EP1345904A1 - Dichlorpyridylmethylcyanamidine - Google Patents

Dichlorpyridylmethylcyanamidine

Info

Publication number
EP1345904A1
EP1345904A1 EP01271358A EP01271358A EP1345904A1 EP 1345904 A1 EP1345904 A1 EP 1345904A1 EP 01271358 A EP01271358 A EP 01271358A EP 01271358 A EP01271358 A EP 01271358A EP 1345904 A1 EP1345904 A1 EP 1345904A1
Authority
EP
European Patent Office
Prior art keywords
formula
optionally substituted
carbon atoms
methyl
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01271358A
Other languages
English (en)
French (fr)
Inventor
Ernst-Rudolf Gesing
Hans-Jochem Riebel
Katharina Jansen
Kristian Kather
Achim Hense
Stefan Lehr
Gerd Hänssler
Karl-Heinz Kuck
Astrid Mauler-Machnik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer CropScience AG
Original Assignee
Bayer CropScience AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer CropScience AG filed Critical Bayer CropScience AG
Publication of EP1345904A1 publication Critical patent/EP1345904A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/40Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom six-membered rings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N47/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
    • A01N47/40Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having a double or triple bond to nitrogen, e.g. cyanates, cyanamides
    • A01N47/42Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having a double or triple bond to nitrogen, e.g. cyanates, cyanamides containing —N=CX2 groups, e.g. isothiourea
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N47/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
    • A01N47/40Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having a double or triple bond to nitrogen, e.g. cyanates, cyanamides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/61Halogen atoms or nitro radicals

Definitions

  • the present invention relates to new Dichlo ⁇ yridylmethylcyanamidine, a Ner-process for their preparation and their use for controlling unwanted microorganisms.
  • Rl represents hydrogen, alkyl or optionally substituted aralkyl
  • R-2 represents hydrogen, optionally substituted alkyl, optionally substituted alkoxy, optionally substituted alkylthio, optionally substituted aryl, optionally substituted aryloxy or optionally substituted arylthio,
  • dichloropyridylmethylcyanamidines of the formula (I) can be prepared by using dichloropyridylmethylamine of the formula
  • Rl has the meaning given above
  • R2 has the meaning given above and
  • X represents in each case optionally substituted alkoxy, alkylthio, aryloxy or arylthio,
  • dichloropyridylmethylcyanamidines of the formula (I) have very good microbicidal properties and can be used both in crop protection and in material protection to combat unwanted microorganisms.
  • the substances according to the invention can not only be used for the direct control of undesired microorganisms, but also practice
  • dichloropyridylmethylcyanamides of the formula (I) according to the invention show a substantially better fungicidal activity than the constitutionally most similar, known substances of the same action.
  • the dichloropyridylmethylcyanamidines according to the invention are generally defined by the formula (I).
  • Preferred compounds of the formula (I) are those in which
  • R represents hydrogen, alkyl having 1 to 4 carbon atoms or aralkyl having 6 to 10 carbon atoms in the aryl part and 1 to 4 carbon atoms in the alkyl part and
  • R2 represents hydrogen, alkyl having 1 to 4 carbon atoms, alkoxy having 1 to 4 carbon atoms, alkylthio having 1 to 4 carbon atoms, aryl having 6 to 10 carbon atoms, aryloxy having 6 to 10 carbon atoms or arylthio having 6 to 10 carbon atoms, the three last-mentioned radicals can each be monosubstituted to trisubstituted, identical or different, by fluorine, chlorine, bromine and / or alkyl having 1 to 4 carbon atoms.
  • Rl represents hydrogen, methyl, ethyl or benzyl
  • R2 for hydrogen, methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, methoxy, ethoxy, n- or i-propoxy, n-, i-, s- or t-butoxy, methylthio, ethylthio, n- or i-propylthio, n-, i-, s- or t-butylthio, or stands for phenyl, phenoxy or phenylthio, the three last-mentioned radicals each being from one to three times, may be substituted identically or differently by fluorine, chlorine, bromine, methyl and / or ethyl. If (2,6-dichloro-4-pyridinyl) methylamine and methyl cyanimidoformate are used as starting materials, the course of the process according to the invention can be illustrated by the following formula.
  • R 1 preferably has those meanings which are already in
  • the Dichlo ⁇ yridylmethyla ine of formula (II) are known or can be prepared by known methods (cf. Rec. Trav. Chim. Pays-Bas 52 (1933), 55-56).
  • Formula (III) provides a general definition of the cyanimines which are further required as starting materials when carrying out the process according to the invention.
  • R 2 preferably has those meanings which have already been mentioned as preferred for this radical in connection with the description of the substances of the formula (I) according to the invention.
  • X preferably represents alkoxy having 1 to 4 carbon atoms, alkylthio having 1 to 4 carbon atoms, phenoxy or phenylthio, the latter two radicals being one to three times, of the same type or can be substituted differently by fluorine, chlorine, bromine, methyl and / or ethyl.
  • R 2 represents hydrogen, optionally substituted alkyl or optionally substituted aryl
  • X particularly preferably represents methoxy or
  • R 2 stands for optionally substituted alkoxy, optionally substituted alkylthio, optionally substituted aryloxy or for optionally substituted arylthio
  • X preferably represents the meanings which have already been mentioned as preferred above.
  • the radicals R 2 and X are particularly preferably identical.
  • the cyanimines of the formula (III) are known or can be prepared by known processes (cf. J. Org. Chem. 28 (1983), 1816-1821, Synthesis 1971, 263 and Arch. Pharm. 303 (1970), 625- 633).
  • Suitable diluents for carrying out the process according to the invention are all customary inert organic solvents.
  • Aliphatic, alicyclic or aromatic hydrocarbons such as petroleum ether, hexane, heptane, cyclohexane, methylcyclohexane, benzene,
  • halogenated hydrocarbons such as chlorobenzene, dichlorobenzene, dichloromethane, chloroform, carbon tetrachloride, dichloroethane or trichloroethane
  • Ethers such as diethyl ether, diisopropyl ether, methyl t-butyl ether, methyl t-amyl ether, dioxane, tetrahydrofuran, 1,2-dimethoxyethane, 1,2-diethoxyethane or anisole
  • Ketones such as acetone, butanone, methyl isobutyl ketone or cyclohexanone
  • Nitriles such as acetonitrile, propionitrile, n- or i-butyronitrile or benzonitrile
  • Amides such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methylformanilide
  • reaction temperatures can be varied within a substantial range when carrying out the process according to the invention. In general, temperatures between 0 ° C and 120 ° C, preferably at temperatures between 0 ° C to 80 ° C.
