EP1366214B1 - Materiau ceramique poreux mouillable par l'aluminium - Google Patents

Materiau ceramique poreux mouillable par l'aluminium Download PDF

Info

Publication number
EP1366214B1
EP1366214B1 EP02702625A EP02702625A EP1366214B1 EP 1366214 B1 EP1366214 B1 EP 1366214B1 EP 02702625 A EP02702625 A EP 02702625A EP 02702625 A EP02702625 A EP 02702625A EP 1366214 B1 EP1366214 B1 EP 1366214B1
Authority
EP
European Patent Office
Prior art keywords
aluminium
metal
cell
cathode
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02702625A
Other languages
German (de)
English (en)
Other versions
EP1366214A1 (fr
Inventor
Vittorio De Nora
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moltech Invent SA
Original Assignee
Moltech Invent SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moltech Invent SA filed Critical Moltech Invent SA
Publication of EP1366214A1 publication Critical patent/EP1366214A1/fr
Application granted granted Critical
Publication of EP1366214B1 publication Critical patent/EP1366214B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • C25C3/085Cell construction, e.g. bottoms, walls, cathodes characterised by its non electrically conducting heat insulating parts

Definitions

  • the invention relates to a ceramic material which can be utilised for the manufacture of aluminium-wettable and aluminium-wetted ceramic components, in particular for use in aluminium production, for example as cathodes, sidewalls and other cell components which during use are exposed to molten aluminium, electrolyte and/or corrosive gases.
  • Aluminium is produced conventionally by the Hall-Héroult process, by the electrolysis of alumina dissolved in cryolite-based molten electrolytes at temperatures up to around 950°C.
  • a Hall-Héroult reduction cell typically has a steel shell provided with an insulating lining of refractory material, which in turn has a lining of carbon which contacts the molten constituents and corrosive gases.
  • Conductor bars connected to the negative pole of a direct current source are embedded in the carbon cathode forming the cell bottom floor.
  • the cathode is usually an anthracite based carbon lining made of prebaked cathode blocks, joined with a ramming mixture of anthracite, coke and coal tar, or with glue.
  • US Patent 5,981,081 discloses wear and corrosion resistant coatings made of transition metal boride particles dispersed in a matrix of nickel, cobalt or iron. The coatings are applied by explosion or plasma spraying a mixture of powders of a transition metal boride and a boron containing alloy on a metal substrate and heat treating.
  • US Patent 4,560,448 (Sane/Wheeler/Kuivila) discloses a porous component made of aluminium repellent material covered with an aluminium-wettable metal boride coating which during use is maintained by saturating the molten aluminium infiltrating the porous component with coating constituents.
  • US Patent 4,650,552 (de Nora/Gauger/Fresnel/Adorian/Duruz), discloses an aluminium production cell component produced from a powder mixture of alumina and aluminium.
  • US Patent 4,600,481 (Sane/Wheeler/Gagescu/Debely/Adorian/Derivaz) discloses a component of an aluminium production cell which is made of an openly porous matrix, e.g. an alumina matrix, filled with molten aluminium.
  • the openly porous matrix may comprise an aluminium-wettable coating made of a boride or nickel.
  • the infiltration of the matrix with aluminium is carried out at a temperature of 1000° to 1500°C.
  • US Patent 5,007,475 discloses a ceramic structure, e.g. alumina, infiltrated by molten aluminium with the aid of an infiltration enhancer consisting of a metal/gas combination selected from Mg/N, Sr/N, Zn/O and Ca/N to which the alumina structure is exposed before and during infiltration.
  • an infiltration enhancer consisting of a metal/gas combination selected from Mg/N, Sr/N, Zn/O and Ca/N to which the alumina structure is exposed before and during infiltration.
  • An object of the invention is to provide an aluminium-wettable component for a cell for the production of aluminium from alumina dissolved in a fluoride-based molten electrolyte.
  • Another object of the invention is to provide an aluminium-wetted component which is highly conductive and resistant to molten electrolyte for use as a cathode in a drained cell or in a cell operating with a shallow or deep aluminium pool or as a cell sidewall or another component which is exposed to molten aluminium, electrolyte and/or corrosive gases, or as a lining for protecting other cell components against molten electrolyte, or for making other cell components aluminium-wettable.
  • a further object of the invention is to provide an aluminium-wettable or aluminium-wetted component which can be made from readily available materials.
  • Yet another object of the invention is to provide an aluminium-wettable component which can be wetted with aluminium outside an aluminium production cell or in-situ by exposure to cathodic molten aluminium.
  • Another object of the invention is to provide an aluminium-wetted component that retains its protective and wettability properties even when exposed to highly oxidising and/or corrosive environments.
  • Yet a further object of the invention is to provide a ceramic-based or a ceramic-metal material which can be used in an oxidising and/or corrosive media at elevated temperature.
  • a first aspect of the invention relates to an aluminium-wettable component of a cell for the electrowinning of aluminium from alumina dissolved in a fluoride-based molten electrolyte.
  • the component comprises an openly porous or reticulated ceramic structure whose surface during use is exposed to and wetted by molten aluminium.
  • the structure is made of a ceramic material inert and resistant to molten aluminium and an aluminium-wettable material that comprises metal oxide and/or partly oxidised metal which is/are readable with molten aluminium to form a surface layer containing alumina, aluminium and metal derived from the metal oxide and/or partly oxidised metal.
  • the inert and resistant ceramic material may comprise at least one oxide selected from oxides of aluminium, zirconium, tantalum, titanium, silicon, niobium, magnesium and calcium and mixtures thereof, as a simple oxide and/or in a mixed oxide, for example an aluminate of zinc (ZnAlO 4 ) or titanium (TiAlO 5 ).
  • suitable inert and resistant ceramic materials can be selected amongst nitrides, carbides and borides and oxycompounds, such as aluminium nitride, AlON, SiAlON, boron nitride, silicon nitride, silicon carbide, aluminium borides, alkali earth metal zirconates and aluminates, and their mixtures.
