Sound-producing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2243/00Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes
    • F02G2243/30Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders
    • F02G2243/50Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders having resonance tubes
    • F02G2243/54Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders having resonance tubes thermo-acoustic

Definitions

  • the invention relates to a thermoacoustic wave generator and an energy converter comprising a thermoacoustic wave generator.
  • thermo-acoustic wave generator produces acoustic energy from thermal energy.
  • the invention finds application in any field where a conversion of thermal energy into acoustic energy and / or electrical energy can be envisaged such as, for example, the spatial domain or the automotive field.
  • the invention relates to a thermo-acoustic magnetohydrodynamic converter which produces electrical energy from thermal energy previously converted into acoustic energy.
  • a thermo-acoustic hydrodynamic magneto-converter according to the invention thus produces a high electrical power, for example of the order of 200kW from a thermal power of between 800 and 1000kW.
  • thermoacoustic wave generator is of the plate stack type.
  • a circuit diagram of a thermo-acoustic wave generator with a stack of plates according to the prior art is represented in FIG.
  • the generator comprises a stack of plates 1 held at a distance from each other and placed in a sheath 2. Air 3 fills the inner space of the sheath 2 and thus the space between the plates.
  • a heat flow is established between the ends E1 and E2 of the stack of plates.
  • the end E1 is raised to a high temperature T1 and the end E2 to a low temperature T2.
  • the temperature gradient between the E1 and E2 ends then leads to the appearance of thermodynamic micro-cycles in the air that fills the plates. Part of the heat flow is transformed into acoustic waves. Acoustic waveplanes P appear in the air on the end side which is brought to the low temperature.
  • thermoacoustic wave generator A problem that arises when designing a thermoacoustic wave generator is that of the flow of heat flow in the plates. It is thus necessary to design, on the one hand, means capable of penetrating the flow of heat therein and, on the other hand, means able to evacuate this flow. This problem is particularly noticeable in the case where it is envisaged to produce acoustic waves of high power.
  • thermoacoustic wave generator according to the invention and according to claim 1, solves in a simple and effective manner the problem mentioned above and finds a particularly advantageous application for the generation of high power acoustic waves.
  • an ear comprises a plurality of holes uniformly distributed over the surface of the ear.
  • the overall opening presented by the hole or holes of an ear is substantially equal to 60% of the total surface of the ear.
  • the ears and shims of an exchanger forming stack are brazed or glued.
  • thermodynamic fluid is liquid sodium or a saline solution.
  • the generator comprises a pressure capacity in which the thermodynamic liquid is kept under pressure.
  • the earholes and the openings of the shims of the same heat exchanger constitute at least one conduit for the circulation of a coolant.
  • the means capable of establishing a heat flow comprise pipes for supplying heat transfer fluid to the heat exchangers.
  • the pipes comprise pipes for supplying a first coolant with the two heat exchangers which constitute a heat point for the flow of heat and pipes for supplying a second heat transfer fluid.
  • the two heat exchangers which constitute a cold point for the heat flow, the pipes for supplying the first heat transfer fluid being held in a fixed position with respect to the two heat exchangers which constitute the hot point whereas the conduits for feeding the second heat transfer fluid are free to move under the effect of thermal expansion that appear between hot and cold point.
  • the pipes for supplying the second heat transfer fluid intersect at a holding flange in order to transform longitudinal displacements in torsion displacements.
  • the first and second heat transfer fluids are liquid sodium or an eutectic NaK (Sodium / Potassium).
  • thermo-acoustic hydrodynamic magneto-hydrodynamic converter characterized in that it comprises a thermo-acoustic wave generator according to the invention for forming acoustic waves from thermal energy and a magnetohydrodynamic device for delivering electrical energy from acoustic waves.
  • the invention also relates to a space reactor, characterized in that it comprises a magneto hydrodynamic thermo-acoustic converter according to the invention.
  • the invention also relates to an electric generator for a motor vehicle, characterized in that it comprises a magneto hydrodynamic thermo-acoustic converter comprising a thermo-acoustic wave generator according to the invention for forming acoustic waves from thermal energy and one magnetohydrodynamic device for delivering electrical energy from acoustic waves, in that the first coolant is a mixture of air and hydrogen and in that the second coolant is ambient air.