  • the substances according to the invention have a strong microbicidal action and can be used to control undesirable microorganisms, such as fungi and
  • Bacteria can be used in crop protection and material protection.
  • Fungicides can be used for crop protection to control Plasmodiophoromycetes, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes and Deuteromycetes.
  • Bactericides can be used in crop protection to combat Pseudomonadaceae, Rhizobiaceae, Enterobacteriaceae, Corynebacteriaceae and Streptomycetaceae.
  • Some pathogens of fungal and bacterial diseases that fall under the generic names listed above may be mentioned as examples, but not by way of limitation:
  • Xanthomonas species such as, for example, Xanthomonas campestris pv. Oryzae
  • Pseudomonas species such as, for example, Pseudomonas syringae pv. Lachrymans
  • Erwinia species such as, for example, Erwinia amylovora;
  • Pythium species such as, for example, Pythium ultimum
  • Phytophthora species such as, for example, Phytophthora infestans
  • Pseudoperonospora species such as, for example, Pseudoperonospora humuli or Pseudoperonospora cubensis;
  • Plasmopara species such as, for example, Plasmopara viticola
  • Bremia species such as, for example, Bremia lactucae
  • Peronospora species such as, for example, Peronospora pisi or P. brassicae;
  • Erysiphe species such as, for example, Erysiphe graminis
  • Sphaerotheca species such as, for example, Sphaerotheca fuliginea
  • Podosphaera species such as, for example, Podosphaera leucotricha
  • Venturia species such as, for example, Venturia inaequalis
  • Pyrenophora species such as, for example, Pyrenophora teres or P. graminea
  • Cochliobolus species such as, for example, Cochliobolus sativus
  • Drechslera (Conidial form: Drechslera, Syn: Helminthosporium);
  • Uromyces species such as, for example, Uromyces appendiculatus
  • Puccinia species such as, for example, Puccinia recondita
  • Sclerotinia species such as, for example, Sclerotinia sclerotiorum
  • Tilletia species such as, for example, Tilletia caries
  • Ustilago species such as, for example, Ustilago nuda or Ustilago avenae;
  • Pellicularia species such as, for example, Pellicularia sasakii;
  • Pyricularia species such as, for example, Pyricularia oryzae
  • Fusarium species such as, for example, Fusarium culmorum
  • Botrytis species such as, for example, Botrytis cinerea
  • Septoria species such as, for example, Septoria nodorum
  • Leptosphaeria species such as, for example, Leptosphaeria nodorum
  • Cercospora species such as, for example, Cercospora canescens
  • Alternaria species such as, for example, Alternaria brassicae
  • Pseudocercosporella species such as, for example, Pseudocercosporella he ⁇ otrichoides.
  • the active compounds according to the invention can be particularly successful
  • the active compounds according to the invention also have a strong plant-strengthening action in plants. They are therefore suitable for mobilizing the plant's own
  • Plant-strengthening (resistance-inducing) substances are to be understood in the present context as those substances which are able to stimulate the defense system of plants in such a way that the treated plants develop extensive resistance to these microorganisms when subsequently inoculated with undesired microorganisms.
  • Undesired microorganisms are to be understood in the present case as phytopathogenic fungi, bacteria and viruses.
  • the substances according to the invention can therefore be used to protect plants from attack by the pests mentioned within a certain period of time after treatment.
  • the period within which protection is brought about generally extends from 1 to 10 days, preferably 1 to 7 days, after the treatment of the plants with the active compounds.
  • the active compounds according to the invention are also suitable for increasing the crop yield. They are also less toxic and have good plant tolerance.
  • the active compounds according to the invention can also be used in certain concentrations and application rates as herbicides, for influencing plant growth and for controlling animal pests. If appropriate, they can also be used as intermediates and products for the synthesis of further active ingredients.
  • Plants are understood to mean all plants and plant populations, such as desired and undesirable wild plants or cultivated plants (including naturally occurring cultivated plants).
  • Cultivated plants can be plants which can be obtained by conventional breeding and optimization methods or by biotechnological and genetic engineering methods or combinations of these methods, including the transgenic plants and including the plant cultivars which can or cannot be protected by plant breeders' rights.
  • Plant parts are to be understood to mean all above-ground and underground parts and organs of plants, such as shoots, leaves, flowers and roots, examples being leaves, needles, stems, stems, flowers, fruit bodies, fruits and seeds as well as roots, tubers and rhizomes become.
  • the plant parts also include crops and vegetative and generative propagation material, for example cuttings, tubers, rhizomes, offshoots and seeds.
  • the treatment of the plants and parts of plants with the active compounds according to the invention is carried out directly or by acting on their surroundings, living space or storage space according to the customary treatment methods, for example by dipping, spraying, evaporating, atomizing, scattering, spreading and in the case of propagation material, in particular seeds single or multi-layer wrapping.
  • the substances according to the invention can be used to protect technical materials against attack and destruction by undesired microorganisms.
  • Microorganisms can be attacked or decomposed.
  • parts of production plants for example cooling water circuits, are also mentioned which can be impaired by the multiplication of microorganisms.
  • the preferred technical materials are adhesives, glues, papers and cartons, leather, wood, paints,
  • Cooling lubricants and heat transfer liquids called, particularly preferably wood.
  • Bacteria, fungi, yeasts, algae and, for example, are microorganisms which can cause degradation or a change in the technical materials
  • the active compounds according to the invention preferably act against fungi, in particular mold, wood-discoloring and wood-destroying fungi (Basidiomycetes) and against mucus organisms and algae.
  • microorganisms of the following genera may be mentioned:
  • Alternaria such as Alternaria tenuis, Aspergillus, such as Aspergillus niger, Chaetomium, such as Chaetomium globosum, Coniophora, such as Coniophorapuetana,
  • Lentinus such as Lentinus tigrinus, Penicillium, such as Penicillium glaucum, Polyporus, such as Polyporus versicolor, Aureobasidium, such as Aureobasidium pullulans, Sclerophoma, such as Sclerophoma pityophila, Trichoderma, such as Trichoderma viride,
  • Escherichia such as Escherichia coli
  • Pseudomonas such as Pseudomonas aeruginosa
  • Staphylococcus such as Staphylococcus aureus.
  • the active ingredients can be converted into the customary formulations, such as solutions, emulsions, suspensions, powders, foams, pastes, granules, aerosols, very fine encapsulations in polymeric substances and in coating compositions for seeds, and ULV -Cold and warm mist formulations.
  • formulations are made in a known manner, e.g. by mixing the active ingredients with extenders, that is to say liquid solvents, pressurized liquefied gases and / or solid carriers, if appropriate using surface-active agents, that is to say emulsifiers and / or dispersants and / or foam-generating agents. If water is used as an extender, e.g. organic solvents can also be used as auxiliary solvents.