  • the reaction of the metal oxide and/or partly oxidised metal with molten aluminium involves the reduction of the metal oxide and/or partly oxidised metal and the oxidation of aluminium.
  • the metal oxide and/or partly oxidised metal to be reducible by molten aluminium, it is necessary that such a metal be more electronegative than aluminium.
  • the metal of the metal oxide and/or partly oxidised metal reducible by molten aluminium is selected from manganese, iron, cobalt, nickel, copper and zinc and combinations thereof.
  • the concentration of reactable metal oxide and/or partly oxidised metal at the surface of the ceramic structure affects the speed at which the structure is wetted by molten aluminium.
  • the surface of the ceramic structure should contain the reactable metal oxide and/or partly oxidised metal in an amount of at least 2 to 3 weight%, preferably at least 5 to 25 weight% of the material making the surface of the ceramic structure.
  • the coating may comprise much more metal oxide and/or partly oxidised metal, e.g. up to 50 or even 80 weight% or possibly even more.
  • the electronegativity of the metal of the reactable metal oxide and/or partly oxidised metal also affects the speed of aluminium wetting. The fastest wetting of the ceramic structure is achieved when the metal of the reactable metal oxide and/or partly oxidised metal is selected from copper, nickel, cobalt, manganese and iron.
  • the openly porous or reticulated ceramic structure comprises a coating of the aluminium-wettable material on the inert and resistant ceramic, material.
  • the openly porous or reticulated ceramic structure consists of a skeleton of the inert and resistant ceramic material coated with the aluminium-wettable material.
  • Such aluminium-wettable coating is usually a slurry-applied coating comprising particles of the metal oxide and/or partly oxidised metal reactable with molten aluminium in a dried colloidal carrier selected from alumina, ceria, lithia, magnesia, silica, thoria, yttria, zirconia, titanium oxide and zinc oxide, and precursors and mixtures thereof. Further details of such slurry-applied coatings are disclosed in WO01/42168 (de Nora/Duruz), which describes such coatings on solid substrates.
  • the slurry-applied aluminium-wettable coating may further comprise particles of at least one compound selected from metal borides, carbides and nitrides.
  • the aluminium-wettable coating comprises the particles of the metal oxide and/or partly oxidised metal reactable with molten aluminium and particles of titanium diboride in dried colloidal alumina.
  • Particles of the metal boride, carbide or nitride may be covered with mixed oxides of metal derived from the dried colloidal carrier and metal derived from the metal boride, carbide or nitride.
  • the slurry-applied aluminium-wettable coating can be obtained from a slurry comprising metal oxide particles that combine upon heat treatment with metal derived from the dried colloidal carrier to form mixed oxides which are miscible with the mixed oxides covering the particles of the metal boride, carbide or nitride.
  • Suitable slurries producing such a coating are disclosed in WO01/42531 (Nguyen/Duruz/de Nora), which describes such coatings on solid substrates.
  • the openly porous ceramic structure is made of a composition which comprises a mixture of the inert and resistant ceramic material and the aluminium-wettable ceramic material.
  • a ceramic structure should comprise a sufficient amount of inert and resistant ceramic material that upon contact/reaction of the aluminium-wettable ceramic material with molten aluminium, the overall ceramic structure retains sufficient mechanical properties.
  • the aluminium-wettable material makes up less than 15 weight%, usually less than 10 weight%, of the ceramic structure.
  • the openly porous ceramic structure may be formed on a reinforcing metal skeleton, in particular a metal mat.
  • Suitable metals for such a skeleton include iron and iron alloys and other metals which are mechanically resistant at elevated temperature.
  • a component made of the ceramic structure for instance to secure the ceramic structure on the bottom of an aluminium production cell as disclosed in Figs. 2 and 3 of US Patent 5,651,874 (de Nora/Sekhar).
  • the internal inserts may be made of iron or iron alloys or other heavy materials.
  • a reinforcing metal can also act as ballast.
  • the component of the invention has numerous applications some of which are set out hereafter.
  • the component may be a cathode or a cathode lining, for example plate- or wedge-shaped, on a cathode body, in particular made of carbon material.
  • the component can also be an aluminium pool stabiliser in the form of a plate having a density which is either lower than that of molten aluminium so that it can float at the surface of the aluminium pool, or higher than that of molten aluminium so that it can rest at the bottom of the aluminium pool. All of the aforementioned components, which are exposed during use to the product aluminium, can be placed as such in the cell and wetted during use.
  • Such components may be top coated with a highly aluminium-webtable start-up layer, for example as disclosed in WO01/42168 (de Nora/Duruz).
  • the aluminium-wettable component can constitute a skeleton which can be infiltrated with molten aluminium to form for example a cell sidewall or a sidewall lining, or a wedge-shaped connecting body for joining the surface of a cell bottom to an adjacent sidewall at the periphery of the cell bottom.
  • the invention also relates to an aluminium-wetted component of a cell for the electrowinning of aluminium.
  • the aluminium-wetted component comprises an openly porous or reticulated ceramic structure which has a surface layer containing alumina, aluminium and another metal, e.g. iron, copper or nickel.
  • Such component is obtainable by exposing to molten aluminium an openly porous or reticulated aluminium-wettable component made of ceramic material inert and resistant to molten aluminium, e.g. alumina, and an aluminium-wettable material that comprises metal oxide and/or partly oxidised metal, e.g. iron, copper or nickel as oxides and/or partly oxidised metals, which is/are reactable with molten aluminium as described above.
  • the component comprises an openly porous or reticulated ceramic structure whose surface during use is exposed to and wetted by molten aluminium.
  • the structure is made of a ceramic material inert and resistant to molten aluminium and an aluminium-wettable material that comprises metal oxide and/or partly oxidised metal which is/are reactable with molten aluminium to form a surface layer containing alumina, aluminium and metal derived from the metal oxide and/or partly oxidised metal.