  • a magneto hydrodynamic thermo-acoustic converter comprising a thermo-acoustic wave generator according to the invention for forming acoustic waves from thermal energy and one magnetohydrodynamic device for delivering electrical energy from acoustic waves, in that the first coolant is a mixture of air and hydrogen and in that the second coolant is ambient air.
  • the holes of the ears and the openings of the wedges of the same heat exchanger form a set of cavities, capsules containing a radioisotope being placed inside the cavities formed in the cavities. heat exchangers located on either side of the first end of the plate assembly.
  • heat pipes connected to at least one radiator are placed inside the cavities formed in the heat exchangers located on either side of the second end of the assembly. of plates.
  • the cavities formed in the heat exchangers located on either side of the second end are connected to pipes capable of circulating a coolant in the cavities.
  • the heat transfer fluid is liquid sodium, or NaK eutectic (sodium / potassium), or a gas, or liquid cesium, or mercury.
  • the radioisotope is powdered tritium hydride or Pu 235.
  • the invention also relates to an energy converter comprising a thermoacoustic wave generator and means for converting acoustic energy into electrical energy, characterized in that the thermoacoustic wave generator is a generator according to the invention.
  • the invention and the means for converting acoustic energy into electrical energy comprise at least one piezoelectric sensor.
  • the invention also relates to a space reactor, characterized in that it comprises a power converter according to the invention.
  • the invention also relates to an electric generator for a motor vehicle, characterized in that it comprises a power converter according to the invention.
  • FIG. 2 represents a stack E of plates for an acoustic wave generator according to the first embodiment of the invention and FIG. 3 represents an exploded partial view of the stack E represented in FIG.
  • Each plate 4 comprises a rectangular central body 5 and four extensions or lugs 6 provided with holes 7.
  • the lugs 6 are placed at the ends of the plate, on either side of the central body 5.
  • Each plate 4 of the stack is separated from the next plate by four wedges 8.
  • Each wedge 8 is provided with an opening 9.
  • the wedges 8 are interposed between the plates at the level of the ears 6.
  • a stack formed by a succession of ears 6 and wedges 8 constitutes a heat exchanger adapted to the circulation of a heat transfer fluid.
  • the stack of plates may comprise several hundred plates, for example 400, of thickness e substantially between 0.2 and 0.3 mm.
  • the shims 8 have, preferably, substantially the same thickness as the plates 4.
  • the rectangular central body 5 of a plate has a length L of 500mm and a width 1 of 200mm.
  • the ears 6 have, preferably, a square shape of 150mm side.
  • the through holes 7 formed in each ear 6 are preferentially evenly distributed over the surface of the ear.
  • the overall aperture presented by the holes 7 is, for example, of the order of 60% of the total surface area of the ear.
  • the diameter of a hole may be, for example, equal to 10mm.
  • the sizing of the plates is a function of the power generated and the nature and pressure of the thermodynamic fluid.
  • the diameter of the holes of the ears is a function of the nature and flow of the coolant.
  • the plates 4 and shims 8 are made of a thermally conductive material such as, for example, Inconel or Incoloy (iron alloy nickel or nickel chromium).
  • the wedges 8 are brazed or glued to the plates 4.
  • all the plates and shims are brazed at once, according to the technique of producing the plate exchangers.
  • the heat flux passing through a plate of the stack is represented by arrows F in FIG. 3.
  • the device according to the invention advantageously provides a very good thermal conduction.
  • a plate is I-shaped and the ears and wedges are square or rectangular section.
  • Other forms of ears and wedges are also possible such as, for example, ears and wedges in semicircle or half-hexagon, etc.
  • FIG. 4 represents a plate stack structure for a wave generator acoustic devices according to the first embodiment of the invention.
  • a pipe system 10, 11, 12, 13 circulates the heat transfer fluids.
  • the two heat exchangers which are located on either side of the same end of the plate assembly are connected in parallel.
  • the pipes 10 and 11 allow, respectively, the introduction and the evacuation of a first heat transfer fluid C1 in the two heat exchangers which are on either side of the first end (hot source) while the pipes 12 and 13 allow, respectively, the introduction and discharge of a second heat transfer fluid C2 in the two heat exchangers which are on either side of the second end (cold source).
  • thermodynamic fluid is present in the space between the plates.
