EP1365110B1 - Verfahren und Vorrichtung zum Betrieb einer Dampfkraftanlage, insbesondere im Teillastbereich - Google Patents

Verfahren und Vorrichtung zum Betrieb einer Dampfkraftanlage, insbesondere im Teillastbereich Download PDF

Info

Publication number
EP1365110B1
EP1365110B1 EP02011279A EP02011279A EP1365110B1 EP 1365110 B1 EP1365110 B1 EP 1365110B1 EP 02011279 A EP02011279 A EP 02011279A EP 02011279 A EP02011279 A EP 02011279A EP 1365110 B1 EP1365110 B1 EP 1365110B1
Authority
EP
European Patent Office
Prior art keywords
steam
carrying component
pressure
stage
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02011279A
Other languages
English (en)
French (fr)
Other versions
EP1365110A1 (de
Inventor
Thorsten Wolf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to DK02011279T priority Critical patent/DK1365110T3/da
Priority to AT02011279T priority patent/ATE420274T1/de
Priority to DE50213199T priority patent/DE50213199D1/de
Priority to EP02011279A priority patent/EP1365110B1/de
Priority to US10/440,410 priority patent/US6915635B2/en
Publication of EP1365110A1 publication Critical patent/EP1365110A1/de
Application granted granted Critical
Publication of EP1365110B1 publication Critical patent/EP1365110B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/02Arrangement of sensing elements
    • F01D17/08Arrangement of sensing elements responsive to condition of working-fluid, e.g. pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D19/00Starting of machines or engines; Regulating, controlling, or safety means in connection therewith
    • F01D19/02Starting of machines or engines; Regulating, controlling, or safety means in connection therewith dependent on temperature of component parts, e.g. of turbine-casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/301Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/303Temperature

Definitions

  • Systems for generating electrical energy, in particular steam power plants, are usually designed for operation with a specific power, the rated power, so that optimum operating conditions of the numerous system components result during operation of the system with this power, for example with regard to wear, occurring frictional forces and losses, noise, emissions and efficiency.
  • the said problem occurs in particular in large-scale power plants, which are designed as steam power plants and which are equipped with a steam boiler, which is operated in natural or forced circulation.
  • the power plants mentioned usually include thick-walled drums for vapor deposition.
  • the material of the Dampfabscheidreme drum at a too rapid load change due to the occurring temperature gradients is compromised, so far such power plants are designed to operate in solid-pressure driving to avoid pressure and / or temperature fluctuations, which is exposed to the Dampfabscheidetrommel.
  • Such known from the prior art power plants are therefore operated in the partial load range by means of throttling the turbine valves and / or by only a partial admission of a first turbine stage with operating steam, so that thereby the pressure conditions in the partial load range are comparable to the pressure conditions in the nominal load range and so desired fixed pressure driving results.
  • the invention is therefore based on the object, an improved method and an apparatus for operating a steam power plant, in particular in the partial load range to specify.
  • the invention is based on the consideration that, especially in the partial load range, a constant throttling of the turbine valves and the associated loss of efficiency can be avoided if care is taken that in particular the voltages which are set in the material of the steam-carrying component, not too large be used, but at the same time the upper mechanical load limit of the material of the steam-carrying component is used.
  • the method according to the invention u.a. on a too large safety distance of the actual prevailing in the material of the steam-carrying component mechanical stresses of the maximum allowable mechanical stresses, thereby avoiding in particular a too large loss of efficiency.
  • the internal and external temperature of the steam-carrying component can be achieved to achieve the success of the invention, the spatial temperature distribution of the steam-carrying component and then the comparison voltage, which is a size for the currently present mechanical stresses in the material (material) of the steam-carrying component is.
  • the material limit stress can be determined, which describes an upper mechanical load limit of the steam-carrying component.
  • Mechanical engineering and / or materials science there are a number of methods for determining such a material limit stress, usually the material used and the spatial configuration of the considered, under mechanical stress, component play a role.
  • the maximum permissible vapor pressure is determined, which may prevail in the current operating state maximum in the steam-carrying component, without fear of excessive stress and / or damage must become.
  • the upper load limit material limit tension
  • a corresponding maximum vapor pressure is determined, so that there is no risk of damage to the vapor-carrying component when the vapor-carrying component is exposed to this maximum vapor pressure.
  • This maximum allowable vapor pressure is then, for example, by means of a control device e.g. adjusted by means of a turbine regulator, wherein at least the steam valve is actuated accordingly.
  • the inventive described in step 4 of the method according to the invention. Throttling the at least one steam valve temporarily compared to the prior art, where a throttling is provided during the entire operating time of the power plant in the partial load range.
  • the throttling of the turbine valves is temporary and is reduced in accordance with the compensating temperatures which are detected by the measurements in step 1.
  • a steam power plant which comprises a thick-walled boiler
  • Gleit horrinum are operated in Gleit horrinum stricture with fully open turbine valves and / or with a full admission to the steam turbine;
  • in particular permanent efficiency losses during a partial load operation as well as a special and complex design of the turbine with a control device for partial admission are avoided.
  • the method according to the invention should also encompass those methods in which the variables ascertained in steps 2 to 5 are not determined "on-line" during operation of the steam-driven system, but rather, for example, on the basis of the respective geometry of the steam-carrying component. beforehand stored in the form of parameterized family of curves (using at least the internal pressure, the inside and the outside temperature as parameters) and then, during operation, the actuating action on the steam valve based on the current parameter values for at least the internal pressure, the inside and the outside temperature is derived from the above-mentioned family of curves.
  • the steam-carrying component is a Dampfabscheidreme drum.
  • the advantages of the method according to the invention are particularly useful, since Dampfabscheidetrommeln, especially of power plants high performance, are made thick-walled, resulting in a load change to particularly large mechanical stresses due to the resulting temperature differences in the thick walls of the Dampfabscheidetrommel.
  • These voltages are avoided by means of the method according to the invention, in particular at the beginning of a load change process, that a large throttling of the at least one steam valve is adjusted, which is automatically withdrawn in the following with the reducing voltages due to the compensating temperatures.
