EP1364219A1 - Device, amperemeter and motor vehicle - Google Patents

Device, amperemeter and motor vehicle

Info

Publication number
EP1364219A1
EP1364219A1 EP02704583A EP02704583A EP1364219A1 EP 1364219 A1 EP1364219 A1 EP 1364219A1 EP 02704583 A EP02704583 A EP 02704583A EP 02704583 A EP02704583 A EP 02704583A EP 1364219 A1 EP1364219 A1 EP 1364219A1
Authority
EP
European Patent Office
Prior art keywords
section
conductor
sensor means
current
horseshoe shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02704583A
Other languages
German (de)
French (fr)
Inventor
Henning Hauenstein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1364219A1 publication Critical patent/EP1364219A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/207Constructional details independent of the type of device used

Definitions

  • the current state of the art is so-called shunt resistors for measuring electrical currents. Their, especially at high currents, high power loss and their additional self-inductance are undesirable. Furthermore, there is no guarantee that the measuring circuit and main circuit are isolated.
  • magnetic field sensors for example Hall sensors, lateral magnetotransistors, magnetoresistive resistors, etc., which are able to precisely measure the magnetic field effect of a current-carrying conductor.
  • a known measure to avoid such difficulties is the shielding of the magnetic field sensor from interfering magnetic fields and the concentration of the magnetic field to be measured by a so-called magnetic circuit. Shielding for highly sensitive sensors is very complex and expensive. Magnetic circuits are also expensive and also require a lot of mounting space, and their assembly is also difficult. Another disadvantage of magnetic circuits is the possibility that they tend to saturate and thus introduce a non-linearity between current strength and magnetic field strength in the measurement.
  • the device according to the invention, the current meter according to the invention and the motor vehicle according to the invention with the features of the independent claims have the advantage that the electromagnetic field of a current-carrying conductor can be measured well even in an electromagnetic environment which is heavily loaded by stray fields. It is particularly advantageous here that the Measurement gain is not based on a subsequent electrical gain, but on an optimization of the measurement conditions. Furthermore, frequency-dependent changes in the magnetic field (skin effect) can be at least partially eliminated by the conductor geometry and need not be taken into account in a cost-intensive manner by an intelligent evaluation circuit. Furthermore, the proposed conductor geometry offers a possibility of mounting the current sensors that is relatively uncritical to adjustment.
  • the conductor is provided essentially in a horseshoe shape and thereby forms a first horseshoe shape, the first section forming part of one leg of the first horseshoe shape and the second section forming part of the second leg of the first horseshoe shape , As a result, the self-inductance of the conductor is low since no closed current loops are used.
  • a second sensor means, a third section of the conductor and a fourth section of the conductor are provided, the current directions provided in the third and fourth sections being provided antiparallel and the second sensor means being provided between the third and fourth sections ,
  • This increases the measurable magnetic field of the conductor by at least a factor of 4 without using an additional magnetic field concentrator.
  • the reinforcement takes place solely through a special shape of the current conductor and the use of at least two identical sensor means that are connected to one another. In this way, a possibly production-related or technology-related signal offset can be eliminated.
  • temperature dependencies of the sensor means are at least partially compensated for, such as temperature-dependent leakage currents, offset, etc.
  • Figure 1 is a perspective view of an electrical
  • FIG. 2 shows a side view of the electrical conductor
  • FIG. 3 shows a front view of the electrical conductor
  • Figure 4 shows the current conductor with mounting example for
  • Figure 5 shows a first embodiment for a cross section through the conductor and the sensor means
  • Figure 6 shows a second embodiment of a
  • the conductor 1 comprises a plurality of sections, a first section having the reference number 10, a second section having the reference number 20, a third section having the reference number 30 and a fourth section having the reference number 40.
  • the conductor 1 further comprises a first conductor region 100, which in the Is essentially horseshoe-shaped.
  • the first conductor area 100 comprises the first section 10 and the second section 20.
  • the horseshoe shape in the first conductor area 100 is caused by the following shape: the first conductor area 100 comprises, in addition to the first section 10 and the second section 20, a connecting section which is essentially semicircular is provided and at the ends of which the first section 10 and the second section 20 each connect as a leg of the horseshoe shape formed by the first conductor area 100.
  • the second conductor region 200 is provided in a horseshoe shape by the third section 30, the fourth section and an additional connecting section.
  • the electrical conductor 1, with the two conductor regions 100, 200 comprises four ends of two horseshoe shapes, of which, according to the invention, two ends of different conductor regions 100, 200 are connected by means of a connecting piece 150 such that the two conductor regions 100, 200 are connected and the other two Ends of the horseshoe shapes formed by the conductor areas 100, 200 serve for the supply or discharge of the electrical current.
  • the intermediate piece 150 is in this case likewise also provided essentially in a semicircular shape. According to the invention, it is particularly provided that the two conductor areas 100, 200 are arranged next to one another and are aligned identically. According to the invention, a round cross section is provided in particular as the conductor cross section, but in principle rectangular and square cross sections are also conceivable here.
  • the current conductor 1 is shown with mounting examples for sensor means.
  • the conductor 1 is shown with its sections 10, 20, 30, 40, the second and third sections 20, 30 being covered by a mounting plate 50 through the perspective view.
  • a first sensor means 15 and a second sensor means 35 are located on the mounting plate 50.
  • the connecting piece 150 is also shown.
  • FIG. 5 shows a first exemplary embodiment for a cross section through the conductor 1 and the sensor means 15, 35.
  • the sectional view from FIG. 5 results from a section of the arrangement in FIG. 4 according to the section line AA ⁇ shown there .
  • the cross section in FIG. 5 is shown as a top view of the arrangement, the conductor sections 10, 20, 30, 40 being visible.
  • the first section 10 is used for the current entry, which is why the first section 10 is provided with a point in the interior of the first section 10 in FIG. 5, which is intended to clarify that the current direction in the first section 10 out of the image plane toward the viewer is oriented.
  • the fourth section 40 is provided as a current outlet.
  • the fourth section 40 is provided with a cross in its interior, which is intended to show that the current direction is provided in the image plane in this case.
  • a second magnetic field line 21 is shown around the second section 20, its orientation being shown clockwise to indicate, like the cross shown in the second section 20, that the current direction in the second section is directed into the plane of the drawing.
  • the current comes out of the drawing plane, which is why a third magnetic field line 31 is shown counterclockwise around the third section 30 and illustrates that the current direction here comes out of the drawing plane is oriented.
  • a fourth magnetic field line 41 is shown around the fourth section 40.
  • the orientations of the magnetic field lines 11, 21, 31, 41 are represented by arrows that are not identified by reference numerals.
  • the first sensor means 15 shown in FIG. 5 is placed in the middle between the first section 10 and the second section 20.
  • the essentially parallel alignment of the first section 10 to the second section 20 and the different current direction in the first section 10 and in the second section 20 result in the current direction in the two sections 10, 20 being oriented antiparallel.
  • the magnetic fields caused by the current flow in the two sections 10, 20 overlap and strengthen at the location of the first sensor means 15, ie in the middle between the first and the second section 10, 20 (constructive overlay).
  • the orientations of the resulting magnetic field strengths at the location of the first sensor means 15 are oriented opposite to those at the location of the second sensor means 35. Therefore, if sensor means 15, 35 are used, the measurement signal of which is positive or negative depending on the direction of the magnetic field, and if these sensors are mounted in identical alignment on the mounting plate 50, then one sensor means measures a positive, the other sensor means a negative magnetic field. In an evaluation circuit, not shown, the two measurement signals are then to be subtracted from one another, as a result of which the overall signal is doubled. A direct connection of the output signals of both sensors to one another is also conceivable.
  • the quadruple signal is measured as in the case of a single sensor on a linear current conductor.
  • the conductor 1 with its first conductor region 100 and its second conductor region 200 can also be described as a double U-shape.
  • a circular conductor cross section is advantageous because in this way the magnetic field caused by the current flow through the conductor is independent of the frequency of the current.
  • the skin effect leads to a frequency-dependent deformation of the current flow.
  • there is an increased current density on the conductor surface which leads to strong spatial variations of the magnetic field. This is not the case in a conductor 1 with a round cross section.
  • the diameter of the conductor 1 is to be selected according to the strength of the flowing current and the self-inductance to be minimized.
  • the spacing of the sections 10, 20, 30, 40 from one another is chosen according to the invention in such a way that a mutual influence or interaction is minimized.
  • the magnetic field strength at the location of the sensor means 15 and 35 is doubled by the opposite or antiparallel
  • magnetic field sensors are used as sensor means 15, 35 which are sensitive to a magnetic field which runs parallel to the sensor surface. This is the case, for example, with lateral magnetotransistors. For sensors that are sensitive to a magnetic field that runs vertically to the sensor surface, only their installation position must be selected accordingly.
  • the interconnection of the two magnetic field sensors in connection with the special conductor geometry according to the invention also has the advantage that if the Magnetic field sensors have a signal offset that is due to manufacturing or process technology, then this offset must be avoided when using a single sensor either by a correspondingly complex process management or subsequently adjusted by the evaluation circuit.
  • the arrangement of the sensors according to the invention has the further advantage that the conductor 1 can be used as a shield against stray and interference fields. Unwanted magnetic fields above and below the sensor are therefore shielded.
  • magnetic interference fields that run parallel to the mounting plate 50 and to which the sensor means 15, 35 would in principle be sensitive are compensated because these interference fields are compensated for by the sensors being connected in series.
  • the arrangement realizes a high level of insensitivity to parasitic interference and stray fields.
  • the minimum distance between the two sensor means 15, 35 is limited only by the conductor diameter required for the main circuit.
  • the distance between the sensor means 15, 35 is typically a few millimeters to a few centimeters.
  • the selected conductor geometry also offers manufacturing advantages during assembly.
  • the mounting plate 50 can be mounted very precisely by suitable shaping to the U-shaped current conductor. For this purpose, for example, semicircular grooves or recesses at the upper edge of the not shown Mounting plate 50 is provided.
  • the lateral placement of the sensors relative to the current conductor is then given by their pre-assembly on the structured mounting plate 50. In principle, it would be critical to place the sensor means 15, 35 exactly in the middle between the first section 10 and the second section 20 or between the third section 30 and the fourth section 40. It is important to hit exactly the center here, since this is constructive superimposed magnetic field is maximum.
  • the mounting plate 50 can, for example, be placed on one side on two of the sections 10, 20, 30, 40 or two mounting plates can be provided, between which the sensor means 15, 35 are located, and which together with the sensor means 15, 35 exactly fill the distance between two sections 10, 20, 30, 40.
  • Flipchip assembly techniques, Asic integration and the like are suitable for this second possibility. In this way, an expensive and complex precision assembly is avoided by the self-adjusting mounting plates shown.
  • the evaluation circuit (not shown) should be placed as close as possible to the sensor means 15, 35 in order to minimize interference in the signal transmission between the sensor and evaluation location. Here it makes sense to provide the evaluation circuit on the mounting plate.
  • a sensor unit packaged in this way is referred to as an ammeter.
  • the packaging also makes it possible to shield additional stray or interference fields. Since the magnetic field of the current conductor required for the measurement and the sensor means are located inside the current meter, the inside can be easily isolated from the outside world by shielding material if the design-related shielding effect of the arrangement described above is not yet sufficient. This could be the case with spatially strongly inhomogeneous or rapidly varying stray fields. According to the invention, a special molt or potting compound is provided as the shielding packaging, which prevents the introduction of external interference fields. It is also possible to sheath or vapor-coat the entire ammeter with shielding materials, for example shielding foil, ⁇ -metal, etc.
  • FIG. 6 shows a second exemplary embodiment of the arrangement according to the invention consisting of conductor geometry and sensor means.
  • a third sensor means 16 and a fourth sensor means 36 are also provided, the third sensor means 16 being arranged between the second section 20 and the third section 30 and the fourth sensor means 36 being between the first Section 10 and the fourth section 40 is arranged and wherein the third sensor means 16 and the fourth sensor means 36 is arranged on a further mounting plate 51.
  • the measurement signals of the first sensor means 15 and the second sensor means 35 are to be subtracted from each other and the measurement signals of the third sensor means 16 and the fourth sensor means 35 are to be subtracted from one another and these results are then added.
  • the 8-fold measurement signal is obtained, whereby, as described above, the sensor pair consisting of the first sensor means 15 and the second sensor means 35 and the sensor pair consisting of the third sensor means 16 and the fourth sensor means 36 each for the mutual Ensure offset, temperature and stray field compensation.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