  • thermodynamic micro-cycles occur in the thermodynamic fluid and the acoustic wave generator vibrates at high frequency. It is important to take into account the temperature differences and vibrations of the acoustic wave generator to establish the configuration of the pipes 10, 11, 12, 13 and, consequently, the mechanical stresses applied to these pipes.
  • the "hot" part of the plate structure that is to say the part of the plate structure raised to the highest temperature
  • the "cold" part that is to say say the part of the plate structure brought to the lowest temperature, can move freely depending on the expansions.
  • the coolant pipes 12 and 13 which feed the "cold" part intersect at a holding flange (not shown in the figure) so as to transform the longitudinal displacements in torsion displacements.
  • FIG. 5 represents a sectional view of a partial element of the structure represented in FIG. 4. More precisely, FIG. 5 represents the junction between a heat-transfer fluid supply line and the stack of plates.
  • the manifold has a flare 14 to ensure optimal flow of heat transfer fluids C1, C2.
  • FIG. 6 represents a sectional view of a diagram of a thermoacoustic hydrodynamic magneto-hydrodynamic converter according to the first embodiment of the invention.
  • the converter comprises an acoustic wave generator according to the invention 15 and a magneto hydrodynamic device 16.
  • the acoustic wave generator 15 comprises a structure as shown in FIG. 2 (stack of plates and pipes) mounted in a filled sheath 18
  • the pipes 10 and 11 allow, respectively, the introduction and the discharge of the coolant C1, while the pipes 12 and 13 allow, respectively, the introduction and discharge of the heat transfer fluid C2.
  • the thermodynamic fluid 17 is pressurized, for example to a value substantially equal to 70 bar.
  • the thermodynamic fluid may be liquid metal such for example, liquid sodium or a saline solution such as, for example, a solution of NaK (sodium / potassium).
  • a first heat-transfer fluid C1 for example liquid sodium or an NaK (sodium / potassium) eutectic, brought to high temperature, for example 750 ° C., is used to heat the first end of the stack of plates (hot source).
  • a second coolant C2 for example also sodium or an eutectic NaK (sodium / potassium), brought to a low temperature, for example 450 ° C., is used to evacuate the heat at the second end of the stack of plates (cold source).
  • the acoustic waves generated are emitted in the form of P wave planes towards the magnetohydrodynamic device 16.
  • the magnetohydrodynamic device 16 can then deliver, for example, an electrical power of 200 kW from a thermal power of, for example, between 800 and 1000kW.
  • the hydrodynamic converter according to the invention converts a large amount of thermal energy into electrical energy by means of mechanical vibrations of small amplitude, that is to say without practically moving mechanical parts.
  • FIG. 7 represents a perspective view of a thermo-acoustic hydrodynamic magneto-converter according to the first embodiment of the invention, equipped with a capacity under pressure.
  • the pressurized capacity 19 is a bulb-shaped envelope which contains all the elements shown in FIG. 6, namely, a device hydrodynamic magneto 16 and a sheath 18 containing a stack of plates and shims provided with pipes and a thermodynamic fluid 17.
  • the function of the pressure capacity 19 is to maintain the thermodynamic liquid under pressure, for example a pressure of 70 bar.
  • a structure as shown in Figure 7 has a small footprint.
  • the pressure capacity 19 may have a height A typically between 0.5 and 1 m, a depth B typically between 0.1 and 0.5 m and a width C typically between 0.1 and 0.5 m.
  • Such dimensions associated with the electrical performance mentioned above, allow applications of the hydrodynamic converter hydrodynamic according to the invention particularly advantageous in the field of space and in the automotive field.
  • a magneto hydrodynamic converter according to the invention can be integrated into a space reactor.
  • the hot source can then be a very high temperature nuclear reactor and the cold source a radiator radiating to the space vacuum.
  • the heat transfer fluids may be, for example, helium, NaK, cesium, mercury.
  • the hot source can be made from a mixture of air and hydrogen heated to high temperature and the cold source from the ambient air.
  • the electrical energy from the magneto hydrodynamic converter according to the invention is then distributed over four engines. elementary electric motors, each elementary electric motor operating a wheel of the motor vehicle.
  • FIG. 8 represents a stack E of plates for an acoustic wave generator according to the second embodiment of the invention and FIG. 9 represents an exploded partial view of the stack represented in FIG. 8.
  • Each plate 4 comprises a rectangular central body 5 and four extensions or lugs 6 provided with openings 7.
  • the lugs 6 are placed at the ends of the plate, on either side of the central body 5.
  • Shims 8 separate two successive plates stacking.
