EP1364094A1 - Reinforcing bar and method for the production thereof - Google Patents

Reinforcing bar and method for the production thereof

Info

Publication number
EP1364094A1
EP1364094A1 EP02712807A EP02712807A EP1364094A1 EP 1364094 A1 EP1364094 A1 EP 1364094A1 EP 02712807 A EP02712807 A EP 02712807A EP 02712807 A EP02712807 A EP 02712807A EP 1364094 A1 EP1364094 A1 EP 1364094A1
Authority
EP
European Patent Office
Prior art keywords
strand
fibers
reinforcing bar
bar according
ribs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02712807A
Other languages
German (de)
French (fr)
Inventor
Alexander Bleibler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sika Technology AG
Original Assignee
Sika Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sika Schweiz AG filed Critical Sika Schweiz AG
Publication of EP1364094A1 publication Critical patent/EP1364094A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/07Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/14Twisting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/52Pultrusion, i.e. forming and compressing by continuously pulling through a die
    • B29C70/525Component parts, details or accessories; Auxiliary operations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2918Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
    • Y10T428/2931Fibers or filaments nonconcentric [e.g., side-by-side or eccentric, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament
    • Y10T428/2967Synthetic resin or polymer
    • Y10T428/2969Polyamide, polyimide or polyester
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2973Particular cross section
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2973Particular cross section
    • Y10T428/2976Longitudinally varying

Definitions

  • the invention relates to a reinforcing bar for mineral building materials, in particular for concrete, and a method for its production.
  • Components such as B. ceilings or beams must absorb pressure, tensile and shear forces. For this reason, such components are usually made of reinforced concrete or prestressed concrete. Concrete is subjected to pressure and steel to tension. The bars or necessary for the reinforcement or reinforcement of the concrete. Up to now, wires have mainly been made from steel. Steel has the advantage that it is chemically compatible with concrete. A disadvantage, however, is the susceptibility to corrosion due to rust formation. If rust occurs, the concrete flakes off the reinforcing bar, which can lead to damage and destruction. This requires constant inspection and repair of reinforced concrete structures.
  • the object of the invention is to develop a reinforcing bar for mineral building materials, in particular for concrete, which is easy to manufacture and securely anchored in the building material and which can be transported and assembled without risk of damage.
  • the combinations of features specified in claims 1 and 15 are proposed.
  • Advantageous refinements and developments of the invention result from the dependent claims.
  • the reinforcing rod is formed by a fiber-reinforced plastic strand which has a central elongated strand core and a plurality of strand ribs which are arranged at an angular distance from one another and which extend over the length of the strand core and which protrude in cross-section in a star or cross shape the core axis are continuously helically twisted.
  • the strand ribs expediently project over the core surface by at least one rib width corresponding to the core diameter.
  • the helical winding of the strand ribs results in a form-fitting anchoring of the reinforcing bars in the concrete.
  • the reinforcing fibers are designed as longitudinal fibers that run continuously along the strand and are aligned axially parallel in the core area and in the rib area in the upward direction of the strand ribs.
  • the individual reinforcing fibers formed as longitudinal fibers in the rib region expediently run at a constant distance from the core axis.
  • the strand is additionally reinforced with transverse or circumferential fibers, at least in the area of the strand ribs.
  • the transverse fibers prevent the grooves between the strand ribs from buckling or sagging when the reinforcing bars are stacked on top of one another during transport and when walking on. Due to the helically twisted strand ribs, contact points are formed at sufficiently short intervals when the bars are layered one on top of the other, which ensure that no deformation occurs under load. The latter is also in the assembled state important if the reinforcing bars are laid criss-cross.
  • the transverse fibers in the reinforcing bars have the function of tensile reinforcement
  • the transverse fibers have the function of kink reinforcement.
  • a preferred embodiment of the invention provides that the strand ribs are arranged at equal angular distances from one another and that the strand ribs are twisted with a constant pitch. In principle, however, it is also possible to twist the strand ribs along the strand with a variable pitch.
  • the pitch angle of the strand ribs relative to the core axis can be set and optimized within relatively wide limits. It is expediently between 15 and 75 °, preferably 30 to 50 °.
  • the longitudinal and transverse fibers suitably form a woven or non-woven fabric.
  • the reinforcing fibers are advantageously selected from the group consisting of carbon fibers, glass fibers, aramid fibers, high-strength polyethylene fibers, basalt fibers, natural fibers or from a mixture of these fibers. Because of the chemical compatibility with concrete, the reinforcing fibers are expediently chosen as carbon fibers near the surface of the strand, while the cheaper glass fibers and the like can also be used in deeper layers of the interior of the strand.
  • the plastic matrix of the strand can consist of a thermosetting polymer material, preferably from the group of epoxy resin, polyester resin, vinyl resin.
  • the plastic matrix made of a thermoplastic, preferably from the group polyamide (PA), polymethyl methacrylate (PMMA), polyphenylene sulfide (PPS), polypropylene (PP), polyethylene terephthalate ( PET), polybutylene terephthalate (PBT), polyetherimide (PEI), styrene polymer (ABS), polyether ether ketones (PEEK).
  • the method for producing the reinforcing bars according to the invention essentially consists in twisting and cutting a fiber-reinforced plastic strand with a star-shaped or cruciform cross-section in a helical manner.
  • a prefabricated, plate, tape or tube-shaped starting material made of fiber-reinforced plastic is formed, preferably folded, to form a cross-shaped or star-shaped strand, and then twisted and cured helically. It is particularly advantageous if the sheet, strip or hose material containing a thermoplastic as a binder matrix is shaped into the fiber-reinforced plastic strand under the action of pressure and heat. At least two layers of different fiber materials can be used in the production of the fiber reinforcement in the plate, tape or tube-shaped starting material, an outer layer advantageously consisting of carbon fibers.
  • Fig. 1a and b a cross-section reinforcing bar before and after the helical twist in a graphical
  • Fig. 2a to c a plate or ribbon-shaped starting material (Fig. 2a) and a tubular starting material (Fig. 2b) for Production of a cross-shaped twisted reinforcing bar (Fig. 2c) in a diagrammatic, partially broken representation.
  • the reinforcing bars shown in the drawing are intended for the reinforcement of concrete components.
  • the reinforcing rod 10 consists of a fiber-reinforced strand of plastic which has a central, elongated strand core 12 and a plurality of strand ribs 14 which are arranged at an angular distance from one another over the length of the strand core and which project in a star or cross shape in cross section.
  • the starting product is, for example, the strand structure 10 ′ shown in FIG. 1 a, the strand ribs 14 of which are twisted helically around the core axis 16 in the same direction and with the same pitch to form the reinforcement rod shown in FIG. 1 b.
  • Some of the reinforcing fibers are designed as longitudinal fibers 18. In the end product according to FIG.
  • the longitudinal fibers 18 in the core region run parallel to the core axis 16, while in the region of the strand ribs 14 they are aligned parallel to the ribs, that is to say in the direction of slope of the strand ribs 14.
  • the individual longitudinal fibers 18 in the rib region have a constant distance from the core axis 16 over their entire length.
  • the longitudinal fibers 18 within the reinforcing rod 10 have the primary task of absorbing tensile forces.
  • the twisting of the strand ribs 14 results in a stable positive fit within the concrete, which despite the otherwise smooth surface of the reinforcing bar prevents the reinforcing bar 10 from being released from the bond with the surrounding concrete.
  • the reinforcing fibers 20 runs essentially transversely to the longitudinal fibers 18 within the strand structure. This is also the case in the region of the strand ribs 14.
  • the cross fibers 20 form a kink reinforcement, the transverse forces acting on the reinforcing bar 10 can absorb to reduce the risk of kinking.
  • the pitch angle of the strand ribs 14 is approximately 30 to 40 ° relative to the core axis 16. Since a total of four strand ribs are provided here, when the reinforcing bars are stacked on top of one another, there are sufficiently short support lengths between two support points, which counteract a load or when a deflection is caused.
  • FIG. 2a to c indicate schematically that for the production of the reinforcing bars with a cross-shaped cross-section, plate-like or band-shaped starting material 10 "(FIG. 2a) or tubular starting material 10 '" (FIG. 2b) can also be used.
  • the plate-like or band-shaped starting material 10 ′′ There are various possibilities for the production of the plate-like or band-shaped starting material 10 ′′.
  • roll trusion process individual threads, fabrics or scrims are pre-impregnated and passed through a roller press. A thin strip is produced which is still relevant for the purposes relevant here This is why several tapes have to be placed on top of one another and connected to one another by heating and fusing. Tapes with different reinforcing inserts such as carbon fiber or glass can also be used.
  • the tapes prefabricated in this way are finally heated, folded into a cross and
  • One disadvantage of this procedure is the relatively slow production speed, and only high-quality thermoplastics, such as polyamides, can be used for the binder matrix.
  • plate material Another possibility for the production of plate material is that prefabricated fabrics and scrims are impregnated with a binder and fed to a double belt press.
  • the fabrics or scrims can be combined from different fibers and made of relatively thick be educated.
  • the result is an endless plate material 10 ", which can be deformed and twisted, for example, into the desired cross shape at elevated temperature.
  • Thermoplastic from the group polyamide (PA), polymethyl methacrylate (PMMA), polyphenylene sulfide (PPS), polypropylene (PP), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyetherimide can be used as binders (PEI), styrene polymer (ABS), polyether ether ketones (PEEK)
  • PA polyamide
  • PMMA polymethyl methacrylate
  • PPS polyphenylene sulfide
  • PP polypropylene
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PES polyetherimide
  • the material is first heated up in the double belt press and gradually cooled over the length of the press, so that material that has already hardened comes out at the end in the high production speed, including the variability in the fibers and in the binder materials allow cost optimization.
  • impregnated continuous fibers are pulltruded over a mandrel. This can be done in several stages, and a cross winding can also be applied after each process stage.
  • a tube 10 '"with longitudinal and transverse fibers is obtained, the fibers also being able to be made of different materials, such as carbon fibers on the outside and glass on the inside.
  • the tube is then subsequently heated, pressed to the cross and twisted.
  • impregnated braided hoses made of the desired fiber material can also be used for the manufacture of the hoses.
  • Braided hoses are first produced in the form of a fiber hose in braiding machines and subsequently impregnated with the binder. The impregnated tube is then pressed again in a cross shape and twisted. In principle, it is also possible to first deform the braided hoses in a cross shape and only then to impregnate them.
  • the invention relates to a reinforcing bar for mineral building materials, in particular for concrete.
  • the reinforcing rod 10 according to the invention consists of a fiber-reinforced strand made of plastic, which has a central, elongated strand core 12 and a plurality of strand ribs 14 which extend over the length of the strand core and are arranged at an angular distance from one another and have a star-shaped or cruciform cross section and which extend around the core axis 16 are helically twisted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Reinforcement Elements For Buildings (AREA)
  • Moulding By Coating Moulds (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