  • the steam turbine has at least two turbine stages, in particular a high-pressure stage and a low-pressure stage.
  • Such steam turbines are used in particular in power plants larger power to exploit the energy contained in the operating steam of the steam turbine as well as possible.
  • the steam turbine of the steam power plant comprises at least two actuators for supplying steam to the turbine.
  • the limit steam pressure set point is now established by means of the adjustment of both valves, so that a better control behavior of the steam turbine with regard to the set limit steam pressure setpoint is achieved compared to the setting of only one valve.
  • the limiting vapor pressure desired value is determined by means of a simulation calculation.
  • a mathematical model of at least the steam-carrying component can be stored in a computer, by means of which the comparison stress in the material (material) of the steam-carrying component and its time profile is calculated from the variables of the internal pressure, the inside and outside temperature measured in step 1 , which results from the pressure load, the temperature difference and possibly the actual spatial distribution of the mechanical stress in the material of the steam-carrying component.
  • a simulation can be realized, for example, by means of a digital method, wherein the variables mentioned are read in and processed in a time step method.
  • the limiting vapor pressure desired value can be determined, for example by means of the mentioned mathematical model of the steam-carrying component, which is usually fed to a turbine controller which adjusts the turbine valve or valves according to a control algorithm.
  • the required limit steam pressure setpoint and its time profile can be determined, for example, in the simulation calculation, starting from the measured internal pressure of the steam-carrying component, this actual value of the internal pressure is incrementally increased purely mathematically until the resulting (first theoretical) comparison voltage reaches the value of the material limit voltage or at least comes close.
  • the thus determined limit steam pressure setpoint can then be adjusted so that no damage to the steam-carrying component has to be feared.
  • the internal temperature may e.g. by direct measurement by means of a sensor or indirectly by derivation from other physical quantities (for example boiling state and pressure of the filling medium of the steam-carrying component).
  • the steam-carrying component is a Dampfabscheidreme drum.
  • the steam turbine has at least two turbine stages, in particular a high-pressure and a low-pressure stage.
  • the steam turbine is advantageously further acted upon by means of at least one stage valve with steam, by means of the tap valve at least one turbine stage, in particular the low-pressure stage, steam is supplied and wherein the at least one stage valve in connection with the steam valve by means of the control stage is adjustable.
  • the limit steam pressure set point is determined by means of a simulation calculation.
  • the figure shows a steam power plant 1, which comprises a steam turbine 5 and at least one steam-carrying component 7.
  • the latter is formed in the present embodiment as Dampfabscheidreme drum.
  • the generation of live steam for the steam turbine 5 is indicated by a heating surface H, by means of which a flow medium is heated by the action of hot gas, for example, and can be supplied as live steam to the steam turbine 5.
  • the steam turbine 5 has two turbine stages of different operating pressure, namely a high-pressure stage HD and a low-pressure stage ND.
  • the steam turbine 5 operating steam, in particular live steam supplied.
  • the steam turbine 5 of the steam power plant 1 is coupled via a shaft to a generator G.
  • the steam-carrying component 7 is exposed to a magnitude large temperature gradient and is possibly endangered by an effect of the mechanical stresses occurring.
  • a device 2 according to the invention is provided.
  • This comprises a pressure sensor SPi arranged in the interior of the steam-carrying component 7, as well as a temperature sensor STi likewise arranged in its interior and a temperature sensor STa arranged in the outer region of the steam-carrying component 7.
  • the internal pressure prevailing in the interior of the steam-carrying component, the internal temperature, and the temperature in the outer region of the steam-carrying component 7 are measured. These measurements allow a conclusion on the mechanical load of the material of the steam-carrying component 7 in a current operating state.
  • the measured values measured by said sensors are transmitted to a computer C, which comprises a computing stage RS1, a comparison stage CS and a control stage RS2.
  • a spatial temperature distribution of the steam-carrying component and a comparison voltage Vs is calculated from the above measured values, which is a parameter for the mechanical load of the steam-carrying component 7 in the current operating state.
  • the comparison voltage Vs determined by the computing stage RS1 and a material limit voltage Mgs are transferred to the comparison stage CS.
  • the material limit voltage Mgs is a parameter for a maximum allowable mechanical load of the material (material) of the steam-carrying component 7 by mechanical stresses. Quantitative values for such material limit stresses of the various materials used for steam-carrying components can be determined in particular from the literature on material science and / or mechanical engineering.
  • a comparison of the comparison voltage Vs carried out by the comparison stage CS with the material limit voltage Mgs shows that the comparison voltage Vs in a current operating state is greater than the material limit voltage Mgs, that is to say, for example, a mechanical overload and / or early material fatigue of the steam-carrying component 7 is expected must, so mentioned said comparison result abuts a calculation algorithm stored in the control stage RS2, by means of which from the currently present operating characteristics of the steam-carrying component 7, in particular from their measured internal pressure, their measured internal temperature and their measured outside temperature, a limit steam pressure setpoint Gd is determined.
  • the limit steam pressure set point Gd is a measure of how high the steam pressure acting on the steam-carrying component 7 in a current operating situation may be maximum, without having to fear overloading and / or damaging the steam-carrying component 7.
  • the limiting vapor pressure desired value Gd can be determined, for example, in a simulation calculation.
  • the limit steam pressure set point Gd is set by adjusting the steam valve 10 as well as a possibly existing stage valve 12 by means of the control stage RS2 until the calculated limit steam pressure setpoint value Gd is approximately reached.
  • the current value for the limit steam pressure setpoint value Gd is dependent on the current operating state of the steam power plant, so that the value for the limit steam pressure setpoint value Gd., In particular when the transitional processes with a load change (for example, the decay of the temperature difference in the material of the steam-carrying component 7 during / after a load change) gradually increased.
  • the invention can be outlined as follows:
  • a device 2 according to the invention serves to carry out the method according to the invention.