  • the shims 8 are interposed between the plates at the level of the lugs 6.
  • each shim 8 is provided with openings 9 whose dimensions are substantially identical to the dimensions of the openings of the lugs.
  • the openings 7 of the lugs and the openings 9 of the shims are superimposed so as to create a set of cavities 20 (see FIG.
  • the stack of plates may comprise several hundred plates, for example 400, of thickness e substantially between 0.2 and 0.3 mm.
  • the shims 8 have, preferably, substantially the same thickness as the plates 4.
  • the rectangular central body 5 of a plate has a length L of 500mm and a width 1 of 200mm.
  • the ears 6 have, preferably, a square shape of 150mm side.
  • the openings 7 formed in each ear 6 are preferentially uniformly distributed over the surface of the ear and represent, for example, of the order of 60% of the total surface of the ear. More generally, the sizing of the plates and the surface of the openings are functions of the power generated.
  • the plates 4 and shims 8 are made of a thermally conductive material such as, for example, Inconel or Incoloy (iron alloy nickel or nickel chromium).
  • the wedges 8 are brazed or glued to the plates 4.
  • all the plates and shims are brazed at once, according to the known embodiment of plate exchangers.
  • the heat flux passing through a plate of the stack is represented by arrows F in FIG. 3.
  • the device according to the invention advantageously provides a very good thermal conduction.
  • a plate is I-shaped and the ears and wedges are square or rectangular section.
  • Other forms of ears and wedges are also possible such as, for example, ears and wedges in semicircle or half-hexagon, etc.
  • each shim and each ear comprises six openings.
  • the invention however relates to many other types of configurations. Thus each hold and each ear may have, for example, only one opening.
  • Figure 10 shows a structure for energy converter according to the second embodiment of the invention.
  • the converter comprises a stack E of plates and shims as described above, elements 21 which constitute a hot source, elements 22, 23 which constitute a cold source and piezoelectric sensors 24, 25.
  • the elements 21 which constitute the hot source are capsules containing a radioisotope producing thermal energy, such as, for example, powdered tritium hydride or else Pu 235.
  • Tritium hydride powder has the following characteristics: advantage of being lightweight and to ensure excellent safety of use.
  • the capsules 21 are placed inside the cavities 20 which are located at a first end of the stack. Intimate thermal contact is provided between each capsule and the interior of the cavity that receives the capsule.
  • the elements that participate in the cold source consist of heat pipes 22 connected to a radiator 23.
  • the heat pipes 22 are placed inside the cavities 20 which are located at the opposite end of the first end of the stack. Intimate heat contact is provided between each heat pipe and the interior of the cavity that receives the heat pipe.
  • thermodynamic fluid (not shown in FIG. 10) is present in the space separating the plates.
  • thermodynamic micro-cycles appear in the thermodynamic fluid and the acoustic wave generator vibrates at high frequency.
  • Flat waves are then generated on either side of the stack E.
  • FIG. 11 represents a variant of the structure represented in FIG. 10.
  • the two heat exchangers located on the cold source side are traversed by a coolant C3.
  • the cavities 20 of the stack E located on the side of the cold source then constitute conduits for the circulation of the heat transfer fluid, as is done according to the first embodiment of the invention.
  • Pipes 26, 27 ensure the delivery of heat transfer fluid at the exchangers.
  • the coolant C3 may be, for example, liquid sodium, NaK eutectic (sodium / potassium), a gas, liquid cesium or mercury.
  • Figure 12 shows a sectional view of a power converter according to the second embodiment of the invention.
  • the energy converter comprises a stack E of plates and two piezoelectric sensors 24, 25 mounted in a sheath 29 filled with thermodynamic fluid 28.
  • the radiator 23 of the cold source is placed outside the sheath 29 and at the contact of it.
  • thermoacoustic wave generator according to the invention comprises a pressurized capsule (not shown in FIG. 12) in which the thermodynamic liquid is maintained.
  • the acoustic waves generated are transmitted in the form of wave-planes towards the piezoelectric sensors 24, 25.
  • the energy converter can then deliver, for example, an electrical power of 200 kW from an included thermal power. for example, between 800 and 1000kW.
  • the energy converter according to the second embodiment of the invention transforms a large amount of thermal energy into electrical energy by means of low mechanical vibrations. amplitude, that is to say without substantially moving mechanical parts.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)
  • General Induction Heating (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Claims (23)