The invention relates to a reinforcing bar for mineral building materials, particularly for cement. The inventive reinforcing bar (10) is made of a bar of plastic material reinforced by fibre, which has a central, elongate core (12) and several ribs (14) which extend along the length of the core, which are disposed at an angular distance from each other, which form a cross or a star in the cross section thereof and which are twisted around the core axis (16) in a helical manner.

Description

Armierungsstab sowie Verfahren zu dessen HerstellungReinforcing bar and method for its production
Beschreibungdescription
Die Erfindung betrifft einen Armierungsstab für mineralische Baustoffe, insbesondere für Beton sowie ein Verfahren für dessen Herstellung.The invention relates to a reinforcing bar for mineral building materials, in particular for concrete, and a method for its production.
Bauteile, wie z. B. Decken oder Träger, müssen Druck-, Zug- und Schubkräfte aufnehmen. Deshalb werden solche Bauteile in der Regel aus Stahl- beton oder Spannbeton hergestellt. Beton wird auf Druck und Stahl auf Zug beansprucht. Die für die Bewehrung oder Armierung des Betons notwendigen Stäbe oder. Drähte werden bisher überwiegend aus Stahl hergestellt. Stahl hat dabei an sich den Vorteil, daß er sich chemisch mit Beton verträgt. Ein Nachteil besteht jedoch in der Korrosionsanfälligkeit durch Rostbildung. Beim Auftreten von Rost platzt der Beton von dem Armierungsstab ab, so daß es zu Beschädigungen und Zerstörungen kommen kann. Dies erfordert eine ständige Kontrolle und Reparatur von Stahlbeton-Bauwerken.Components such as B. ceilings or beams, must absorb pressure, tensile and shear forces. For this reason, such components are usually made of reinforced concrete or prestressed concrete. Concrete is subjected to pressure and steel to tension. The bars or necessary for the reinforcement or reinforcement of the concrete. Up to now, wires have mainly been made from steel. Steel has the advantage that it is chemically compatible with concrete. A disadvantage, however, is the susceptibility to corrosion due to rust formation. If rust occurs, the concrete flakes off the reinforcing bar, which can lead to damage and destruction. This requires constant inspection and repair of reinforced concrete structures.
Um dies zu vermeiden, ist bereits vorgeschlagen worden, den Stahl mit Kunstharz, beispielsweise mit Epoxidharz zu überziehen. Es hat sich jedoch gezeigt, daß bei Beschädigung der Kunstharzbeschichtung sich eine Punktkorrosion an Roststellen herausbildet, die schnell voranschreitet. Ein weiterer Nachteil der beschichteten Stahlarmierung besteht in der geringen Haftung zwischen Beton und Armierung. Der Formschluß an den Oberflächenrippen der Armierungsstäbe reicht wegen des fehlenden Haftschlusses nicht aus.To avoid this, it has already been proposed to coat the steel with synthetic resin, for example with epoxy resin. It has been shown, however, that if the synthetic resin coating is damaged, spot corrosion at rust spots develops which progresses rapidly. Another disadvantage of coated steel reinforcement is the low adhesion between concrete and reinforcement. The form fit on the surface ribs of the reinforcing bars is not sufficient due to the lack of an adhesive bond.
Ausgehend hiervon liegt der Erfindung die Aufgabe zugrunde, einen Armierungsstab für mineralische Baustoffe, insbesondere für Beton zu entwickeln, der einfach herstellbar und im Baustoff sicher verankerbar ist und der ohne Beschädigungsgefahr transportierbar und montierbar ist. Zur Lösung dieser Aufgabe werden die in den Ansprüchen 1 und 15 angegebenen Merkmalskombinationen vorgeschlagen. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.Proceeding from this, the object of the invention is to develop a reinforcing bar for mineral building materials, in particular for concrete, which is easy to manufacture and securely anchored in the building material and which can be transported and assembled without risk of damage. To achieve this object, the combinations of features specified in claims 1 and 15 are proposed. Advantageous refinements and developments of the invention result from the dependent claims.
Ein erfindungswesentlicher Gedanke besteht darin, daß der Armierungsstab durch einen faserverstärkten Kunststoffstrang gebildet ist, der einen zentralen langgestreckten Strangkern und mehrere im Winkelabstand voneinander angeordnete, sich über die Länge des Strangkerns erstreckende, im Quer- schnitt stern- oder kreuzförmig abstehende Strangrippen aufweist, die um die Kernachse jeweils durchgehend schraubenförmig verdrallt sind. Die Strangrippen stehen dabei zweckmäßig um mindestens eine dem Kerndurchmesser entsprechende Rippenbreite über die Kernoberfläche über. Durch die schraubenförmige Windung der Strangrippen ergibt sich eine formschlüssige Verankerung der Armierungsstäbe im Beton. Um die erwünschten Zugkräfte aufnehmen zu können, ist zumindest ein Teil der Verstärkungsfasern als Längsfasem ausgebildet, die ununterbrochen entlang dem Strang verlaufen und im Kernbereich achsparallel und im Rippenbereich in Steigungsrichtung der Strangrippen ausgerichtet sind. Die einzelnen als Längsfasern ausgebildeten Verstärkungsfasern im Rippenbereich verlaufen dabei zweckmäßig in konstantem Abstand von der Kernachse.An idea essential to the invention is that the reinforcing rod is formed by a fiber-reinforced plastic strand which has a central elongated strand core and a plurality of strand ribs which are arranged at an angular distance from one another and which extend over the length of the strand core and which protrude in cross-section in a star or cross shape the core axis are continuously helically twisted. The strand ribs expediently project over the core surface by at least one rib width corresponding to the core diameter. The helical winding of the strand ribs results in a form-fitting anchoring of the reinforcing bars in the concrete. In order to be able to absorb the desired tensile forces, at least some of the reinforcing fibers are designed as longitudinal fibers that run continuously along the strand and are aligned axially parallel in the core area and in the rib area in the upward direction of the strand ribs. The individual reinforcing fibers formed as longitudinal fibers in the rib region expediently run at a constant distance from the core axis.
