EP1356686B1 - Passerelle repartie d'acheminement de messages du systeme ss7 - Google Patents

Passerelle repartie d'acheminement de messages du systeme ss7 Download PDF

Info

Publication number
EP1356686B1
EP1356686B1 EP02705919A EP02705919A EP1356686B1 EP 1356686 B1 EP1356686 B1 EP 1356686B1 EP 02705919 A EP02705919 A EP 02705919A EP 02705919 A EP02705919 A EP 02705919A EP 1356686 B1 EP1356686 B1 EP 1356686B1
Authority
EP
European Patent Office
Prior art keywords
distributed gateway
gateway routing
distributed
routing
messages
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02705919A
Other languages
German (de)
English (en)
Other versions
EP1356686A2 (fr
Inventor
Robert John Tinsley
Peter Joseph Marsico
Lee Barfield Smith
Virgil Elmer Long
Gregory Allen Hunt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tekelec Global Inc
Original Assignee
Tekelec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tekelec Inc filed Critical Tekelec Inc
Publication of EP1356686A2 publication Critical patent/EP1356686A2/fr
Application granted granted Critical
Publication of EP1356686B1 publication Critical patent/EP1356686B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q3/00Selecting arrangements
    • H04Q3/0016Arrangements providing connection between exchanges
    • H04Q3/0029Provisions for intelligent networking
    • H04Q3/0045Provisions for intelligent networking involving hybrid, i.e. a mixture of public and private, or multi-vendor systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q3/00Selecting arrangements
    • H04Q3/0016Arrangements providing connection between exchanges
    • H04Q3/0025Provisions for signalling