  1. Thermoakustischer Wellenerzeuger, enthaltend:
    - eine Einheit von Platten (4), die in einem mit einem thermodynamischen Medium (17) gefüllten Mantel (18) parallel zueinander angeordnet sind, wobei zwei aufeinanderfolgende Platten der Stapelung so voneinander beabstandet sind, dass das thermodynamische Medium den Raum zwischen den Platten ausfüllt, und
    - Mittel (6, 7), die einen Wärmefluss zwischen einem ersten Ende der Platteneinheit und einem dem ersten Ende entgegengesetzten zweiten Ende der Platteneinheit herstellen können,

    dadurch gekennzeichnet, dass die Mittel (6, 7) zum Herstellen eines Wärmeflusses einerseits zwei Wärmetauscher enthalten, die parallel geschaltet sind und sich beiderseits des ersten Endes befinden, und andererseits zwei Wärmetaucher aufweisen, die parallel geschaltet sind und sich beiderseits des zweiten Endes befinden, wobei jeder Wärmetauscher aus einer wechselweisen Stapelung von Lappen (6) und Keilen (8) besteht, wobei ein Lappen (6) aus einem mit zumindest einer Bohrung (7) versehenen Plattenabschnitt gebildet ist, wobei jeder Keil (8) zumindest eine Öffnung (9) aufweist, so dass die Öffnung (9) eines Keils gegenüber zumindest einer Bohrung (7) zu liegen kommt.
  2. Thermoakustischer Wellenerzeuger nach Anspruch 1, dadurch gekennzeichnet, dass ein Lappen (6) eine Mehrzahl von Bohrungen (7) aufweist, die gleichmäßig über die Fläche des Lappens verteilt sind.
  3. Thermoakustischer Wellenerzeuger nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die gesamte Öffnung, welche die Bohrung bzw. Bohrungen eines Lappens (6) darstellen, im wesentlichen 60 % der Gesamtfläche des Lappens beträgt.
  4. Thermoakustischer Wellenerzeuger nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Lappen (6) und die Keile (4) einer Wärmetauscherstapelung verschweißt oder verklebt sind.
  5. Thermoakustischer Wellenerzeuger nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das thermodynamische Medium flüssiges Natrium oder eine Salzlösung ist.
  6. Thermoakustischer Wellenerzeuger nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass er eine Druckkapazität aufweist, in welcher die thermodynamische Flüssigkeit unter Druck gehalten wird.
  7. Thermoakustischer Wellenerzeuger nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Bohrungen (7) der Lappen und die Öffnungen (9) der Keile (8) eines gleichen Wärmetauschers zumindest eine Leitung zur Zirkulation eines Wärmeträgermediums bilden.
  8. Thermoakustischer Wellenerzeuger nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Mittel zum Herstellen eines Wärmeflusses Leitungen (10, 11, 12, 13) zum Speisen der Wärmetauscher mit Wärmeträgermedium enthalten.
  9. Thermoakustischer Wellenerzeuger nach Anspruch 8, dadurch gekennzeichnet, dass die Leitungen (10, 11, 12, 13) Leitungen (10, 11) zum Speisen der beiden einen heißen Punkt für den Wärmefluss bildenden Wärmetauscher mit einem ersten Wärmeträgermedium (C1) und Leitungen (12, 13) zum Speisen der beiden einen kalten Punkt für den Wärmefluss bildenden Wärmetauscher mit einem zweiten Wärmeträgermedium (C2) enthalten, wobei die Leitungen zum Speisen mit dem ersten Wärmeträgermedium (C1) in fester Stellung bezüglich der beiden Wärmetauscher gehalten werden, welche den kalten Punkt bilden, wohingegen die Leitungen (12, 13) zum Speisen mit dem zweiten Wärmeträgermedium (C2) unter der Wirkung von Wärmeausdehnungen, die zwischen heißem Punkt und kaltem Punkt auftreten, frei verstellbar sind.
  10. Thermoakustischer Wellenerzeuger nach Anspruch 9, dadurch gekennzeichnet, dass die Leitungen (12, 13) zum Speisen mit dem zweiten Wärmeträgermedium (C2) sich im Bereich eines Halteflansches kreuzen, um Längsbewegungen in Drehbewegungen umzuwandeln.