Um eine zuverlässige Handhabung der Armierungsstäbe auf der Baustelle zu ermöglichen, ist der Strang zumindest im Bereich der Strangrippen zu- sätzlich mit Quer- oder Umfangsfasern verstärkt. Die Querfasern verhindern ein Knicken oder Absacken der zwischen den Strangrippen befindlichen Rillen im übereinandergeschichteten Zustand der Armierungsstäbe beim Transport und beim Begehen. Durch die schraubenförmig verdrallten Strangrippen werden beim Übereinanderschichten der Stäbe Anlagepunkte in aus- reichend kurzen Abständen gebildet, die dafür sorgen, daß bei einer Belastung keine Verformung auftritt. Letzteres ist auch im montierten Zustand wichtig, wenn die Armierungsstäbe kreuz und quer verlegt werden. Während die Längsfasern in den Armierungsstäben die Funktion einer Zugarmierung aufweisen, kommt den Querfasern die Funktion einer Knickarmierung zu. Eine bevorzugte Ausgestaltung der Erfindung sieht vor, daß die Strangrippen in gleichen Winkelabständen voneinander angeordnet sind und daß die Strangrippen mit konstanter Ganghöhe verdrallt sind. Grundsätzlich ist es jedoch auch möglich, die Strangrippen entlang dem Strang mit variabler Ganghöhe zu verdrallen. Der Steigungswinkel der Strangrippen relativ zur Kernachse kann in relativ weiten Grenzen eingestellt und optimiert werden. Er beträgt zweckmäßig zwischen 15 und 75°, vorzugsweise 30 bis 50°.In order to enable reliable handling of the reinforcing bars on the construction site, the strand is additionally reinforced with transverse or circumferential fibers, at least in the area of the strand ribs. The transverse fibers prevent the grooves between the strand ribs from buckling or sagging when the reinforcing bars are stacked on top of one another during transport and when walking on. Due to the helically twisted strand ribs, contact points are formed at sufficiently short intervals when the bars are layered one on top of the other, which ensure that no deformation occurs under load. The latter is also in the assembled state important if the reinforcing bars are laid criss-cross. While the longitudinal fibers in the reinforcing bars have the function of tensile reinforcement, the transverse fibers have the function of kink reinforcement. A preferred embodiment of the invention provides that the strand ribs are arranged at equal angular distances from one another and that the strand ribs are twisted with a constant pitch. In principle, however, it is also possible to twist the strand ribs along the strand with a variable pitch. The pitch angle of the strand ribs relative to the core axis can be set and optimized within relatively wide limits. It is expediently between 15 and 75 °, preferably 30 to 50 °.
Die Längs- und Querfasern bilden zweckmäßig ein Fasergewebe oder -gelege. Die Verstärkungsfasern werden vorteilhafterweise aus der Gruppe Kohlenstofffasern, Glasfasern, Aramidfasem, hochfeste Polyethylenfasern, Basaltfasern, Naturfasern oder aus einem Gemisch aus diesen Fasern gewählt. Wegen der chemischen Verträglichkeit mit Beton werden zweckmäßig die Verstärkungsfasern in Oberflächennähe des Strangs als Kohlenstofffasern gewählt, während in tieferen Schichten des Stranginneren auch die preiswerteren Glasfasern und dergleichen verwendet werden können.The longitudinal and transverse fibers suitably form a woven or non-woven fabric. The reinforcing fibers are advantageously selected from the group consisting of carbon fibers, glass fibers, aramid fibers, high-strength polyethylene fibers, basalt fibers, natural fibers or from a mixture of these fibers. Because of the chemical compatibility with concrete, the reinforcing fibers are expediently chosen as carbon fibers near the surface of the strand, while the cheaper glass fibers and the like can also be used in deeper layers of the interior of the strand.
Die Kunststoffmatrix des Strangs kann aus einem duroplastischen Polymermaterial, vorzugsweise aus der Gruppe Epoxidharz, Polyesterharz, Vinylharz bestehen. Um eine einfachere Verformung des Strangs beim Herstellungsvorgang zu ermöglichen, kann es von Vorteil sein, wenn die Kunststoffmatrix aus einem thermoplastischen Kunststoff vorzugsweise aus der Gruppe Polyamid (PA), Polymethylmethacrylat (PMMA), Polyphenylensulfid (PPS), Polypropylen (PP), Polyethylenterephtalat (PET), Polybutylenterephtalat (PBT), Polyetherimid (PEI), Styrol-Polymerisat (ABS), Polyetheretherketone (PEEK) besteht. Das Verfahren zur Herstellung der erfindungsgemäßen Armierungsstäbe besteht im wesentlichen darin, daß ein faserverstärkter Kunststoffstrang mit stern- oder kreuzförmigem Querschnitt schraubenförmig verdrallt und abgelängt wird.The plastic matrix of the strand can consist of a thermosetting polymer material, preferably from the group of epoxy resin, polyester resin, vinyl resin. In order to make it easier to deform the strand during the manufacturing process, it may be advantageous if the plastic matrix made of a thermoplastic, preferably from the group polyamide (PA), polymethyl methacrylate (PMMA), polyphenylene sulfide (PPS), polypropylene (PP), polyethylene terephthalate ( PET), polybutylene terephthalate (PBT), polyetherimide (PEI), styrene polymer (ABS), polyether ether ketones (PEEK). The method for producing the reinforcing bars according to the invention essentially consists in twisting and cutting a fiber-reinforced plastic strand with a star-shaped or cruciform cross-section in a helical manner.
Grundsätzlich ist es dabei möglich, in den Kunststoffstrang im Zuge seiner Herstellung nach Pulltrusions-Verfahren (Strangziehen) eine Faser- oder Gewebeeinlage einzubetten.In principle, it is possible to embed a fiber or fabric insert in the plastic strand in the course of its manufacture using the pull-trusion method.
Bevorzugt wird zur Herstellung des erfindungsgemäßen Kunststoffstrangs ein vorgefertigtes, platten-, band- oder schlauchförmiges Ausgangsmaterial aus faserverstärktem Kunststoff unter Bildung eines im Querschnitt kreuz- oder sternförmigen Strangs umgeformt, vorzugsweise gefaltet, und im Anschluß daran schraubenförmig verdrallt und ausgehärtet. Von besonderem Vorteil ist es dabei, wenn das einen thermoplastischen Kunststoff als Bindemittelmatrix enthaltende Platten-, Band- oder Schlauchmaterial unter Einwirkung von Druck und Wärme in den faserverstärkten Kunststoffstrang umgeformt wird. Bei der Herstellung der Faserverstärkung in dem platten-, band- oder schlauchförmigen Ausgangsmaterial können mindestens zwei Lagen aus unterschiedlichen Fasermaterialien verwendet werden, wobei eine Außenlage zweckmäßig aus Kohlenstofffasern besteht.For the production of the plastic strand according to the invention, a prefabricated, plate, tape or tube-shaped starting material made of fiber-reinforced plastic is formed, preferably folded, to form a cross-shaped or star-shaped strand, and then twisted and cured helically. It is particularly advantageous if the sheet, strip or hose material containing a thermoplastic as a binder matrix is shaped into the fiber-reinforced plastic strand under the action of pressure and heat. At least two layers of different fiber materials can be used in the production of the fiber reinforcement in the plate, tape or tube-shaped starting material, an outer layer advantageously consisting of carbon fibers.