  • aluminium-wetted components are completely filled and covered with aluminium that shields their openly porous or reticulated ceramic structure from exposure to molten electrolyte and/or corrosive gases during use.
  • the aluminium-wetted component may be a cathode or a cathode lining or an aluminium pool stabiliser wetted by aluminium before or during use.
  • the component may be a cell sidewall or a sidewall lining or a wedge-shaped body for joining the surface of a cell bottom to an adjacent sidewall, all wetted by aluminium before use.
  • Another aspect'of the invention is a cell for the electrowinning of aluminium from alumina dissolved in a fluoride-based electrolyte, comprising one or more aluminium-wettable and/or aluminium-wetted components described above.
  • the cell may in particular comprise a cathode or a cathode body whose surface is lined with a cathode lining as disclosed above.
  • the cathode body and the cathode lining may be joined through a bonding layer, in particular a slurry-applied refractory boride layer as disclosed in WO01/42168 (de Nora/Duruz) and WO01/42531 (Nguyen/Duruz/de Nora).
  • the lined cathode surface is part of a horizontal or inclined cathode bottom, in particular a horizontal cathode bottom lined with a wedge-like cathode lining forming an aluminium-wettable drained sloping cathode surface thereon.
  • the cathode body may be located above a cell bottom that is arranged to collect molten aluminium produced on and drained from the cathode lining.
  • One further aspect of the invention relates to a composite ceramic-based material which comprises an openly porous or reticulated ceramic structure whose surface during use is exposed to and wetted by molten aluminium.
  • This structure is made of a ceramic material inert and resistant to molten aluminium and an aluminium-wettable material that comprises metal oxide and/or partly oxidised metal selected from partly oxidised or oxide of copper, nickel, cobalt, manganese and iron and mixtures thereof, which is/are reactable with molten aluminium to form a surface layer containing alumina, aluminium and metal derived from the metal oxide and/or partly oxidised metal.
  • Such a material may be used, for instance, for the manufacture of components or linings of apparatus for treating molten aluminium, in particular for purifying molten aluminium or separating alloying metals from an aluminium alloy. Further details of such apparatus can be found in WO00/63630 (Holz/Duruz).
  • a yet further aspect of the invention relates to a composite ceramic-metal material which comprises, as before, an openly porous or reticulated ceramic structure which has a surface layer containing alumina, aluminium and another metal.
  • the composite ceramic-metal material is obtainable by exposing to molten aluminium a composite material made of a ceramic material inert and resistant to molten aluminium and an aluminium-wettable material that comprises a metal oxide and/or a partly oxidised metal selected from copper, nickel, cobalt, manganese and iron and mixtures thereof, which is/are reactable with molten aluminium to form a surface layer containing alumina, aluminium and metal derived from the metal oxide and/or partly oxidised metal.
  • Such a material may be used for the manufacture of aluminium-wetted components for applications in high temperature oxidising or corrosive gases, in particular oxygen and/or fluorine-containing gases, or liquids, such as fluorine-containing liquids or molten metal, in particular molten aluminium.
  • gases in particular oxygen and/or fluorine-containing gases
  • liquids such as fluorine-containing liquids or molten metal, in particular molten aluminium.
  • the aluminium-wetted components may be used in apparatus for treating molten aluminium.
  • the components may also be used at temperatures below the melting point of aluminium as electrodes, heating elements, structural materials, metallurgical crucibles for containing molten metals other than aluminium, anodes, furnace fixtures, molds etc. Due to the capacity of the ceramic structure to retain molten aluminium within its pores and on its surface by capillary effect, the aluminium-wetted components may be used in chemically aggressive environments at temperatures above the melting point of aluminium, for instance as linings in furnaces, providing the components are not exposed to substantial mechanical wear.
  • Figure 1 shows an aluminium production cell of drained configuration.
  • the cell comprises non-carbon metal-based anodes 10, for example as disclosed in WO00/40781 and WO00/40782 (both in the name of de Nora), which are spaced apart from correspondingly sloped facing cathode surfaces 20, for example as disclosed in WO00/63463 (de Nora), in a fluoride-based molten electrolyte 5.
  • the cell bottom 25,25' for example made of carbon material, is covered with aluminium-wetted cathode linings 21,21' which form drained aluminium-wetted sloping cathode surfaces 20 according to the invention, different embodiments being shown in the right and the left hand part of Figure 1.
  • the cathode surfaces 20 slope down towards the middle of the cell bottom 25,25'.
  • the cell bottom 25 is horizontal whereas the cathode lining 21' covering it is a wedge with a small angle forming a sloping cathode surface 20 above the horizontal cell bottom 25.
  • the cell bottom 25' is at a slope and covered with cathode lining plates (tiles) 21 of uniform thickness and which form a sloping cathode surface 20 parallel to the sloping cell bottom 25'.
  • the cell bottom 25,25' is only partly covered with the cathode lining 21,21', leaving a central channel 30 formed by the cell bottom 25,25' and the adjacent cathode linings 21,21' which are spaced in the middle of the cell by channel 30.
  • This channel 30 serves to collect product molten aluminium 60 from the sloping cathode surfaces 20.
  • the cell bottom 25,25', in particular where it forms part of the aluminium-collection channel is preferably protected with an aluminium wettable layer 35, for example a slurry-applied refractory boride layer as disclosed in WO01/42168 (de Nora/Duruz) or WO01/42531 (Nguyen/Duruz/de Nora).
  • a slurry-applied layer 35 is also wetted by molten aluminium 22 that wets also the bottom of the cathode linings 21,21' providing a continuous and optimal electrical contact.
  • the cell comprises sidewalls 40, for example made of silicon carbide, which are protected with an aluminium-wetted sidewall lining 41 according to the invention.
  • the sidewall lining 41 is completely filled with molten aluminium retained in its pores by capillary effect.