  11. Thermoakustischer Wellenerzeuger nach einem der Ansprüche 9 oder 10, dadurch gekennzeichnet, dass das erste und das zweite Wärmeträgermedium flüssiges Natrium oder ein NaK-Eutektikum (Natrium/Kalium) sind.
  12. Thermoakustischer MHD-Wandler, dadurch gekennzeichnet, dass er einen thermoakustischen Wellenerzeuger nach einem der Ansprüche 1 bis 11 aufweist, um Schallwellen (P) ausgehend von Wärmeenergie zu bilden, sowie eine magnetohydrodynamische Vorrichtung (16), um ausgehend von den Schallwellen (P) elektrische Energie zu liefern.
  13. Raumfahrtreaktor, dadurch gekennzeichnet, dass er einen thermoakustischen MHD-Wandler nach Anspruch 12 enthält.
  14. Stromgenerator für Kraftfahrzeuge, dadurch gekennzeichnet, dass er einen thermoakustischen MHD-Wandler mit einem thennoakustischen Wellenerzeuger nach einem der Ansprüche 7 bis 10 enthält, um Schallwellen ausgehend von Wärmeenergie zu bilden, sowie eine magnetohydrodynamische Vorrichtung, um ausgehend von den Schallwellen elektrische Energie zu liefern, dass das erste Wärmeträgermedium (C1) ein Luft-Wasserstoff-Gemisch ist und dass das zweite Wärmeträgermedium (C2) aus Umgebungsluft besteht.
  15. Thermoakustischer Wellenerzeuger nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Bohrungen (7) der Lappen (6) und die Öffnungen (9) der Keile (8) eines gleichen Wärmetauschers eine Einheit von Hohlräumen (20) bilden, wobei ein Radioisotop enthaltende Kapseln (21) innerhalb der Hohlräume (20) eingesetzt sind, die in den Wärmetauschern gebildet sind, die sich beiderseits des ersten Endes der Platteneinheit befinden.
  16. Thermoakustischer Wellenerzeuger nach Anspruch 15, dadurch gekennzeichnet, dass Wärmerohre (22), die mit zumindest einem Strahler (23) verbunden sind, innerhalb der Hohlräume (20) eingesetzt sind, die in den Wärmetauschern gebildet sind, die sich beiderseits des zweiten Endes der Platteneinheit befinden.
  17. Thermoakustischer Wellenerzeuger nach Anspruch 15, dadurch gekennzeichnet, dass die Hohlräume (20), die in den Wärmetauschern gebildet sind, welche sich beiderseits des zweiten Endes der Platteneinheit befinden, mit Leitungen (26, 27) verbunden sind, durch die ein Wärmeträgermedium (C3) in den Hohlräumen (20) zirkulieren kann.
  18. Thermoakustischer Wellenerzeuger nach Anspruch 17, dadurch gekennzeichnet, dass das Wärmeträgermedium (C3) flüssiges Natrium oder ein NaK-Eutektikum (Natrium/Kalium) oder ein Gas oder flüssiges Cäsium oder Quersilber ist
  19. Thermoakustischer Wellenerzeuger nach einem der Ansprüche 15 bis 18, dadurch gekennzeichnet, dass das Radioisotop Tritiumhydridpulver oder PU 235 ist.
  20. Energiewandler mit einem thermoakustischen Wellenerzeuger und Mitteln zum Umwandeln von Schallenergie in elektrische Energie, dadurch gekennzeichnet, dass der thermoakustische Wellenerzeuger ein Wellenerzeuger nach einem der Ansprüche 15 bis 19 ist und die Mittel zum Umwandeln von Schallenergie in elektrische Energie zumindest einen piezoelektrischen Sensor (24, 25) enthalten.
  21. Raumfahrtreaktor, dadurch gekennzeichnet, dass er einen Energiewandler nach Anspruch 20 enthält.
  22. Stromgenerator für Kraftfahrzeuge, dadurch gekennzeichnet, dass er einen Energiewandler nach Anspruch 20 enthält.
  23. Thermoakustischer Wellenerzeuger nach einem der Ansprüche 1 bis 11 oder 15 bis 19, dadurch gekennzeichnet, dass die Platten (4) und die Keile (8) aus Inconel oder Incoloy hergestellt sind.
EP03101535A 2002-05-27 2003-05-27 Thermoakustische Wellenerzeuger Expired - Lifetime EP1367561B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR0206421 2002-05-27
FR0206421A FR2839905B1 (fr) 2002-05-27 2002-05-27 Generateur d'ondes thermo-acoustiques
FR0350084A FR2853470B1 (fr) 2003-04-01 2003-04-01 Generateur d'ondes thermo-acoustiques a source chaude radio-isotopique
FR0350084 2003-04-01