Description

  • Anlagen zum Erzeugen von elektrischer Energie, insbesondere Dampfkraftwerke, werden üblicherweise für einen Betrieb mit einer bestimmten Leistung, der Nennleistung, ausgelegt, so dass sich beim Betrieb der Anlage mit dieser Leistung optimale Betriebsbedingungen der zahlreichen Anlagenkomponenten ergeben, beispielsweise im Hinblick auf Verschleiß, auftretende Reibungskräfte und -Verluste, Geräuschentwicklung, Abgasverhalten und Wirkungsgrad.
  • Bei bekannten Kraftwerksanlagen, wie zum Beispiel in JP 09 317 404 beschrieben, besteht oftmals das Problem, dass anforderungsbedingte Laständerungen während des Betriebs der Kraftwerksanlage nicht beliebig schnell durchgeführt werden können. Beispielsweise ist die Laständerungsgeschwindigkeit von Dampfkraftwerken durch die sich in einer oder mehreren Kraftwerkskomponenten einstellenden Temperaturveränderungen infolge einer Laständerung beschränkt, insbesondere durch die Temperaturveränderungen in dickwandigen Anlagenkomponenten, bei welchem die genannten Temperatureffekte besonders deutlich ausgeprägt sind . Derartige Temperaturveränderungen wirken sich u.a. deswegen nachteilig auf eine gewünschte möglichst hohe Laständerungsgeschwindigkeit aus, da die auftretenden Temperaturgradienten zusätzlich zu den in der oder den betroffenen Anlagenkomponenten vorherrschenden, beispielsweise im Betrieb verursachten, mechanischen Spannungen weitere mechanische Spannungen im Material, aus welchem die Anlagenkomponente gefertigt ist, erzeugen. Diese zusätzlichen Spannungen, verursacht durch die genannten Temperaturgradienten, tragen zur Ermüdung des Werkstoffs bei, so dass dessen Festigkeit abnehmen kann oder auch eine Beschädigung der Anlagenkomponente zu befürchten ist.
  • Das genannte Problem tritt insbesondere bei Kraftwerksanlagen großer Leistung auf, welche als Dampfkraftwerke ausgeführt sind und welche mit einem Dampfkessel ausgerüstet sind, welcher im Natur- oder Zwangsumlauf betrieben wird. Die genannten Kraftwerksanlagen umfassen in der Regel dickwandige Trommeln zur Dampfabscheidung. Dabei ist insbesondere das Material der Dampfabscheidetrommel bei einer zu schnellen Laständerung infolge der dabei auftretenden Temperaturgradienten gefährdet, so dass bisher derartige Kraftwerksanlagen zum Betrieb in Festdruck-Fahrweise ausgelegt sind, um Druckund/oder Temperaturschwankungen, welchen die Dampfabscheidetrommel ausgesetzt ist, zu vermeiden. Derartige aus dem Stand der Technik bekannte Kraftwerksanlagen werden daher im Teillastbereich mittels einer Androsselung der Turbinenventile und/oder durch eine nur teilweise Beaufschlagung einer ersten Turbinenstufe mit Betriebsdampf betrieben, so dass dadurch die Druckverhältnisse im Teillastbereich vergleichbar sind mit den Druckverhältnissen im Nennlastbereich und sich so die gewünschte Festdruck-Fahrweise ergibt.
  • Eine derartige Androsselung der Turbinenventile, welche während der gesamten Betriebszeit im Teillastbereich notwendig ist, bedingt einen nennenswerten Wirkungsgradverlust der Kraftwerksanlage verglichen mit dem erzielbaren Wirkungsgrad dieser Anlage im Nennlastbereich.
  • Wenn die erste Turbinenstufe für einen Betrieb der Kraftwerksanlage im Teillastbereich nur mit einem Teil des Betriebsdampfes beaufschlagt wird (teilweise Beaufschlagung), so erfordert dies eine besondere und aufwendige Bauweise der Turbine, bei welcher dann eine Regeleinrichtung, beispielsweise ein Regelrad, vorhanden sein muss, um die Möglichkeit einer Teilbeaufschlagung zu realisieren. Eine derartige Bauweise der Turbine ist konstruktiv sehr aufwendig und oftmals betriebstechnisch anfällig.
  • Der Erfindung liegt daher die Aufgabe zugrunde, ein verbessertes Verfahren sowie eine Vorrichtung zum Betrieb einer Dampfkraftanlage, insbesondere im Teillastbereich, anzugeben.
  • Dabei sollen insbesondere die genannten Nachteile aus dem Stand der Technik überwunden werden, wie z.B. der dabei auftretende erhebliche Wirkungsgradverlust.
  • Bezüglich des Verfahrens wird die Aufgabe erfindungsgemäß gelöst durch ein Verfahren zum Betrieb einer Dampfkraftanlage mit mindestens einer Dampfturbine, wobei die Dampfkraftanlage mindestens eine dampfführende Komponente aufweist und die Dampfturbine mittels mindestens eines Dampfventils mit Dampf, insbesondere mit Frischdampf, beaufschlagt wird, mit folgenden Schritten:
    1. 1. Während des Betriebs der Dampfkraftanlage werden mindestens ein Innendruck sowie mindestens eine Innen- und mindestens eine Außentemperatur der dampfführenden Komponente ermittelt.
    2. 2. Aus der mindestens einen Innen- und der mindestens einen Außentemperatur wird eine räumliche Verteilung der Temperatur der dampfführenden Komponente ermittelt.
    3. 3. Aus dem Innendruck, und der räumlichen Verteilung der Temperatur wird eine Vergleichsspannung ermittelt, welche die mechanische Spannung beschreibt, welcher die dampfführende Komponente im aktuellen Betriebszustand unterliegt.
    4. 4. Die Vergleichsspannung wird verglichen mit einer Materialgrenzspannung, welche eine obere Grenze für die mechanische Belastbarkeit der dampfführenden Komponente beschreibt, und
    5. 5. Falls die Vergleichsspannung größer ist als die Materialgrenzspannung, wird ein Grenzdampfdrucksollwert ermittelt, welcher einen maximal zulässigen Dampfdruck beschreibt, mittels welchem die dampfführende Komponente im aktuellen Betriebszustand ohne Schadensrisiko beaufschlagbar ist, und das mindestens eine Dampfventil derart eingestellt, dass der von der Dampfturbine an die dampfführende Komponente gelieferte Dampf mit einem Druck auf die dampfführende Komponente einwirkt, welcher etwa dem Grenzdampfdrucksollwert entspricht.
  • Die Erfindung geht dabei von der Überlegung aus, dass insbesondere im Teillastbereich eine ständige Androsselung der Turbinenventile und der damit verbundene Wirkungsgradverlust vermieden werden kann, wenn dafür Sorge getragen wird, dass insbesondere die Spannungen, welche sich im Material der dampfführenden Komponente einstellen, nicht zu groß werden, aber gleichzeitig die obere mechanische Belastungsgrenze des Materials der dampfführenden Komponente ausgenutzt wird. Beim erfindungsgemäßen Verfahren wird also u.a. auf einen zu großen Sicherheitsabstand der tatsächlich im Material der dampfführenden Komponente vorherrschenden mechanischen Spannungen von den maximal zulässigen mechanischen Spannungen verzichtet, um dadurch insbesondere einen zu großen Wirkungsgradverlust zu vermeiden.