The invention relates to a device, an amperemeter and a motor vehicle. In order to be able to measure the intensity of the electric current in an electric conductor (1), at least one sensor (15), one first section (10) of the conductor (1) and one second section (20) of the conductor (1) are provided, whereby the directions of the currents in the first and second sections (10, 20) are antiparallel and the sensor (15) is arranged between the first and the second sections (10, 20).

Description

Vorrichtung. Strommesser und KraftfahrzeugContraption. Ammeter and motor vehicle
Stand der TechnikState of the art
Die genaue Erfassung der Stromstärke in einem zumindest zeitweise stromdurchflossenen Leiter ist in vielen Situationen erforderlich. Beispiele hierfür sind im Automobilbereich beispielsweise die Ermittlung elektrischer Parameter von Generatoren und elektrischen Antrieben während des Betriebs dieser Aggregate. Hierbei ist eine berührungslose, verlustarme und potentialfreie Messung des elektrischen Stromes notwendig.The exact detection of the current intensity in an at least temporarily current-carrying conductor is necessary in many situations. Examples of this in the automotive sector are, for example, the determination of electrical parameters of generators and electrical drives during the operation of these units. This requires a non-contact, low-loss and potential-free measurement of the electrical current.
Stand der Technik sind derzeit sogenannte Shunt-Widerstände zur Messung von elektrischen Strömen. Deren, insbesondere bei hohen Strömen, hohe Verlustleistung und ihre zusätzliche Eigeninduktivität sind unerwünscht. Darüber hinaus ist keine Potentialfreiheit zwischen Meßkreis und Hauptstromkreis gewährleistet .The current state of the art is so-called shunt resistors for measuring electrical currents. Their, especially at high currents, high power loss and their additional self-inductance are undesirable. Furthermore, there is no guarantee that the measuring circuit and main circuit are isolated.
Bekannt sind weiterhin Magnetfeldsensoren, z.B. Hall-Sensor, lateraler Magnetotransistor, magnetoresistive Widerstände, usw. , die in der Lage sind, die Magnetfeldwirkung eines stromdurchflossenen Leiters, genau zu messen. Vorteilhaft ist hierbei insbesondere die Potentialtrennung zwischen dem Meßstromkreis und dem Hauptstromkreis, die geringe bzw. gar nicht vorhandene Verlustleistung und die Abwesenheit von den zu messenden Strom beeinflussenden Größen, wie beispielsweise induktive Rückkopplung oder Widerstand.Also known are magnetic field sensors, for example Hall sensors, lateral magnetotransistors, magnetoresistive resistors, etc., which are able to precisely measure the magnetic field effect of a current-carrying conductor. The potential isolation between the measuring circuit and the main circuit, the low or even non-existent power loss and the absence of variables influencing the current to be measured, such as inductive feedback or resistance.
Problematisch bei der Verwendung von Magnetfeldsensoren zur Strommessung ist jedoch die Existenz von Stör- bzw. Streufeldern ausgehend von dem zu messenden Stromleiter benachbart angeordneten weiteren Stromleitern bzw. hervorgerufen durch in der Umgebung von Generatoren vorhandenen rotierenden Magnetfeldern. Schwierig ist daher die Diskriminierung zwischen dem mit Magnetfeldsensor zu messenden Magnetfeld und parasitären Streufeldern der Umgebung .The problem with the use of magnetic field sensors for current measurement, however, is the existence of interference or stray fields starting from the current conductor to be measured which is arranged adjacent to one another or caused by rotating magnetic fields present in the vicinity of generators. It is therefore difficult to discriminate between the magnetic field to be measured with a magnetic field sensor and parasitic stray fields in the environment.
Eine bekannte Maßnahme zur Vermeidung solcher Schwierigkeiten ist die Abschirmung des Magnetfeldsensσrs von störenden Magnetfeldern und die Konzentration des zu messenden Magnetfeldes durch einen sogenannten Magnetkreis. Abschirmung für hochsensitive Sensoren ist jedoch sehr aufwendig und teuer. Magnetkreise sind ebenfalls teuer und benötigen darüber hinaus viel Anbauplatz, weiterhin ist deren Montage schwierig. Ein weiterer Nachteil von Magnetkreisen ist die Möglichkeit, dass diese zur Sättigung neigen und somit eine Nichtlinearität zwischen Stromstärke und Magnetfeldstärke in die Messung einbringen.A known measure to avoid such difficulties is the shielding of the magnetic field sensor from interfering magnetic fields and the concentration of the magnetic field to be measured by a so-called magnetic circuit. Shielding for highly sensitive sensors is very complex and expensive. Magnetic circuits are also expensive and also require a lot of mounting space, and their assembly is also difficult. Another disadvantage of magnetic circuits is the possibility that they tend to saturate and thus introduce a non-linearity between current strength and magnetic field strength in the measurement.
Vorteile der ErfindungAdvantages of the invention
Die erfindungsgemäße Vorrichtung, der erfindungsgemäße Strommesser und das erfindungsgemäße Kraftfahrzeug mit den Merkmalen der nebengeordneten Ansprüche haben demgegenüber den Vorteil, dass auch in einer durch Streufelder stark belasteten elektromagnetischen Umgebung das elektromagnetische Feld eines stromdurchflossenen Leiters gut meßbar ist. Vorteilhaft ist hier insbesondere, dass die Meßverstärkung nicht auf einer nachträglichen elektrischen Verstärkung, sondern auf einer Optimierung der Meßbedingungen beruht. Weiterhin können durch die Leitergeometrie frequenzabhängige Änderungen des Magnetfeldes (Skin-Effekt) zumindest teilweise eliminiert werden und müssen nicht kostenintensiv durch eine intelligente Auswerteschaltung berücksichtigt werden. Weiterhin bietet die vorgeschlagene Leitergeometrie eine relativ justageunkritische Montagemöglichkeit der Stromsensoren.The device according to the invention, the current meter according to the invention and the motor vehicle according to the invention with the features of the independent claims have the advantage that the electromagnetic field of a current-carrying conductor can be measured well even in an electromagnetic environment which is heavily loaded by stray fields. It is particularly advantageous here that the Measurement gain is not based on a subsequent electrical gain, but on an optimization of the measurement conditions. Furthermore, frequency-dependent changes in the magnetic field (skin effect) can be at least partially eliminated by the conductor geometry and need not be taken into account in a cost-intensive manner by an intelligent evaluation circuit. Furthermore, the proposed conductor geometry offers a possibility of mounting the current sensors that is relatively uncritical to adjustment.
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der in den nebengeordneten Ansprüchen angegebenen Vorrichtung, Strommesser und Kraf fahrzeug möglich.The measures listed in the subclaims allow advantageous developments and improvements of the device, ammeter and motor vehicle specified in the independent claims.
Vorteilhaft ist insbesondere, dass der Leiter in einem ersten Leiterbereich im Wesentlichen hufeisenförmig vorgesehen ist und dabei eine erste Hufeisenform bildet, wobei der erste Abschnitt ein Teil des einen Schenkels der ersten Hufeisenform bildet und wobei der zweite Abschnitt ein Teil des zweiten Schenkels der ersten Hufeisenform bildet. Dadurch ist die Eigeninduktivität des Leiters gering, da keine geschlossenen Stromschleifen verwendet werden.It is particularly advantageous that the conductor is provided essentially in a horseshoe shape and thereby forms a first horseshoe shape, the first section forming part of one leg of the first horseshoe shape and the second section forming part of the second leg of the first horseshoe shape , As a result, the self-inductance of the conductor is low since no closed current loops are used.