  • the sidewall lining 41 extends vertically from the cell bottom 25, 25' to above the surface of the molten electrolyte 5, and completely shields the sidewalls 40 from molten electrolyte 5.
  • aluminium-wetted sidewall lining 41 and cathode linings 21,21' are joined through generally wedge-shaped aluminium-filled bodies 51 according to the invention located on the periphery of cell bottom 25,25'.
  • FIG 2 illustrates inventive cell components in another cell according to the invention.
  • the cell shown in Figure 2 has a horizontal cell bottom 25 which is covered with an aluminium-wetted cathode lining 21 according to the invention of uniform width forming a horizontal drained cathode surface 20.
  • the sidewalls 40 of the cell are covered with an aluminium-wetted wedge-shaped sidewall lining 41' that extends from the periphery of the cell bottom 25 to above the surface of the molten electrolyte 5.
  • the cell bottom 25 comprises in the middle of the cell, a channel 30 for collecting product aluminium 60 drained from the adjacent aluminium-wettable cathode surfaces 20.
  • the aluminium collection channel 30 is preferably coated with a slurry-applied refractory boride layer 35 as described above.
  • the slurry-applied layer 35 is wetted by molten aluminium 22 that wets also the bottom of the aluminium-wetted cathode lining 21.
  • the cell is thermally well insulated. As shown in Figure 2, the cell is fitted with an insulating cover 45 above the molten electrolyte 5. Further details of suitable covers are disclosed in WO01/31086 (de Nora/Duruz).
  • the anodes 10 are preferably made of electrolyte resistant inert metal-based material.
  • Suitable metal-based anode materials include iron and nickel based alloys which may be heat-treated in an oxidising atmosphere as disclosed in WO00/06802, WO00/06803 (both in the name of Duruz/de Nora/Crottaz), WO00/06804 (Crottaz'/Duruz), WO01/42535 (Duruz/de Nora), WO01/42534 (de Nora/Duruz) and WO01/42536 (Duruz/Nguyen/de Nora).
  • the cell may be operated with an electrolyte 5 at reduced temperature, typically from about 830° to 930°C, preferably from 850° to 910°C.
  • an electrolyte 5 at reduced temperature typically from about 830° to 930°C, preferably from 850° to 910°C.
  • Operating with an electrolyte at reduced temperature reduces the solubility of oxides, in particular of alumina. Therefore, it is advantageous to enhance alumina dissolution in the electrolyte 5.
  • Enhanced alumina dissolution may be achieved by utilising an alumina feed device which sprays and distributes alumina particles over a large area of the surface of the molten electrolyte 5.
  • Suitable alumina feed devices are disclosed in greater detail in WO00/63464 (de Nora/Berclaz).
  • the cell may comprise means (not shown) to promote circulation of the electrolyte 5 from and to the anode-cathode gap to enhance alumina dissolution in the electrolyte 5 and to maintain in permanence a high concentration of dissolved alumina close to the active surfaces of anodes 10, for example as disclosed in WO00/40781 (de Nora).
  • alumina dissolved in the electrolyte is electrolysed to produce oxygen on the anodes 10 and aluminium 60 on the drained cathode surfaces 20.
  • the product aluminium 60 drains from the cathode surfaces 20 into the collection channel 30 from where it can be tapped or evacuated into an aluminium reservoir (not shown), for example as disclosed in WO00/63463 (de Nora).
  • FIG. 3 where the same reference numerals are used to designate the same elements, illustrates a retrofitted cell utilising aluminium-wetted components according to the invention and conventional consumable carbon anodes 10'.
  • the cell bottom 25 is horizontal and protected from wear with an aluminium-wetted cathode lining 21 according to the invention forming a drained cathode surface 20.
  • the cell sidewalls 40 are covered with a sidewall lining 41 according to the invention, extending from the cell bottom to above the surface of the molten electrolyte 5.
  • the aluminium-wetted sidewall lining 41 and the aluminium-wetted cathode linings 21 are joined through generally wedge-shaped bodies 51 according to the invention.
  • the cell bottom 25 is covered with a slurry-applied refractory boride layer 35 wetted by molten aluminium 22 that wets also the bottom of aluminium-wetted cathode lining 21.
  • the cell bottom 25 comprises in the middle of the cell, a channel 30 for collecting product aluminium 60 drained from the adjacent aluminium-wettable cathode surfaces 20.
  • the cell shown in Figure 3 operates with a frozen electrolyte crust 70 and ledge 71.
  • alumina is dissolved into the electrolyte 5 and electrolysed between the carbon anodes 10' and the drained cathode surface 20 to produce CO 2 at the carbon anodes 10' and aluminium which is drained into channel 30.
  • a retrofitted cell without an aluminium collection groove may operate with a shallow aluminium cathodic pool with little motion of molten aluminium in the shallow cathodic pool. Consequently, the inter-electrode distance may also be reduced which leads to a reduction of the cell voltage and energy savings. Furthermore, compared to conventional deep pool cells, a smaller amount of molten aluminium is needed to operate the cell which substantially reduces the costs involved with immobilising large aluminium stocks in aluminium production plants.
  • aluminium-wetted cathode linings can also be used in deep pool cells operating with a frozen electrolyte ledge and/or an electrolyte crust above the molten electrolyte.
  • one or more large aluminium-wetted conductive plates according to the invention made from a low density openly porous or reticulated ceramic structure may be put into the aluminium pool so that the plates float at the surface of the aluminium pool to restrain aluminium motion and stabilise the aluminium pool.
  • stabiliser plates in a deep aluminium pool permits a reduction of the inter-electrode distance.
  • An openly porous alumina structure (10 pores per inch which is equivalent to about 4 pores per centimetre) was rendered aluminium-wettable by coating it with two slurry-applied layers of different composition.
  • the first slurry of the first layer was made of 60 weight% particulate needle-shaped surface-oxidised TiB 2 (-325 mesh) having a TiO 2 surface oxide film, 3.3 weight% aluminium-wetting agent in the form of particulate Fe 2 O 3 (-325 mesh) and 3.3 weight% TiO 2 powder (-325 mesh) in 33 weight% colloidal Al 2 O 3 (NYACOL® Al-20, a milky liquid with a colloidal particle size of about 40 to 60 nanometer).
  • the colloidal alumina reacts with a TiO 2 surface oxide and the TiO 2 powder to form a mixed oxide matrix of Al 2 O 3 and TiO 2 throughout the coating, this matrix containing and bonding the TiB 2 particles and the Fe 2 O 3 particles.