Im folgenden wird die Erfindung anhand der in der Zeichnung in schemati- scher Weise dargestellten Ausführungsbeispiele näher erläutert. Es zeigenThe invention is explained in more detail below on the basis of the exemplary embodiments shown schematically in the drawing. Show it
Fig. 1a und b einen im Querschnitt kreuzförmigen Armierungsstab vor und nach der schraubenförmigen Verdrallung in schaubildlicherFig. 1a and b a cross-section reinforcing bar before and after the helical twist in a graphical
Darstellung;Presentation;
Fig. 2a bis c ein platten- oder bandförmiges Ausgangsmaterial (Fig. 2a) und ein schlauchförmiges Ausgangsmaterial (Fig. 2b) zur Herstellung eines im Querschnitt kreuzförmigen verdrallten Armierungsstabs (Fig. 2c) in schaubildlicher, teilweise aufgebrochener Darstellung.Fig. 2a to c a plate or ribbon-shaped starting material (Fig. 2a) and a tubular starting material (Fig. 2b) for Production of a cross-shaped twisted reinforcing bar (Fig. 2c) in a diagrammatic, partially broken representation.
Die in der Zeichnung dargestellten Armierungsstäbe sind für die Bewehrung von Beton-Bauteilen bestimmt.The reinforcing bars shown in the drawing are intended for the reinforcement of concrete components.
Der Armierungsstab 10 besteht aus einem faserverstärktem Strang aus Kunststoff, der einen zentralen, langgestreckten Strangkern 12 und mehrere über die Länge des Strangkerns im Winkelabstand voneinander angeordnete, im Querschnitt stern- oder kreuzförmig abstehende Strangrippen 14 aufweist. Ausgangsprodukt ist beispielsweise das in Fig. 1a gezeigte Stranggebilde 10', dessen Strangrippen 14 zur Bildung des in Fig. 1b gezeigten Ar- mierungsstabs um die Kernachse 16 in gleicher Richtung und mit gleicher Steigung schraubenförmig verdrallt sind. Ein Teil der Verstärkungsfasern sind als Längsfasern 18 ausgebildet. Im Endprodukt gemäß Fig. 1 b verlaufen die Längsfasern 18 im Kernbereich parallel zur Kernachse 16, während sie im Bereich der Strangrippen 14 rippenparallel, also in Steigungsrichtung der Strangrippen 14 ausgerichtet sind. Die einzelnen Längsfasern 18 im Rippenbereich haben über ihre gesamte Länge einen konstanten Abstand von der Kernachse 16. Die Längsfasern 18 haben innerhalb des Armierungsstabs 10 vor allem die Aufgabe, Zugkräfte aufzunehmen. Durch die Verdrallung der Strangrippen 14 ergibt sich innerhalb des Betons ein stabiler Formschluß, der trotz der ansonsten glatten Oberfläche des Armierungsstabs verhindert, daß sich der Armierungsstab 10 aus dem Verbund mit dem umgebenen Beton lösen kann.The reinforcing rod 10 consists of a fiber-reinforced strand of plastic which has a central, elongated strand core 12 and a plurality of strand ribs 14 which are arranged at an angular distance from one another over the length of the strand core and which project in a star or cross shape in cross section. The starting product is, for example, the strand structure 10 ′ shown in FIG. 1 a, the strand ribs 14 of which are twisted helically around the core axis 16 in the same direction and with the same pitch to form the reinforcement rod shown in FIG. 1 b. Some of the reinforcing fibers are designed as longitudinal fibers 18. In the end product according to FIG. 1 b, the longitudinal fibers 18 in the core region run parallel to the core axis 16, while in the region of the strand ribs 14 they are aligned parallel to the ribs, that is to say in the direction of slope of the strand ribs 14. The individual longitudinal fibers 18 in the rib region have a constant distance from the core axis 16 over their entire length. The longitudinal fibers 18 within the reinforcing rod 10 have the primary task of absorbing tensile forces. The twisting of the strand ribs 14 results in a stable positive fit within the concrete, which despite the otherwise smooth surface of the reinforcing bar prevents the reinforcing bar 10 from being released from the bond with the surrounding concrete.
Ein anderer Teil der Verstärkungsfasern 20 verläuft innerhalb des Strangge- bildes im wesentlichen quer zu den Längsfasern 18. Dies ist auch im Bereich der Strangrippen 14 der Fall. Die Querfasern 20 bilden eine Knickarmierung, die auf den Armierungsstab 10 einwirkende Querkräfte zur Verminderung der Knickgefahr aufnehmen kann. Bei dem in Fig. 1 b gezeigten Ausführungsbeispiel beträgt der Steigungswinkel der Strangrippen 14 relativ zur Kernachse 16 etwa 30 bis 40°. Da hier insgesamt vier Strangrippen vorge- sehen sind, ergeben sich beim Aufeinanderstapeln der Armierungsstäbe ausreichend kurze Abstützlängen zwischen zwei Auflagepunkten, die bei einer Belastung oder beim Begehen einer Durchbiegung entgegenwirken.Another part of the reinforcing fibers 20 runs essentially transversely to the longitudinal fibers 18 within the strand structure. This is also the case in the region of the strand ribs 14. The cross fibers 20 form a kink reinforcement, the transverse forces acting on the reinforcing bar 10 can absorb to reduce the risk of kinking. In the exemplary embodiment shown in FIG. 1 b, the pitch angle of the strand ribs 14 is approximately 30 to 40 ° relative to the core axis 16. Since a total of four strand ribs are provided here, when the reinforcing bars are stacked on top of one another, there are sufficiently short support lengths between two support points, which counteract a load or when a deflection is caused.
In den Fig. 2a bis c ist schematisch angedeutet, daß zur Herstellung der Ar- mierungsstäbe mit kreuzförmigem Querschnitt auch platten- oder bandförmiges Ausgangsmaterial 10" (Fig. 2a) oder schlauchförmiges Ausgangsmaterial 10'" (Fig. 2b) verwendet werden kann.2a to c indicate schematically that for the production of the reinforcing bars with a cross-shaped cross-section, plate-like or band-shaped starting material 10 "(FIG. 2a) or tubular starting material 10 '" (FIG. 2b) can also be used.