Weiterhin ist von Vorteil, dass ein zweites Sensormittel, ein dritter Abschnitt des Leiters und ein vierter Abschnitt des Leiters vorgesehen ist, wobei die im dritten und vierten Abschnitt vorgesehenen Stromrichtungen antiparallel vorgesehen sind und wobei das zweite Sensormittel zwischen dem dritten und dem vierten Abschnitt vorgesehen ist. Dadurch wird das meßbare Magnetfeld des Leiters mindestens um einen Faktor 4 verstärkt, ohne einen zusätzlichen Magnetfeldkonzentrator zu verwenden. Die Verstärkung erfolgt allein durch eine spezielle Formgebung des Stromleiters und die Verwendung mindestens zweier identischer gegeneinander geschalteter Sensormittel. Hierdurch kann ein eventuell fertigungs- oder technologiebedingter Signaloffset eliminiert werden. Weiterhin werden damit auch Temperaturabhängigkeiten des Sensormittels zumindest teilweise kompensiert, wie beispielsweise temperaturabhängige Leckströme, Offset usw.It is also advantageous that a second sensor means, a third section of the conductor and a fourth section of the conductor are provided, the current directions provided in the third and fourth sections being provided antiparallel and the second sensor means being provided between the third and fourth sections , This increases the measurable magnetic field of the conductor by at least a factor of 4 without using an additional magnetic field concentrator. The reinforcement takes place solely through a special shape of the current conductor and the use of at least two identical sensor means that are connected to one another. In this way, a possibly production-related or technology-related signal offset can be eliminated. Furthermore, temperature dependencies of the sensor means are at least partially compensated for, such as temperature-dependent leakage currents, offset, etc.
Zeichnungdrawing
Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigenEmbodiments of the invention are shown in the drawing and explained in more detail in the following description. Show it
Figur 1 eine perspektivische Darstellung eines elektrischenFigure 1 is a perspective view of an electrical
Leiters,conductor,
Figur 2 eine Seitenansicht des elektrischen Leiters,FIG. 2 shows a side view of the electrical conductor,
Figur 3 eine Vorderansicht des elektrischen Leiters,FIG. 3 shows a front view of the electrical conductor,
Figur 4 den Stromleiter mit Montagebeispiel fürFigure 4 shows the current conductor with mounting example for
Sensormittel ,Sensor means,
Figur 5 ein erstes Ausführungsbeispiel für einen Querschnitt durch den Leiter und die Sensormittel undFigure 5 shows a first embodiment for a cross section through the conductor and the sensor means and
Figur 6 ein zweites Ausführungsbeispiel für einenFigure 6 shows a second embodiment of a
Querschnitt durch den Leiter und die Sensormittel.Cross section through the conductor and the sensor means.
Beschreibung der AusführungsbeispieleDescription of the embodiments
In Figur 1, 2 und 3 ist ein elektrischer Leiter 1 in verschiedenen Darstellungen dargestellt. Der Leiter 1 umfasst erfindungsgemäß mehrere Abschnitte, wobei ein erster Abschnitt mit dem Bezugszeichen 10, ein zweiter Abschnitt mit dem Bezugszeichen 20, ein dritter Abschnitt mit dem Bezugszeichen 30 und ein vierter Abschnitt mit dem Bezugszeichen 40 versehen ist. Der Leiter 1 umfasst weiterhin einen ersten Leiterbereich 100, der im Wesentlichen hufeisenförmig vorgesehen ist. Der erste Leiterbereich 100 umfasst den ersten Abschnitt 10 und den zweiten Abschnitt 20. Die Hufeisenform im ersten Leiterbereich 100 wird durch folgende Formgebung hervorgerufen: Der erste Leiterbereich 100 umfasst neben dem ersten Abschnitt 10 und dem zweiten Abschnitt 20 einen verbindenden Abschnitt, der im Wesentlichen halbkreisförmig vorgesehen ist und an dessen Enden sich der erste Abschnitt 10 und der zweite Abschnitt 20 jeweils als Schenkel der durch den ersten Leiterbereich 100 gebildeten Hufeisenform anschließen. Entsprechend ist durch den dritten Abschnitt 30, den vierten Abschnitt und einen zusätzlichen verbindenden Abschnitt der zweite Leiterbereich 200 hufeisenförmig vorgesehen. Der elektrische Leiter 1 umfasst mit den beiden Leiterbereichen 100, 200 vier Enden zweier Hufeisenformen, von denen erfindungsgemäß zwei Enden von verschiedenen Leiterbereichen 100, 200 mittels eines Verbindungsstücks 150 derart verbunden sind, dass die beiden Leiterbereiche 100, 200 verbunden sind und wobei die anderen beiden Enden der durch die Leiterbereiche 100, 200 gebildeten Hufeisenformen der Zuleitung bzw. Ableitung des elektrischen Stromes dienen. Das Zwischenstück 150 ist hierbei insbesondere ebenfalls im Wesentlichen halbkreisförmig vorgesehen. Erfindungsgemäß ist insbesondere vorgesehen, dass die beiden Leiterbereiche 100, 200 nebeneinander angeordnet und identisch ausgerichtet sind. Erfindungsgemäß ist als Leiterquerschnitt insbesondere ein runder Querschnitt vorgesehen, prinzipiell sind hier aber auch rechteckige und quadratische Querschnitte denkbar.In Figures 1, 2 and 3, an electrical conductor 1 is shown in different representations. According to the invention, the conductor 1 comprises a plurality of sections, a first section having the reference number 10, a second section having the reference number 20, a third section having the reference number 30 and a fourth section having the reference number 40. The conductor 1 further comprises a first conductor region 100, which in the Is essentially horseshoe-shaped. The first conductor area 100 comprises the first section 10 and the second section 20. The horseshoe shape in the first conductor area 100 is caused by the following shape: the first conductor area 100 comprises, in addition to the first section 10 and the second section 20, a connecting section which is essentially semicircular is provided and at the ends of which the first section 10 and the second section 20 each connect as a leg of the horseshoe shape formed by the first conductor area 100. Correspondingly, the second conductor region 200 is provided in a horseshoe shape by the third section 30, the fourth section and an additional connecting section. The electrical conductor 1, with the two conductor regions 100, 200, comprises four ends of two horseshoe shapes, of which, according to the invention, two ends of different conductor regions 100, 200 are connected by means of a connecting piece 150 such that the two conductor regions 100, 200 are connected and the other two Ends of the horseshoe shapes formed by the conductor areas 100, 200 serve for the supply or discharge of the electrical current. The intermediate piece 150 is in this case likewise also provided essentially in a semicircular shape. According to the invention, it is particularly provided that the two conductor areas 100, 200 are arranged next to one another and are aligned identically. According to the invention, a round cross section is provided in particular as the conductor cross section, but in principle rectangular and square cross sections are also conceivable here.