  • Aus den Messungen des Innendrucks, der Innen- und Außentemperatur der dampfführenden Komponente lässt sich zur Erreichung des erfindungsgemäßen Erfolgs die räumliche Temperaturverteilung der dampfführenden Komponente und anschließend die Vergleichsspannung ermitteln, welche eine Größe für die aktuell vorliegenden mechanischen Spannungen im Material (Werkstoff) der dampfführenden Komponente ist.
  • Ausgehend von dem Werkstoff, aus welchem die dampfführende Komponente hergestellt ist, und der Geometrie der dampfführenden Komponente ist die Materialgrenzspannung bestimmbar, welche eine obere mechanische Belastungsgrenze der dampfführenden Komponente beschreibt. In der einschlägigen Fachliteratur des Maschinenbaus und/oder der Werkstoffkunde finden sich eine Reihe von Methoden zur Bestimmung einer derartigen Materialgrenzspannung, wobei meist der verwendete Werkstoff sowie die räumliche Ausgestaltung des betrachteten, unter mechanischen Spannungen stehenden, Bauteils eine Rolle spielen.
  • Wenn nun beim erfindungsgemäßen Verfahren festgestellt wird, dass die obere mechanische Belastungsgrenze der dampfführenden Komponente überschritten ist, so wird der maximal zulässige Dampfdruck ermittelt, welcher im aktuellen Betriebszustand maximal in der dampfführenden Komponente vorherrschen darf, ohne dass eine übermäßige Beanspruchung und/oder eine Beschädigung befürchtet werden muss. Es wird also ausgehend von der oberen Belastungsgrenze (Materialgrenzspannung) ein dazu korrespondierender maximaler Dampfdruck ermittelt, so dass bei einer Beaufschlagung der dampfführenden Komponente mit diesem maximalen Dampfdruck kein Schadensrisiko für die dampfführende Komponente besteht. Dieser maximal zulässige Dampfdruck wird dann beispielsweise mittels einer Regelungseinrichtung z.B. mittels eines Turbinenreglers, eingestellt, wobei mindestens das Dampfventil entsprechend betätigt wird.
  • Da beim erfindungsgemäßen Verfahren bevorzugt während des gesamten Betriebs der Dampfkraftanlage der Innendruck und die genannten Temperaturen der dampfführenden Komponente laufend, beispielsweise zyklisch, gemessen werden, ist die erfindungsgemäße, im Schritt 4 des erfindungsgemäßen Verfahrens beschriebene. Androsselung des mindestens einen Dampfventils vorübergehend im Vergleich zum Stand der Technik, wo eine Androsselung während der gesamten Betriebszeit der Kraftwerksanlage im Teillastbereich vorgesehen ist. Dies ist insbesondere deshalb möglich, da wegen der genannten laufenden Messungen in jedem aktuellen Betriebszustand die genannten Spannungsverhältnisse der dampfführenden Komponente bekannt sind, so dass, wenn sich während des Betriebs die Differenz zwischen der Materialgrenzspannung und der Vergleichspannung verringert, die Androsselung zurück genommen werden kann, da der sich bei einer Verringerung der genannten Differenz ergebende Grenzdampfdrucksollwert steigt, was die genannte Rücknahme der Androsselung des mindestens einen Dampfventils erlaubt.
  • Zusammenfassend lässt sich sagen, dass beim erfindungsgemäßen Verfahren die Androsselung der Turbinenventile vorübergehend ist und entsprechend den sich ausgleichenden Temperaturen, welche von den Messungen im Schritt 1 erfasst sind, zurückgenommen wird.
  • Mittels des erfindungsgemäßen Verfahrens kann beispielsweise eine Dampfkraftanlage, welche einen dickwandigen Kessel umfasst, im Gleitdruckbetrieb mit vollständig geöffneten Turbinenventilen und/oder mit einer vollen Beaufschlagung der Dampfturbine betrieben werden; im Vergleich zu bekannten Verfahren aus dem Stand der Technik werden dabei insbesondere permanente Wirkungsgradverluste während eines Teillastbetriebs sowie eine besondere und aufwendige Ausgestaltung der Turbine mit einer Regeleinrichtung für Teilbeaufschlagung vermieden.
  • Vom erfindungsgemäßen Verfahren sollen auch solche Verfahren umfasst sein, bei denen die in den Schritten 2 bis 5 ermittelten Größen anhand der jeweiligen Geometrie der dampfführenden Komponente nicht erst während des Betriebs der Dampfkraftanlage "online" ermittelt werden, sondern z.B. vorab in Form von parametrisierten Kurvenscharen (wobei zumindest der Innendruck, die Innen- und die Außentemperatur als Parameter verwendet sind) gespeichert und dann während des Betriebs anhand der aktuellen Parameterwerte mindestens für den Innendruck, die Innen-, sowie der Außentemperatur der Stelleingriff auf das Dampfventil aus den oben genannten Kurvenscharen abgeleitet wird.
  • Vorteilhaft ist die dampfführende Komponente eine Dampfabscheidetrommel.
  • Bei dieser Ausführungsform der Erfindung sind die Vorteile des erfindungsgemäßen Verfahren besonders gut nutzbar, da Dampfabscheidetrommeln, insbesondere von Kraftwerksanlagen hoher Leistung, dickwandig ausgeführt sind, was bei einer Laständerung zu besonders großen mechanischen Spannungen infolge der sich ergebenden Temperaturdifferenzen in den dicken Wänden der Dampfabscheidetrommel führt. Diese Spannungen werden mittels des erfindungsgemäßen Verfahrens, insbesondere zu Beginn eines Laständerungsvorgangs, dadurch vermieden, dass eine große Androsselung des mindestens einen Dampfventils eingestellt wird, welche aber im Folgenden mit den sich reduzierenden Spannungen infolge der sich ausgleichenden Temperaturen automatisch zurückgenommen wird.
  • In einer weiteren Ausführungsform der Erfindung weist die Dampfturbine mindestens zwei Turbinenstufen auf, insbesondere eine Hochdruck- und eine Niederdruckstufe.
  • Derartige Dampfturbinen werden insbesondere bei Kraftwerksanlagen größerer Leistung eingesetzt, um die im Betriebsdampf der Dampfturbine enthaltene Energie möglichst gut auszunutzen.
  • Wird eine derartige Dampfturbine eingesetzt, so wird diese weiterhin vorteilhaft mittels mindestens eines Stufenventils mit Dampf beaufschlagt, wobei mittels des Stufenventils mindestens einer Turbinenstufe Dampf zuleitbar ist, insbesondere der Niederdruckstufe. Dieses Stufenventil wird dann in Verbindung mit dem Dampfventil in Schritt 4 des erfindungsgemäßen Verfahrens eingestellt. Bei dieser Ausführungsform der Erfindung umfasst die Dampfturbine der Dampfkraftanlage mindestens zwei Stellorgane zur Zuleitung von Dampf an die Turbine. Im Schritt 4 des erfindungsgemäßen Verfahrens wird nun der Grenzdampfdrucksollwert mittels der Einstellung beider Ventile bewerkstelligt, so dass ein besseres Regelverhalten der Dampfturbine hinsichtlich des einzustellenden Grenzdampfdrucksollwerts im Vergleich zur Einstellung nur eines Ventils erreicht wird.
  • In einer besonders bevorzugten Ausführungsform der Erfindung wird der Grenzdampfdrucksollwert mittels einer Simulationsrechnung ermittelt.