Für die Herstellung des platten- oder bandförmigen Ausgangsmaterials 10" gibt es verschiedene Möglichkeiten. Bei dem sogenannten Rolltrusionsver- fahren werden einzelne Fäden, Gewebe oder Gelege vorimprägniert und durch eine Walzenpresse geführt. Erzeugt wird hierbei ein dünnes Band, das für die hier relevanten Zwecke noch zu dünn ist. Deshalb müssen mehrere Bänder übereinandergelegt und miteinander durch Aufheizen und Ver- schmelzen verbunden werden. Hierbei können auch Bänder mit unterschiedlichen Verstärkungseinlagen, wie Kohlefaser oder Glas verwendet werden. Die auf diese Weise vorgefertigten Bänder werden schließlich erwärmt, in ein Kreuz gefaltet und schraubenartig verdrallt. Ein Nachteil dieser Verfahrensweise ist die relativ kleine Produktionsgeschwindigkeit. Außerdem können nur hochwertige Thermoplaste, wie Polyamide für die Bindemittelmatrix verwendet werden.There are various possibilities for the production of the plate-like or band-shaped starting material 10 ″. In the so-called roll trusion process, individual threads, fabrics or scrims are pre-impregnated and passed through a roller press. A thin strip is produced which is still relevant for the purposes relevant here This is why several tapes have to be placed on top of one another and connected to one another by heating and fusing. Tapes with different reinforcing inserts such as carbon fiber or glass can also be used. The tapes prefabricated in this way are finally heated, folded into a cross and One disadvantage of this procedure is the relatively slow production speed, and only high-quality thermoplastics, such as polyamides, can be used for the binder matrix.
Eine weitere Möglichkeit für die Herstellung von Plattenmaterial besteht darin, daß vorgefertigte Gewebe und Gelege mit einem Bindemittel imprägniert und einer Doppelbandpresse zugeführt werden. Die Gewebe oder Gelege können aus verschiedenen Fasern kombiniert werden und relativ dick aus- gebildet sein. Als Ergebnis erhält man ein Endlosplattenmaterial 10", das bei erhöhter Temperatur beispielsweise in die erwünschte Kreuzform verformt und verdrallt werden kann. Der Unterschied zum Rolltrusionsverfahren besteht darin, daß von einem fertigen Gewebe und Gelege mit ausreichender Wandstärke ausgegangen wird, so daß nicht mehrere Platten zu einem mehrlagigen System zusammengefügt werden müssen. Als Bindemittel können hierbei Thermoplaste aus der Gruppe Polyamid (PA), Polymethyl- methacrylat (PMMA), Polyphenylensulfid (PPS), Polypropylen (PP), Polye- thylenterephtalat (PET), Polybutylenterephtalat (PBT), Polyetherimid (PEI), Styrol-Polymerisat (ABS), Polyetheretherketone (PEEK) verwendet werden. In der Doppelbandpresse wird das Material zunächst aufgeheizt und über die Länge der Presse allmählich abgekühlt, so daß am Ende bereits ausgehärtetes Material herauskommt. Ein wesentlicher Vorteil des Verfahrens besteht in der hohen Produktionsgeschwindigkeit. Auch die Variabilität in den Fasern und in den Bindemittelmaterialien läßt eine Kostenoptimierung zu.Another possibility for the production of plate material is that prefabricated fabrics and scrims are impregnated with a binder and fed to a double belt press. The fabrics or scrims can be combined from different fibers and made of relatively thick be educated. The result is an endless plate material 10 ", which can be deformed and twisted, for example, into the desired cross shape at elevated temperature. The difference to the roll trusion process is that it is assumed that a finished fabric and scrim with sufficient wall thickness, so that not several plates Thermoplastic from the group polyamide (PA), polymethyl methacrylate (PMMA), polyphenylene sulfide (PPS), polypropylene (PP), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyetherimide can be used as binders (PEI), styrene polymer (ABS), polyether ether ketones (PEEK) The material is first heated up in the double belt press and gradually cooled over the length of the press, so that material that has already hardened comes out at the end in the high production speed, including the variability in the fibers and in the binder materials allow cost optimization.
Für die Herstellung der schlauchförmigen Ausgangsmaterialien gemäß Fig. 2b gibt es ebenfalls verschiedene Möglichkeiten:There are also various options for producing the tubular starting materials according to FIG. 2b:
Beim Pulltrusions-Verfahren (Strangziehen) werden imprägnierte Endlosfasern über einen Dorn pulltrudiert. Dies kann in mehreren Stufen erfolgen, wobei im Anschluß an jede Verfahrensstufe auch eine Querwicklung aufgebracht werden kann. In diesem Fall erhält man einen Schlauch 10'" mit Längs- und Querfasern, wobei die Fasern auch aus unterschiedlichen Mate- rialien sein können, wie z. B. außen Kohlefasern und innen Glas. Der Schlauch wird dann nachträglich erwärmt, zum Kreuz gepreßt und verdrallt.In the pulltrusion process (continuous drawing), impregnated continuous fibers are pulltruded over a mandrel. This can be done in several stages, and a cross winding can also be applied after each process stage. In this case, a tube 10 '"with longitudinal and transverse fibers is obtained, the fibers also being able to be made of different materials, such as carbon fibers on the outside and glass on the inside. The tube is then subsequently heated, pressed to the cross and twisted.
Für die Herstellung der Schläuche 10'" nach Fig. 2b können auch imprägnierte Flechtschläuche aus dem erwünschten Fasermaterial verwendet werden. Flechtschläuche werden in Flechtmaschinen zunächst in Form eines Faserschlauchs hergestellt und nachträglich mit dem Bindemittel imprägniert. Der imprägnierte Schlauch wird dann wieder in Kreuzform gepreßt und verdrallt. Grundsätzlich ist es auch möglich, die Flechtschläuche zunächst kreuzförmig zu verformen und erst dann zu imprägnieren.2b, impregnated braided hoses made of the desired fiber material can also be used for the manufacture of the hoses. Braided hoses are first produced in the form of a fiber hose in braiding machines and subsequently impregnated with the binder. The impregnated tube is then pressed again in a cross shape and twisted. In principle, it is also possible to first deform the braided hoses in a cross shape and only then to impregnate them.
Zusammenfassend ist folgendes festzuhalten: Die Erfindung bezieht sich auf einen Armierungsstab für mineralische Baustoffe, insbesondere für Beton. Der erfindungsgemäße Armierungsstab 10 besteht aus einem faserverstärkten Strang aus Kunststoff, der einen zentralen, langgestreckten Strangkern 12 sowie mehrere über die Länge des Strangkerns sich erstreckende, im Winkelabstand voneinander angeordnete, im Querschnitt stern- oder kreuzförmig abstehende Strangrippen 14 aufweist, die um die Kernachse 16 schraubenförmig verdrallt sind. In summary, the following can be stated: The invention relates to a reinforcing bar for mineral building materials, in particular for concrete. The reinforcing rod 10 according to the invention consists of a fiber-reinforced strand made of plastic, which has a central, elongated strand core 12 and a plurality of strand ribs 14 which extend over the length of the strand core and are arranged at an angular distance from one another and have a star-shaped or cruciform cross section and which extend around the core axis 16 are helically twisted.