Definitions

  • the present invention relates to an SS7 message routing gateway. More particularly, the present invention relates to a distributed SS7 message routing gateway.
  • the conventional telecommunications network includes two distinct communication pathways or subnetworks-a voice network and a signaling network. These two networks function in a cooperative manner to facilitate a call between users.
  • the voice network handles the transmission of voice (or user data) information between users.
  • the signaling network has a number of responsibilities, which include call setup, call teardown, and database access features.
  • the signaling network facilitates the dynamic linking together of a number of discrete voice-type communication circuits, such that a voice-type connection is established between the calling and called party. These functions are generically referred to as call setup and call teardown.
  • the signaling network provides a framework through which non-voice related information may be transported, with this data and transport functionality being transparent to the users.
  • This signaling technique is often referred to as out-of-band signaling, where the term "band” implies voice band.
  • services provided via the signaling network include 800 number database services, calling card verification services, and caller ID services.
  • the original motivation for employing such an out-of-band signaling technique was to provide telecommunications service agents with an infrastructure that allowed for new and enhanced revenue producing services, such as 800 database access, call waiting, and caller ID services and to avoid tying up expensive voice trunks with signaling traffic.
  • an SS7 network includes a plurality of SS7 nodes, generically referred to as signaling points (SPs), that are interconnected using signaling links, also referred to as SS7 links.
  • SPs signaling points
  • STPs signal transfer points
  • SCPs service control points
  • An SSP is normally installed in Class 4 tandem or Class 5 end offices.
  • the SSP is capable of handling both in-band signaling and SS7 signaling.
  • An SSP can be a customer switch, an end-office, an access tandem and/or a tandem.
  • An STP transfers signaling messages from one signaling link to another.
  • STPs are packet switches and are generally installed as mated pairs.
  • SCPs control access to databases such as 800 number translation, 800 number carrier identification, credit card verification, etc. SCPs are also deployed in pairs.
  • Signaling links are transmission facilities used to connect SPs together.
  • Conventional signaling links are dedicated bidirectional facilities operating at 56 kbps in the U.S. and Canada and at 64 kbps when clear channel capability is deployed. Normally, every link has a mate for redundancy and enhanced network integrity.
  • SS7 Signaling System 7
  • the protocol stack which is comprised of a number of well defined strata or layers.
  • the SS7 protocol stack consists of 4 levels or layers:
  • the physical layer is the lowest or most fundamental layer and is the first layer that is used to interpret and process and incoming message. This layer is concerned with determining and/or providing the electrical characteristics needed to transmit the digital data over the interface being used. Following interpretation/processing, the incoming message is passed up the stack to the data link layer.
  • the data link layer (MTP layer 2) resides adjacent and above the physical layer and is responsible for providing the SS7 network with error detection/correction and properly sequenced delivery of all SS7 message packets. Following interpretation/processing, the incoming message is passed up the stack to the network layer.
  • the network layer (MTP layer 3) resides adjacent and above the data link layer and is responsible for message packet routing, message packet discrimination, and message packet distribution. Functionally, message discrimination determines to whom the message packet is addressed. If the message contains the local address (of the receiving node), then the message is passed on to message distribution. If the message is not addressed to the local node, then it is passed on to the message router. Following interpretation/processing, the incoming message is passed up the stack to the user part layer only if the message was destined to that node.
  • the user and application part layer resides adjacent and above the network layer and actually consists of several distinct parts.
  • the parts may include mobile application part (MAP), radio access network application part (RANAP), transaction capabilities application part (TCAP), ISDN user part (ISUP), telephone user part (TUP), and broadband ISDN user part (B-ISUP).
  • MAP mobile application part
  • RANAP radio access network application part
  • TCAP transaction capabilities application part
  • ISUP ISDN user part
  • TUP telephone user part
  • B-ISUP broadband ISDN user part
  • SS7 network While the SS7 network has functioned successfully for a number of years, such a network typically includes centralized nodes that make routing decisions which can have some disadvantages. Such disadvantages include expense due to processing requirements of centralized nodes, high-traffic volume at the centralized nodes, and possible network outage if one or more of the centralized nodes fails.
  • FIG. 1 is a block diagram of a conventional SS7 network in which a centralized node makes routing decisions.
  • SSPs 100 and 102 communicate with SCPs 104 and 106 through a mated pair of STPs 108 and 110.
  • STPs 108 and 110 are located at a central point in the network and receive traffic from many SSPs and SCPs.
  • STPs 108 and 110 make routing decisions for SS7 messages and route the messages to their intended destinations.
  • STPs 108 and 110 may also translate the protocol of incoming SS7 messages if the destination node is of a different protocol than the sending node.
  • STPs 108 and 110 Because of the central location of STPs 108 and 110 and because of all of the tasks required to be performed by STPs 108 and 110, STPs 108 and 110 include an extremely complex parallel architecture for handling all of these functions.
  • An example of such an STP with a highly parallel architecture is the EAGLE ® STP available from Tekelec of Calabasas, California.
  • FIG. 2 is a block diagram of a conventional data network.
  • routers 200, 202, 204, and 206 are co-located with end offices 208 and 210 and databases 212 and 214.
  • Routers 200, 202, 204, and 206 are IP routers.
  • Routers 200, 202, 204, and 206 are only capable of making IP routing decisions.
  • packets incoming from elements 208, 210, 212, and 214 are in IP format and packets outcoming from routers 200, 202, 204, and 206 are also in IP format.
  • IP networks provide a number of advantages, IP networks do not include the inherent reliability or stability of a conventional SS7 network.
  • the conventional SS7 network architecture includes centralized routing elements which are expensive, complex, and subject to high-traffic volumes.
  • a distributed SS7 gateway that avoids at least some of the difficulties associated with the prior art.
  • the distributed SS7 call terminating processor for processing calls received over an SS7 network includes a set of N simultaneously active digital channel interfaces (DCIs) sharing a common signaling point code.
  • the set of DCIs receives common channel signaling messages.
  • Each of the N simultaneously active DCIs includes an SS7 message transfer part level one (MTPL1) physical layer coupled on a one to one basis to a common channel signaling link, an SS7 message transfer part level two (MTPL2) link layer and an SS7 message transfer part level three (MTPL3) network layer having the common signaling point code.
  • An operation and maintenance controller includes a configuration function that configures each SS7 MTPL3 network layer in the set of N simultaneously active DCIs to have the common signaling point code.
  • the present invention includes a distributed SS7 gateway.
  • the distributed SS7 gateway includes a plurality of distributed gateway routing elements.
  • Each of the distributed gateway routing elements may be co-located with an SS7 node, such as an SSP or an SCP.
  • Each of the distributed gateway routing elements performs an SS7 routing function, such as an MTP3 routing function.
  • the distributed gateway routing elements route messages to other distributed gateway routing elements or to a translation services node for further processing. Such routing is similar to the internal routing performed by an SS7 STP or signaling gateway.
  • the phrase "signaling gateway” refers to a network node capable of routing telephony-related signaling messages between other network nodes and that is also capable of performing protocol translations for the signaling messages.
  • the functional, components of the distributed gateway are co-located with network endpoints, rather than centrally located in a single node, the possibility of a complete network outage caused by failure of a single node is reduced.
  • the invention may include an operations, administration, and maintenance (OA&M) node.
  • the OA&M node may establish initial DGRE routing tables.
  • the present invention includes a translation services module.
  • the translation services module may be centrally located to perform centralized functions, such as global title translation, protocol conversion, and number portability.
  • embodiments of the present invention include a plurality of distributed gateway routing elements that are co-located with other SS7 network elements.
  • the distributed gateway routing elements function collectively as a signal transfer point or signaling gateway.
  • the distributed gateway routing elements are not located together in a single location, the processing load on each element is reduced and the possibility of a complete network failure is reduced.
  • FIG 3 is a block diagram of a communications network including a distributed gateway according to an embodiment of the present invention.
  • network 300 includes conventional SS7 network elements, such as SSPs 302 and 304 and SCPs or application servers 306 and 308 .
  • network 300 does not include a conventional centralized signal transfer point or signaling gateway.
  • network 300 includes a plurality of distributed gateway routing elements 310 that are co-located with SS7 signaling points 302, 304, 306, and 308.
  • Each of the distributed gateway routing elements 310 is capable of sending and receiving SS7 messages via an SS7 link that connects each distributed gateway routing element to its respective SS7 network element.
  • each distributed gateway routing element 310 communicates with other distributed gateway routing elements and with central distributed gateway routing element 312 via virtual interprocessor message transport (IMT) bus 314.
  • IMT virtual interprocessor message transport
  • each DGRE 310 is connected to a single SS7 signaling point, the present invention is not limited to such an embodiment.
  • each DGRE 310 may be associated with more than one SS7 network element.
  • DGREs 310 may be connected to network elements other than those illustrated in Figure 3 , such as softswitches and media gateway controllers.
  • Virtual IMT bus 314 performs functions similar to a conventional interprocessor message transfer bus present in an SS7 signal transfer point, such as the EAGLE ® STP available from Tekelec. Such functions include reliable delivery of SS7 messages to modules for outbound processing, meeting SS7 message timing requirements, and carrying network management messages, such as routing table establishment and maintenance-related messages between distributed gateway routing elements. However, unlike the conventional IMT bus, virtual IMT bus 314 spans large geographic distances, thus making meeting the SS7 reliability and timing requirements difficult. In order to meet these requirements, it is envisioned that a protocol that guarantees quality of service for each connection may be used. An example of such a protocol may be Internet Protocol version 6 (IPv6).
  • IPv6 Internet Protocol version 6
  • IPv6 a new field, referred to as a flow label, is provided in the IPv6 packet header and may be used by distributed gateway routing elements and IP routers that interconnect distributed gateway routing elements to provide quality of service for call signaling messages traveling between distributed gateway routing elements.
  • end-to-end delay may be one of the quality of service parameters that is guaranteed.
  • Another quality of service parameter important in transmitting SS7 message packets via virtual IMT bus 314 may be reliability. Both of these parameters may be set for call signaling packets transmitted between distributed gateway routing elements using the flow label in the IPv6 packet header.
  • distributed gateway routing elements 310 may encapsulate SS7 call signaling messages in IP datagrams and set one or more quality of service parameters in the datagrams to notify IP routers that interconnect distributed gateway routing elements 310 of the quality of service expected for these packets.
  • the manner in which IP routers treat such packets depends on the routing algorithm used and is beyond the scope of this disclosure. What is important for purposes of the present invention is that the distributed gateway routing elements set quality of service parameters in the call signaling packets to be transmitted over virtual IMT bus 314 so that the interconnecting IP routers can give such packets the appropriate priority.
  • FIGs 4(A) and 4(B) respectively illustrate examples of an IPv6 header and a flow label field of the IPv6 header.
  • IPv6 header 400 includes version field 402 indicates the IP version.
  • Flow label field 404 contains parameters used by routers to provide quality of service.
  • Payload length field 406 specifies the length of the IPv6 payload.
  • Next header field 408 specifies the type of any extension headers that follow the base header. Extension headers are optional in IPv6 and are not of importance to explaining the present invention.
  • Hop limit field 410 provides a strict bound on the maximum number of hops a datagram can make before being discarded.
  • Source address field 412 and destination field 414 each contain 128-bit IP addresses, thus greatly increasing the IP address face over conventional IPv4.
  • flow label field 404 is divided into a T-class field 416 and a flow identifier field 418.
  • T-class field 416 specifies the traffic class for the datagram.
  • T-class field 416 is a 4-bit field. Values 0-7 of T-class field 416 are used to specify the time sensitivity of flow-controlled traffic. Values 8-15 are used to specify a priority for non-flow-controlled traffic.
  • the remaining 24-bit flow identifier field contains a source-chosen flow identifier for a given traffic stream.
  • a source distributed gateway routing element may select a flow identifier for SS7 signaling message traffic and assign a traffic class value indicating high time sensitivity. Using these parameters, a source-distributed gateway routing element may forward the SS7 signaling message to another distributed gateway routing element. The receiving distributed gateway routing element may send a response back to the sending distributed gateway routing element using the same flow identifier and T-class. Routers in between the two distributed gateway routing elements may utilize the T-class and flow identifier values to ensure that packets are delivered between the distributed gateway routing elements within a predetermined time period.
  • the present invention is not limited to using flow identifier field in an IPv6 header to provide quality of service for SS7 messages traveling between distributed gateway routing elements.
  • the type of service (TOS) field in the IPv4 header may be used to provide quality of service between distributed gateway routing elements.
  • Figure 5 illustrates an example of the type of service field in the IPv4 header.
  • type of service field 500 includes a precedence field 502, transport type bits 504, and unused portion 506.
  • Precedence field 502 is used to specify the precedence of the datagram.
  • D, T and R bits are used to specify delay, throughput, and reliable transport, respectively. For example, if the D bit is set, the datagram is requesting low delay transport.
  • distributed gateway routing elements may request a specified quality of service for SS7 call signaling messages routed between distributed gateway routing elements. For example, a distributed gateway routing element may set a precedence value in precedence field 502 indicating high priority and set the delay bit to ensure that a datagram is delivered on time. Routers between the distributed gateway routing elements may use the TOS field to prioritize SS7 message packets and guarantee one or more QoS parameters, such as delay or reliability.
  • MPLS multi-protocol label switching
  • MPLS is used by routers to switch rather than route packets. Switching is faster than routing because it is a layer 2, rather than a layer 3 function of the IP protocol stack.
  • MPLS When an incoming packet includes an MPLS header, the receiving router switches the packet based on the label in the MPLS header, rather than routing the packet based on its IP address.