  • extenders that is to say liquid solvents, pressurized liquefied gases and / or solid carriers, if appropriate using surface-active agents, that is to say emulsifiers and / or dispersants and / or foam-generating agents.
  • surface-active agents that is to say emulsifiers and / or dispersants and / or foam-generating agents.
  • water e.g. organic solvents can also be used as auxiliary solvents.
  • aromatics such as xylene, toluene or alkylnaphthalenes
  • chlorinated aromatics or chlorinated aliphatic hydrocarbons such as chlorobenzenes, chlorethylenes or methylene chloride
  • aliphatic hydrocarbons such as cyclohexane or paraffins, e.g. Petroleum fractions
  • Alcohols such as butanol or glycol and their ethers and esters, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents such as dimethylformamide and dimethyl sulfoxide, and water.
  • Liquefied gaseous extenders or carriers mean liquids which are gaseous at normal temperature and pressure, e.g. aerosol
  • Propellants such as halogenated hydrocarbons and butane, propane, nitrogen and Carbon dioxide.
  • the following are suitable as solid carriers: for example, natural rock powders such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth and synthetic rock powders such as highly disperse silica, aluminum oxide and silicates.
  • Solid carrier materials for granules come into question: eg broken and fractionated natural rocks such as calcite, marble, pumice, sepiolite,
  • Possible emulsifiers and or foaming agents are: e.g. non-ionic and anionic emulsifiers, such as polyoxyethylene fatty acid esters, polyoxyethylene fatty alcohol ethers, e.g. Alkylaryl polyglycol ethers, alkyl sulfonates,
  • Alkyl sulfates, aryl sulfonates and protein hydrolyzates Possible dispersants are: e.g. Lignin sulfite liquor and methyl cellulose.
  • Adhesives such as carboxymethyl cellulose, natural and synthetic polymers in the form of powders, granules or latices, such as gum arabic, polyvinyl alcohol, polyvinyl acetate, and also natural phospholipids, such as cephalins and lecithins, and synthetic phospholipids can be used in the formulations.
  • Other additives can be mineral and vegetable oils.
  • Dyes such as inorganic pigments, e.g. Iron oxide, titanium oxide, ferrocyan blue and organic dyes such as alizarin, azo and metal pht-halocyanine dyes and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc are used.
  • inorganic pigments e.g. Iron oxide, titanium oxide, ferrocyan blue and organic dyes such as alizarin, azo and metal pht-halocyanine dyes and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc are used.
  • the formulations generally contain between 0.1 and 95 percent by weight
  • Active ingredient preferably between 0.5 and 90%.
  • the active compounds according to the invention can also be used in a mixture with known fungicides, bactericides, acaricides, nematicides or insecticides, in order, for example, to broaden the activity spectrum or to prevent the development of resistance. In many cases you get synergistic gistic effects, ie the effectiveness of the mixture is greater than the effectiveness of the individual components.
  • Famoxadon Fenapanil, Fenarimol, Fenbuconazol, Fenfuram, Fenitropan, Fenpiclonil, Fenpropidin, Fenpropimo ⁇ h, Fentinacetat, Fentinhydroxyd, Ferbam, Ferimzon, Fluazinam, Flumetover, Fluoromid, Fluquinconazol, Flu ⁇ rimidol, Flusrimidol, Flusrimidol, Flusrilidol, Flusrilidol, Flusrilidol, Flusrilidol, Flusrilidol, Flusrilidol, Flusrilidol, Flusrilidol, Flusrilidol, Fosetyl sodium, fthalide, fuberidazole, furalaxyl, furametpyr, furcarbonil, furconazole, furconazole-cis,
  • Mancopper Mancozeb, Maneb, Meferimzone, M --ni ⁇ yrim, Mepronil, Metalaxyl, Metconazol, Methasulfocarb, Methfuroxam, Metiram, Metomeclam, Metsulfovax,
  • Oxadixyl Oxamocarb, Oxolinicacid, Oxycarboxim, Oxyfenthiin,
  • Methane tetrathiol sodium salt Me l-l- (2,3-d dro-2,2-dime l-lH-inden-l-yl) -lH-imidazole-5-carboxylate,
  • Fenamiphos Fenazaquin, Fenbutatin oxide, Fenitrothion, Fenothiocarb, Fenoxacrim, Fenoxycarb, Fenpropathrin, Fenpyrad, Fenpyrithrin, Fenpyroximate, Fenvalerate, Fipronil, Fluazuron, Flubrocythrinate, Flucycloxuron, Floxthrinofonate, Fufenoxthhronate, Fufenoxthhronate, Fufronoxinophonate, Fufenoxin, Fufone - carb,
  • Halofenozide HCH, Heptenophos, Hexaflumuron, Hexythiazox, Hydroprene,
  • Mecarbam Metaldehyde, Methamidophos, Metharhician anisopliae, Metharhician flavoviride, Methidathione, Methiocarb, Methomyl, Methoxyfenozide, Metolcarb, Metoxadiazone, Mevinphos, Milbemectin, Monocrotophos, Naled, Nitenpyram, Nithiazine, Novaluron
  • Paecilomyces fumosoroseus Parathion A, Parathion M, Permethrin, Phenthoat, Phorat, Phosalone, Phosmet, Phosphamidon, Phoxim, Pirimicarb, Pirimiphos A, Pirimiphos M, Profenofos, Promecarb, Propoxur, Prothiofos, Prothoine, Pyromethrinos, Pymmethrinzin , Pyrethrum, pyridaben, pyridathione, pyrimidifen, pyriproxyfen,
  • the compounds of formula (I) according to the invention also have very good antifungal effects. They have a very broad spectrum of antimycotic effects, in particular against dermatophytes and shoot fungi, mold and diphasic fungi (for example against Candida species such as Candida albicans,
  • Candida glabrata and Epidermophyton floccosum, Aspergillus species such as Aspergillus niger and Aspergillus fumigatus, Trichophyton species such as Trichophyton mentagrophytes, Microsporon species such as Microsporon canis and audouinii.
  • the list of these mushrooms is in no way a limitation of the detectable mycotic spectrum, but has only an explanatory character.
  • the active compounds can be used as such, in the form of their formulations or the use forms prepared therefrom, such as ready-to-use solutions, suspensions, wettable powders, pastes, soluble powders, dusts and granules. They are used in the usual way, e.g. by pouring, spraying, spraying,
  • the application rates can be varied within a relatively wide range, depending on the type of application.
  • the active compound application rates are generally between 0.1 and 10,000 g ha, preferably between 10 and 1,000 g ha.