In Figur 4 ist der Stromleiter 1 mit Montagebeispielen für Sensormittel dargestellt. Hierbei ist wiederum der Leiter 1 mit seinen Abschnitten 10, 20, 30, 40 dargestellt, wobei der zweite und dritte Abschnitt 20, 30 durch die perspektivische Darstellung von einer Montageplatte 50 verdeckt sind. Auf der Montageplatte 50 befinden sich ein erstes Sensormittel 15 und ein zweites Sensormittel 35. Weiterhin ist das Verbindungsstück 150 dargestellt.In Figure 4, the current conductor 1 is shown with mounting examples for sensor means. Here again, the conductor 1 is shown with its sections 10, 20, 30, 40, the second and third sections 20, 30 being covered by a mounting plate 50 through the perspective view. On A first sensor means 15 and a second sensor means 35 are located on the mounting plate 50. The connecting piece 150 is also shown.
In Figur 5 ist ein erstes Ausführungsbeispiel für einen Querschnitt durch den Leiter 1 und die Sensormittel 15, 35 dargestellt. Das Schnittbild aus Figur 5 ergibt sich durch einen Schnitt der Anordnung in Figur 4 gemäß der dort dargestellten Schnittlinie A-Aλ . Der Querschnitt in Figur 5 ist als Draufsicht auf die Anordnung dargestellt, wobei die Leiterabschnitte 10, 20, 30, 40 sichtbar sind. Der erste Abschnitt 10 wird für den Stromeintritt verwendet, weshalb der erste Abschnitt 10 mit einem Punkt im Inneren des ersten Abschnitts 10 in der Figur 5 versehen ist, der verdeutlichen soll, dass die Stromrichtung im ersten Abschnitt 10 aus der Bildebene heraus auf den Betrachter hin orientiert ist. Der vierte Abschnitt 40 ist als Stromaustritt vorgesehen. Hier ist der vierte Abschnitt 40 mit einem Kreuz in seinem Inneren versehen, das darstellen soll, dass die Stromrichtung in diesem Fall in die Bildebene hinein vorgesehen ist. Hierdurch ergeben sich die Orientierungen für eine erste Magnetfeldlinie 11, die das Magnetfeld um den ersten Abschnitt 10 herum andeuten soll und die, wegen der Stromrichtung im ersten Abschnitt 10 aus der Zeichenebene heraus entgegen dem Uhrzeigersinn orientiert ist. Eine zweite Magnetfeldlinie 21 ist um den zweiten Abschnitt 20 herum dargestellt, wobei deren Orientierung mit dem Uhrzeigersinn dargestellt ist, um, ebenso wie das im zweiten Abschnitt 20 dargestellte Kreuz anzudeuten, dass die Stromrichtung im zweiten Abschnitt in die Zeichenebene hinein gerichtet ist. Im dritten Abschnitt 30 kommt der Strom wiederum aus der Zeichenebene heraus, weshalb eine dritte Magnetfeldlinie 31 entgegen den Uhrzeigersinn um den dritten Abschnitt 30 herum dargestellt ist und verdeutlicht, dass die Stromrichtung hier aus der Zeichenebene heraus orientiert ist. Eine vierte Magnetfeldlinie 41 ist um den vierten Abschnitt 40 herum dargestellt. Die Orientierungen der Magnetfeldlinien 11, 21, 31, 41 sind durch durch Bezugszeichen nicht näher bezeichnete Pfeile dargestellt. Es ist erkennbar, dass das in Figur 5 dargestellte erste Sensormittel 15 in der Mitte zwischen dem ersten Abschnitt 10 und dem zweiten Abschnitt 20 plaziert ist. Durch die im Wesentlichen parallele Ausrichtung des ersten Abschnitts 10 zu dem zweiten Abschnitt 20 und die unterschiedliche Stromrichtung im ersten Abschnitt 10 und im zweiten Abschnitt 20 ergibt es sich, dass die Stromrichtung in den beiden Abschnitten 10, 20 antiparallel orientiert ist. Dies hat zur Folge, dass die durch den Stromfluß in den beiden Abschnitten 10, 20 hervorgerufenen Magnetfelder sich am Ort des ersten Sensormittels 15, d.h. in der Mitte zwischen dem ersten und dem zweiten Abschnitt 10, 20 überlagern und verstärken (konstruktive Überlagerung) . Gleiches geschieht am Ort des zweiten Sensormittels 35 hinsichtlich des dritten Abschnitts 30 und des vierten Abschnitts 40. Weiterhin erkennt man, dass die Orientierungen der resultierenden Magnetfeldstärken am Ort des ersten Sensormittels 15 gegenüber dem am Ort des zweiten Sensormittels 35 entgegengesetzt orientiert sind. Verwendet man daher Sensormittel 15, 35, deren Meßsignal in Abhängigkeit von der Magnetfeldrichtung positiv oder negativ ist und montiert diese Sensoren in identischer Ausrichtung auf die Montageplatte 50, dann mißt das eine Sensormittel ein positives, das andere Sensormittel ein negatives Magnetfeld. In einer nicht dargestellten Auswerteschaltung sind dann die beiden Meßsignale voneinander zu subtrahieren, wodurch sich das Gesamtsignal verdoppelt. Auch eine direkte Gegeneinanderschaltung der Ausgangssignale beider Sensoren ist denkbar. Insgesamt wird so das vierfache Signal gemessen als im Falle eines einzelnen Sensors an einem linearen Stromleiter. Der Leiter 1 kann mit seinem ersten Leiterbereich 100 und seinem zweiten Leiterbereich 200 auch als doppelte U-Form beschrieben werden. Ein kreisförmiger Leiterquerschnitt ist vorteilhaft, weil auf diese Weise das durch Stromfluß durch den Leiter hervorgerufene Magnetfeld unabhängig von der Frequenz des Stromes ist. In rechteckigen Leitern führt nämlich der Skin-Effekt zu einer frequenzabhängigen Verformung des Stromflusses. Es entsteht dann eine erhöhte Stromdichte an der Leiteroberfläche, die zu starken räumlichen Variationen des Magentfeldverlaufes führt. Dies ist in einem Leiter 1 mit rundem Querschnitt nicht der Fall. Der Durchmesser des Leiters 1 ist je nach Anwendung entsprechend der Stärke des fließenden Stroms und der zu minimierenden Eigeninduktivität zu wählen. Der Abstand der Abschnitte 10, 20, 30, 40 zueinander wird erfindungsgemäß so gewählt, dass eine gegenseitige Beeinflussung oder Wechselwirkung minimiert wird.FIG. 5 shows a first exemplary embodiment for a cross section through the conductor 1 and the sensor means 15, 35. The sectional view from FIG. 5 results from a section of the arrangement in FIG. 4 according to the section line AA λ shown there . The cross section in FIG. 5 is shown as a top view of the arrangement, the conductor sections 10, 20, 30, 40 being visible. The first section 10 is used for the current entry, which is why the first section 10 is provided with a point in the interior of the first section 10 in FIG. 5, which is intended to clarify that the current direction in the first section 10 out of the image plane toward the viewer is oriented. The fourth section 40 is provided as a current outlet. Here, the fourth section 40 is provided with a cross in its interior, which is intended to show that the current direction is provided in the image plane in this case. This results in the orientations for a first magnetic field line 11 which is intended to indicate the magnetic field around the first section 10 and which, because of the direction of current in the first section 10, is oriented counterclockwise from the plane of the drawing. A second magnetic field line 21 is shown around the second section 20, its orientation being shown clockwise to indicate, like the cross shown in the second section 20, that the current direction in the second section is directed into the plane of the drawing. In the third section 30, the current in turn comes out of the drawing plane, which is why a third magnetic field line 31 is shown counterclockwise around the third section 30 and illustrates that the current direction here comes out of the drawing plane is oriented. A fourth magnetic field line 41 is shown around the fourth section 40. The orientations of the magnetic field lines 11, 21, 31, 41 are represented by arrows that are not identified by reference numerals. It can be seen that the first sensor means 15 shown in FIG. 5 is placed in the middle between the first section 10 and the second section 20. The essentially parallel alignment of the first section 10 to the second section 20 and the different current direction in the first section 10 and in the second section 20 result in the current direction in the two sections 10, 20 being oriented antiparallel. As a result, the magnetic fields caused by the current flow in the two sections 10, 20 overlap and strengthen at the location of the first sensor means 15, ie in the middle between the first and the second section 10, 20 (constructive overlay). The same happens at the location of the second sensor means 35 with respect to the