  • the router also changes the label in the MPLS header to a new label, which the next router uses to switch the packet to the appropriate outgoing link.
  • MPLS routes are established in advance before any data is transferred. Since routes are established in advance, MPLS can be used to establish forwarding equivalence classes whereby classes of IP packets are guaranteed the same quality of service.
  • Forwarding equivalence classes can be used to guarantee special treatment of MPLS-encapsulated SS7 packets transmitted between distributed gateway routing elements according to embodiments of the present invention.
  • distributed gateway routing elements 310 may add MPLS labels to outgoing IP-encapsulated SS7 call signaling message packets.
  • the MPLS label added by the distributed gateway routing element determines the forwarding equivalence class for the SS7 signaling message packets at the time of network ingress.
  • Routers that interconnect the distributed gateway routing elements examine only the MPLS label to determine the outgoing link for the MPLS-encapsulated SS7 message.
  • the label-switched path between distributed gateway routing elements may be agreed upon in advance of transmission to determine the quality of service for SS7 signaling message packets.
  • FIG. 6(A) illustrates an example of an IP packet including an MPLS header.
  • IP packet 600 includes an IP header 602, an MPLS header 604, a TCP header 606, and a payload 608.
  • IP header 602 may contain the IP address of one of the distributed gateway routing elements.
  • MPLS header 604 may contain a service class identifier that identifies a class of service to be given to IP packet 600.
  • the class of service is preferably a high class of service that has low delay and high reliability.
  • TCP header 606 contains transport layer information such as sequence numbers for a TCP string that may be established between distributed gateway routing elements.
  • payload field 608 contains some or all of the SS7 call signaling packet.
  • a variety of methods may be used to guarantee quality of service for call signaling packets routed between distributed gateway routing elements.
  • FIG. 6(B) is a block diagram of the fields of MPLS header 604 illustrated in Figure 6(A) .
  • MPLS header 604 includes a label field 610, an experimental use field 612, a bottom of stack bit 614, and a time to live field 616.
  • label field 610 contains the MPLS label that is assigned by the ingress router, i.e., the distributed gateway routing element, to determine the path forwarding equivalence class of the packet.
  • Distributed gateway routing elements 310 may initialize experimental use field 614 to a value that indicates a quality of service to be given to packets within a forwarding equivalence class. Bottom of stack field and time to live field are not of importance in explaining the present invention.
  • translation services module 312 provides translation services to distributed gateway routing elements 310, such as protocol translation, number portability, directory number to IP address mapping, and global title translation.
  • Translation service module 312 may be a single node dedicated to providing more than one of the above-enumerated translation services.
  • translation services module 312 may be a single node dedicated to performing one of the above-enumerated translation services.
  • a plurality of translation services modules 312 may be coupled to virtual IMT bus 314 for performing the various translation services.
  • redundant translation services modules 312 may be provided for load sharing and reliability.
  • OA&M module 316 performs administrative functions for the distributed gateway routing elements, such as database provisioning.
  • FIG. 7 is a block diagram of an exemplary internal architecture for a distributed gateway routing element according to an embodiment of the present invention.
  • distributed gateway routing element includes processes for implementing an SS7 protocol stack and processes for communicating via virtual IMT bus 314.
  • each DGRE 310 may be a general or special purpose computer having at least one SS7 interface and at least one interface to virtual IMT bus 314.
  • each distributed gateway routing element 310 includes MTP level 1 and 2 processes 700 and 702 for performing SS7 MTP layer 1 and 2 functions, such as sequencing and error correction.
  • Input/output queue 704 buffers messages before processing by higher level functions.
  • Message handling and discrimination (HMDC) process 705 determines whether a message is addressed to this distributed gateway 300 (illustrated in Figure 3 ) or to another distributed gateway. This determination may be made based on the destination point code and/or other fields, such as the circuit identification code (CIC), in a received SS7 message.
  • Message handling and distribution (HMDT) process 706 routes messages that are destined for this distributed gateway 300 to an element of this distributed gateway, such as translation services module 310, for further processing.
  • HMDT process 706 functions similarly to the HMDT process in the above-referenced EAGLE ® STP. However, unlike the HMDT process in the conventional EAGLE ® STP which distributes messages internally in the STP, HMDT process 706 distributes messages to DGREs that are part of the same distributed gateway via virtual IMT bus 314 which may span a large geographic area. Thus, in Figure 3 , it is envisioned that DGREs 310 may share a single SS7 point code. A message received by any one of DGREs 310 via one of the SS7 signaling links that is addressed to the point code distributed gateway 300 may be internally routed to one of the other DGREs via virtual IMT bus 314. Thus, DGREs 310 function collectively as a signal transfer point without the requirement of a centralized node.
  • Gateway screening is a function performed by DGREs 310 to screen messages based on one or more parameters in the messages.
  • DGREs 310 may each include a gateway screening process that screens incoming SS7 messages based on parameters, such as originating point code, destination point code, and/or CIC code.
  • distributed gateway routing elements 310 may allow the message into the network comprising virtual IMT bus 314. If a message is not from an allowed originating point code, the message may be discarded.
  • Message copying refers to copying all or portions of selected message signal units (MSUs) received by a DGRE. For example, it may be desirable to capture all MSUs directed to a database, such as SCP 306 for accounting or billing purposes. For network monitoring purposes, it may be desirable to record copies of or a count of MSUs received by DGREs 310.
  • the copies MSU information received by DGREs 310 may be forwarded to an external node for further processing. Such forwarding may be accomplished by sending the message copies in Internet protocol packets to the external node via a wide or local area network.
  • Overriding point code routing is another function that may be performed by DGREs 310.
  • DGREs may route messages to other DGREs based on the destination point code, CIC code, or other parameters in received SS7 MSUs. This is the normal DPC routing function.
  • DGREs 310 may also override normal DPC routing based on the presence of one or more parameters in a message.
  • One example in which it may be desirable to override normal DPC routing is when providing triggerless number portability service.
  • an SSP such as SSP 304, may receive a call to a ported number.
  • SSP 304 would formulate a transaction capabilities application part (TCAP) query to a number portability database, such as SCP 306.
  • TCAP transaction capabilities application part
  • the query would be routed to SCP 306 via DGREs 310.
  • the response to the query containing the real directory number corresponding to the ported number is sent from SCP 306 to SSP 304 via DGREs 310.
  • SSP 304 uses the real directory number in the response to set up a call with the called party by formulating an ISDN user part (ISUP) message addressed to the called party end office and containing the subscriber's real directory number.
  • ISUP ISDN user part
  • SSP 304 when SSP 304 receives a call to a ported number, SSP 304 sends an ISUP message to the destination SSP associated with the dialed directory number via distributed gateway 300.
  • One of the distributed gateway routing elements 310 receives the message, and determines that the message is rotated to a call to a subscriber whose number has been ported to another service area.
  • the receiving DGRE 310 forwards the message to translation services module 310, which translates the DPC in the message to the DPC of the SSP servicing the subscriber's new service area, inserts the new directory number in the message, and forwards the message to the appropriate destination SSP.
  • translation services module 310 which translates the DPC in the message to the DPC of the SSP servicing the subscriber's new service area, inserts the new directory number in the message, and forwards the message to the appropriate destination SSP.
  • distributed gateway routing element includes virtual IMT bus address translator 708 and quality of service manager 710.
  • Virtual IMT bus address translator 708 may translate between SS7 and the protocol used on virtual IMT bus 314.
  • exemplary protocols that may be used on virtual IMT bus 314 include IP version 6 including flow labels, IP version 4 including the type of service field, and MPLS.
  • virtual IMT bus address translator is preferably capable of formulating the appropriate header including the quality of service parameters and forwarding the packets to other distributed gateway routing elements via IMT bus 314.
  • Quality of service manager 710 may determine the quality of service required for a given SS7 packet and instruct virtual IMT bus address translator 708 to set the appropriate parameters in the IP and/or MPLS headers.
  • quality of service manager 710 may instruct virtual IMT bus address translator 708 to assign a high priority to the packet, using one or more of the above-described parameters, with regard to end-to-end delay.
  • Virtual IMT bus address translator 708 preferably also receives messages from virtual IMT bus 314, translates the messages from the virtual IMT bus protocol to SS7, and passes the messages to outbound SS7 routing process 712. Outbound SS7 routing process 712 selects the outgoing SS7 link based on the SS7 point code.
  • FIG. 8 is a flow chart illustrating exemplary steps that may be performed by a distributed gateway routing element according to an embodiment of the invention in routing an outgoing SS7 message packet over virtual IMT bus 314.
  • a distributed gateway routing element receives an SS7 call signaling message from an SS7 network element.
  • a distributed gateway routing element may receive an SS7 message from an SSP, an SCP, or an STP.
  • distributed gateway routing element SS7-routes the call signaling message.
  • SS7-routing the call signaling message may include examining the destination point code and other fields in the MTP layer 3 portion of the message to determine the destination SS7 network element.
  • the distributed gateway routing element determines the required quality of service parameters for the call signaling message. Determining the required quality of service parameters may include examining the SS7 message type to determine the time sensitivity of the message in accordance with SS7 standards.
  • the distributed gateway routing element sets the appropriate quality of service parameters in the virtual IMT bus packet.
  • these parameters may include parameters in the flow label of an IPv6 header if the virtual IMT bus is implemented using IP version 6. Additional alternatives for providing quality of service may include setting the TOS field in the IPv4 header or adding an MPLS header to the SS7 message before sending the message over the virtual IMT bus.
  • the distributed gateway routing element sends the SS7 call signaling message to the distributed gateway routing element associated with the destination SS7 network element via the virtual IMT bus.
  • the destination SS7 network element may be a service control point.
  • the SS7 call signaling message is delivered to the distributed gateway routing element associated with the service control point via virtual IMT bus 314.
  • the routers between the distributed gateway routing elements may utilize the quality of service parameters in the virtual IMT bus packet that carries the SS7 message to provide the desired quality of service. As a result, SS7 messages can be delivered on time and with sufficient reliability in accordance with SS7 standards.
  • FIG. 9 is a flow chart illustrating exemplary steps that may be performed by a distributed gateway routing element in processing and SS7 message packet received via virtual IMT bus 314.
  • distributed gateway routing element 310 receives a virtual IMT bus formatted call signaling message.
  • the distributed gateway routing element removes the virtual IMT bus header from the call signaling message.
  • the distributed gateway routing element adds any needed SS7 message headers.
  • the distributed gateway routing element routes the SS7 message to the destination SS7 network via an SS7 signaling link.
  • an SS7 call signaling message may be routed from a source SS7 network element to a distributed gateway routing element, through virtual IMT bus 314, and to translation services module 312.
  • An example of a message requiring such translation is an SCCP message requiring global title translation.
  • Translation services module 312 receives the call signaling message, removes the virtual IMT bus header, performs the required translation service, and routes the message to the distributed gateway routing element associated with the destination SS7 network element.
  • Translation services module 312 may include a quality of service manager process similar to that described with regard to the distributed gateway routing elements for setting the appropriate parameters in the outbound virtual IMT bus message so that the message will be delivered to its intended destination with the required quality of service.
  • the distributed gateway routing elements exchange routing information via virtual IMT bus 314. More particularly, distributed gateway routing elements 310 illustrated in Figure 3 may initially receive a routing table for routing messages to SS7 network elements from OA&M module 316. Table 1 shown below is an example of some of the information that may be included in the routing table. TABLE 1: DGRE Routing Table Point Code Destination Address Link Status Cost Domain 1-1-1 1.1.1.1 Up 1 ANSI 1-1-2 1.1.1.2 Up 2 ANSI 1-1-3 1.1.1.3 Up 2 ITU 1-1-4 1.1.1.4 Down INFINITE ANSI
  • SS7 point codes are translated to destination addresses, which in the illustrated example are IP addresses.
  • IP addresses which in the illustrated example are IP addresses.
  • MPLS labels may be used.
  • other fields in incoming messages in addition to the point code may be used in routing the messages.
  • the status field indicates a status of a link associated with a distributed gateway routing element.
  • the cost field allows the sending distributed gateway routing element to determine the least cost path over which the message should be routed.
  • the domain field indicates the domain of the destination SS7 network element.
  • Routing tables may be initially loaded onto distributed gateway routing elements through OA&M module 316 via virtual IMT bus 314. Once the routing table is loaded, it is desirable to maintain current information in the routing table with regard to link status and cost.
  • distributed gateway routing elements 310 may exchange route update messages via virtual IMT bus 314. For example, when a link goes down between a DGRE and its associated SS7 network element, the DGRE may notify the other DGREs that the status of the link is down.
  • the DGRE associated with the SS7 network element may notify the other DGREs of the change in cost in order for them to choose the least cost path for routing messages to that SS7 network element.
  • distributed gateway routing elements 310 maintain current routing information in their respective routing tables in a manner similar to a centralized node, such as a signal transfer point.
  • the present invention includes a distributed gateway that includes multiple routing elements that are co-located with SS7 network elements.
  • the distributed gateway routing elements communicate with each other via a virtual IMT bus that guarantees a specified quality of service for SS7 call signaling messages. Because the distributed gateway routing elements are located at the individual nodes rather than in a centralized network node, the probability of a complete network outage due to failure of one of the distributed gateway routing elements is decreased. In addition, the expense of providing SS7 routing services can be distributed among owners of the various SS7 network elements.
  • distributed gateway routing elements according to embodiments of the present invention are capable of selecting quality of service parameters for outgoing SS7 message packets to ensure on-time, reliable delivery of SS7 message packets.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Telephonic Communication Services (AREA)
  • Small-Scale Networks (AREA)
  • Time-Division Multiplex Systems (AREA)