  • the active compound application rates are generally between 0.001 and 50 g per kilogram of seed, preferably between 0.01 and 10 g per kilogram of seed.
  • the active compound application rates are generally between 0.1 and 10,000 g / ha, preferably between 1 and 5,000 g / ha.
  • the agents used to protect industrial materials generally contain the active substances in an amount between 1 and 95% by weight, preferably between 10 and 75% by weight.
  • the application concentrations of the active compounds according to the invention depend on the type and the occurrence of the microorganisms to be controlled and on the composition of the material to be protected.
  • the optimal amount can be determined by test series.
  • the application concentrations are in the range from 0.001 to 5% by weight, preferably from 0.05 to 1.0% by weight, based on the material to be protected.
  • Insecticides or other active ingredients to enlarge the spectrum of activity or to achieve special effects such as added protection against insects. These mixtures can have a broader spectrum of activity than the compounds according to the invention.
  • plants and their parts can be treated according to the invention.
  • plant species and plant cultivars and their parts occurring wildly or obtained by conventional organic breeding methods, such as crossing or protoplast fusion are treated.
  • transgenic plants and plant cultivars which have been obtained by genetic engineering methods, if appropriate in combination with conventional methods (genetic modified organisms) and their parts are treated.
  • the term "parts” or “parts of plants” or “plant parts” was explained above. Plants of the plant varieties which are in each case commercially available or in use are particularly preferably treated according to the invention.
  • the treatment according to the invention can also cause superadditive (“synergistic") effects.
  • superadditive for example, reduced application rates and / or widening of the spectrum of action and / or an increase in the action of the substances and agents which can be used according to the invention, better plant growth, increased tolerance to high or low temperatures, increased tolerance to drought or to water or soil salt content, increased flowering performance, easier harvesting, acceleration of ripeness, higher harvest yields, higher quality and / or higher nutritional value of the harvested products, higher shelf life and / or workability of the harvested products, which go beyond the effects to be expected.
  • the preferred transgenic (genetically engineered) plants or plant cultivars to be treated according to the invention include all plants which have received genetic material through the genetic engineering modification, which gives these plants particularly advantageous, valuable properties (“traits”). Examples of such properties are better plant growth, increased tolerance to high or low temperatures, increased tolerance to drought or to water or soil salt content, increased flowering performance, easier harvesting, accelerated ripening, higher harvest yields, higher quality and or higher nutritional value of the harvested products, higher shelf life and / or workability of the harvested products. Further and particularly highlighted examples of such properties are an increased defense of the plants against animal and microbial pests, such as against insects, mites, phytopathogenic fungi, bacteria and / or viruses, and an increased tolerance of the plants to certain herbicidal active ingredients.
  • the important cultivated plants such as cereals (wheat, rice), maize, soybeans, potatoes, cotton and rapeseed are examples of transgenic plants as well as fruit plants (with the fruits apples, pears, citrus fruits and grapes), with corn, soybeans, potatoes, cotton and rapeseed being particularly emphasized.
  • the traits are particularly emphasized as the increased defense of the plants against insects by toxins which arise in the plants, in particular those which are caused by the genetic material from Bacillus thuringiensis (for example by the genes Cry ⁇ A (a), CryIA (b), Cry ⁇ A (c), CryllA, CrylllA, CryIIIB2, Cry9c, Cry2Ab, Cry3Bb and CrylF as well as their combinations) are produced in the plants (hereinafter "Bt plants”).
  • Bt plants The properties which are particularly emphasized are the increased tolerance of the plants to certain herbicidal active compounds, for example imidazolinones,
  • Sulfonylureas, glyphosate or phosphinotricin e.g. "PAT” gene.
  • the genes imparting the desired properties (“traits”) can also occur in combinations with one another in the transgenic plants.
  • “Bt plants” are corn varieties, cotton varieties, soy varieties and potato varieties that are sold under the trade names YIELD GARD® (e.g. corn, cotton, soy), KnockOut® (e.g. corn), StarLink® (e.g. corn), Bollgard® ( Cotton), Nucoton® (cotton) and NewLeaf® (potato).
  • Examples of herbicide-tolerant plants are maize varieties, cotton varieties and soy varieties that are sold under the trade names Roundup Ready® (tolerance to glyphosate e.g. maize, cotton, soybeans), Liberty Link® (tolerance to
  • Phosphinotricin e.g. Rapeseed
  • IMI® tolerance against imidazolinones
  • STS® tolerance against sulfonylureas e.g. maize
  • the herbicide-resistant plants include the varieties sold under the name Clearfield® (e.g. maize). Of course, these statements also apply to those developed in the future or to the future
  • plants listed can be treated particularly advantageously according to the invention with the compounds of the general formula (I) or the active compound mixtures according to the invention.
  • the above for the active ingredients or mixtures Preferred ranges indicated also apply to the treatment of these plants. Plant treatment with the compounds or mixtures specifically listed in the present text should be particularly emphasized.
  • Emulsifier 1.2 parts by weight of alkylaryl polyglycol ether

Abstract

Neue Dichlorpyridylmethylcyanamidine der Formel (I),in welcherR<1> für Wasserstoff, Alkyl oder gegebenenfalls substituiertes Aralkyl steht und R<2> für Wasserstoff, gegebenenfalls substituiertes Alkyl, gegebenenfalls substituiertes Alkoxy, gegebenenfalls substituiertes Alkylthio, gegebenenfalls substituiertes Aryl, gegebenenfalls substituiertes Aryloxy oder gegebenenfalls substituiertes Arylthio steht,ein Verfahren zur Herstellung der neuen Stoffe und deren Verwendung zur Bekämpfung von unerwünschten Mikroorganismen.

Description

Dichlorpyridylrnethylcyanamidme
Die vorliegende Erfindung betrifft neue Dichloφyridylmethylcyanamidine, ein Ner- fahren zu deren Herstellung und deren Verwendung zur Bekämpfung von unerwünschten Mikroorganismen.
E ist bereits bekannt geworden, dass bestimmte Dichlorpyridyl-Derivate mikrobizide und insbesondere fungizide Eigenschaften besitzen (vgl. EP-A 0 334 813, EP-A 0 334 809, EP-A 0 334 812, EP-A 0 332 579, EP-A 0 288 976, JP-A 87-242 393 und
DE-A 2 620 781). Die Wirksamkeit dieser Stoffe ist gut, lässt aber bei niedrigen Aufwandmengen in manchen Fällen zu wünschen übrig.