  • Dabei kann beispielsweise in einem Rechner ein mathematisches Modell mindestens der dampfführenden Komponente abgespeichert sein, mittels welchem aus den in Schritt 1 gemessenen Größen des Innendrucks, der Innen- und der Außentemperatur die Vergleichsspannung im Material (Werkstoff) der dampfführenden Komponente sowie deren zeitlicher Verlauf berechnet wird, welche sich ergibt aus der Druckbelastung, der Temperaturdifferenz und ggf. der tatsächlichen räumlichen Verteilung der mechanischen Spannung im Material der dampfführenden Komponente. Eine derartige Simulation kann beispielsweise mittels eines digitalen Verfahrens realisiert werden, wobei die genannten Größen in einem Zeitschrittverfahren eingelesen und verarbeitet werden. In der genannten Simulation kann weiterhin, beispielsweise mittels des genannten mathematischen Modells der dampfführenden Komponente, der Grenzdampfdrucksollwert ermittelt werden, welcher üblicherweise einem Turbinenregler zugeführt wird, der entsprechend eines Regelalgorithmus das oder die Turbinenventile einstellt.
  • Dabei kann beispielsweise mittels des mathematischen Modells der dampfführenden Komponente rechnerisch der benötigte Grenzdampfdrucksollwert sowie dessen zeitlicher Verlauf ermittelt werden, indem beispielsweise in der Simulationsrechnung ausgehend vom gemessenen Innendruck der dampfführenden Komponente dieser aktuelle Wert des Innendrucks schrittweise rein rechnerisch erhöht wird, bis die sich dabei ergebende (zunächst theoretische) Vergleichsspannung den Wert der Materialgrenzspannung erreicht oder zumindest nahe kommt. Der so ermittelte Grenzdampfdrucksollwert kann dann eingestellt werden, so dass keine Beschädigung der dampfführenden Komponente befürchtet werden muss.
  • Bezüglich der Vorrichtung wird die Aufgabe erfindungsgemäß gelöst durch eine Vorrichtung zum Betrieb einer Dampfkraftanlage mit mindestens einer Dampfturbine, wobei die Dampfkraftanlage mindestens eine dampfführende Komponente aufweist und die Dampfturbine mittels mindestens eines Dampfventils mit Dampf, insbesondere mit Frischdampf, beaufschlagbar ist, umfassend folgende Komponenten:
    • ein Innendrucksensor, mittels welchem der Druck innerhalb der dampfführenden Komponente ermittelbar ist,
    • Mittel zur Ermittlung der Temperatur innerhalb der dampfführenden Komponente,
    • ein Außentemperatursensor, mittels welchem die Temperatur im Außenbereich der dampfführenden Komponente ermittelbar ist,
    • eine Rechenstufe, welcher die ermittelten Werte des Innendrucks, sowie der Innen- und Außentemperatur zugeführt sind und mittels welcher eine räumliche Verteilung der Temperatur der dampfführenden Komponente sowie eine Vergleichsspannung ermittelbar ist, welch die mechanische Spannung beschreibt, welcher die dampfführende Komponente im aktuellen Betriebszustand unterliegt,
    • eine Vergleichsstufe, mittels welcher die Vergleichsspannung vergleichbar ist mit einer Materialgrenzspannung, welche eine obere Grenze für die mechanische Belastbarkeit der dampfführenden Komponente beschreibt, und
    • eine Regelstufe, mittels welcher falls die Vergleichsspannung größer ist als die Materialgrenzspannung, ein Grenzdampfdrucksollwert ermittelbar ist, welcher einen maximal zulässigen Dampfdruck beschreibt, mittels welchem die dampfführende Komponente im aktuellen Betriebszustand ohne Schadensrisiko beaufschlagbar ist, und mittels welcher das mindestens eine Dampfventil derart einstellbar ist, dass der von der Dampfturbine an die dampfführende Komponente gelieferte Dampf mit einem Druck auf die dampfführende Komponente einwirkt, welcher etwa dem Grenzdampfdrucksollwert entspricht.
  • Die Innentemperatur kann z.B. durch direkte Messung mittels eines Sensors oder indirekt mittels Ableitung aus anderen physikalischen Größen (z.B. Siedezustand und Druck des Füllmediums der dampfführenden Komponente).
  • Vorteilhaft ist die dampfführende Komponente eine Dampfabscheidetrommel.
  • In einer weiteren vorteilhaften Ausgestaltung der Erfindung weist die Dampfturbine mindestens zwei Turbinenstufen auf, insbesondere eine Hochdruck- und eine Niederdruckstufe.
  • Dabei ist die Dampfturbine vorteilhaft weiterhin mittels mindestens eines Stufenventils mit Dampf beaufschlagbar, wobei mittels des Stufenventils mindestens einer Turbinenstufe, insbesondere der Niederdruckstufe, Dampf zuleitbar ist und wobei das mindestens eine Stufenventil in Verbindung mit dem Dampfventil mittels der Regelstufe einstellbar ist.
  • Besonders vorteilhaft ist der Grenzdampfdrucksollwert mittels einer Simulationsrechnung ermittelt.
  • Die genannte erfindungsgemäße Vorrichtung sowie deren bevorzugte Ausführungsformen dienen insbesondere zur Ausführung des vorher beschriebenen erfindungsgemäßen Verfahrens und all seiner Ausführungsformen.
  • Alle im Zusammenhang mit dem erfindungsgemäßen Verfahren dargestellten Ausführungen und Erläuterungen sind ohne Weiteres in analoger Weise auf die erfindungsgemäße Vorrichtung übertragbar und werden hier nicht wiederholt.
  • Im Folgenden wird ein Ausführungsbeispiel der Erfindung näher dargestellt.
  • Die Figur zeigt eine Dampfkraftanlage 1, welche eine Dampfturbine 5 und mindestens eine dampfführende Komponente 7 umfasst. Letztere ist im vorliegenden Ausführungsbeispiel ausgebildet als Dampfabscheidetrommel.
  • In der schematischen Darstellung der Figur sind keine Einzelheiten der Dampferzeugung gezeichnet, insbesondere wurde auf eine detaillierte Darstellung der Dampferzeugung mit einem Dampfkessel und weiterer Komponenten verzichtet.
  • Die Erzeugung von Frischdampf für die Dampfturbine 5 ist angedeutet durch eine Heizfläche H, mittels welcher ein Strömungsmedium durch die Einwirkung beispielsweise von heißem Gas aufgeheizt und als Frischdampf der Dampfturbine 5 zuleitbar ist.
  • Die Dampfturbine 5 weist zwei Turbinenstufen unterschiedlichen Betriebsdrucks auf, nämlich eine Hochdruckstufe HD und eine Niederdruckstufe ND.
  • Mittels eines Dampfventils 10 wird der Dampfturbine 5 Betriebsdampf, insbesondere Frischdampf, zugeführt. Zur Erzeugung von elektrischer Energie ist die Dampfturbine 5 der Dampfkraftanlage 1 über eine Welle an einen Generator G gekoppelt.
  • Insbesondere bei einer Laständerung während des Betriebs der Dampfkraftanlage ist die dampfführende Komponente 7 einem betragsmäßig großem Temperaturgradienten ausgesetzt und ist möglicherweise durch eine Einwirkung der dabei auftretenden mechanischen Spannungen gefährdet.