Claims (29)

  1. Passerelle répartie d'acheminement de message de signalisation d'appel comprenant :
    (a) un premier élément d'acheminement de passerelle repartie comprenant une première interface destinée à l'envoi de messages de signalisation d'appel SS7 à un premier élément de réseau SS7 et à la réception de messages de signalisation d'appel SS7 en provenance de ce premier élément de réseau SS7 et à l'exécution de fonctions d'acheminement SS7 pour les messages SS7 reçus du premier élément de réseau SS7, et une seconde interface destinée à l'envoi de messages acheminés par SS7 sur un bus virtuel non SS7 couvrant une zone géographique large et à la définition de paramètres de qualité de service dans les messages acheminés par SS7 envoyés sur le bus virtuel ; et
    (b) au moins un second élément d'acheminement de passerelle repartie comprenant une première interface destinée à la réception de messages acheminés par SS7 en provenance du premier élément de route de passerelle repartie sur le bus virtuel, et une seconde interface destinée à l'acheminement par SS7 des messages reçus vers un second élément de réseau SS7 via une liaison de signalisation SS7, les premier et second éléments d'acheminement de passerelle répartie fonctionnant conjointement comme un point de transfert de signaux.
  2. Passerelle répartie selon la revendication 1, dans laquelle les premières interfaces des premier et second éléments d'acheminement de passerelle répartie comprennent des fonctions d'acheminement de couche MTP 3 SS7 permettant l'acheminement de messages SS7 sur la base de codes de point SS7.
  3. Passerelle répartie selon la revendication 1, dans laquelle les premières interfaces des premier et second éléments d'acheminement de passerelle repartie sont conçues pour acheminer des messages sur la base de codes d'identification de circuit.
  4. Passerelle répartie selon la revendication 1, dans laquelle les premières interfaces sont conçues pour filtrer les messages de signalisation d'appel SS7 sur la base d'un ou plusieurs paramètres de message SS7.
  5. Passerelle répartie selon la revendication 1, dans laquelle les premières interfaces des éléments d'acheminement de passerelle répartie sont conçues pour copier les messages de signalisation d'appel SS7 et transférer les copies à un noeud de surveillance ou de gestion des comptes de réseau prédéterminé.
  6. Passerelle répartie selon la revendication 1, dans laquelle les éléments d'acheminement de passerelle répartie comprennent chacun un processus de conservation de numéro sans déclenchement permettant d'identifier des messages de signalisation d'appel relatifs à des appels vers des numéros transférés et de supplanter les fonctions d'acheminement SS7 pour les messages de signalisation d'appel relatifs à des appels dirigés vers des numéros transférés.
  7. Elément d'acheminement de passerelle répartie selon la revendication 1, dans lequel les secondes interfaces des premier et second éléments d'acheminement de passerelle répartie comprennent des processus de conversion de protocole permettant de convertir le protocole des messages acheminés par SS7 vers le et en provenance du protocole du bus virtuel.
  8. Passerelle répartie selon la revendication 1, dans laquelle les secondes interfaces des premier et second éléments d'acheminement de passerelle répartie comprennent des processus de gestionnaire de qualité de service permettant de définir les paramètres de qualité de service dans les messages acheminés par SS7 à transmettre sur le bus virtuel.
  9. Passerelle répartie selon la revendication 1, dans laquelle les premier et second éléments d'acheminement de passerelle répartie sont colocalisés avec les premier et second éléments de réseau SS7.
  10. Passerelle répartie selon la revendication 9, dans laquelle les premier et second éléments d'acheminement de passerelle répartie sont colocalisés avec des commutateurs d'accès aux services (SSP).
  11. Passerelle répartie selon la revendication 9, dans laquelle les premier et second éléments d'acheminement de passerelle répartie sont colocalisés avec des point de commande de services (SCP).
  12. Passerelle répartie selon la revendication 9, dans laquelle le premier élément d'acheminement de passerelle répartie est colocalisé avec un commutateur d'accès aux services et le second élément d'acheminement de passerelle répartie est colocalisé avec un point de commande de services (SCP).
  13. Passerelle répartie selon la revendication 9, dans laquelle au moins un des premier et second éléments d'acheminement de passerelle répartie est colocalisé avec un point de transfert des signaux (STP).
  14. Passerelle répartie selon la revendication 9, dans laquelle au moins un des premier et second éléments d'acheminement de passerelle répartie est colocalisé avec un commutateur logiciel.
  15. Passerelle répartie selon la revendication 9, dans laquelle au moins un des éléments d'acheminement de passerelle répartie est colocalisé avec un serveur d'applications.
  16. Passerelle répartie selon la revendication 1, dans laquelle au moins un des premier et second éléments d'acheminement de passerelle répartie est colocalisé avec plus d'un élément de réseau SS7.
  17. Passerelle répartie selon la revendication 1, comprenant un module de services de conversion accouplé aux premier et second éléments d'acheminement de passerelle répartie via le bus virtuel permettant la conversion de messages acheminés par SS7.
  18. Passerelle répartie selon la revendication 17, dans laquelle le module de services de conversion est conçu pour fournir des services de conversion de titre global pour les messages acheminés par SS7.
  19. Passerelle répartie selon la revendication 17, dans laquelle le module de services de conversion est conçu pour effectuer le mappage entre le numéro d'annuaire et l'adresse IP pour les messages acheminés par SS7.
  20. Passerelle répartie selon la revendication 17, dans laquelle le module de services de conversion est conçu pour fournir des services de conversion de portabilité de numéro pour les messages acheminés par SS7.
  21. Elément d'acheminement de passerelle répartie selon la revendication 17, dans lequel les éléments d'acheminement de passerelle répartie et le module de services de conversion partagent un seul code de point SS7 et fonctionnent conjointement comme un point de transfert de signaux.
  22. Passerelle répartie selon la revendication 1, dans laquelle les premier et second éléments d'acheminement de passerelle répartie comprennent chacun un ordinateur universel.
  23. Passerelle répartie selon la revendication 1, comprenant un élément d'exploitation, d'administration et de maintenance accouplé aux premier et second éléments d'acheminement de passerelle répartie permettant l'approvisionnement et la mise à jour de bases de données sur les premier et second éléments d'acheminement de passerelle répartie.
  24. Passerelle répartie selon la revendication 23, dans laquelle l'élément d'exploitation, d'administration et de maintenance est accouplé aux premier et second éléments d'acheminement de passerelle répartie via un protocole de gestion de réseau simple (SNMP en abrégé).
  25. Passerelle répartie selon la revendication 1, dans laquelle :
    (a) le premier élément d'acheminement de passerelle répartie est colocalisé avec un commutateur d'accès aux services SS7 pour recevoir des messages de signalisation d'appel en provenance du commutateur d'accès aux services via une liaison de signalisation SS7, pour déterminer des paramètres de qualité de service pour les messages de signalisation d'appel, pour générer et ajouter un en-tête à chacun des messages de signalisation d'appel, l'en-tête incluant les paramètres de qualité de service, et pour transférer les messages de signalisation d'appel sur le bus virtuel non SS7 couvrant la zone géographique large ; et
    (b) le au moins second élément d'acheminement de passerelle répartie est colocalisé avec au moins un second commutateur d'accès aux services pour recevoir les messages de signalisation d'appel en provenance du bus virtuel, retirer les en-têtes, et pour transférer les messages de signalisation d'appel au second commutateur d'accès aux services via une liaison de signalisation SS7, les premier et second éléments d'acheminement de passerelle répartie fonctionnant conjointement comme un point de transfert des signaux.
  26. Passerelle répartie selon la revendication 25, comprenant un troisième élément d'acheminement de passerelle répartie accouplé aux premier et au moins second éléments d'acheminement de passerelle répartie via le bus virtuel, le troisième élément d'acheminement de passerelle répartie étant colocalisé avec un point de commande de services pour envoyer et recevoir des messages de signalisation d'appel via le bus virtuel avec une qualité de service spécifiée.
  27. Passerelle répartie selon la revendication 25, comprenant un module de services de conversion accouplé aux premier et au moins second éléments d'acheminement de passerelle répartie via le bus virtuel pour effectuer des opérations de conversion SS7 sur des messages de signalisation d'appel reçus et pour transférer les messages de signalisation d'appel convertis à l'un des premier et au moins second éléments d'acheminement de passerelle répartie via le bus virtuel.
  28. Passerelle répartie selon la revendication 21, dans laquelle le module de services de conversion est conçu pour convertir les messages de signalisation d'appel entre l'ANSI (American National Standards Institute) et l'ITU (Union internationale des télécommunications) en formats de message.
  29. Passerelle répartie selon la revendication 25, comprenant un module d'exploitation, d'administration et de maintenance accouplé aux premier et au moins second éléments d'acheminement de passerelle répartie via le bus virtuel permettant l'approvisionnement et la mise à jour de bases de données associées aux premier et au moins second éléments d'acheminement de passerelle répartie.
EP02705919A 2001-01-24 2002-01-24 Passerelle repartie d'acheminement de messages du systeme ss7 Expired - Lifetime EP1356686B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/768,881 US6965592B2 (en) 2001-01-24 2001-01-24 Distributed signaling system 7 (SS7) message routing gateway
US768881 2001-01-24
PCT/US2002/001977 WO2002060192A2 (fr) 2001-01-24 2002-01-24 Passerelle repartie d'acheminement de messages du systeme ss7