third section 30 and the fourth section 40. Furthermore, it can be seen that the orientations of the resulting magnetic field strengths at the location of the first sensor means 15 are oriented opposite to those at the location of the second sensor means 35. Therefore, if sensor means 15, 35 are used, the measurement signal of which is positive or negative depending on the direction of the magnetic field, and if these sensors are mounted in identical alignment on the mounting plate 50, then one sensor means measures a positive, the other sensor means a negative magnetic field. In an evaluation circuit, not shown, the two measurement signals are then to be subtracted from one another, as a result of which the overall signal is doubled. A direct connection of the output signals of both sensors to one another is also conceivable. Overall, the quadruple signal is measured as in the case of a single sensor on a linear current conductor. The conductor 1 with its first conductor region 100 and its second conductor region 200 can also be described as a double U-shape. A circular conductor cross section is advantageous because in this way the magnetic field caused by the current flow through the conductor is independent of the frequency of the current. In rectangular conductors, the skin effect leads to a frequency-dependent deformation of the current flow. Then there is an increased current density on the conductor surface, which leads to strong spatial variations of the magnetic field. This is not the case in a conductor 1 with a round cross section. Depending on the application, the diameter of the conductor 1 is to be selected according to the strength of the flowing current and the self-inductance to be minimized. The spacing of the sections 10, 20, 30, 40 from one another is chosen according to the invention in such a way that a mutual influence or interaction is minimized.
Wie bereits erwähnt, verdoppelt sich die magnetische Feldstärke am Ort des Sensormittels 15 bzw. 35 durch die entgegengesetzte bzw. antiparalleleAs already mentioned, the magnetic field strength at the location of the sensor means 15 and 35 is doubled by the opposite or antiparallel
Stromrichtungsorientierung in dem ersten und zweiten Abschnitt 10, 20 bzw. dem dritten und vierten Abschnitt 30, 40. Erfindungsgemäß werden Magnetfeldsensoren als Sensormittel 15, 35 verwendet, die auf ein Magnetfeld empfindlich sind, welches parallel zur Sensoroberfläche verläuft. Dies ist beispielsweise bei lateralen Magnetotransistoren der Fall. Für Sensoren, die auf ein Magnetfeld empfindlich sind, das vertikal zur Sensoroberfläche verläuft, ist lediglich deren Einbaulage entsprechend zu wählen. Das Gegeneinanderschalten der beiden Magnetfeldsensoren bietet in Verbindung mit der erfindungsgemäßen speziellen Leitergeometrie (doppelte U- Form) weiterhin den Vorteil, dass, falls die Magnetfeldsensoren einen Signaloffset besitzen, der fertigungs- oder prozeßtechnisch bedingt ist, dann muß dieser Offset bei Verwendung eines einzelnen Sensors entweder durch eine entsprechend aufwendige Prozeßführung vermieden oder nachträglich durch die Auswerteschaltung abgeglichen werden. Durch die Verwendung zweier Magnetfeldsensoren, deren Signaloffset vergleichbar ist, beispielsweise durch geeignete Vorauswahl bei der Produktion, so wird dieser Offset durch die Gegeneinanderschaltung beider Sensoren kompensiert. Hierdurch werden auch automatisch eventuelle Temperaturabhängigkeiten des Offsets ebenfalls eliminiert . Die erfindungsgemäße Anordnung der Sensoren hat weiterhin den Vorteil, dass zum einen der Leiter 1 als Abschirmung gegen Streu- und Störfelder genutzt werden kann. Es werden also unerwünschte Magnetfelder oberhalb und unterhalb des Sensors abgeschirmt. Zum anderen werden auch magnetische Störfelder, die parallel zur Montageplatte 50 verlaufen und auf die die Sensormittel 15, 35 prinzipiell empfindlich reagieren würden, ausgeglichen, weil sich diese Störfelder durch die Gegeneinanderschaltung der Sensoren kompensieren. Erfindungsgemäß realisiert die Anordnung eine hohe Unempfindlichkeit gegen parasitäre Stör- und Streufelder. Der minimale Abstand der beiden Sensormittel 15, 35 voneinander wird nur durch den für den Hauptstromkreis benötigten Leiterdurchmesser begrenzt. Typischerweise ist der Abstand zwischen den Sensormitteln 15, 35 einige Millimeter bis wenige Zentimeter.Current direction orientation in the first and second sections 10, 20 and the third and fourth sections 30, 40. According to the invention, magnetic field sensors are used as sensor means 15, 35 which are sensitive to a magnetic field which runs parallel to the sensor surface. This is the case, for example, with lateral magnetotransistors. For sensors that are sensitive to a magnetic field that runs vertically to the sensor surface, only their installation position must be selected accordingly. The interconnection of the two magnetic field sensors in connection with the special conductor geometry according to the invention (double U-shape) also has the advantage that if the Magnetic field sensors have a signal offset that is due to manufacturing or process technology, then this offset must be avoided when using a single sensor either by a correspondingly complex process management or subsequently adjusted by the evaluation circuit. By using two magnetic field sensors whose signal offset is comparable, for example by suitable pre-selection during production, this offset is compensated for by connecting the two sensors in series. This also automatically eliminates any temperature dependencies of the offset. The arrangement of the sensors according to the invention has the further advantage that the conductor 1 can be used as a shield against stray and interference fields. Unwanted magnetic fields above and below the sensor are therefore shielded. On the other hand, magnetic interference fields that run parallel to the mounting plate 50 and to which the sensor means 15, 35 would in principle be sensitive are compensated because these interference fields are compensated for by the sensors being connected in series. According to the invention, the arrangement realizes a high level of insensitivity to parasitic interference and stray fields. The minimum distance between the two sensor means 15, 35 is limited only by the conductor diameter required for the main circuit. The distance between the sensor means 15, 35 is typically a few millimeters to a few centimeters.
Die gewählte Leitergeometrie bietet auch fertigungstechnische Vorteile bei der Montage. Die Montageplatte 50 kann sehr präzise durch geeignete Formgebung an den u-förmigen Stromleiter angepasst montiert werden. Hierzu sind beispielsweise nicht dargestellte halbrunde Nuten oder Aussparungen am oberen Rand der Montageplatte 50 vorgesehen. Die laterale Plazierung der Sensoren relativ zum Stromleiter ist dann durch deren Vormontage auf der strukturierten Montageplatte 50 gegeben. Prinzipiell kritisch wäre die Plazierung der Sensormittel 15, 35 genau in der Mitte zwischen dem ersten Abschnitt 10 und dem zweiten Abschnitt 20 bzw. zwischen dem dritten Abschnitt 30 und dem vierten Abschnitt 40. Hier genau die Mitte zu treffen ist wichtig, da dort das konstruktiv überlagerte Magnetfeld maximal ist . Um auch hier einen präzisen und reproduzierbaren Einbau zu gewährleisten, kann die Montageplatte 50 beispielsweise einseitig auf jeweils zwei der Abschnitte 10, 20, 30, 40 aufgelegt werden oder es können zwei Montageplatten vorgesehen sein, zwischen denen sich die Sensormittel 15, 35 befinden, und die zusammen mit den Sensormitteln 15, 35 genau den Abstand zwischen jeweils zwei Abschnitten 10, 20, 30, 40 ausfüllen. Für diese zweite Möglichkeit eignen sich beispielsweise