Es wurden nun neue Dichlorpyridylmethylcyanamidine der Formel
in welcher
Rl für Wasserstoff, Alkyl oder gegebenenfalls substituiertes Aralkyl steht und
R-2 für Wasserstoff, gegebenenfalls substituiertes Alkyl, gegebenenfalls substituiertes Alkoxy, gegebenenfalls substituiertes Alkylthio, gegebenenfalls substituiertes Aryl, gegebenenfalls substituiertes Aryloxy oder gegebenenfalls substituiertes Arylthio steht,
gefunden. Weiterhin wurde gefunden, dass sich Dichlorpyridylmethylcyanamidine der Formel (I) herstellen lassen, indem man Dichlorpyridylmethylamine der Formel
in welcher
Rl die oben angegebene Bedeutung hat,
mit Cyaniminen der Formel
in welcher
R2 die oben angegebene Bedeutung hat und
X für jeweils gegebenenfalls substituiertes Alkoxy, Alkylthio, Aryloxy oder Arylthio steht,
gegebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt.
Schließlich wurde gefunden, dass die Dichlorpyridylmethylcyanamidine der Formel (I) sehr gute mikrobizide Eigenschaften besitzen und sowohl im Pflanzenschutz als auch im Materialschutz zur Bekämpfung unerwünschter Mikroorganismen eingesetzt werden können. Die erfindungsgemäßen Stoffe lassen sich nicht nur zur direkten Bekämpfung von unerwünschten Mikroorganismen verwenden, sondern üben auf
Pflanzen auch eine resistenzinduzierende Wirkung aus. Überraschenderweise zeigen die erfindungsgemäßen Dichlorpyridylmethylcyanami- dine der Formel (I) eine wesentlich bessere fungizide Wirksamkeit als die konstitutionell ähnlichsten, vorbekannten Stoffe gleicher Wirkungsrichtung.
Die erfindungsgemäßen Dichlorpyridylmethylcyanamidine sind durch die Formel (I) allgemein definiert. Bevorzugt sind diejenigen Verbindungen der Formel (I), in denen
R für Wasserstoff, Alkyl mit 1 bis 4 Kohlenstoffatomen oder für Aralkyl mit 6 bis 10 Kohlenstoffatomen im Arylteil und 1 bis 4 Kohlenstoffatomen im Al- kylteil steht und
R2 für Wasserstoff, Alkyl mit 1 bis 4 Kohlenstoffatomen, Alkoxy mit 1 bis 4 Kohlenstoffatomen, Alkylthio mit 1 bis 4 Kohlenstoffatomen, für Aryl mit 6 bis 10 Kohlenstoffatomen, Aryloxy mit 6 bis 10 Kohlenstoffatomen oder Arylthio mit 6 bis 10 Kohlenstoffatomen steht, wobei die drei letztgenannten Reste jeweils einfach bis dreifach, gleichartig oder verschieden substituiert sein können durch Fluor, Chlor, Brom und/oder Alkyl mit 1 bis 4 Kohlen- Stoffatomen.
Besonders bevorzugt sind diejenigen Stoffe der Formel (I), in denen
Rl für Wasserstoff, Methyl, Ethyl oder Benzyl steht und
R2 für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, Meth- oxy, Ethoxy, n- oder i-Propoxy, n-, i-, s- oder t-Butoxy, Methylthio, Ethyl- thio, n- oder i-Propylthio, n-, i-, s- oder t-Butylthio steht, oder für Phenyl, Phenoxy oder Phenylthio steht, wobei die drei letztgenannten Reste jeweils einfach bis dreifach, gleichartig oder verschieden substituiert sein können durch Fluor, Chlor, Brom, Methyl und/oder Ethyl. Verwendet man (2,6-Dichlor-4-pyridinyl)-methylamin und Methyl-cyanimidoformiat als Ausgangsstoffe, so kann der Verlauf des erfindungsgemäßen Verfahrens durch das folgende Formelschema veranschaulicht werden.
Die bei der Durchführung des erfindungsgemäßen Verfahrens als Ausgangsstoffe benötigten Dichlorpyridylmethylamine sind durch die Formel (II) allgemein defi- niert. In dieser Formel hat R1 bevorzugt diejenigen Bedeutungen, die bereits im
Zusammenhang mit der Beschreibung der erfindungsgemäßen Stoffe der Formel (I) für diesen Rest als bevorzugt genannt wurden.
Die Dichloφyridylmethyla ine der Formel (II) sind bekannt oder lassen sich nach bekannten Methoden herstellen (vgl. Rec. Trav. Chim. Pays-Bas 52 (1933), 55-56).
Die bei der Durchführung des erfindungsgemäßen Verfahrens weiterhin als Ausgangsstoffe benötigten Cyanimine sind durch die Formel (III) allgemein definiert. In dieser Formel hat R2 vorzugsweise diejenigen Bedeutungen, die bereits im Zusam- menhang mit der Beschreibung der erfindungsgemäßen Stoffe der Formel (I) für diesen Rest als bevorzugt genannt wurden. X steht vorzugsweise für Alkoxy mit 1 bis 4 Kohlenstoffatomen, Alkylthio mit 1 bis 4 Kohlenstoffatomen, Phenoxy oder Phenylthio, wobei die beiden letztgenannten Reste einfach bis dreifach, gleichartig oder verschieden substituiert sein können durch Fluor, Chlor, Brom, Methyl und/oder Ethyl.
Wenn R2 für Wasserstoff, gegebenenfalls substituiertes Alkyl oder gegebenenfalls substituiertes Aryl steht, so steht X besonders bevorzugt für Methoxy oder
Methylthio.
Wenn R2 für gegebenenfalls substituiertes Alkoxy, gegebenenfalls substituiertes Alkylthio, gegebenenfalls substituiertes Aryloxy oder für gegebenenfalls substituier- tes Arylthio steht, so steht X bevorzugt für die Bedeutungen, die oben bereits als bevorzugt genannt wurden. Besonders bevorzugt sind die Reste R2 und X identisch.
Die Cyanimine der Formel (III) sind bekannt oder lassen sich nach bekannten Verfahren herstellen (vgl. J. Org. Chem. 28 (1983), 1816-1821, Synthesis 1971, 263 und Arch. Pharm. 303 (1970), 625-633).