  • Um einerseits eine Überbeanspruchung von Anlagenkomponenten der Dampfkraftanlage, insbesondere der dampfführenden Komponente 7, zu vermeiden und um andererseits einen möglichst großen Wirkungsgrad der Dampfkraftanlage 1 auch während eines Übergangs auf Teillastbetrieb und im Teillastbetrieb sicher zu stellen, ist eine erfindungsgemäße Vorrichtung 2 vorgesehen.
  • Diese umfasst einen im Inneren der dampfführenden Komponente 7 angeordneten Drucksensor SPi, sowie einen ebenfalls in ihrem Inneren angeordneten Temperatursensor STi und einen im Außenbereich der dampfführenden Komponente 7 angeordneten Temperatursensor STa.
  • Mittels der genannten Sensoren wird der im Inneren der dampfführenden Komponente herrschenden Innendruck, die Innentemperatur, sowie die Temperatur im Außenbereich der dampfführenden Komponente 7 gemessen. Diese Messwerte lassen einen Rückschluss auf die mechanische Belastung des Materials der dampfführenden Komponente 7 in einem aktuellen Betriebszustand zu. Die von den genannten Sensoren gemessenen Messwerte werden an einen Rechner C übermittelt, welcher eine Rechenstufe RS1, eine Vergleichsstufe CS sowie eine Regelstufe RS2 umfasst.
  • In der Rechenstufe RS1 läuft ein Berechnungsprogramm ab, mittels welchem aus den genannten Messwerten eine räumliche Temperaturverteilung der dampfführenden Komponente sowie eine Vergleichsspannung Vs berechnet wird, welche eine Kenngröße für die mechanische Belastung der dampfführenden Komponente 7 im aktuellen Betriebszustand ist. Aus dem Bereich des Maschinenbaus und/oder der Werkstoffkunde sind dazu mehrere Berechnungsmethoden bekannt, insbesondere so genannte "Spannungshypothesen".
  • Die von der Rechenstufe RS1 ermittelte Vergleichsspannung Vs und eine Materialgrenzspannung Mgs werden an die Vergleichsstufe CS übergeben.
  • Die Materialgrenzspannung Mgs ist dabei eine Kenngröße für eine maximal zulässige mechanische Belastung des Materials (Werkstoffs) der dampfführenden Komponente 7 durch mechanische Spannungen. Quantitative Werte für derartige Materialgrenzspannungen der verschiedenen für dampfführende Komponenten verwendeten Werkstoffe können insbesondere aus der Literatur zur Werkstoffkunde und/oder Maschinenbau ermittelt werden.
  • Falls ein durch die Vergleichsstufe CS durchgeführter Vergleich der Vergleichsspannung Vs mit der Materialgrenzspannung Mgs ergibt, dass die Vergleichsspannung Vs in einem aktuellen Betriebszustand größer ist als die Materialgrenzspannung Mgs, dass also beispielsweise mit einer mechanischen Überlastung und/oder frühzeitigen Materialermüdungen der dampfführenden Komponente 7 gerechnet werden muss, so stößt das genannte Vergleichsergebnis einen in der Regelstufe RS2 gespeicherten Berechnungsalgorithmus an, mittels welchem aus den aktuell vorliegenden Betriebskenngrößen der dampfführenden Komponente 7, insbesondere aus deren gemessenem Innendruck, deren gemessener Innentemperatur sowie deren gemessener Außentemperatur, ein Grenzdampfdrucksollwert Gd ermittelt wird.
  • Der Grenzdampfdrucksollwert Gd ist ein Maß dafür, wie hoch der in einer aktuellen Betriebssituation auf die dampfführende Komponente 7 einwirkende Dampfdruck maximal sein darf, ohne eine Überlastung und/oder Beschädigung der dampfführenden Komponente 7 befürchten zu müssen. Der Grenzdampfdrucksollwert Gd kann beispielsweise in einer Simulationsrechnung ermittelt werden.
  • Der Grenzdampfdrucksollwert Gd wird eingestellt, indem mittels der Regelstufe RS2 das Dampfventil 10 sowie ein ggf. vorhandenes Stufenventil 12 derart eingestellt werden, bis sich in etwa der berechnete Grenzdampfdrucksollwert Gd einstellt.
  • Der aktuelle Wert für den Grenzdampfdrucksollwert Gd ist abhängig vom aktuellen Betriebszustand der Dampfkraftanlage, so dass sich insbesondere beim Abklingen der Übergangsvorgänge bei einer Laständerung (beispielsweise das Abklingen der Temperaturdifferenz im Werkstoff der dampfführenden Komponente 7 bei/nach einer Laständerung) der Wert für den Grenzdampfdrucksollwert Gd allmählich erhöht.
  • Dies bedeutet, dass die zunächst wegen der zu Beginn der Laständerung auftretenden hohen Spannungen eingestellte hohe Androsselung der Turbinenventile 10 und 12 (infolge des in dieser aktuellen Betriebssituation berechneten niedrigen Ausgangswert für den Grenzdampfdrucksollwert Gd) automatisch (allmählich) wieder zurückgenommen wird, da - wie bereits erwähnt - der Grenzdampfdrucksollwert Gd sich beim Vorgang der Laständerung und danach infolge der sich abbauenden Temperaturspannungen im Material der dampfführenden Komponente 7 erhöht, die Druckbelastung der dampfführenden Komponente 7 daher ebenfalls erhöht werden kann und deshalb die Androsselung der Turbinenventile 10 und 12 zurückgenommen wird.
  • In dieser nur temporären Androsselung der Turbinenventile 10 und 12, insbesondere während und/oder nach einer Laständerung der Dampfkraftanlage 1, liegt ein wichtiger Vorteil des erfindungsgemäßen Verfahrens sowie der Vorrichtung, welcher im Vergleich zum Stand der Technik einen erhöhten Wirkungsgrad während des Betriebs der Dampfkraftanlage 1 erlaubt.
  • Zusammengefasst lässt sich die Erfindung folgendermaßen umreißen:
  • Es wird vorgeschlagen, dass während des Betriebs einer Dampfturbine 5 einer Dampfkraftanlage 1 in mindestens einer dampfführenden Komponente 7 der Innendruck Pi, sowie die Innentemperatur Ti und in deren Außenbereich die Außentemperatur Ta ermittelt werden. Infolge einer Änderung des Betriebszustands, insbesondere bei einer Laständerung, verändern sich nun die o.g. Werte, so dass unter Umständen die mechanischen Spannungen, die dabei auf die dampfführende Komponente 7 einwirken, untolerierbar groß werden.
    Daher wird mindestens aus den Werten Pi, Ti, Ta eine räumliche Temperaturverteilung sowie eine Vergleichsspannung Vs der dampfführenden Komponente 7 ermittelt und mit einer Materialgrenzspannung Mgs des Werkstoffs der dampfführenden Komponente 7 verglichen.
    Falls die Vergleichsspannung Vs größer ist als die Materialgrenzspannung Mgs, wo wird ein Grenzdampfdrucksollwert Gd ermittelt und mindestens ein Dampfventil 10 derart eingestellt, dass der Dampfdruck auf die dampfführende Komponente 7 etwa diesem Grenzdampfdrucksollwert Gd entspricht.
    Mittels des erfindungsgemäßen Verfahrens ergibt sich eine automatische Reduzierung der genannten Androsselung, so dass der Wirkungsgrad der Dampfkraftanlage 1, insbesondere im Teillastbereich, erhöht ist.
    Eine erfindungsgemäße Vorrichtung 2 dient zur Durchführung des erfindungsgemäßen Verfahrens.