Publications (2)

Publication Number Publication Date
EP1356686A2 EP1356686A2 (fr) 2003-10-29
EP1356686B1 true EP1356686B1 (fr) 2010-07-21

Family

ID=25083763

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02705919A Expired - Lifetime EP1356686B1 (fr) 2001-01-24 2002-01-24 Passerelle repartie d'acheminement de messages du systeme ss7

Country Status (6)

Country Link
US (1) US6965592B2 (fr)
EP (1) EP1356686B1 (fr)
AT (1) ATE475268T1 (fr)
AU (1) AU2002240037A1 (fr)
DE (1) DE60237069D1 (fr)
WO (1) WO2002060192A2 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8213410B2 (en) 1998-12-04 2012-07-03 Tekelec, Inc. Methods and systems for communicating SS7 messages over packet-based network using transport adapter layer interface
US8224928B2 (en) 2000-06-01 2012-07-17 Tekelec, Inc. Methods and systems for distributing operating status information within a converged network
US8750328B2 (en) 1998-12-04 2014-06-10 Tekelec Global, Inc. Methods and systems for communicating signaling system 7 (SS7) user part messages among SS7 signaling points (SPs) and internet protocol (IP) nodes using signal transfer points (STPs)
US10268570B2 (en) 2016-05-05 2019-04-23 Oracle International Corporation Methods, systems, and computer readable media for automated generation of test files and testing network equipment using same