  • the second slurry was made of 33 weight% of partly oxidised copper particles, 37 weight% of a first grade of colloidal alumina (NYACOL® Al-20) and 30 weight% of a second grade of colloidal alumina (CONDEA® 10/2 Sol, a clear, opalescent liquid with a colloidal particle size of about 10 to 30 nanometer).
  • An aluminium-wettable coating was applied onto the porous alumina structure by dipping this structure into the first slurry followed by drying for 4 hours at 40°C and dipping it into the second slurry followed by drying for 15 hours are 40°C.
  • the coated alumina structure was then heat treated for 3 hours in air at 700°C to consolidate the coating.
  • the resulting structure is aluminium-wettable and is suitable to be wetted by aluminium before use or it can be wetted in-situ when used as a cathode.
  • the aluminium-wettable porous structure was wetted with aluminium by dipping it in molten aluminium at 850°C. After 20 hours the wetted porous structure was extracted from the molten aluminium and allowed to cool down to room temperature.
  • the electrical resistivity of the aluminium-wetted structure was of the order of the resistivity of metal aluminium (2.65 ⁇ .cm), whereas before wetting the structure had a resistivity of 35 to 45 k ⁇ .cm.
  • Such a wetted alumina structure can be used for various applications in an aluminium electrowinning cell, in particular as a cathode or cathode lining, a cell sidewall or a sidewall lining, or as a non current carrying component of the cell bottom which is exposed to molten aluminium and/or electrolyte.
  • An aluminium-wettable ceramic structure was made of a mixture of material inert and resistant to molten aluminium, i.e. alumina and titania, and aluminium-wettable material, i.e. copper oxide.
  • the ceramic structure was prepared by coating a polyurethane foam with a slurry of ceramic particles followed by a heat treatment.
  • the slurry of ceramic material consisted of a suspension of 40 g particulate Al 2 O 3 with an. average particle size of 10 to 20 micron, 2.5 g of particulate CuO with a particle size of less than about 45 micron, 2.5 g of particulate TiO 2 with a particle size of less than about 45 micron in a colloidal alumina carrier consisting of 93 g deionised water and 6.6 g colloidal alumina particles with a colloidal particle size of about 10 to 30 nanometer.
  • a polyurethane foam having 10 to 20 pores per inch (equivalent to about 4 to 8 pores per centimetre) was dipped into the slurry and dried in air at 40° to 50°C for 20 to 30 minutes. The dipping was repeated three times.
  • the foam was dried in air at 50°C for 4 to 5 hours.
  • the foam contained about 0.3 to 0.5 g/cm 3 of the dried slurry.
  • the drying was followed by a heat treatment at about 850° to 1000°C in air for 4 to 5 hours to eliminate the polyurethane foam and consolidate the ceramic material formed from the slurry into a self-sustaining foam.
  • This heat treatment was followed by an aluminisation treatment by immersion in molten aluminium for 2 hours in molten aluminium at 850°C.
  • the aluminised foam was extracted from the molten aluminium, allowed to cool to room temperature and cut perpendicular to a surface.
  • the heat treatment step and the aluminisation step are carried out simultaneously as a single step.
  • the copper oxide of the ceramic structure is replaced partly or completely with iron oxide and/or nickel oxide.
  • An aluminium-wettable openly porous ceramic structure as in Example 1 was tested as cathodic material for aluminium production.
  • the aluminium-wettable ceramic structure was placed on the bottom of a graphite receptacle having an inner diameter of 85 mm.
  • the structure was covered with 120 g aluminium.
  • the receptacle and its content was heated at a rate of 120°C/hour.
  • the aluminium had formed an aluminium pool on which the ceramic structure was floating.
  • the temperature was further increased to about 850°C and then maintained for 4 hours so that the molten aluminium completely aluminised and wet the ceramic structure.
  • an amount of 1.5 kg electrolytic molten bath consisting of 68 weight% cryolite, 28 weight% aluminium fluoride and 4 weight% dissolved alumina was poured into the receptacle on top of the aluminium pool and aluminium-wetted ceramic structure.
  • a carbon anode was dipped into the electrolyte to face the floating ceramic structure which formed both an aluminium pool stabiliser and a cathode surface.
  • An electrolysis current was passed between the anode and the graphite receptacle at a current density of about 0.8 A/cm 2 at the anode.
  • a constant cell voltage of about 4 to 4.2 volt was measured throughout electrolysis.
  • the ceramic structure was allowed to cool down to room temperature and cut perpendicular to one of its surfaces. Examination of the ceramic structure showed that it was still completely wetted by and filled with molten aluminium. The ceramic structure itself had remained unchanged demonstrating its stability and suitability as cathode material.
  • An openly porous silicon carbide structure (30 pores per inch which is equivalent to about 12 pores per centimetre) was rendered aluminium-wettable by coating it with a slurry-applied layer.
  • the slurry consisted of 75 g surface oxidised iron particles (-325 mesh), 75 g Silica sol Nyacol 830 (a milky aqueous liquid containing 32 weight% colloidal silicon hydroxide that is converted into silica upon heat treatment) and 0.35 g of an aqueous solution containing 15% PVA (polyvinyl alcohol) that was used to adjust the. viscosity of the slurry.
  • PVA polyvinyl alcohol
  • the openly porous structure was dipped onto the slurry and then dried for 30 min. at 60°C.
  • the impregnated porous structure contained 0.278 g/cm 3 of dried slurry including 0.214 g/cm 3 surface oxidised iron particles.
  • the resulting structure was aluminium-wettable and suitable to be wetted by aluminium before use or in-situ when used for example as a cathode.
  • the aluminium-wettable porous structure was wetted with aluminium by dipping it in molten aluminium at 850°C. After 15 hours the wetted porous structure was extracted from the molten aluminium and allowed to cool down to room temperature.
  • the aluminium-wetted porous structure showed that it was filled with aluminium retained in the pores by the wettability of the structure and the capillary effect, and covered over the outer surface with aluminium.
  • the pores had an aluminium filling ratio that was greater than 90 vol%.
  • the aluminium-wetted porous structure can be used as cathodic material like in Example 3.