Als Verdünnungsmittel kommen bei der Durchführung des erfindungsgemäßen Verfahrens alls üblichen inerten, organischen Solventien in Betracht. Vorzugsweise verwendbar sind aliphatische, alicyclische oder aromatische Kohlenwasserstoffe, wie beispielsweise Petrolether, Hexan, Heptan, Cyclohexan, Methylcyclohexan, Benzol,
Toluol, Xylol oder Decalin; halogenierte Kohlenwasserstoffe, wie beispielsweise Chlorbenzol, Dichlorbenzol, Dichlormethan, Chloroform, Tetrachlormethan, Dichlorethan oder Trichlorethan; Ether, wie Diethylether, Diisopropylether, Methyl- t-butylether, Methyl-t-amylether, Dioxan, Tetrahydrofuran, 1,2- Dimethoxyethan, 1,2-Diethoxyethan oder Anisol; Ketone, wie Aceton, Butanon, Methyl-isobutylketon oder Cyclohexanon; Nitrile, wie Acetonitril, Propionitril, n- oder i-Butyronitril oder Benzonitril; Amide, wie N,N-Dimethylformamid, N,N-Dimethylacetamid, N-Methylformanilid, N-Methylpyrrolidon oder Hexamethylphosphorsäuretriamid; Ester wie Essigsäuremethylester oder Essigsäureethylester; Sulfoxide, wie Dimethyl- sulfoxid; Sulfone,* wie Sulfolan; Alkohole, wie Methanol, Ethanol, n- oder i-Pro- panol, n-, i-, sek- oder tert-Butanol, Ethandiol, Propan-l,2-diol, Ethoxyethanol, Methoxyethanol, Diethylenglykolmonomethylether, Diethylenglykolmonoethylether.
Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens innerhalb eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen 0°C und 120°C, vorzugsweise bei Temperaturen zwischen 0°C bis 80°C.
Bei der Durchführung des erfindungsgemäßen Verfahrens arbeitet man im allgemei- nen unter Atmosphärendruck. Es ist jedoch auch möglich, unter vermindertem oder erhöhtem Druck zu arbeiten, zum Beispiel unter Drucken zwischen 0,1 bar und 10 bar.
Bei der Durchführung des erfindungsgemässen Verfahrens setzt man auf 1 mol an Dichloφyridylmethylamin der Formel (II) im allgemeinen 0,5 bis 2,0 mol, vorzugsweise 0,8 bis 1,5 mol an Cyanimin der Formel (III) ein. Die Aufarbeitung erfolgt nach üblichen Methoden.
Die erfindungsgemässen Stoffe weisen eine starke mikrobizide Wirkung auf und können zur Bekämpfimg von unerwünschten Mikroorgamsmen, wie Fungi und
Bakterien, im Pflanzenschutz und im Materialschutz eingesetzt werden.
Fungizide lassen sich Pflanzenschutz zur Bek-Lmpfung von Plasmodiophoromycetes, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes und Deuteromycetes einsetzen.
Bakterizide lassen sich im Pflanzenschutz zur Bekämpfung von Pseudomonadaceae, Rhizobiaceae, Enterobacteriaceae, Corynebacteriaceae und Streptomycetaceae einsetzen. Beispielhaft aber nicht begrenzend seien einige Erreger von pilzlichen und bakteriellen Erkrankungen, die unter die oben aufgezählten Oberbegriffe fallen, genannt:
Xanthomonas- Arten, wie beispielsweise Xanthomonas campestris pv. oryzae; Pseudomonas-Arten, wie beispielsweise Pseudomonas syringae pv. lachrymans;
Erwinia- Arten, wie beispielsweise Erwinia amylovora;
Pythium- Arten, wie beispielsweise Pythium ultimum;
Phytophthora-Arten, wie beispielsweise Phytophthora infestans;
Pseudoperonospora- Arten, wie beispielsweise Pseudoperonospora humuli oder Pseudoperonospora cubensis;
Plasmopara- Arten, wie beispielsweise Plasmopara viticola;
Bremia-Arten, wie beispielsweise Bremia lactucae;
Peronospora- Arten, wie beispielsweise Peronospora pisi oder P. brassicae;
Erysiphe- Arten, wie beispielsweise Erysiphe graminis; Sphaerotheca- Arten, wie beispielsweise Sphaerotheca fuliginea;
Podosphaera-Arten, wie beispielsweise Podosphaera leucotricha;
Venturia- Arten, wie beispielsweise Venturia inaequalis;
Pyrenophora-Arten, wie beispielsweise Pyrenophora teres oder P. graminea
(Konidienform: Drechslera, Syn: Helminthosporium); Cochliobolus-Arten, wie beispielsweise Cochliobolus sativus
(Konidienform: Drechslera, Syn: Helminthosporium);
Uromyces- Arten, wie beispielsweise Uromyces appendiculatus;
Puccinia- Arten, wie beispielsweise Puccinia recondita;
Sclerotinia- Arten, wie beispielsweise Sclerotinia sclerotiorum; Tilletia-Arten, wie beispielsweise Tilletia caries;
Ustilago- Arten, wie beispielsweise Ustilago nuda oder Ustilago avenae;
Pellicularia-Arten, wie beispielsweise Pellicularia sasakii;
Pyricularia- Arten, wie beispielsweise Pyricularia oryzae;
Fusarium- Arten, wie beispielsweise Fusarium culmorum; Botrytis- Arten, wie beispielsweise Botrytis cinerea;
Septoria- Arten, wie beispielsweise Septoria nodorum; Leptosphaeria-Arten, wie beispielsweise Leptosphaeria nodorum; Cercospora- Arten, wie beispielsweise Cercospora canescens; Alternaria- Arten, wie beispielsweise Alternaria brassicae;
Pseudocercosporella-Arten, wie beispielsweise Pseudocercosporella heφotrichoides.
Die gute Pflanzenverträglichkeit der Wirkstoffe in den zur Bekämpfung von Pflanzenkrankheiten notwendigen Konzentrationen erlaubt eine Behandlung von oberirdischen Pflanzenteilen, von Pflanz- und Saatgut, und des Bodens.
Dabei lassen sich die erfindungsgemäßen Wirkstoffe mit besonders gutem Erfolg zur
Bekämpfung von Getreidekrankheiten, wie beispielsweise gegen Erysiphe-Arten, einsetzen.
Die erfindungsgemäßen Wirkstoffe weisen ferner eine starke pflanzenstärkende Wir- kung in Pflanzen auf. Sie eignen sich daher zur Mobilisierung pflanzeneigener
Abwehrkräfte gegen Befall durch unerwünschte Mikroorganismen.
Unter pflanzenstärkenden (resistenzinduzierenden) Stoffen sind im vorliegenden Zusammenhang solche Substanzen zu verstehen, die in der Lage sind, das Abwehr- System von Pflanzen so zu stimulieren, dass die behandelten Pflanzen bei nachfolgender Inokulation mit unerwünschten Mikroorganismen weitgehende Resistenz gegen diese Mikroorganismen entfalten.