Flipchip- Montagetechniken, Asic-Integration und ähnliches. Auf diese Weise wird eine teuere und aufwendige Präzisionsmontage durch die dargestellten selbstjustierenden Montageplatten vermieden.The selected conductor geometry also offers manufacturing advantages during assembly. The mounting plate 50 can be mounted very precisely by suitable shaping to the U-shaped current conductor. For this purpose, for example, semicircular grooves or recesses at the upper edge of the not shown Mounting plate 50 is provided. The lateral placement of the sensors relative to the current conductor is then given by their pre-assembly on the structured mounting plate 50. In principle, it would be critical to place the sensor means 15, 35 exactly in the middle between the first section 10 and the second section 20 or between the third section 30 and the fourth section 40. It is important to hit exactly the center here, since this is constructive superimposed magnetic field is maximum. In order to ensure a precise and reproducible installation here, too, the mounting plate 50 can, for example, be placed on one side on two of the sections 10, 20, 30, 40 or two mounting plates can be provided, between which the sensor means 15, 35 are located, and which together with the sensor means 15, 35 exactly fill the distance between two sections 10, 20, 30, 40. Flipchip assembly techniques, Asic integration and the like are suitable for this second possibility. In this way, an expensive and complex precision assembly is avoided by the self-adjusting mounting plates shown.
Die nicht dargestellte Auswerteschaltung sollte möglichst in der Nähe der Sensormittel 15, 35 plaziert werden, um Störungen bei der Signalübertragung zwischen Sensor- und Auswerteort zu minimieren. Hier bietet es sich an, die Auswerteschaltung auf der Montageplatte vorzusehen.The evaluation circuit (not shown) should be placed as close as possible to the sensor means 15, 35 in order to minimize interference in the signal transmission between the sensor and evaluation location. Here it makes sense to provide the evaluation circuit on the mounting plate.
Weiterhin ist es erfindungsgemäß vorgesehen, das gesamte System zu verpacken, wobei lediglich die, gegebenenfalls verlängerten Abschnitte 10, 20, 30, 40 für die Stromzuführung und für die Stromabführung aus dem Gehäuse ragen und weiterhin die Anschlüsse für die Auswerteschaltung zugänglich sind und wobei ansonsten die Leitergeometrie inklusive der Montageplatte 50, beispielsweise durch Vergußmasse, verpackt ist. Eine solchermaßen verpackte Sensoreinheit wird erfindungsgemäß als Strommesser bezeichnet. Die Integration eines solchen Strommessers in den Hauptstromkreis einer Applikation, beispielsweise dem Phasenstrang eines Generators, erfolgt dann insbesondere über geeignete Adapter oder durch Stecken, Löten, Schweißen usw.Furthermore, it is provided according to the invention to pack the entire system, with only the optionally extended sections 10, 20, 30, 40 for the power supply and for the power discharge protruding from the housing and the connections for the evaluation circuit still being accessible, and otherwise the Conductor geometry including the mounting plate 50, for example by Potting compound, is packed. According to the invention, a sensor unit packaged in this way is referred to as an ammeter. The integration of such a current meter into the main circuit of an application, for example the phase string of a generator, then takes place in particular via suitable adapters or by plugging, soldering, welding, etc.
Die Verpackung ermöglicht es darüber hinaus, zusätzlich Streu- bzw. Störfelder abzuschirmen. Da sich das für die Messung benötigte Magnetfeld des Stromleiters und die Sensormittel im Inneren des Strommessers befinden, kann daher das Innere problemlos durch Abschirmmaterial von der Außenwelt abgekapselt werden, falls die oben beschriebene konstruktiv bedingte Abschirmwirkung der Anordnung noch nicht ausreichend sein sollte. Dies könnte bei räumlich stark inhomogenen oder schnell variierenden Streufeldern der Fall sein. Als abschirmende Verpackung ist erfindungsgemäß eine spezielle Molt- oder Vergußmasse vorgesehen, die das Einbringen externer Störfelder verhindert. Möglich ist auch eine Ummantelung oder Bedampfung des gesamten Strommessers mit abschirmenden Materialien beispielsweise Abschirmfolie, μ-Metall, usw.The packaging also makes it possible to shield additional stray or interference fields. Since the magnetic field of the current conductor required for the measurement and the sensor means are located inside the current meter, the inside can be easily isolated from the outside world by shielding material if the design-related shielding effect of the arrangement described above is not yet sufficient. This could be the case with spatially strongly inhomogeneous or rapidly varying stray fields. According to the invention, a special molt or potting compound is provided as the shielding packaging, which prevents the introduction of external interference fields. It is also possible to sheath or vapor-coat the entire ammeter with shielding materials, for example shielding foil, μ-metal, etc.
In Figur 6 ist ein zweites Ausführungsbeispiel der erfindungsgemäßen Anordnung aus Leitergeometrie und Sensormittel dargestellt. Hierbei sind außer dem ersten Sensormittel 15 und dem zweiten Sensormittel 35 noch ein drittes Sensormittel 16 und ein viertes Sensormittel 36 vorgesehen, wobei das dritte Sensormittel 16 zwischen dem zweiten Abschnitt 20 und dem dritten Abschnitt 30 angeordnet ist und wobei das vierte Sensormittel 36 zwischen dem ersten Abschnitt 10 und dem vierten Abschnitt 40 angeordnet ist und wobei das dritte Sensormittel 16 und das vierte Sensormittel 36 auf einer weiteren Montageplatte 51 angeordnet ist. Hierbei sind auswertetechnisch jeweils die Meßsignale des ersten Sensormittels 15 und des zweiten Sensormittels 35 voneinander zu subtrahieren und die Meßsignale des dritten Sensormittels 16 und des vierten Sensormittels 35 voneinander zu subtrahieren und anschließend diese Ergebnisse zu addieren. Hierdurch erhält man gegenüber einem einfachen geraden Leiter das 8-fache Meßsignal, wobei wie oben beschrieben, das Sensorpaar bestehend aus dem ersten Sensormittel 15 und dem zweiten Sensormittel 35 und das Sensorpaar bestehend aus dem dritten Sensormittel 16 und dem vierten Sensormittel 36 jeweils für die gegenseitige Offset- , Temperatur- und Streufeldkompensation sorgen. FIG. 6 shows a second exemplary embodiment of the arrangement according to the invention consisting of conductor geometry and sensor means. In addition to the first sensor means 15 and the second sensor means 35, a third sensor means 16 and a fourth sensor means 36 are also provided, the third sensor means 16 being arranged between the second section 20 and the third section 30 and the fourth sensor means 36 being between the first Section 10 and the fourth section 40 is arranged and wherein the third sensor means 16 and the fourth sensor means 36 is arranged on a further mounting plate 51. In terms of evaluation, the measurement signals of the first sensor means 15 and the second sensor means 35 are to be subtracted from each other and the measurement signals of the third sensor means 16 and the fourth sensor means 35 are to be subtracted from one another and these results are then added. In this way, compared to a simple straight conductor, the 8-fold measurement signal is obtained, whereby, as described above, the sensor pair consisting of the first sensor means 15 and the second sensor means 35 and the sensor pair consisting of the third sensor means 16 and the fourth sensor means 36 each for the mutual Ensure offset, temperature and stray field compensation.