Claims

Patentansprüche claims
1. Armierungsstab für mineralische Baustoffe, insbesondere für Beton, gekennzeichnet durch einen faserverstärkten Strang (10) aus Kunststoff, der einen zentralen langgestreckten Strangkern (12) und mehrere sich über die Länge des Strangkerns erstreckende, im Winkelabstand voneinander angeordnete, im Querschnitt stern- oder kreuzförmig abstehende Strangrippen (14) aufweist, die um die Kernachse (16) schraubenförmig verdrallt sind.1. Reinforcing bar for mineral building materials, especially for concrete, characterized by a fiber-reinforced strand (10) made of plastic, which has a central elongated strand core (12) and several extending over the length of the strand core, arranged at an angular distance from one another, with a star or cross-section has cruciform projecting ribs (14) which are helically twisted about the core axis (16).
2. Armierungsstab nach Anspruch 1 , dadurch gekennzeichnet, daß zumindest ein Teil der Verstärkungsfasern als Längsfasern (18) ausgebildet ist, die ununterbrochen entlang dem Strang (10) verlaufen und im Kernbereich achsparallel und im Rippenbereich in Steigungsrichtung der Strangrippen (14) ausgerichtet sind.2. Reinforcing bar according to claim 1, characterized in that at least some of the reinforcing fibers are designed as longitudinal fibers (18) which run continuously along the strand (10) and are aligned axially parallel in the core region and in the rib region in the direction of the slope of the strand ribs (14).
3. Armierungsstab nach Anspruch 2, dadurch gekennzeichnet, daß die einzelnen Längsfasern (18) im Rippenbereich in konstantem Abstand von der Kernachse (16) verlaufen.3. Reinforcing bar according to claim 2, characterized in that the individual longitudinal fibers (18) in the rib region run at a constant distance from the core axis (16).
4. Armierungsstab nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Strang (10) zumindest im Bereich der Strangrippen (14) zusätzlich mit Querfasern (20) verstärkt ist.4. Reinforcing bar according to one of claims 1 to 3, characterized in that the strand (10) is additionally reinforced with transverse fibers (20) at least in the region of the strand ribs (14).
5. Armierungsstab nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Strangrippen (14) in gleichen Winkelabständen voneinander angeordnet sind.5. Reinforcing bar according to one of claims 1 to 4, characterized in that the strand ribs (14) are arranged at equal angular intervals from one another.
6. Armierungsstab nach einem der Ansprüche 1 bis 5, dadurch gekenn- zeichnet, daß die Strangrippen (14) mit konstanter Ganghöhe verdrallt sind. 6. Reinforcing bar according to one of claims 1 to 5, characterized in that the strand ribs (14) are twisted with a constant pitch.
7. Armierungsstab nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Strangrippen (14) entlang dem Strang (10) mit variabler Ganghöhe verdrallt sind.7. reinforcing bar according to one of claims 1 to 5, characterized in that the strand ribs (14) along the strand (10) are twisted with a variable pitch.
8. Armierungsstab nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der Steigungswinkel der Strangrippen (14) relativ zur Kernachse 5 bis 75° , vorzugsweise 30 bis 50° beträgt.8. Reinforcing bar according to one of claims 1 to 7, characterized in that the pitch angle of the strand ribs (14) relative to the core axis is 5 to 75 °, preferably 30 to 50 °.
9. Armierungsstab nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Strangrippen (14) um mindestens eine dem Kerndurchmesser, vorzugsweise dem doppelten Kerndurchmesser entsprechende Rippenbreite über die Kernoberfläche überstehen.9. Reinforcing bar according to one of claims 1 to 8, characterized in that the strand ribs (14) project beyond the core surface by at least one rib width corresponding to the core diameter, preferably twice the core diameter.
10. Armierungsstab nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Verstärkungsfasern (18, 20) aus der Gruppe Kohlenstofffasern, Glasfasern, Aramidfasem, hochfeste Polyethylenfasem, Basaltfasern, Naturfasern oder aus einem Gemisch aus diesen Fasern gewählt sind.10. Reinforcing bar according to one of claims 1 to 9, characterized in that the reinforcing fibers (18, 20) are selected from the group consisting of carbon fibers, glass fibers, aramid fibers, high-strength polyethylene fibers, basalt fibers, natural fibers or from a mixture of these fibers.
11. Armierungsstab nach Anspruch 10, dadurch gekennzeichnet, daß die Verstärkungsfasern zumindest in Oberflächennähe der Strangs als Kohlenstofffasern ausgebildet sind.11. Reinforcing bar according to claim 10, characterized in that the reinforcing fibers are formed as carbon fibers at least near the surface of the strand.
12. Armierungsstab nach einem der Ansprüche 4 bis 11 , dadurch gekennzeichnet, daß die Längs- und Querfasern (18, 20) ein Fasergewebe oder -gelege bilden.12. Reinforcing bar according to one of claims 4 to 11, characterized in that the longitudinal and transverse fibers (18, 20) form a woven or non-woven fabric.
13. Armierungsstab nach einem der Ansprüche 1 bis 12, dadurch ge- kennzeichnet, daß die Kunststoffmatrix des Strangs (10) aus einem duroplastischen Polymermaterial, vorzugsweise aus der Gruppe Epoxidharz, Polyesterharz, Vinylesterharz besteht.13. Reinforcing bar according to one of claims 1 to 12, characterized in that the plastic matrix of the strand (10) from one thermosetting polymer material, preferably from the group consisting of epoxy resin, polyester resin, vinyl ester resin.
14. Armierungsstab nach einem der Ansprüche 1 bis 12, dadurch ge- kennzeichnet, daß die Kunststoffmatrix des Strangs (10) aus einem thermoplatsischen Kunststoff, vorzugsweise aus der Gruppe Polyamid, Polymethylmethacrylat, Polyphenylensulfid, Polypropylen, Polyethy- lenterephtalat, Polybutylenterephtalat, Polyetherimid, Styrol- Polymerisat, Polyetheretherketone besteht.14. Reinforcing bar according to one of claims 1 to 12, characterized in that the plastic matrix of the strand (10) made of a thermoplastic plastic, preferably from the group polyamide, polymethyl methacrylate, polyphenylene sulfide, polypropylene, polyethylene terephthalate, polybutylene terephthalate, polyether imide, styrene - Polymer, polyether ether ketone exists.
15. Verfahren zur Herstellung von Armierungsstäben für mineralische Baustoffe, insbesondere für Beton, dadurch gekennzeichnet, daß ein faserverstärkter Kunststoffstrang (10) mit stern- oder kreuzförmigem Querschnitt schraubenförmig verdrallt und abgelängt wird.15. A method for producing reinforcing bars for mineral building materials, in particular for concrete, characterized in that a fiber-reinforced plastic strand (10) with a star or cross-shaped cross section is helically twisted and cut to length.
16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, daß in den Kunststoffstrang (10) im Zuge seiner Herstellung eine Faser- oder Gewebeeinlage eingebettet wird.16. The method according to claim 15, characterized in that a fiber or fabric insert is embedded in the plastic strand (10) in the course of its manufacture.
17. Verfahren nach Anspruch 15, dadurch gekennzeichnet, daß ein vorgefertigtes platten-, band- oder schlauchförmiges Ausgangsmaterial (10", 10'") aus Kunststoff unter Bildung eines im Querschnitt kreuz- oder sternförmigen Strangs (10') vorzugsweise durch Falten und Pressen umgeformt und im Anschluß daran schraubenförmig verdrallt und ausgehärtet wird.17. The method according to claim 15, characterized in that a prefabricated plate, tape or tube-shaped starting material (10 ", 10 '") made of plastic to form a cross-shaped or star-shaped strand (10') preferably by folding and pressing is reshaped and then helically twisted and cured.
18. Verfahren nach einem der Ansprüche 15 bis 17, dadurch gekennzeichnet, daß das einen thermoplastischen Kunststoff als Bindemittelmatrix enthaltende Platten-, Band- oder Schlauchmaterial (10", 10'") unter Einwirkung von Druck und Wärme in den faserverstärkten Kunststoffstrang (10) umgeformt wird. 18. The method according to any one of claims 15 to 17, characterized in that the plate, tape or tube material (10 ", 10 '") containing a thermoplastic as a binder matrix under the action of pressure and heat in the fiber-reinforced plastic strand (10) is reshaped.
19. Verfahren nach einem der Ansprüche 15 bis 18, dadurch gekennzeichnet, daß als Ausgangsmaterial für Bindemittelmatrix ein thermoplastischer Kunststoff aus der Gruppe Polyamid, Polymethylmethacry- lat, Polyphenylensulfid, Polypropylen, Polyethylenterephtalat, Poly- butylenterephtalat, Polyetherimid, Styrol-Polymerisat, Polyetheretherketone verwendet wird.19. The method according to any one of claims 15 to 18, characterized in that a thermoplastic material from the group polyamide, polymethyl methacrylate, polyphenylene sulfide, polypropylene, polyethylene terephthalate, polybutylene terephthalate, polyetherimide, styrene polymer, polyether ether ketones is used as the starting material for the binder matrix ,
20. Verfahren nach einem der Ansprüche 15 bis 19, dadurch gekenn- zeichnet, daß als Ausgangsmaterial für die Faserverstärkung ein Fasermaterial aus der Gruppe Kohlenstofffasern, Glasfasern, Aramidfa- sern, Fasern aus hochfestem Polyethylen, Basaltfasern, Naturfasern verwendet wird.20. The method according to any one of claims 15 to 19, characterized in that a fiber material from the group consisting of carbon fibers, glass fibers, aramid fibers, fibers made of high-strength polyethylene, basalt fibers, natural fibers is used as the starting material for the fiber reinforcement.
21. Verfahren nach einem der Ansprüche 17 bis 20, dadurch gekennzeichnet, daß bei der Herstellung der Faserverstärkung in dem platten-, band- oder schlauchförmigen Ausgangsmaterial (10", 10"') mindestens zwei Lagen aus unterschiedlichen Fasermaterialien verwendet werden.21. The method according to any one of claims 17 to 20, characterized in that at least two layers of different fiber materials are used in the manufacture of the fiber reinforcement in the plate, tape or tube-shaped starting material (10 ", 10" ').
22. Verfahren nach Anspruch 21, dadurch gekennzeichnet, daß mindestens eine Außenlage aus Kohlenstofffasern verwendet wird. 22. The method according to claim 21, characterized in that at least one outer layer of carbon fibers is used.
EP02712807A 2001-02-21 2002-01-09 Reinforcing bar and method for the production thereof Withdrawn EP1364094A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10108357 2001-02-21
DE10108357A DE10108357A1 (en) 2001-02-21 2001-02-21 Reinforcing bar and method for its production
PCT/EP2002/000119 WO2002066762A1 (en) 2001-02-21 2002-01-09 Reinforcing bar and method for the production thereof