Publications (2)

Publication Number Publication Date
EP1367561A1 EP1367561A1 (de) 2003-12-03
EP1367561B1 true EP1367561B1 (de) 2006-03-01

Family

ID=29422042

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03101535A Expired - Lifetime EP1367561B1 (de) 2002-05-27 2003-05-27 Thermoakustische Wellenerzeuger

Country Status (6)

Country Link
EP (1) EP1367561B1 (de)
AT (1) ATE319159T1 (de)
DE (1) DE60303737T2 (de)
DK (1) DK1367561T3 (de)
ES (1) ES2259403T3 (de)
PT (1) PT1367561E (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2899943B1 (fr) * 2006-04-13 2011-12-09 Technicatome Convertisseur thermo-acoustique et generateur d'energie electrique comprenant un convertisseur thermo-acoustique
GB0811686D0 (en) * 2008-06-26 2008-07-30 Univ Nottingham A heat exchanger arrangement
NL2004187C2 (nl) * 2010-02-03 2011-08-04 Stichting Energie Warmtewisselaar.
EP2874292B1 (de) * 2013-11-18 2017-09-27 Centre National De La Recherche Scientifique Thermoakustischer magnetohydrodynamischer Elektrogenerator
JP2018071821A (ja) * 2016-10-25 2018-05-10 三菱電機株式会社 熱音響装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4599551A (en) * 1984-11-16 1986-07-08 The United States Of America As Represented By The United States Department Of Energy Thermoacoustic magnetohydrodynamic electrical generator
US5456082A (en) * 1994-06-16 1995-10-10 The Regents Of The University Of California Pin stack array for thermoacoustic energy conversion
US5813234A (en) * 1995-09-27 1998-09-29 Wighard; Herbert F. Double acting pulse tube electroacoustic system
DE19960966A1 (de) * 1999-12-17 2001-07-05 Bosch Gmbh Robert Thermoakustische Maschine und Verwendung derselben in einem Kraftfahrzeug

Also Published As

Publication number Publication date
ATE319159T1 (de) 2006-03-15
DE60303737T2 (de) 2006-11-23
ES2259403T3 (es) 2006-10-01
DK1367561T3 (da) 2006-06-26
DE60303737D1 (de) 2006-04-27
EP1367561A1 (de) 2003-12-03
PT1367561E (pt) 2006-07-31