Claims (10)

  1. Verfahren zum Betrieb einer Dampfkraftanlage (1) mit mindestens einer Dampfturbine (5), wobei die Dampf kraftanlage (1) mindestens eine dampfführende Komponente (7) aufweist und die Dampfturbine (5) mittels mindestens eines Dampfventils (10) mit Dampf, insbesondere mit Frischdampf, beaufschlagt wird,
    gekennzeichnet durch folgende Schritte:
    a) während des Betriebs der Dampfkraftanlage (1) werden mindestens ein Innendruck (Pi) sowie mindestens eine Innen-(Ti) und mindestens eine Außentemperatur (Ta) der dampfführenden Komponente (7) ermittelt,
    b) aus der mindestens einen Innen- und der mindestens einen Außentemperatur wird eine räumliche Verteilung der Temperatur der dampfführenden Komponente ermittelt,
    c) aus dem Innendruck (Pi), der Innen- (Ti) und Außentemperatur (Ta) wird eine Vergleichsspannung (Vs) ermittelt, welche die mechanische Spannung beschreibt, welcher die dampfführende Komponente (7) im aktuellen Betriebszustand unterliegt,
    d) die Vergleichsspannung (Vs) wird verglichen mit einer Materialgrenzspannung (Mgs), welche eine obere Grenze für die mechanische Belastbarkeit der dampfführenden Komponente (7) beschreibt,
    e) falls die Vergleichsspannung (Vs) größer ist als die Materialgrenzspannung (Mgs), wird ein Grenzdampfdrucksollwert (Gd) ermittelt, welcher einen maximal zulässigen Dampfdruck beschreibt, mittels welchem die dampfführende Komponente (7) im aktuellen Betriebszustand ohne Schadensrisiko beaufschlagbar ist, und das mindestens eine Dampfventil (10) derart eingestellt, dass der von der Dampfturbine (5) an die dampfführende Komponente (7) gelieferte Dampf mit einem Druck auf die dampfführende Komponente (7) einwirkt, welcher etwa dem Grenzdampfdrucksollwert (Gd) entspricht.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die dampfführende Komponente (7) eine Dampfabscheidetrommel ist.
  3. Verfahren nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass
    die Dampfturbine (5) mindestens zwei Turbinenstufen, insbesondere eine Hochdruck- (HD) und eine Niederdruckstufe (ND), aufweist.
  4. Verfahren nach Anspruch 3,
    dadurch gekennzeichnet, dass
    die Dampfturbine (5) weiterhin mittels mindestens eines Stufenventils (12), mittels welchem mindestens einer Turbinenstufe, insbesondere der Niederdruckstufe (ND), Dampf zuleitbar ist, mit Dampf beaufschlagt wird und das mindestens eine Stufenventil (12) in Verbindung mit dem Dampfventil (10) in Schritt d) eingestellt wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, dass
    der Grenzdampfdrucksollwert (Gd) mittels einer Simulationsrechnung ermittelt wird.
  6. Vorrichtung (2)zum Betrieb einer Dampfkraftanlage (1) mit mindestens einer Dampfturbine (5), wobei die Dampfkraftanlage (1) mindestens eine dampfführende Komponente (7) aufweist und die Dampfturbine (5) mittels mindestens eines Dampfventils (10) mit Dampf, insbesondere mit Frischdampf, beaufschlagbar ist,
    gekennzeichnet durch
    - einen Innendrucksensor (SPi), mittels welchem der Druck (Pi) innerhalb der dampfführenden Komponente (7) ermittelbar ist,
    - Mittel (STi) zur Ermittlung einer Innentemperatur (Ti) der dampfführenden Komponente (7),
    - einen Außentemperatursensor (STa), mittels welchem die Temperatur (Ta) im Außenbereich der dampfführenden Komponente (7) ermittelbar ist,
    - eine Rechenstufe (RS1), welcher die ermittelten Werte des Innendrucks (Pi), sowie der Innen- (Ti) und Außentemperatur (Ta)zugeführt sind und mittels welcher eine räumliche Verteilung der Temperatur der dampfführenden Komponente sowie eine Vergleichsspannung (Vs) ermittelbar ist, welche die mechanische Spannung beschreibt, welcher die dampfführende Komponente (7) im aktuellen Betriebszustand unterliegt,
    - eine Vergleichsstufe (CS), mittels welcher die Vergleichsspannung (Vs) vergleichbar ist mit einer Materialgrenzspannung (Mgs), welche eine obere Grenze für die mechanische Belastbarkeit der dampfführenden Komponente (7) beschreibt, und
    - eine Regelstufe (RS2), mittels welcher, falls die Vergleichsspannung (Vs) größer ist als die Materialgrenzspannung (Mgs), ein Grenzdampfdrucksollwert (Gd) ermittelbar ist, welcher einen maximal zulässigen Dampfdruck beschreibt, mittels welchem die dampfführende Komponente (7) im aktuellen Betriebszustand ohne Schadensrisiko beaufschlagbar ist, und mittels welcher das mindestens eine Dampfventil (10) derart einstellbar ist, dass der von der Dampfturbine (5) an die dampfführende Komponente (7) gelieferte Dampf mit einem Druck auf die dampfführende Komponente (7) einwirkt, welcher etwa dem Grenzdampfdrucksollwert (Gd) entspricht.
  7. Vorrichtung (2) nach Anspruch 6,
    dadurch gekennzeichnet, dass
    die dampfführende Komponente (7) eine Dampfabscheidetrommel ist.
  8. Vorrichtung (2) nach Anspruch 6 oder 7,
    dadurch gekennzeichnet, dass
    die Dampfturbine (5) mindestens zwei Turbinenstufen, insbesondere eine Hochdruck- (HD) und eine Niederdruckstufe (ND), aufweist.
  9. Vorrichtung (2) nach Anspruch 8,
    dadurch gekennzeichnet, dass
    die Dampfturbine (5) weiterhin mittels mindestens eines Stufenventils (12), mittels welchem mindestens einer Turbinenstufe, insbesondere der Niederdruckstufe (ND), Dampf zuleitbar ist, mit Dampf beaufschlagbar ist und das mindestens eine Stufenventil (12) in Verbindung mit dem Dampfventil (10) mittels der Regelstufe (RS2) einstellbar ist.
  10. Vorrichtung (2) nach einem der Ansprüche 6 bis 9,
    dadurch gekennzeichnet, dass
    der Grenzdampfdrucksollwert (Gd) mittels einer Simulationsrechnung ermittelt ist.
EP02011279A 2002-05-22 2002-05-22 Verfahren und Vorrichtung zum Betrieb einer Dampfkraftanlage, insbesondere im Teillastbereich Expired - Lifetime EP1365110B1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DK02011279T DK1365110T3 (da) 2002-05-22 2002-05-22 Fremgangsmåde og apparat til drift af et dampkraftanlæg, især i dellastområdet
AT02011279T ATE420274T1 (de) 2002-05-22 2002-05-22 Verfahren und vorrichtung zum betrieb einer dampfkraftanlage, insbesondere im teillastbereich
DE50213199T DE50213199D1 (de) 2002-05-22 2002-05-22 Verfahren und Vorrichtung zum Betrieb einer Dampfkraftanlage, insbesondere im Teillastbereich
EP02011279A EP1365110B1 (de) 2002-05-22 2002-05-22 Verfahren und Vorrichtung zum Betrieb einer Dampfkraftanlage, insbesondere im Teillastbereich
US10/440,410 US6915635B2 (en) 2002-05-22 2003-05-19 Method and device for operating a steam power plant, in particular in the part-load range