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7237033B2 (en) 2001-04-30 2007-06-26 Aol Llc Duplicating switch for streaming data units to a terminal
US8572278B2 (en) 2001-04-30 2013-10-29 Facebook, Inc. Generating multiple data streams from a single data source
US7124166B2 (en) 2001-04-30 2006-10-17 Aol Llc Duplicating digital streams for digital conferencing using switching technologies
DE10147494A1 (de) * 2001-09-26 2003-04-30 Siemens Ag Dienststeuerung im Rahmen des Intelligentes Netzwerk Konzepts für Paketnetzverbindungen
EP1488582A1 (fr) * 2002-03-27 2004-12-22 Siemens Aktiengesellschaft Procede de fonctionnement et de surveillance de reseaux mpls
US8611363B2 (en) * 2002-05-06 2013-12-17 Adtran, Inc. Logical port system and method
US7545780B2 (en) * 2002-05-28 2009-06-09 Interdigital Technology Corporation Flow-based selective reverse tunneling in wireless local area network (WLAN)-cellular systems
US8028092B2 (en) 2002-06-28 2011-09-27 Aol Inc. Inserting advertising content
DE60204018T2 (de) * 2002-09-16 2006-03-02 Alcatel SS7-Signalisierungsserver mit integrierten verbesserten Siganlisierungsdiensten
US7848767B2 (en) 2002-10-15 2010-12-07 Tekelec Methods and systems for migrating between application layer mobile signaling protocols
EP1460864B1 (fr) * 2003-03-19 2006-08-23 Alcatel Serveur de signalisation
EP1460861A1 (fr) * 2003-03-19 2004-09-22 Alcatel Service d'application de signalisation
US7043002B2 (en) * 2003-06-27 2006-05-09 Tekelec Methods and systems for identifying, redirecting, and processing messages of different SS7 protocol variations
ES2338331T3 (es) 2003-09-02 2010-05-06 Nokia Corporation Transmision de informacion integrada relacionada con calidad de servicio.
US8176201B1 (en) * 2003-11-05 2012-05-08 Juniper Networks, Inc. Controlling the signaling of label-switched paths using a label distribution protocol employing messages which facilitate the use of external prefixes
US20050099964A1 (en) * 2003-11-10 2005-05-12 Tekelec Methods and systems for automatically populating network route table
WO2005052742A2 (fr) * 2003-11-20 2005-06-09 Tekelec Point de transfert de signal avec interface de liaison de signalisation sans fil
US20050240797A1 (en) * 2004-01-23 2005-10-27 Fredrik Orava Restoration mechanism for network topologies
US20060053221A1 (en) * 2004-02-18 2006-03-09 Kenichi Matsui Packet communication network, route control server, route control method, packet transmission device, admission control server, light wavelength path setting method, program, and recording medium
US7496661B1 (en) * 2004-03-29 2009-02-24 Packeteer, Inc. Adaptive, application-aware selection of differentiated network services
US7403523B2 (en) * 2004-04-28 2008-07-22 Tekelec Methods and systems for tunneling packets of a ring-topology-based link level communications protocol over a network having a star topology using a star-topology-based link level communications protocol
US7532647B2 (en) * 2004-07-14 2009-05-12 Tekelec Methods and systems for auto-correlating message transfer part (MTP) priority and internet protocol (IP) type of service in converged networks
US7706343B2 (en) 2004-09-10 2010-04-27 Tekelec Methods and systems for wireless local area network (WLAN)-based signaling network monitoring
WO2006094430A1 (fr) * 2005-03-07 2006-09-14 Zte Corporation Systeme d'echange de circuit
EP1708459B1 (fr) * 2005-03-29 2008-08-20 Hewlett-Packard Development Company, L.P. Routeur avec fonctions spéciales
US7920529B1 (en) * 2005-05-24 2011-04-05 At&T Mobility Ii Llc Intermediary query manager for 2G and 3G services
US7940756B1 (en) * 2005-11-23 2011-05-10 Symantec Corporation Dynamic tagging of network data based on service level objectives
US7889716B2 (en) 2005-12-01 2011-02-15 Tekelec Methods, systems, and computer program products for using an E.164 number (ENUM) database for message service message routing resolution among 2G and subsequent generation network systems
CN100391172C (zh) * 2006-01-06 2008-05-28 华为技术有限公司 一种信令监控系统及方法
EP1989894B1 (fr) 2006-02-15 2019-02-13 Tekelec Global, Inc. Procédés, systèmes et produits de programmes informatiques destinés à traiter et à rediriger sélectivement des messages de sous-systèmes de commande de connexions de signalisation (sccp)
US7853004B2 (en) * 2006-03-16 2010-12-14 Sonus Networks, Inc. Active switch replacement using a single point code
US8571043B2 (en) * 2006-03-16 2013-10-29 Sonus Networks, Inc. Using a single point code to represent multiple switching devices
DE602006006445D1 (de) * 2006-07-31 2009-06-04 Hewlett Packard Development Co Signalling Gateway
US7751398B1 (en) 2007-03-28 2010-07-06 Emc Corporation Techniques for prioritization of messaging traffic
US20090100814A1 (en) * 2007-10-22 2009-04-23 Philip Egging Non-Powered Roller for Assisting Crop Pick-Up With a Baler
US9455924B2 (en) 2008-01-02 2016-09-27 Media Network Services As Device and system for selective forwarding
US9021014B2 (en) 2009-03-25 2015-04-28 Tekelec, Inc. Methods, systems, and computer readable media for providing home subscriber server (HSS) proxy
WO2011106690A2 (fr) 2010-02-25 2011-09-01 Tekelelec Systèmes, procédés et support lisible par ordinateur pour utiliser un nœud d'acheminement de message de signalisation afin de fournir un service de gestion d'informations d'abonné de secours
WO2012088497A1 (fr) 2010-12-23 2012-06-28 Tekelec Procédés, systèmes et supports lisibles par ordinateur pour modifier un message de signalement de diamètre destiné à un nœud ayant une fonction de facturation
US8891532B1 (en) * 2011-05-17 2014-11-18 Hitachi Data Systems Engineering UK Limited System and method for conveying the reason for TCP reset in machine-readable form
US9246994B2 (en) 2011-06-23 2016-01-26 Telefonaktiebolaget L M Ericsson (Publ) Method and system for distributing a network application among a plurality of network sites on a shared network
US8812034B2 (en) * 2011-09-30 2014-08-19 Qualcomm Incorporated Methods and apparatuses for management of SMS message identifications in a multi-mode device
US9100796B2 (en) 2011-12-15 2015-08-04 Tekelec, Inc. Methods, systems, and computer readable media for seamless roaming between diameter and non-diameter networks
KR101887581B1 (ko) * 2011-12-26 2018-08-14 한국전자통신연구원 플로우 기반의 패킷 전송 장치 및 그것의 패킷 처리 방법
US8855654B2 (en) 2013-01-28 2014-10-07 Tekelec Global, Inc. Methods, systems, and computer readable media for tracking and communicating long term evolution (LTE) handset communication capability
US10645528B2 (en) 2015-09-18 2020-05-05 Huawei Technologies Co., Ltd. System and methods for reliable communication with mobility along a predictable route
US9930587B2 (en) * 2015-09-18 2018-03-27 Huawei Technologies Co., Ltd. Distributed virtual gateways
US12034570B2 (en) 2022-03-14 2024-07-09 T-Mobile Usa, Inc. Multi-element routing system for mobile communications