Claims

Ansprüche Expectations
1. Vorrichtung zur Messung der elektrischen Stromstärke in einem elektrischen Leiter (1) mit wenigstens einem Ξensormittel (15) und einem ersten Abschnitt (10) des Leiters (1) und einem zweiten Abschnitt (20) des Leiters1. Device for measuring the electrical current in an electrical conductor (1) with at least one sensor means (15) and a first section (10) of the conductor (1) and a second section (20) of the conductor
(1) , wobei die im ersten und zweiten Abschnitt vorgesehenen Stromrichtungen antiparallel vorgesehen sind und wobei das Sensormittel (15) zwischen dem ersten und dem zweiten Abschnitt (10, 20) vorgesehen ist.(1), the current directions provided in the first and second sections being provided in anti-parallel, and the sensor means (15) being provided between the first and second sections (10, 20).
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der erste Abschnitt (10) und der zweite Abschnitt (20) im Bereich der höchsten Empfindlichkeit des Sensormittels (15) im wesentlichen parallel zueinander verlaufen.2. Device according to claim 1, characterized in that the first section (10) and the second section (20) in the area of the highest sensitivity of the sensor means (15) run essentially parallel to one another.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Leiter (1) in einem ersten Leiterbereich (100) im wesentlichen hufeisenförmig vorgesehen ist und damit eine erste Hufeisenform bildet, wobei der erste Abschnitt (10) einen Teil des einen Schenkels der ersten Hufeisenform bildet und wobei der zweite Abschnitt (20) einen Teil des anderen Schenkels der ersten Hufeisenform bildet.3. Apparatus according to claim 1 or 2, characterized in that the conductor (1) in a first conductor region (100) is provided in a substantially horseshoe shape and thus forms a first horseshoe shape, the first section (10) being part of one leg of the forms the first horseshoe shape and wherein the second section (20) forms part of the other leg of the first horseshoe shape.
4. Vorrichtung nach Anspruch 1 oder 2 , dadurch gekennzeichnet, dass ein zweites Sensormittel (35), ein dritter Abschnitt (30) des Leiters (1) und ein vierter Abschnitt (40) des Leiters (1) vorgesehen ist, wobei die im dritten und vierten Abschnitt (30, 40) vorgesehenen Stromrichtungen antiparallel vorgesehen sind und wobei das zweite Sensormittel (35) zwischen dem dritten und dem vierten Abschnitt (30, 40) vorgesehen ist.4. The device according to claim 1 or 2, characterized in that a second sensor means (35), a a third section (30) of the conductor (1) and a fourth section (40) of the conductor (1) are provided, the current directions provided in the third and fourth sections (30, 40) being provided antiparallel and the second sensor means (35) is provided between the third and fourth sections (30, 40).
5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass der Leiter (1) in einem zweiten Leiterbereich (200) im wesentlichen hufeisenförmig vorgesehen ist und damit eine zweite Hufeisenform bildet, dass der dritte Abschnitt (30) ein Teil des einen Schenkels der zweiten Hufeisenform bildet, dass der vierte Abschnitt (40) ein Teil des anderen Schenkels der zweiten Hufeisenform bildet und dass ein Schenkel der ersten Hufeisenform und ein Schenkel der zweiten Hufeisenform verbunden sind.5. The device according to claim 4, characterized in that the conductor (1) is provided in a second conductor region (200) substantially horseshoe-shaped and thus forms a second horseshoe shape, that the third section (30) is part of one leg of the second horseshoe shape forms that the fourth section (40) forms part of the other leg of the second horseshoe shape and that one leg of the first horseshoe shape and one leg of the second horseshoe shape are connected.
6. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Leiterquerschnitt rund vorgesehen ist .6. Device according to one of the preceding claims, characterized in that the conductor cross section is provided round.
7. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Sensormittel (15, 35) ein Magnetfeldsensor, insbesondere ein Hall-Sensor, ein lateraler Magneto-Transistor und/oder ein magnetoresistiver Widerstand, ist .7. Device according to one of the preceding claims, characterized in that the sensor means (15, 35) is a magnetic field sensor, in particular a Hall sensor, a lateral magneto transistor and / or a magnetoresistive resistor.
8. Strommesser mit einer Vorrichtung nach einem der vorhergehenden Ansprüche .8. Ammeter with a device according to one of the preceding claims.
9. Kraftfahrzeug mit einer Vorrichtung oder einem Strommesser nach einem der vorhergehenden Ansprüche . 9. Motor vehicle with a device or an ammeter according to one of the preceding claims.
EP02704583A 2001-02-20 2002-01-16 Device, amperemeter and motor vehicle Withdrawn EP1364219A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10107811A DE10107811A1 (en) 2001-02-20 2001-02-20 Device, ammeter and motor vehicle
DE10107811 2001-02-20
PCT/DE2002/000101 WO2002066996A1 (en) 2001-02-20 2002-01-16 Device, amperemeter and motor vehicle