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP02011279A EP1365110B1 (de) 2002-05-22 2002-05-22 Verfahren und Vorrichtung zum Betrieb einer Dampfkraftanlage, insbesondere im Teillastbereich

Publications (2)

Publication Number Publication Date
EP1365110A1 EP1365110A1 (de) 2003-11-26
EP1365110B1 true EP1365110B1 (de) 2009-01-07

Family

ID=29286133

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02011279A Expired - Lifetime EP1365110B1 (de) 2002-05-22 2002-05-22 Verfahren und Vorrichtung zum Betrieb einer Dampfkraftanlage, insbesondere im Teillastbereich

Country Status (5)

Country Link
US (1) US6915635B2 (de)
EP (1) EP1365110B1 (de)
AT (1) ATE420274T1 (de)
DE (1) DE50213199D1 (de)
DK (1) DK1365110T3 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1653050A1 (de) * 2004-10-29 2006-05-03 Siemens Aktiengesellschaft Verfahren zur Ermittlung eines für den Ermüdungszustand eines Bauteils charakteristischen Kennwert
JP4723884B2 (ja) * 2005-03-16 2011-07-13 株式会社東芝 タービン起動制御装置およびその起動制御方法
US7632059B2 (en) * 2006-06-29 2009-12-15 General Electric Company Systems and methods for detecting undesirable operation of a turbine
DE102012107980A1 (de) * 2012-08-29 2014-03-06 M-S Consulting und Beteiligungs GmbH Kraftwerk zur Nutzung von in Dampf enthaltener Wärmeenergie und Verfahren zur Steuerung dafür
JP5397560B1 (ja) * 2013-04-05 2014-01-22 富士電機株式会社 抽気蒸気タービン発電設備の保安運転方法および装置
CN108915788B (zh) * 2018-09-11 2024-01-09 山东国电发电工程有限公司 凝汽式汽轮机低压轴封密封优化控制系统及方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3928972A (en) * 1973-02-13 1975-12-30 Westinghouse Electric Corp System and method for improved steam turbine operation
FR2380418A1 (fr) * 1977-02-09 1978-09-08 Europ Turb Vapeur Procede pour la conduite d'un ensemble de production d'energie
US4320625A (en) * 1980-04-30 1982-03-23 General Electric Company Method and apparatus for thermal stress controlled loading of steam turbines
JPS59226211A (ja) * 1983-06-08 1984-12-19 Hitachi Ltd 火力プラント制御方法
US5018356A (en) * 1990-10-10 1991-05-28 Westinghouse Electric Corp. Temperature control of a steam turbine steam to minimize thermal stresses
US5333457A (en) * 1991-10-07 1994-08-02 Westinghouse Electric Corporation Operation between valve points of a partial-arc admission turbine
US5136848A (en) * 1991-10-07 1992-08-11 Westinghouse Electric Corp. Method for predicting the optimum transition between constant and sliding pressure operation
US5191764A (en) * 1992-06-09 1993-03-09 Westinghouse Electric Corp. Governor valve positioning to overcome partial-arc admission limits
US5621654A (en) * 1994-04-15 1997-04-15 Long Island Lighting Company System and method for economic dispatching of electrical power
JP3673017B2 (ja) * 1996-05-23 2005-07-20 株式会社東芝 蒸気タービン起動制御装置
WO1998021451A1 (de) * 1996-11-08 1998-05-22 Siemens Aktiengesellschaft Turbinenleiteinrichtung sowie verfahren zur regelung eines lastwechselvorgangs einer turbine

Also Published As

Publication number Publication date
DE50213199D1 (de) 2009-02-26
EP1365110A1 (de) 2003-11-26
DK1365110T3 (da) 2009-04-20
US20030230088A1 (en) 2003-12-18
ATE420274T1 (de) 2009-01-15
US6915635B2 (en) 2005-07-12

Similar Documents

Publication Publication Date Title
DE3116340C3 (de)
EP2614303B1 (de) Verfahren zum betreiben einer kombinierten gas- und dampfturbinenanlage sowie zur durchführung des verfahrens hergerichtete gas- und dampfturbinenanlage und entsprechende regelvorrichtung
EP1797284B1 (de) Verfahren und modul zum vorrausschauenden anfahren von dampfturbinen
EP1775431A1 (de) Verfahren zum Aufwärmen einer Dampfturbine
EP2606206B1 (de) Verfahren zur regelung einer kurzfristigen leistungserhöhung einer dampfturbine
CH617494A5 (de)
DE1958422A1 (de) System zur Steuerung einer Kernreaktor-Dampfturbinenanlage
DE102010060064A1 (de) Verfahren zur Steigerung der Leistungsabgabe eines Gas- und Dampf-Kombikraftwerks während ausgewählter Betriebszeiträume
EP1174591A1 (de) Verfahren zur Primärregelung mit einer kombinierten Gas- und Dampfturbinenanlage
DE102004050519A1 (de) Verfahren und Vorrichtung zum Regeln eines Dampfturbineneinlassstroms, um die Wärmebelastung für Gehäuseschale und Rotor zu begrenzen
EP1365110B1 (de) Verfahren und Vorrichtung zum Betrieb einer Dampfkraftanlage, insbesondere im Teillastbereich
EP2606205A2 (de) Dampfturbine mit zwischenüberhitzung
EP2616643B1 (de) Verfahren zur regelung einer kurzfristigen leistungserhöhung einer dampfturbine
DE102019219505B4 (de) Kondensat- und Speisewassersystem eines Dampfkraftwerks und Betriebsverfahren dafür
EP1462901A2 (de) Verfahren und Vorrichtung zur Prozessregelung oder -steuerung von thermischen Lastwechseln von einem Medium durchströmten krümmungsbehinderten und/oder dickwandigen Bauteil in einem thermischen System
EP3375990B1 (de) Modellbasierte überwachung des betriebszustandes einer expansionsmaschine
EP2676072B1 (de) Verfahren zum betreiben eines durchlaufdampferzeugers
EP3280884B1 (de) Verfahren zum abkühlen einer dampfturbine
EP1764486A1 (de) Verfahren zum Ermitteln der aktuellen Maximalleistung einer Kraftwerksanlage und Regelvorrichtung
WO2016188671A1 (de) Wasser-dampf-kreislauf einer gas- und dampfturbinenanlage
DE2356390C2 (de) Verfahren zur Steuerung des Betriebs einer Dampfturbine
DE2427923A1 (de) Steuereinrichtung fuer eine dampfturbinenanordnung mit umgehungsleitung
DE2516379A1 (de) Anordnung zur steuerung der ausgangsleistung eines oder mehrerer turbogeneratoren in einem kraftwerk
DE102014206043A1 (de) Verfahren zum Betreiben eines Systems für einen thermodynamischen Kreisprozess mit einem mehrflutigen Verdampfer, Steuereinrichtung für ein System, System für einen thermodynamischen Kreisprozess mit einem mehrflutigen Verdampfer, und Anordnung einer Brennkraftmaschine und eines Systems
DE1919363A1 (de) Regelsystem fuer Dampfturbinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030407

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50213199

Country of ref document: DE

Date of ref document: 20090226

Kind code of ref document: P

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090107

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090107

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090418

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090407

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090107

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20090531

26N No opposition filed

Effective date: 20091008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090107

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150511

Year of fee payment: 14

Ref country code: DK

Payment date: 20150520

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150514

Year of fee payment: 14

Ref country code: FR

Payment date: 20150513

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20150803

Year of fee payment: 14

Ref country code: DE

Payment date: 20150720

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50213199

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20160531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160522

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160522