Claims (34)

  1. Composant mouillable par l'aluminium d'une cuve pour l'électro-obtention d'aluminium à partir d'alumine dissoute dans un électrolyte en fusion à base de fluorure, ledit composant comprenant une structure en céramique ouvertement poreuse ou réticulée dont la surface, pendant l'utilisation, est exposée à et mouillée par l'aluminium en fusion, la structure étant réalisée en :
    une matière céramique inerte et résistante à l'aluminium en fusion, en particulier une matière comprenant au moins un oxyde, carbure, nitrure ou borure choisie à partir de : oxydes d'aluminium, de zirconium, de tantale, de titane, de silicium, de niobium, de magnésium et de calcium et de mélanges de ceux-ci, en tant que simple oxyde et/ou en un oxyde mélangé ; et de nitrure d'aluminium, AION, SiAION, nitrure de bore, nitrure de silicium, carbure de silicium, borures d'aluminium, zirconates et aluminates de métal alcalino-terreux et de mélanges de ceux-ci ; et
    une matière mouillable par l'aluminium qui comprend un oxyde métallique et/ou un métal partiellement oxydé qui peut/peuvent réagir avec l'aluminium en fusion pour former, sur la structure céramique ouvertement poreuse ou réticulée, une couche de surface contenant de l'alumine, de l'aluminium et du métal dérivé dudit oxyde métallique et/ou dudit métal partiellement oxydé, le métal dudit oxyde métallique et/ou dudit métal partiellement oxydé étant choisi à partir de manganèse, fer, cobalt, nickel, cuivre et zinc et de combinaisons de ceux-ci.
  2. Composant selon la revendication 1, dans lequel la structure céramique ouvertement poreuse ou réticulée comprend un revêtement de la matière mouillable par l'aluminium sur la matière céramique inerte et résistante.
  3. Composant selon la revendication 2, dans lequel le revêtement mouillable par l'aluminium est un revêtement appliqué de coulis comprenant des particules dudit oxyde métallique et/ou dudit métal partiellement oxydé pouvant réagir dans un support colloïdal séché choisi à partir d'alumine, d'oxyde de cérium, de lithine, de magnésie, de silice, de thorine, d'yttria, de zircone, d'oxyde de titane et d'oxyde de zinc, et de mélanges et de précurseurs de ceux-ci.
  4. Composant selon la revendication 3, dans lequel le revêtement appliqué de coulis mouillable par l'aluminium comprend de plus des particules d'au moins un composé choisi à partir de borures, carbures et nitrures métalliques.
  5. Composant selon la revendication 4, dans lequel le revêtement appliqué de coulis mouillable par l'aluminium comprend les particules dudit oxyde métallique et/ou dudit métal partiellement oxydé pouvant réagir et des particules de diborure de titane dans de l'alumine colloïdale séchée.
  6. Composant selon la revendication 4 ou 5, dans lequel des particules d'un borure, carbure ou nitrure métallique sont recouvertes d'oxydes mélangés de métal dérivé du support colloïdal séché et de métal dérivé du borure, carbure ou nitrure métallique.
  7. Composant selon la revendication 6, dans lequel le revêtement appliqué de coulis mouillable par l'aluminium peut être obtenu à partir d'un coulis qui comprend des particules d'oxyde métallique qui se combinent lors du traitement thermique avec un oxyde métallique dérivé du support colloïdal séché pour former des oxydes mélangés qui sont miscibles avec lesdits oxydes mélangés recouvrant les particules de borure, carbure ou nitrure métallique.
  8. Composant selon la revendication 1, dans lequel la structure céramique ouvertement poreuse est réalisée en une composition qui se compose d'un mélange de la matière céramique inerte et résistante et de la matière céramique mouillable par l'aluminium.
  9. Composant selon une quelconque revendication précédente, dans lequel la structure céramique ouvertement poreuse est formée sur une ossature métallique de renfort.
  10. Composant selon une quelconque revendication précédente, qui comprend un insert interne agissant comme ballast.
  11. Composant selon une quelconque revendication précédente, qui est une cathode ou une garniture de cathode.
  12. Composant selon une quelconque des revendications 1 à 10, qui est un stabilisateur de bain d'aluminium sous la forme d'une plaque.
  13. Composant selon une quelconque des revendications 1 à 10, qui est une ossature d'une paroi latérale de cuve ou d'une garniture de paroi latérale, laquelle ossature peut être remplie d'aluminium en fusion pour former une paroi latérale de cuve ou une garniture de paroi latérale infiltrée d'aluminium.
  14. Composant selon une quelconque des revendications 1 à 10, qui est une ossature d'un corps de liaison conformé en coin pour assembler la surface d'un fond de cuve à une paroi latérale adjacente, laquelle ossature peut être remplie d'aluminium en fusion pour former un corps de liaison infiltré d'aluminium.
  15. Composant mouillé par l'aluminium d'une cuve pour l'électro-obtention d'aluminium, ledit composant mouillé par l'aluminium comprenant une structure céramique ouvertement poreuse ou réticulée qui a une couche de surface contenant de l'alumine, de l'aluminium et un autre métal pouvant être obtenue en exposant un composant mouillable par l'aluminium selon une quelconque revendication précédente à de l'aluminium en fusion.