Similar Documents

Publication Publication Date Title
EP2291871B1 (de) Vorrichtung zur erzeugung von strom, wärmetauscherbündel mit derartiger vorrichtung und wärmetauscher mit derartigem bündel
EP2795226B1 (de) Kühlvorrichtung
FR3076085A1 (fr) Couvercle d’element electrochimique a conduction thermique renforcee
EP1367561B1 (de) Thermoakustische Wellenerzeuger
FR2968843A1 (fr) Systeme de batterie de vehicule automobile avec au moins une cellule electrochimique et un accumulateur de chaleur latente
EP3008772B1 (de) Batteriepack für ein kraftfahrzeug
FR2492169A1 (fr) Support pour cellule photovoltaique, batterie de cellules photovoltaiques pourvues d'un tel support et generateur solaire pourvu d'une telle batterie
EP2004977B8 (de) Thermo-akustischer wandler und einen thermo-akustischen wandler umfassender generator zur erzeugung elektrischer energie
EP2936573B1 (de) Anordnung mit einem thermoelektrischen element und vorrichtung zum elektrischen anschluss dieses thermoelektrischen elements sowie thermoelektrisches modul und thermoelektrische vorrichtung mit solch einer anordnung
WO2013076215A1 (fr) Dispositif thermo electrique, notamment destine a generer un courant electrique dans un vehicule automobile, et procede de fabrication dudit dispositif
WO2018127640A1 (fr) Dispositif d'échange thermique, notamment pour la régulation thermique d'une batterie d'un véhicule automobile
FR3062522A1 (fr) Batterie refroidie et systeme comportant une telle batterie
FR2856198A1 (fr) Cogeneration d'electricite par utilisation de l'effet seebeck a l'interieur d'une pile a combustible
FR2853470A1 (fr) Generateur d'ondes thermo-acoustiques a source chaude radio-isotopique
FR3043187A1 (fr) Batterie thermique a chaleur latente pour automobile
EP2861928A1 (de) Temperaturregelungsvorrichtung
FR3047610A1 (fr) Tube thermoelectrique a haut rendement de conversion
FR2839905A1 (fr) Generateur d'ondes thermo-acoustiques
FR2750481A1 (fr) Refroidisseur a gaz pulse
EP0520374B1 (de) Elektrische Stromleiterstruktur für eine bei sehr niedrigen Temperaturen arbeitende Einrichtung
FR3056715B1 (fr) Module thermoelectrique et dispositif comprenant un tel module
FR3041155A1 (fr) Module et dispositif thermo electriques, notamment destines a generer un courant electrique dans un vehicule automobile, et procede de fabrication d'un tel module
EP0541456A1 (de) Elektronischer Baugruppenträger mit niedrigem thermischem Widerstand
FR3033085A1 (fr) Dispositif thermo electrique, notamment destine a generer un courant electrique dans un vehicule automobile
EP3022780A1 (de) Thermoelektrischer generator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20040202

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060301

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060301

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060301

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060301

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060301

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060301

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060301

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 60303737

Country of ref document: DE

Date of ref document: 20060427

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060601

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060601

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060607

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20060401599

Country of ref document: GR

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Effective date: 20060601

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2259403

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061204

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070131

BERE Be: lapsed

Owner name: TECHNICATOME SOC. TECHNIQUE POUR L'ENERGIE ATOMIQ

Effective date: 20060531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060527

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060902

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150619

Year of fee payment: 13

Ref country code: DK

Payment date: 20150529

Year of fee payment: 13

Ref country code: DE

Payment date: 20150612

Year of fee payment: 13

Ref country code: ES

Payment date: 20150629

Year of fee payment: 13

Ref country code: PT

Payment date: 20150529

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20150529

Year of fee payment: 13

Ref country code: IT

Payment date: 20150529

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60303737

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20160531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160527

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 20060401599

Country of ref document: GR

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161128

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160527

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160527

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160528

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180627