Family Cites Families (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5142622A (en) 1989-01-31 1992-08-25 International Business Machines Corporation System for interconnecting applications across different networks of data processing systems by mapping protocols across different network domains
JPH03148940A (ja) 1989-11-06 1991-06-25 Hitachi Ltd Lanとisdnとの相互接続方式
US5008929A (en) 1990-01-18 1991-04-16 U.S. Intelco Networks, Inc. Billing system for telephone signaling network
US5251205A (en) 1990-09-04 1993-10-05 Digital Equipment Corporation Multiple protocol routing
US5239542A (en) 1991-08-23 1993-08-24 Redcom Laboratories, Inc. Time division multiplex switching system for interconnecting telephone circuits which operate in accordance with different signalling systems and call formats
JPH05236138A (ja) 1992-02-20 1993-09-10 Nec Corp 電子交換機
FI90710C (fi) 1992-05-29 1994-03-10 Icl Personal Systems Oy Menetelmä paikallisverkkoon tarkoitetun TCP/IP-ohjelmiston sovittamiseksi etäyhteydelle
US5384840A (en) 1992-10-09 1995-01-24 At&T Corp. Telecommunications system SS7 signaling interface with signal transfer capability
US5315641A (en) 1992-10-14 1994-05-24 Bell Atlantic Network Services, Inc. Public switched telephone network access to public data network
US5509010A (en) 1993-06-25 1996-04-16 At&T Corp. Communications signaling protocols
US5701301A (en) 1993-06-28 1997-12-23 Bellsouth Corporation Mediation of open advanced intelligent network in SS7 protocol open access environment
FR2713422B1 (fr) 1993-11-30 1996-01-12 Bull Sa Procédé de conversion automatique pour le portage d'applications de télécommunication du réseau TCP/IP sur le réseau OSI-CO et module utilisé dans ledit procédé.
US5544163A (en) 1994-03-08 1996-08-06 Excel, Inc. Expandable telecommunications system
US5577105A (en) 1994-03-11 1996-11-19 U.S. Robotics, Inc. Telephone call routing and switching techniques for data communications
US5991301A (en) 1994-05-05 1999-11-23 Sprint Communications Co. L.P. Broadband telecommunications system
US5926482A (en) 1994-05-05 1999-07-20 Sprint Communications Co. L.P. Telecommunications apparatus, system, and method with an enhanced signal transfer point
US5920562A (en) 1996-11-22 1999-07-06 Sprint Communications Co. L.P. Systems and methods for providing enhanced services for telecommunication call
NL9401142A (nl) 1994-07-11 1996-02-01 Nederland Ptt Overdracht van berichten via verschillende subnetwerken.
US5550906A (en) 1994-08-05 1996-08-27 Lucent Technologies Inc. Telecommunications feature server
SE503219C2 (sv) 1994-09-05 1996-04-22 Ericsson Telefon Ab L M Anordning och förfarande för processbaserad meddelandehantering i ett kommunikationssystem
US5586177A (en) 1995-09-06 1996-12-17 Bell Atlantic Network Services, Inc. Intelligent signal transfer point (ISTP)
US5680552A (en) 1994-09-20 1997-10-21 Lucent Technologies Inc. Gateway system for interconnecting different data communication networks
CA2198626A1 (fr) 1994-11-17 1996-05-30 Allan Alexander Melnyk Test de reseaux intelligents
US5664102A (en) 1995-02-07 1997-09-02 At&T Intelligent network internetworking access arrangement
US5581558A (en) 1995-03-29 1996-12-03 Lucent Technologies Inc. Apparatus for bridging non-compatible network architectures
US5706286A (en) 1995-04-19 1998-01-06 Mci Communications Corporation SS7 gateway
US5638431A (en) 1995-05-01 1997-06-10 Mci Corporation Calling card validation system and method therefor
US5640446A (en) 1995-05-01 1997-06-17 Mci Corporation System and method of validating special service calls having different signaling protocols
US5583927A (en) 1995-05-01 1996-12-10 Bell Communications Research, Inc. Method and apparatus for integrating telephone and broadband networks
US5696809A (en) 1995-06-22 1997-12-09 Bell Atlantic Network Services, Inc. Advanced intelligent network based computer architecture for concurrent delivery of voice and text data using failure management system
US5651002A (en) 1995-07-12 1997-07-22 3Com Corporation Internetworking device with enhanced packet header translation and memory
US5712903A (en) 1995-08-21 1998-01-27 Bell Atlantic Network Services, Inc. Split intelligent peripheral for broadband and narrowband services
US5657452A (en) 1995-09-08 1997-08-12 U.S. Robotics Corp. Transparent support of protocol and data compression features for data communication
US5764955A (en) 1995-10-19 1998-06-09 Oasys Group, Inc. Gateway for using legacy telecommunications network element equipment with a common management information protocol
US5781534A (en) 1995-10-31 1998-07-14 Novell, Inc. Method and apparatus for determining characteristics of a path
US5805587A (en) 1995-11-27 1998-09-08 At&T Corp. Call notification feature for a telephone line connected to the internet
US5768361A (en) 1995-12-29 1998-06-16 Mci Corporation Flexible enhanced signaling subsystem for a telecommunications switch
US5675635A (en) 1996-01-24 1997-10-07 Sprint Communications Company L.P. System and method for conducting poll at a processor associated with the originating switch
WO1997028622A1 (fr) 1996-02-02 1997-08-07 Sprint Communications Company, L.P. Systeme de passerelle mta
EP0792074A3 (fr) 1996-02-20 1998-11-11 Hewlett-Packard Company Procédé assurant le service dans un système de télécommunications commuté et intercepteur de messages convenant à un tel procédé
US5732213A (en) 1996-03-22 1998-03-24 Ericsson Inc. System and method of testing open systems interconnection (OSI) layers in telecommunication networks
US5774695A (en) 1996-03-22 1998-06-30 Ericsson Inc. Protocol interface gateway and method of connecting an emulator to a network
US5852660A (en) 1996-04-10 1998-12-22 Ericsson Inc. Network protocol conversion module within a telecommunications system
US5787255A (en) 1996-04-12 1998-07-28 Cisco Systems, Inc. Internetworking device with enhanced protocol translation circuit
US6069890A (en) 1996-06-26 2000-05-30 Bell Atlantic Network Services, Inc. Internet telephone service
US5761500A (en) 1996-04-18 1998-06-02 Mci Communications Corp. Multi-site data communications network database partitioned by network elements
US6122255A (en) 1996-04-18 2000-09-19 Bell Atlantic Network Services, Inc. Internet telephone service with mediation
US5870565A (en) 1996-05-06 1999-02-09 Telefonaktiebolaget L M Ericsson (Publ) Telecommunications management network connected to a common channel signaling network
US5974052A (en) 1996-05-10 1999-10-26 U.S.T.N. Services Frame relay access device and method for transporting SS7 information between signaling points
US5815669A (en) 1996-05-17 1998-09-29 Nko, Inc. Method of routing a data transmission
US5838782A (en) 1996-05-24 1998-11-17 Ericsson, Inc. System for converting a routing address within a telecommunications network
US5889782A (en) 1996-05-28 1999-03-30 Mci Worldcom, Inc. Encapsulation of proprietary protocol information conforming to the ANSI SS7 ISUP standard
US5680437A (en) 1996-06-04 1997-10-21 Motorola, Inc. Signaling system seven distributed call terminating processor
US6014379A (en) 1996-06-26 2000-01-11 Bell Atlantic Network Services, Inc. Telecommunications custom calling services
US6021126A (en) 1996-06-26 2000-02-01 Bell Atlantic Network Services, Inc. Telecommunication number portability
US5793771A (en) 1996-06-27 1998-08-11 Mci Communications Corporation Communication gateway
US5912887A (en) 1996-06-27 1999-06-15 Mciworldcom, Inc. System and method for implementing user-to-user data transfer services
US6011794A (en) 1996-09-09 2000-01-04 Netplus Communications Corp. Internet based telephone apparatus and method
US5923659A (en) 1996-09-20 1999-07-13 Bell Atlantic Network Services, Inc. Telecommunications network
US6125111A (en) 1996-09-27 2000-09-26 Nortel Networks Corporation Architecture for a modular communications switching system
US5828844A (en) 1996-10-08 1998-10-27 At&T Corp. Internet NCP over ATM
US5867495A (en) 1996-11-18 1999-02-02 Mci Communications Corporations System, method and article of manufacture for communications utilizing calling, plans in a hybrid network
US6078582A (en) 1996-12-18 2000-06-20 Bell Atlantic Network Services, Inc. Internet long distance telephone service
US5889954A (en) 1996-12-20 1999-03-30 Ericsson Inc. Network manager providing advanced interconnection capability
US5892822A (en) 1996-12-30 1999-04-06 Mci Communications Corporation Method of and system for call routing compliant with international regulatory routing requirements
US6064653A (en) 1997-01-07 2000-05-16 Bell Atlantic Network Services, Inc. Internetwork gateway to gateway alternative communication
US6011803A (en) 1997-01-13 2000-01-04 Lucent Technologies Inc. Distributed-protocol server
US5940598A (en) 1997-01-28 1999-08-17 Bell Atlantic Network Services, Inc. Telecommunications network to internetwork universal server
US5917900A (en) 1997-02-07 1999-06-29 Mci Communications Corporation Remote data gateway
US5946684A (en) 1997-02-18 1999-08-31 Ameritech Corporation Method and system for providing computer-network related information about a calling party
US5878129A (en) 1997-02-20 1999-03-02 Ameritech Corporation Method and system for distributing messages from a signal transfer point to a plurality of service control points
US6075783A (en) 1997-03-06 2000-06-13 Bell Atlantic Network Services, Inc. Internet phone to PSTN cellular/PCS system
US6137869A (en) 1997-09-16 2000-10-24 Bell Atlantic Network Services, Inc. Network session management
US6084892A (en) 1997-03-11 2000-07-04 Bell Atlantic Networks Services, Inc. Public IP transport network
US6097719A (en) 1997-03-11 2000-08-01 Bell Atlantic Network Services, Inc. Public IP transport network
US6118780A (en) 1997-03-17 2000-09-12 International Business Machines Corporation Communication network and method of operation for real time user selection of voice and/or data paths in the network
US5995608A (en) 1997-03-28 1999-11-30 Confertech Systems Inc. Method and apparatus for on-demand teleconferencing
US6011780A (en) 1997-05-23 2000-01-04 Stevens Institute Of Technology Transparant non-disruptable ATM network
US6122263A (en) 1997-06-10 2000-09-19 Telefonaktiebolaget Lm Ericsson Internet access for cellular networks
US5958016A (en) 1997-07-13 1999-09-28 Bell Atlantic Network Services, Inc. Internet-web link for access to intelligent network service control
US6111893A (en) 1997-07-31 2000-08-29 Cisco Technology, Inc. Universal protocol conversion
US6018515A (en) 1997-08-19 2000-01-25 Ericsson Messaging Systems Inc. Message buffering for prioritized message transmission and congestion management
US6115383A (en) 1997-09-12 2000-09-05 Alcatel Usa Sourcing, L.P. System and method of message distribution in a telecommunications network
US6125177A (en) 1997-09-15 2000-09-26 Nortel Networks Corporation Telephone communications network with enhanced signaling and call routing
US6112090A (en) 1997-09-16 2000-08-29 Ericsson Inc. System and method for forwarding calling party information
US6411632B2 (en) * 1997-09-16 2002-06-25 Telefonaktiebolaget Lm Ericsson (Publ) Network hub for interconnecting a wireless office environment with a public cellular telephone network
US6084956A (en) 1997-09-19 2000-07-04 Nortel Networks Corporation SS7 mediation for data network call setup and services interworking
USH1896H (en) 1997-09-26 2000-10-03 Dsc/Celcore, Inc. Network management system server and method for operation
US6134235A (en) 1997-10-08 2000-10-17 At&T Corp. Pots/packet bridge
US6023502A (en) 1997-10-30 2000-02-08 At&T Corp. Method and apparatus for providing telephone billing and authentication over a computer network
US6006098A (en) 1997-11-06 1999-12-21 Alcatel Usa Sourcing, L.P. System and method for application location register routing in a telecommunications network
US6178181B1 (en) * 1997-12-01 2001-01-23 Telefonaktiebolaget L M Ericsson (Publ) Mapping function and method of transmitting signaling system 7(SS7) telecommunications messages over data networks
US6128379A (en) 1997-12-03 2000-10-03 Telcordia Technologies, Inc. Intelligent data peripheral systems and methods
US6047005A (en) 1998-01-07 2000-04-04 Mci Communications Corporation Virtual bearer channel platform for processing service requests received in the form of channel data
US6134246A (en) 1998-01-26 2000-10-17 Samsung Electronics Co., Ltd. Inverse multiplexing within asynchronous transfer mode communication networks
US6122365A (en) 1998-12-18 2000-09-19 Genesys Telecommunications Laboratories, Inc. Method and apparatus for load-balancing of call processing between multiple call-destination sites and routing of calls by way of call-destination site control
US6563835B1 (en) * 1998-02-20 2003-05-13 Lucent Technologies Inc. Call processing arrangement for ATM switches
US6330614B1 (en) * 1998-03-20 2001-12-11 Nexabit Networks Llc Internet and related networks, a method of and system for substitute use of checksum field space in information processing datagram headers for obviating processing speed and addressing space limitations and providing other features
USH1880H (en) 1998-09-25 2000-10-03 Dsc/Celcore, Inc. System and method for processing wireless voice and data telecommunications
US6094437A (en) 1998-10-09 2000-07-25 Asc - Advanced Switching Communications Layer two tunneling protocol (L2TP) merging and management
US6119160A (en) 1998-10-13 2000-09-12 Cisco Technology, Inc. Multiple-level internet protocol accounting
US6507649B1 (en) * 1998-12-18 2003-01-14 Ericsson Inc. Mechanism and method for distributing ISUP stacks over multiple loosely coupled processors
US6327267B1 (en) * 1998-12-21 2001-12-04 Ericssoninc Systems and methods for routing a message through a signaling network associated with a public switched telephone network (PSTN), including a method for performing global title routing on an internet protocol (IP) address
US6487286B1 (en) * 1998-12-21 2002-11-26 Nortel Networks Limited Common channel signaling with a network of distributed signal transfer points
US6333931B1 (en) * 1998-12-28 2001-12-25 Cisco Technology, Inc. Method and apparatus for interconnecting a circuit-switched telephony network and a packet-switched data network, and applications thereof
US6611533B1 (en) * 1999-01-13 2003-08-26 Nortel Networks Limited Public telephone network, intelligent network, and internet protocol network services interworking
US6801521B1 (en) * 1999-02-08 2004-10-05 Siemens Information And Communication Networks, Inc. System and method for distributed call signaling in telephony-over-LAN networks
US6760343B1 (en) * 1999-05-20 2004-07-06 Nortel Networks Limited Method and apparatus for providing a virtual SS7 link in a communications system
US6594258B1 (en) * 1999-05-26 2003-07-15 Ericsson Inc. Integrated home location register and IP-SS7 gateway
US6584190B1 (en) * 1999-09-07 2003-06-24 Nortel Networks Limited Communications of telephony control signaling over data networks
US6611532B1 (en) * 1999-12-07 2003-08-26 Telefonaktielbolaget Lm Ericsson (Publ) Methods and apparatus for integrating signaling system number 7 networks with networks using multi-protocol label switching
US6674748B1 (en) * 1999-12-21 2004-01-06 Telefonaktiebolaget Lm Ericsson (Publ) Methods, apparatuses and systems for transitioning from a signaling system 7 network to a data network at a signaling system 7 gateway
US6515985B2 (en) * 2000-02-08 2003-02-04 Airslide Systems Ltd. Convergence of telephone signaling, voice and data over a packet-switched network
US20020048360A1 (en) * 2000-09-05 2002-04-25 Zambre Rajan A. System and methods for distributed telecommunication applications for the public switched telephone network and the public land mobile network
US6990089B2 (en) * 2000-12-12 2006-01-24 Telelec Methods and systems for routing messages in a radio access network