  16. Composant mouillé par l'aluminium selon la revendication 15, qui est rempli et recouvert d'aluminium qui protège la structure céramique ouvertement poreuse ou réticulée de l'exposition à l'électrolyte en fusion et/ou aux gaz corrosifs pendant l'utilisation.
  17. Composant mouillé par l'aluminium selon la revendication 15 ou 16, qui est une cathode ou une garniture de cathode.
  18. Composant mouillé par l'aluminium selon les revendications 15 à 16, qui est un stabilisateur de bain d'aluminium sous la forme d'une plaque.
  19. Composant mouillé par l'aluminium selon la revendication 16, qui est une paroi latérale de cuve ou une garniture de paroi latérale.
  20. Composant mouillé par l'aluminium selon la revendication 16, qui est un corps en forme de coin pour assembler la surface d'un fond de cuve à une paroi latérale adjacente.
  21. Cuve pour l'électro-obtention d'aluminium à partir d'alumine dissoute dans un électrolyte à base de fluorure, comprenant au moins un composant mouillable par l'aluminium tel que défini selon une quelconque des revendications 1 à 14 et/ou au moins un composant mouillé par l'aluminium tel que défini selon une quelconque des revendications 15 à 20.
  22. Cuve selon la revendication 21, qui comprend une cathode ou une garniture de cathode telle que définie dans la revendication 11 ou 18.
  23. Cuve selon la revendication 22, qui comprend un corps de cathode ayant une surface revêtue d'une garniture de cathode analogue à une plaque ou analogue à un coin.
  24. Cuve selon la revendication 23, dans laquelle le corps de cathode est assemblé à la garniture de cathode par une couche de liaison.
  25. Cuve selon la revendication 23, dans laquelle la surface de cathode revêtue est une partie d'un fond de cathode horizontal ou incliné.
  26. Cuve selon la revendication 25, dans laquelle le fond de cathode est horizontal et revêtu d'une garniture de cathode en forme de coin formant une surface de cathode de drainage en pente mouillable par l'aluminium sur celle-ci.
  27. Cuve selon la revendication 22, 23 ou 24, dans laquelle la cathode ou la garniture de cathode est située au-dessus d'un fond de la cuve qui est agencé pour recueillir l'aluminium en fusion produit sur et évacué à partir de la cathode ou de la garniture de cathode.
  28. Cuve selon une quelconque des revendications 22 à 27, comprenant une cathode ou une garniture de cathode telle que définie dans la revendication 9, qui est revêtue sur le dessus par une couche de départ mouillable par l'aluminium.
  29. Cuve selon la revendication 21 ou 22, comprenant un ou plusieurs stabilisateurs de bain tels que définis dans la revendication 12 ou 18 flottant sur un bain d'aluminium contenu dans la cuve.
  30. Cuve selon une quelconque des revendications 21 à 29, qui comprend une paroi latérale de cuve ou une garniture de paroi latérale telle que définie dans la revendication 19.
  31. Cuve selon la revendication 30, comprenant une garniture de paroi latérale telle que définie dans la revendication 19 qui couvre une paroi latérale réalisée en une matière contenant du carbone.
  32. Cuve selon une quelconque des revendications 21 à 31, comprenant au moins un corps de liaison en forme de coin tel que défini dans la revendication 20 assemblant le fond de la cuve à une paroi latérale adjacente.
  33. Structure céramique composite ouvertement poreuse ou réticulée dont la surface est mouillable par l'aluminium en fusion, la structure étant réalisée en :
    une matière céramique inerte et résistante à l'aluminium en fusion, en particulier une matière comprenant au moins un oxyde, carbure, nitrure ou borure choisie à partir de : oxydes d'aluminium, de zirconium, de tantale, de titane, de silicium, de niobium, de magnésium et de calcium et de mélanges de ceux-ci, en tant que simple oxyde et/ou en un oxyde mélangé ; et de nitrure d'aluminium, AION, SiAION, nitrure de bore, nitrure de silicium, carbure de silicium, borures d'aluminium, zirconates et aluminates de métal alcalino-terreux et de mélanges de ceux-ci ; et
    une matière mouillable par l'aluminium qui comprend un oxyde métallique et/ou un métal partiellement oxydé qui peut/peuvent réagir avec l'aluminium en fusion pour former, sur la structure céramique ouvertement poreuse ou réticulée, une couche de surface contenant de l'alumine, de l'aluminium et du métal dérivé dudit oxyde métallique et/ou dudit métal partiellement oxydé, le métal dudit oxyde métallique et/ou dudit métal partiellement oxydé étant choisi à partir de manganèse, fer, cobalt, nickel, cuivre et zinc et de combinaisons de ceux-ci.
  34. Matière composite céramique-métal comprenant une structure céramique ouvertement poreuse ou réticulée qui présente une couche de surface contenant de l'alumine, de l'aluminium et un autre métal, ladite matière composite céramique-métal pouvant être obtenue en exposant à l'aluminium en fusion une structure céramique composite ouvertement poreuse ou réticulée telle que définie dans la revendication 33.
EP02702625A 2001-03-07 2002-03-04 Materiau ceramique poreux mouillable par l'aluminium Expired - Lifetime EP1366214B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IB0100320 2001-03-07
WOPCT/IB01/00320 2001-03-07
PCT/IB2002/000668 WO2002070783A1 (fr) 2001-03-07 2002-03-04 Materiau ceramique poreux mouillable par l'aluminium