Publications (1)

Publication Number Publication Date
EP1364094A1 true EP1364094A1 (en) 2003-11-26

Family

ID=7674999

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02712807A Withdrawn EP1364094A1 (en) 2001-02-21 2002-01-09 Reinforcing bar and method for the production thereof

Country Status (6)

Country Link
US (1) US7045210B2 (en)
EP (1) EP1364094A1 (en)
JP (1) JP2004526887A (en)
CN (1) CN1262719C (en)
DE (1) DE10108357A1 (en)
WO (1) WO2002066762A1 (en)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10330341B4 (en) * 2003-07-05 2005-09-15 Airbus Deutschland Gmbh Metallic coating material reinforced with long basalt fibers and its products
DE10360808B4 (en) * 2003-12-19 2005-10-27 Airbus Deutschland Gmbh Fiber reinforced metallic composite
WO2005085545A1 (en) * 2004-03-03 2005-09-15 Gert Wagener Reinforcing rod for mineral building material
EP1595687B1 (en) * 2004-04-15 2007-05-09 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method and apparatus for manufacturing a fibre reinforced product
DE102006042920A1 (en) * 2005-11-30 2007-05-31 Thomas Gmbh + Co. Technik + Innovation Kg Producing a reinforced plastic profile by pultrusion comprises using reinforcements comprising a series of yarn or thread stitches, loops or woven linkages
JP4952049B2 (en) * 2006-05-09 2012-06-13 株式会社大林組 Shear reinforcement structure and method for reinforced concrete members
GB0618463D0 (en) * 2006-09-19 2006-11-01 Co Tropic Ltd Reinforcement structures
US20080141614A1 (en) * 2006-12-14 2008-06-19 Knouff Brian J Flexible fiber reinforced composite rebar
DE102007012167B4 (en) * 2007-03-12 2013-05-29 Eurocopter Deutschland Gmbh Drill-elastic and rigid rod member for supporting and guiding a movable flap against a wing of an aircraft
DE102007027015A1 (en) * 2007-06-08 2008-12-11 Schöck Bauteile GmbH rebar
ES2325011B1 (en) * 2008-02-20 2010-06-01 Juan Antonio Rovira Soler 33,5% BAR BASED WITH REINFORCED POLYMERS WITH FIBERS FOR REINFORCING THE CONCRETE.
DE102010032915A1 (en) * 2010-07-30 2012-02-02 Cristiano Bonomi Plastic strand for forming rope for concrete used as building material, has several radial projections which are formed and spaced apart from each other, and glass fibers provided through radial projections
WO2012040212A2 (en) * 2010-09-22 2012-03-29 Interfacial Solutions Ip, Llc Methods of producing microfabricated particles for composite materials
US8511038B2 (en) * 2011-02-15 2013-08-20 Randel Brandstrom Concrete panel with fiber reinforced rebar
EP2530216A1 (en) * 2011-05-30 2012-12-05 Groz-Beckert KG Pre-fabricated structure made of textile concrete
US9567981B2 (en) * 2011-09-30 2017-02-14 Siemens Aktiengesellschaft Wind turbine tower and method of production thereof
KR101189549B1 (en) * 2012-05-18 2012-10-11 주식회사 에이씨이테크 Nonwoven fabric for asphaltic paving, method for manufacturing the same, and asphaltic paving method
DE102012108132B4 (en) 2012-08-31 2015-01-22 Firep Rebar Technology Gmbh Process for the production of reinforcing elements made of fiber-reinforced plastic
US8915046B2 (en) * 2012-09-06 2014-12-23 Chester Wright, III Reinforcement for reinforced concrete and methods for manufacturing thereof
CN103255835A (en) * 2012-10-23 2013-08-21 叶治豪 Quake-proof energy-saving concrete structure
CN103224337A (en) * 2013-04-16 2013-07-31 刘纯郴 Flat-rolled drum shaped cross section spiral steel fiber
US9688030B2 (en) 2013-05-07 2017-06-27 Neuvokas Corporation Method of manufacturing a composite material
GB2547326A (en) * 2014-07-07 2017-08-16 Composite Tech Corp Compression transfer member
FR3028447B1 (en) * 2014-11-14 2017-01-06 Hutchinson CELLULAR THERMOSETTING MATRIX COMPOSITE PANEL, METHOD OF MANUFACTURING AND SHAPED WALL COATING STRUCTURE OF PANEL ASSEMBLY
US9243406B1 (en) * 2015-01-21 2016-01-26 TS—Rebar Holding, LLC Reinforcement for reinforced concrete
US10036165B1 (en) 2015-03-12 2018-07-31 Global Energy Sciences, Llc Continuous glass fiber reinforcement for concrete containment cages
US9874015B2 (en) * 2015-03-12 2018-01-23 Global Energy Sciences, Llc Basalt reinforcement for concrete containment cages
EP3317085B1 (en) * 2015-07-02 2019-06-12 Neuvokas Corporation Method of manufacturing a composite material
DE102015113302A1 (en) * 2015-08-12 2017-02-16 Rehau Ag + Co Concrete structure-reinforcing element
US10369754B2 (en) * 2017-02-03 2019-08-06 Oleksandr Biland Composite fibers and method of producing fibers
CN106113253B (en) * 2016-06-30 2019-07-26 何相华 A kind of manufacturing method of the dual prestressed reinforced concrete of tension-torsion
CA2934545C (en) * 2016-06-30 2017-01-31 Randel Brandstrom Fiber reinforced rebar with shaped sections
RU2665536C1 (en) * 2017-03-15 2018-08-30 Валерий Николаевич Николаев Production line and method of continuous curved polymeric composite rods manufacture
CN107119855B (en) * 2017-05-27 2022-08-26 东南大学 Structure for improving anchoring performance of composite bar and extrusion forming method thereof