Publications (1)

Publication Number Publication Date
EP1364219A1 true EP1364219A1 (en) 2003-11-26

Family

ID=7674633

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02704583A Withdrawn EP1364219A1 (en) 2001-02-20 2002-01-16 Device, amperemeter and motor vehicle

Country Status (5)

Country Link
US (1) US20030155905A1 (en)
EP (1) EP1364219A1 (en)
JP (1) JP2004518976A (en)
DE (1) DE10107811A1 (en)
WO (1) WO2002066996A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2910636B1 (en) * 2006-12-22 2009-02-20 Actaris Sas Soc Par Actions Si INDUCTIVE CURRENT MEASURING SENSOR
DE102008039568B4 (en) * 2008-08-25 2015-03-26 Seuffer gmbH & Co. KG Current detection device
JP5084680B2 (en) * 2008-09-18 2012-11-28 東光東芝メーターシステムズ株式会社 Current detection device and watt-hour meter using the same
US9222992B2 (en) * 2008-12-18 2015-12-29 Infineon Technologies Ag Magnetic field current sensors
JP5633917B2 (en) * 2009-03-03 2014-12-03 東光東芝メーターシステムズ株式会社 Current detection device and watt-hour meter using the same
JP5641276B2 (en) * 2009-07-02 2014-12-17 甲神電機株式会社 Current sensor
US8717016B2 (en) 2010-02-24 2014-05-06 Infineon Technologies Ag Current sensors and methods
US8680843B2 (en) 2010-06-10 2014-03-25 Infineon Technologies Ag Magnetic field current sensors
JP5794777B2 (en) 2010-12-22 2015-10-14 三菱電機株式会社 Semiconductor device
US8975889B2 (en) 2011-01-24 2015-03-10 Infineon Technologies Ag Current difference sensors, systems and methods
JP5747564B2 (en) * 2011-03-03 2015-07-15 株式会社リコー Current sensor
US8963536B2 (en) 2011-04-14 2015-02-24 Infineon Technologies Ag Current sensors, systems and methods for sensing current in a conductor
DE102013112760A1 (en) * 2013-11-19 2015-05-21 Danfoss Silicon Power Gmbh Power module with integrated current measurement
JP2020071100A (en) * 2018-10-30 2020-05-07 矢崎総業株式会社 Current detection method and current detection structure
JP7258526B2 (en) 2018-11-30 2023-04-17 株式会社東芝 current detector

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH650357A5 (en) * 1981-03-26 1985-07-15 Landis & Gyr Ag MAGNETIC CORE-FREE MEASURING CONVERTER FOR POTENTIAL-FREE MEASUREMENT OF A MEASURING CURRENT.
US4733938A (en) * 1981-11-09 1988-03-29 The Board Of Trustees Of The Leland Stanford Junior University Magneto-optic rotator
EP0155391B1 (en) * 1984-01-07 1989-09-13 DODUCO KG. Dr. Eugen Dürrwächter Device for measuring electrical currents using a magnetic-field sensor
CH670004A5 (en) * 1986-02-10 1989-04-28 Landis & Gyr Ag
DE4012839B4 (en) * 1989-04-26 2004-02-26 Atg Test Systems Gmbh & Co.Kg Method and test device for testing electrical or electronic devices under test
DE4031560C2 (en) * 1990-10-05 1993-10-14 Dieter Prof Dr Ing Seitzer Current sensor with components sensitive to magnetic fields and use
EP0578948A1 (en) * 1992-07-14 1994-01-19 Landis & Gyr Technology Innovation AG Arrangement for measuring power or current components of an impedance
US5642041A (en) * 1994-11-21 1997-06-24 General Electric Company Alternating current sensor employing parallel plates and having high dynamic range and accuracy
DE19549181A1 (en) * 1995-12-30 1997-07-03 Bosch Gmbh Robert Appliance for measuring the current in conductor
US6184672B1 (en) * 1997-08-15 2001-02-06 General Electric Company Current sensor assembly with electrostatic shield
DE19821492A1 (en) * 1998-05-14 1999-11-25 Daimler Chrysler Ag Contactless measuring of current in conductor track of e.g. battery short-circuit safety system in motor vehicle
DE19902073A1 (en) * 1999-01-20 2000-08-10 Bosch Gmbh Robert Electrical conductor with ignition device
DE19946935B4 (en) * 1999-09-30 2004-02-05 Daimlerchrysler Ag Device for inductive current measurement with at least one differential sensor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02066996A1 *

Also Published As

Publication number Publication date
JP2004518976A (en) 2004-06-24
DE10107811A1 (en) 2002-09-19
WO2002066996A1 (en) 2002-08-29
US20030155905A1 (en) 2003-08-21

Similar Documents

Publication Publication Date Title
EP1352254A2 (en) Device, ammeter and motor vehicle
EP1110094B1 (en) Device and method for creating one or more magnetic field gradients through a straight conductor
EP2223128B1 (en) Arrangement for the potential-free measurement of currents
EP0874244B1 (en) Procedure and apparatus for measuring electric currents in conductors
WO2002066996A1 (en) Device, amperemeter and motor vehicle
DE102008039568B4 (en) Current detection device
WO2019072421A1 (en) Current sensor assembly
DE102007003830B4 (en) Device for measuring an electrical current flowing through an electrical conductor
DE102017106590A1 (en) current sensor
DE112012002744T5 (en) CURRENT SENSOR
DE102005036552A1 (en) High accuracy current sensor
EP3248019B1 (en) Magnetic field sensor device for measuring the current flowing through a current-carrying conductor
DE102014103190A1 (en) Sensors, systems and methods for detecting fault current
DE112016002481T5 (en) current sensor
DE10108640A1 (en) Contact-free current measurement device has an array of two similar magnetic field sensors for measuring equal currents flowing in opposite directions in parallel conductors, such that measurements are insensitive to position
DE10141849B4 (en) A current detector device and method for detecting electrical current
EP4010714B1 (en) Magnetic field-based current sensor for frequency-compensated measurement of alternating currents
DE102019124391B4 (en) Magnetic field-based current sensor for frequency-compensated measurement of alternating currents
DE102021106661A1 (en) Magnetic sensor and method for producing such a magnetic control device and method for designing a current sensor
DE102021119837B4 (en) current sensor
DE102019214726A1 (en) ELECTRICITY DETECTION METHOD AND ELECTRICITY DETECTION STRUCTURE
DE102020117557B4 (en) Current sensor for measuring the electrical current of a busbar
DE102021129216B4 (en) Current sensor and electrical control unit
EP2116855B1 (en) Current measuring device
DE202013010178U1 (en) Current detection device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030922

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20050801