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8213410B2 (en) 1998-12-04 2012-07-03 Tekelec, Inc. Methods and systems for communicating SS7 messages over packet-based network using transport adapter layer interface
US8750328B2 (en) 1998-12-04 2014-06-10 Tekelec Global, Inc. Methods and systems for communicating signaling system 7 (SS7) user part messages among SS7 signaling points (SPs) and internet protocol (IP) nodes using signal transfer points (STPs)
US8224928B2 (en) 2000-06-01 2012-07-17 Tekelec, Inc. Methods and systems for distributing operating status information within a converged network
US10268570B2 (en) 2016-05-05 2019-04-23 Oracle International Corporation Methods, systems, and computer readable media for automated generation of test files and testing network equipment using same

Also Published As

Publication number Publication date
WO2002060192A2 (fr) 2002-08-01
WO2002060192A3 (fr) 2002-09-19
US6965592B2 (en) 2005-11-15
US20020131400A1 (en) 2002-09-19
EP1356686A2 (fr) 2003-10-29
AU2002240037A1 (en) 2002-08-06
DE60237069D1 (fr) 2010-09-02
ATE475268T1 (de) 2010-08-15

Similar Documents

Publication Publication Date Title
EP1356686B1 (fr) Passerelle repartie d'acheminement de messages du systeme ss7
US7313129B1 (en) Arrangement for sharing a single signaling point code between multiple hosts in an IP-based network
US9379965B2 (en) Organizing, managing, and selectively distributing routing information in a signaling message routing node
EP1135905B1 (fr) Communication de messages a des points de signalisation ss7
EP1974282B1 (fr) Procédés, systèmes et programmes informatiques de traitement décentralisé de messages de signalisation dans un environnement de traitement multi-applications
US6195425B1 (en) Telecommunications system with wide area internetwork control
US6181695B1 (en) Telecommunications network
US6987781B1 (en) Methods and systems for routing signaling messages in a communications network using circuit identification code (CIC) information
US6885678B2 (en) Telecommunications network
US7136477B2 (en) Methods and systems for providing end office support in a signaling network
EP1604473A2 (fr) Procedes et systemes pour acheminer des messages entre une paire connectee de noeuds de routage comprenant une architecture de traitement reparti et une ou plusieurs applications eloignees, connectees de maniere redondante
EP1398976B1 (fr) Serveur de signalisation SS7 avec des services de signalisation integrés améliorés
US7519051B2 (en) Methods and related apparatus for operating a gateway to act as a conduit for a structured transaction
US7043002B2 (en) Methods and systems for identifying, redirecting, and processing messages of different SS7 protocol variations
US7477646B1 (en) Arrangement for controlling congestion for multiple host groups sharing a single signaling point code in an IP-based network using respective group congestion levels
EP1314324B1 (fr) Traduction, comptage, et acheminement de messages dans une passerelle
EP1794997A2 (fr) Procedes, systemes et produits de programme informatique destines au partage de charge de traduction d'appellation post-global (gtt)
US7286524B1 (en) System and method for high capacity/failure tolerance telecommunications in a signaling network gateway
EP1519591A1 (fr) Méthodes et dispositif pour contrôler des passerelles de signalisation
EP1643777B1 (fr) Procédés et dispositif pour contrôler des passerelles de signalisation
EP1398977A1 (fr) Méthode utilisant le SCCP local user escape
CA2375807A1 (fr) Passerelle de signalisation
US7386112B1 (en) Arrangement for controlling SS7 message routing by selecting a signaling link selection field based on an affected destination

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030825

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20080527

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60237069

Country of ref document: DE

Date of ref document: 20100902

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100721

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100721

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101122

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100721

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100721

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100721

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100721

26N No opposition filed

Effective date: 20110426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101101

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60237069

Country of ref document: DE

Effective date: 20110426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110124

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60237069

Country of ref document: DE

Effective date: 20120906

Ref country code: DE

Ref legal event code: R082

Ref document number: 60237069

Country of ref document: DE

Representative=s name: ISARPATENT GBR PATENT- UND RECHTSANWAELTE, DE

Effective date: 20120906

Ref country code: DE

Ref legal event code: R081

Ref document number: 60237069

Country of ref document: DE

Owner name: TEKELEC GLOBAL INC., US

Free format text: FORMER OWNER: TEKELEC, CALABASAS, US

Effective date: 20120906

Ref country code: DE

Ref legal event code: R081

Ref document number: 60237069

Country of ref document: DE

Owner name: TEKELEC GLOBAL INC., MORRISVILLE, US

Free format text: FORMER OWNER: TEKELEC, CALABASAS, CALIF., US

Effective date: 20120906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100721

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

Effective date: 20131003

Ref country code: FR

Ref legal event code: CD

Owner name: TEKELEC GLOBAL INC.

Effective date: 20131003

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60237069

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20201210

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210112

Year of fee payment: 20

Ref country code: GB

Payment date: 20210113

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60237069

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20220123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20220123

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230516