DE102017219774A1 (en) 2017-11-07 2019-05-09 Leichtbau-Zentrum Sachsen Gmbh Method and plant for the production of fiber-matrix composite profiles with axially rotating cross-section and adjustable fiber orientation
CN108118789A (en) * 2018-01-15 2018-06-05 安徽建筑大学 Steel core fiber composite connecting piece for prefabricated sandwich thermal insulation wall and assembling process thereof
US11041309B2 (en) * 2018-10-29 2021-06-22 Steven T Imrich Non-corrosive micro rebar
CN109386616B (en) * 2018-12-19 2020-07-10 中国科学院长春应用化学研究所 Multistage structure stationary ring for dynamic seal of ship stern shaft
CN114786928A (en) 2019-11-12 2022-07-22 内乌沃卡斯公司 Method for producing composite material
CN111070735B (en) * 2019-12-30 2021-07-16 扬州大学 Preparation and application method of prestressed shape memory alloy-continuous fiber composite bar
CN111155391B (en) * 2020-01-16 2021-09-24 海南大学 Shrinkable fiber reinforced plastic rib for reinforced pavement
DE102020102825A1 (en) 2020-02-04 2021-08-05 Technische Universität Dresden Reinforcement element comprising filaments
DE102021103589B4 (en) 2021-02-16 2024-01-18 Hans Graf Bauunternehmung GmbH & Co. KG Concrete reinforcement element

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4194873A (en) * 1978-01-09 1980-03-25 Ppg Industries, Inc. Apparatus for making pultruded product
GB2190931A (en) * 1986-05-27 1987-12-02 Helix Reinforcements Wire
AU1188295A (en) * 1994-12-01 1996-06-19 Applied Research Of Australia Pty Ltd Inhibiting resin expulsion during molding of elongate fiber reinforced products
US5989713A (en) * 1996-09-05 1999-11-23 The Regents Of The University Of Michigan Optimized geometries of fiber reinforcements of cement, ceramic and polymeric based composites
GB9700796D0 (en) 1997-01-16 1997-03-05 Camplas Technology Improvements relating to reinforcing bars
JPH11320696A (en) * 1998-05-19 1999-11-24 Nippon Steel Corp Reinforcing-fiber reinforcing bar and its manufacture
US6612085B2 (en) * 2000-01-13 2003-09-02 Dow Global Technologies Inc. Reinforcing bars for concrete structures

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02066762A1 *

Also Published As

Publication number Publication date
JP2004526887A (en) 2004-09-02
CN1526047A (en) 2004-09-01
DE10108357A1 (en) 2002-08-29
WO2002066762A1 (en) 2002-08-29
US7045210B2 (en) 2006-05-16
CN1262719C (en) 2006-07-05
US20040065044A1 (en) 2004-04-08

Similar Documents

Publication Publication Date Title
EP1364094A1 (en) Reinforcing bar and method for the production thereof
DE4480109C2 (en) Mfg. hard roll used in calendar roll for paper making
EP3019330B1 (en) Method for producing a reinforcement rod
DE2624992A1 (en) STEEL STRAND REINFORCED PLASTIC MATERIALS
EP3216944B1 (en) Assembly for reinforcing support structures
EP3414409B1 (en) Method for producing anchor rods from a fiber composite material, and anchor rod
CH649612A5 (en) PIPE WITH FLANGE.
DE2757965A1 (en) THROTTLE TRANSMISSION ELEMENT AND METHOD FOR MANUFACTURING IT
EP3245349B1 (en) Reinforcing bar of filament composite and method for producing same
EP2361752A1 (en) Fibre compound component and method for manufacturing the same
AT511349A4 (en) FIBER MIDDLE, FIBER COMPOSITE AND METHOD FOR THE PRODUCTION THEREOF
EP3114288B1 (en) Reinforcing mesh for concrete construction
DE202006017392U1 (en) Natural fiber reinforced component for reinforcement of hydraulically hardenable mineral compounds such as concrete comprises fiber filled plastic matrix with rough surface and cross-section to resist foreseen stresses
DE3145153A1 (en) Pultruded anchoring bar of curable synthetic resin
DE102007040609B4 (en) Method for producing a cable-like spring element semifinished product, a spiral-shaped spring element, a tool for processing a cable-like spring element semifinished product, device for producing a spiral-shaped spring element
DE2903019C2 (en) Method and device for the production of, in particular, fiber-reinforced tubular hollow bodies
DE102014105795B4 (en) Textile concrete part and process for its preparation
DE1925762A1 (en) Reinforcement or reinforcement element for random distribution in a building material
DE60003066T2 (en) GRID FLEECE FOR USE AS REINFORCING FABRIC
EP0628675A1 (en) Method for reinforcing a concrete structure and reinforcing elements for carrying out the method
DE2553680A1 (en) COMPOSITE WALL CONSTRUCTION FOR THE RECEPTION OF LIQUIDS AND THE PROCESS FOR THEIR PRODUCTION
DE102006034618A1 (en) filter pipe
DE1753803A1 (en) METHOD OF MANUFACTURING REINFORCED PLASTIC PIPE
WO2023170150A1 (en) Fibre composite material made of at least one tape
WO2023198906A1 (en) Multilayered hollow body made of a textile composite

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030922

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20090624

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIKA TECHNOLOGY AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140801