Publications (2)

Publication Number Publication Date
EP1366214A1 EP1366214A1 (fr) 2003-12-03
EP1366214B1 true EP1366214B1 (fr) 2004-12-15

Family

ID=11004051

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02702625A Expired - Lifetime EP1366214B1 (fr) 2001-03-07 2002-03-04 Materiau ceramique poreux mouillable par l'aluminium

Country Status (9)

Country Link
US (1) US20040149569A1 (fr)
EP (1) EP1366214B1 (fr)
AT (1) ATE284983T1 (fr)
CA (1) CA2438526A1 (fr)
DE (1) DE60202265T2 (fr)
ES (1) ES2230467T3 (fr)
NZ (1) NZ527306A (fr)
RU (1) RU2281987C2 (fr)
WO (1) WO2002070783A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013075396A1 (fr) * 2011-11-21 2013-05-30 中铝国际工程股份有限公司 Bloc composite latéral pour gaine protectrice dans une cellule d'électrolyse d'aluminium calorifuge

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8480876B2 (en) 2007-12-26 2013-07-09 Theodore R. Beck Aluminum production cell
US8501050B2 (en) * 2011-09-28 2013-08-06 Kennametal Inc. Titanium diboride-silicon carbide composites useful in electrolytic aluminum production cells and methods for producing the same
CN103233245B (zh) * 2013-05-23 2015-04-29 黄河鑫业有限公司 一种监测和准确判断在线电解槽阴极内衬破损的方法
US10673066B2 (en) * 2017-10-06 2020-06-02 Jonathan Jan Reticulated electrode for lead-acid battery and fabrication method thereof
WO2019200470A1 (fr) 2018-04-16 2019-10-24 Laboratoire Cir Inc. Protection de composants matériels contre les fusions de cryolite à action corrosive dans des cellules de réduction d'aluminium
US20240068073A1 (en) * 2022-08-31 2024-02-29 Ii-Vi Delaware, Inc. Reinforced metal matrix composites and methods of making the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR8207776A (pt) * 1981-07-01 1983-05-31 Diamond Shamrock Corp Producao eletrolitica de aluminio
US4560448A (en) * 1982-05-10 1985-12-24 Eltech Systems Corporation Aluminum wettable materials for aluminum production
US4544457A (en) * 1982-05-10 1985-10-01 Eltech Systems Corporation Dimensionally stable drained aluminum electrowinning cathode method and apparatus
US4600481A (en) * 1982-12-30 1986-07-15 Eltech Systems Corporation Aluminum production cell components
US4834353A (en) * 1987-10-19 1989-05-30 Anwar Chitayat Linear motor with magnetic bearing preload
US4985651A (en) * 1987-10-19 1991-01-15 Anwar Chitayat Linear motor with magnetic bearing preload
US5310476A (en) * 1992-04-01 1994-05-10 Moltech Invent S.A. Application of refractory protective coatings, particularly on the surface of electrolytic cell components
US5763966A (en) * 1995-03-15 1998-06-09 Hinds; Walter E. Single plane motor system generating orthogonal movement
DE60001741T2 (de) * 1999-04-16 2003-11-13 Moltech Invent Sa Schutzbeschichtung für komponenten, die durch erosion während des frischens von geschmolzenen metallen angegriffen werden

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013075396A1 (fr) * 2011-11-21 2013-05-30 中铝国际工程股份有限公司 Bloc composite latéral pour gaine protectrice dans une cellule d'électrolyse d'aluminium calorifuge

Also Published As

Publication number Publication date
RU2003129656A (ru) 2005-02-10
ES2230467T3 (es) 2005-05-01
RU2281987C2 (ru) 2006-08-20
WO2002070783A1 (fr) 2002-09-12
ATE284983T1 (de) 2005-01-15
DE60202265T2 (de) 2005-05-25
NZ527306A (en) 2006-03-31
EP1366214A1 (fr) 2003-12-03
DE60202265D1 (de) 2005-01-20
US20040149569A1 (en) 2004-08-05
CA2438526A1 (fr) 2002-09-12

Similar Documents

Publication Publication Date Title
US5340448A (en) Aluminum electrolytic cell method with application of refractory protective coatings on cello components
US6103091A (en) Production of bodies of refractory borides for use in aluminum electrowinning cells
EP1366214B1 (fr) Materiau ceramique poreux mouillable par l'aluminium
AU2001233530A1 (en) A method for providing a protective coating for carbonaceous components of an electrolysis cell
EP1395529B1 (fr) Tuiles de carbone avec revetement refractaire pour utilisation a temperature elevee
NZ529849A (en) Aluminium electrowinning cells having a drained cathode bottom and an aluminium collection reservoir
AU2002236143A1 (en) Aluminium-wettable porous ceramic material
EP1366216B1 (fr) Cellule pour l'electro-obtention d'aluminium fonctionnant avec des anodes a base metallique
EP0843746B1 (fr) Surfaces dures resistantes a l'abrasion permettant la protection des blocs cathodiques des cellules d'extraction electrolytique d'aluminium
EP0730677B1 (fr) Composants carbones/refractaires de cuves de production d'aluminium
US5746895A (en) Composite refractory/carbon components of aluminium production cells
CA2448564A1 (fr) Tuiles de carbone avec revetement refractaire pour utilisation a temperature elevee
AU2002236145B2 (en) Cell for the electrowinning of aluminium operating with metal-based anodes
EP1693486B1 (fr) Procédé pour munir des constituants carbonés d'une cellule d'électrolyse d'un revêtement protecteur
EP1392892B1 (fr) Enceintes d'electro-extraction d'aluminium comprenant un fond de cathode draine et un reservoir de collecte d'aluminium
AU2002236145A1 (en) Cell for the electrowinning of aluminium operating with metal-based anodes
AU2002302918A1 (en) Aluminium electrowinning cells having a drained cathode bottom and an aluminium collection reservoir

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030919

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041215

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041215

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041215

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041215

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041215

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041215

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60202265

Country of ref document: DE

Date of ref document: 20050120

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050304

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050304

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050315

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050315

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050331

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2230467

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050916

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070226

Year of fee payment: 6

Ref country code: NL

Payment date: 20070226

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070307

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20070308

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050515

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070619

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070227

Year of fee payment: 6

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081001

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20081001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20081125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20080305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080304