Unter unerwünschten Mikroorganismen sind im vorliegenden Fall phytopathogene Pilze, Bakterien und Viren zu verstehen. Die erfindungsgemäßen Stoffe können also eingesetzt werden, um Pflanzen innerhalb eines gewissen Zeitraumes nach der Behandlung gegen den Befall durch die genannten Schaderreger zu schützen. Der Zeitraum, innerhalb dessen Schutz herbeigeführt wird, erstreckt sich im allgemeinen von 1 bis 10 Tage, vorzugsweise 1 bis 7 Tage nach der Behandlung der Pflanzen mit den Wirkstoffen. Die erfindungsgemäßen Wirkstoffe eignen sich auch zur Steigerung des Ernteertrages. Sie sind außerdem mindertoxisch und weisen eine gute Pflanzenverträglichkeit auf.
Die erfindungsgemäßen Wirkstoffe können gegebenenfalls in bestimmten Konzen- trationen und Aufwandmengen auch als Herbizide, zur Beeinflussung des Pflanzenwachstums, sowie zur Bekämpfung von tierischen Schädlingen verwendet werden. Sie lassen sich gegebenenfalls auch als Zwischen- und Voφrodukte für die Synthese weiterer Wirkstoffe einsetzen.
Erfindungsgemäß können alle Pflanzen und Pflanzenteile behandelt werden. Unter
Pflanzen werden hierbei alle Pflanzen und Pflanzenpopulationen verstanden, wie erwünschte und unerwünschte Wildpflanzen oder Kultuφflanzen (einschließlich natürlich vorkommender Kultuφflanzen). Kultuφflanzen können Pflanzen sein, die durch konventionelle Züchtungs- und Optimierungsmethoden oder durch biotechno- logische und gentechnologische Methoden oder Kombinationen dieser Methoden erhalten werden können, einschließlich der transgenen Pflanzen und einschließlich der durch Sortenschutzrechte schützbaren oder nicht schützbaren Pflanzensorten. Unter Pflanzenteilen sollen alle oberirdischen und unterirdischen Teile und Organe der Pflanzen, wie Spross, Blatt, Blüte und Wurzel verstanden werden, wobei bei- spielhaft Blätter, Nadeln, Stängel, Stämme, Blüten, Fruchtköφer, Früchte und Samen sowie Wurzeln, Knollen und Rhizome aufgeführt werden. Zu den Pflanzenteilen gehört auch Erntegut sowie vegetatives und generatives Vermehrungsmaterial, beispielsweise Stecklinge, Knollen, Rhizome, Ableger und Samen.
Die erfindungsgemäße Behandlung der Pflanzen und Pflanzenteile mit den Wirkstoffen erfolgt direkt oder durch Einwirkung auf deren Umgebung, Lebensraum oder Lagerraum nach den üblichen Behandlungsmethoden, z.B. durch Tauchen, Sprühen, Verdampfen, Vernebeln, Streuen, Aufstreichen und bei Vermehrungsmaterial, insbesondere bei Samen, weiterhin durch ein- oder mehrschichtiges Umhüllen. Im Materialschutz lassen sich die erfindungsgemäßen Stoffe zum Schutz von technischen Materialien gegen Befall und Zerstörung durch unerwünschte Mikroorganismen einsetzen.
Unter technischen Materialien sind im vorliegenden Zusammenhang nichtlebende
Materialien zu verstehen, die für die Verwendung in der Technik zubereitet worden sind. Beispielsweise können technische Materialien, die durch erfindungsgemäße Wirkstoffe vor mikrobieller Veränderung oder Zerstörung geschützt werden sollen, Klebstoffe, Leime, Papier und Karton, Textilien, Leder, Holz, -Anstrichmittel und Kunststoffartikel, Kühlschmierstoffe und andere Materialien sein, die von
Mikroorganismen befallen oder zersetzt werden können. Im Rahmen der zu schützenden Materialien seien auch Teile von Produktionsanlagen, beispielsweise Kühlwasserkreisläufe, genannt, die durch Vermehrung von Mikroorganismen beeinträchtigt werden können. Im Rahmen der vorliegenden Erfindung seien als technische Materialien vorzugsweise Klebstoffe, Leime, Papiere und Kartone, Leder, Holz, Anstrichmittel,
Kühlschmiermittel und Wärmeübertragungsflüssigkeiten genannt, besonders bevorzugt Holz.
Als Mikroorganismen, die einen Abbau oder eine Veränderung der technischen Materialien bewirken können, seien beispielsweise Bakterien, Pilze, Hefen, Algen und
Schleimorganismen genannt. Vorzugsweise wirken die erfindungsgemäßen Wirkstoffe gegen Pilze, insbesondere Schimmelpilze, holzverfärbende und holzzerstörende Pilze (Basidiomyceten) sowie gegen Schleimorganismen und Algen.
Es seien beispielsweise Mikroorganismen der folgenden Gattungen genannt:
Alternaria, wie Alternaria tenuis, Aspergillus, wie Aspergillus niger, Chaetomium, wie Chaetomium globosum, Coniophora, wie Coniophorapuetana,
Lentinus, wie Lentinus tigrinus, Penicillium, wie Penicillium glaucum, Polyporus, wie Polyporus versicolor, Aureobasidium, wie Aureobasidium pullulans, Sclerophoma, wie Sclerophoma pityophila, Trichoderma, wie Trichoderma viride,
Escherichia, wie Escherichia coli, Pseudomonas, wie Pseudomonas aeruginosa, Staphylococcus, wie Staphylococcus aureus.
Die Wirkstoffe können in Abhängigkeit von ihren jeweiligen physikalischen und/oder chemischen Eigenschaften in die üblichen Formulierungen überführt werden, wie Lösungen, Emulsionen, Suspensionen, Pulver, Schäume, Pasten, Granulate, Aerosole, Feinstverkapselungen in polymeren Stoffen und in Hüllmassen für Saatgut, sowie ULV-Kalt- und Warmnebel-Formulierungen.
Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln, unter Druck stehenden verflüssigten Gasen und/oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln. Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im wesentlichen in Frage: Aromaten, wie Xylol, Toluol oder Alkylnaphthaline, chlorierte Aromaten oder chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Methylenchlorid, alipha- tische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen,
Alkohole, wie Butanol oder Glycol sowie deren Ether und Ester, Ketone, wie Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser. Mit verflüssigten gasförmigen Streckmitteln oder Trägerstoffen sind solche Flüssigkeiten gemeint, welche bei normaler Temperatur und unter Normaldruck gasförmig sind, z.B. Aerosol-
Treibgase, wie Halogenkohlenwasserstoffe sowie Butan, Propan, Stickstoff und Kohlendioxid. Als feste Trägerstoffe kommen in Frage: z.B. natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminium- oxid und Silikate. Als feste Trägerstoffe für Granulate kommen in Frage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith,
Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnussschalen, Maiskolben und Tabakstängel. Als Emulgier und oder schaumerzeugende Mittel kommen in Frage: z.B. nichtionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäure- ester, Polyoxyethylen-Fettalkoholether, z.B. Alkylarylpolyglycolether, Alkylsulfonate,
Alkylsulfate, Arylsulfonate sowie Eiweißhydrolysate. Als Dispergiermittel kommen in Frage: z.B. Lignin-Sulfitablaugen und Methylcellulose.
Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulverige, körnige oder latexformige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholi- pide, wie Kephaline und Lecithine, und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.
Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferro- cyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallpht-halocyanin- farbstoffe und Spurennährstoffe, wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.
Die Formulierungen enthalten im allgemeinen zwischen 0,1 und 95 Gewichtsprozent
Wirkstoff, vorzugsweise zwischen 0,5 und 90 %.
Die erfindungsgemäßen Wirkstoffe können als solche oder in ihren Formulierungen auch in Mischung mit bekannten Fungiziden, Bakteriziden, Akariziden, Nematiziden oder Insektiziden verwendet werden, um so z.B. das Wirkungsspektrum zu verbreitern oder Resistenzentwicklungen vorzubeugen. In vielen Fällen erhält man dabei syner- gistische Effekte, d.h. die Wirksamkeit der Mischung ist größer als die Wirksamkeit der Einzelkomponenten.
Als Mischpartner kommen zum Beispiel folgende Verbindungen in Frage:
Fungizide:
Aldimoφh, Ampropylfos, Ampropylfos-Kalium, Andoprim, Anilazin, Azaconazol, Azoxystrobin,
Benalaxyl, Benodanil, Benomyl, Benzamacril, Benzamacryl-isobutyl, Bialaphos, Binapacryl, Biphenyl, Bitertanol, Blasticidin-S, Bromuconazol, Bupirimat, Buthiobat,
Calciumpolysulfid, Capsimycin, Captafol, Captan, Carbendazim, Carboxin, Carvon, Chinomethionat (Quinomethionat), Chlobenthiazon, Chlorfenazol, Chloroneb, Chloro- picrin, Chlorothaloml, Chlozolinat, Clozylacon, Cufraneb, Cymoxanil, Cyproconazol, Cyprodinil, Cyprofuram, Caφropamid,
Debacarb, Dichlorophen, Diclobutrazol, Diclofluanid, Diclomezin, Dicloran, Diethofencarb, Difenoconazol, Dimethirimol, Dimethomoφh, Diniconazol,
Diniconazol-M, Dinocap, Diphenylamin, Dipyrithione, Ditalimfos, Dithianon, Dodemoφh, Dodine, Drazoxolon,
Ediphenphos, Epoxiconazol, Etaconazol, Ethirimol, Etridiazol,
Famoxadon, Fenapanil, Fenarimol, Fenbuconazol, Fenfuram, Fenitropan, Fenpiclonil, Fenpropidin, Fenpropimoφh, Fentinacetat, Fentinhydroxyd, Ferbam, Ferimzon, Fluazinam, Flumetover, Fluoromid, Fluquinconazol, Fluφrimidol, Flusilazol, Flusulfamid, Flutolanil, Flutriafol, Folpet, Fosetyl-Alminium, Fosetyl-Natrium, Fthalid, Fuberidazol, Furalaxyl, Furametpyr, Furcarbonil, Furconazol, Furconazol-cis,
Furmecyclox, Fenhexamid, Guazatin,
Hexachlorobenzol, Hexaconazol, Hymexazol,
Lnazalil, Imibenconazol, minoctadin, -[minoctadinealbesilat, Iminoctadinetriacetat, Iodocarb, Ipconazol, Iprobenfos (TBP), Iprodione, Irumamycin, Isoprothiolan, Isova- ledione, Iprovalicarb,
Kasugamycin, Kresoxim-methyl, Kupfer-Zubereitungen, wie: Kupferhydroxid,
Kupfemaphthenat, Kupferoxychlorid, Kupfersulfat, Kupferoxid, Oxin-Kupfer und Bordeaux-Mischung,
Mancopper, Mancozeb, Maneb, Meferimzone, M --niρyrim, Mepronil, Metalaxyl, Metconazol, Methasulfocarb, Methfuroxam, Metiram, Metomeclam, Metsulfovax,
Mildiomycin, Myclobutanil, Myclozolin,
Nickel-dimethyldithiocarbamat, Nitrothal-isopropyl, Nuarimol,
Ofurace, Oxadixyl, Oxamocarb, Oxolinicacid, Oxycarboxim, Oxyfenthiin,
Paclobutrazol, Pefurazoat, Penconazol, Pencycuron, Phosdiphen, Pimaricin, Piperalin, Polyoxin, Polyoxorim, Probenazol, Prochloraz, Procymidon, Propamocarb, Pro- panosine-Natrium, Propiconazol, Propineb, Pyrazophos, Pyrifenox, Pyrimethanil, Pyro- quilon, Pyroxyfur,
Quinconazol, Quintozen (PCNB), Quinoxyfen,
Schwefel und Schwefel-Zubereitungen, Spiroxamine, Tebuconazol, Tecloftalam, Tecnazen, Tetcyclacis, Tetraconazol, Thiabendazol, Thicyofen, Thifluzamide, Thiophanate-methyl, Thiram, Tioxymid, Tolclofos-methyl, Tolylfluanid, Triadimefon, Triadimenol, Triazbutil, Triazoxid, Trichlamid, Tricyclazol, Tridemoφh, Triflumizol, Triforin, Triticonazol, Trifloxystrobin,
Uniconazol,
Validamycin A, Vinclozolin, Viniconazol, Zarilamid, Zineb, Ziram sowie Dagger G, OK-8705,
OK-8801, α-(l,l-Dimethylethyl)-ß-(2-phenoxyethyl)-lH-l,2,4-triazol-l-ethanol, α-(2,4-Dichloφhenyl)-ß-fluor-b-propyl- 1 H- 1 ,2,4-triazol- 1 -ethanol, α-(2,4-Dichloφhenyl)-ß-methoxy-a-methyl-lH-l,2,4-triazol-l-ethanol, α-(5-Methyl-l,3-dioxan-5-yl)-ß-[[4-(trifluormethyl)-phenyl]-methylen]-lH-l,2,4- triazol-1 -ethanol,
(5RS,6RS)-6-Hydroxy-2,2,7,7-tetramethyl-5-(lH-l,2,4-triazol-l-yl)-3-octanon, (E)-a-( ethoxyimino)-N-methyl-2-ρhenoxy-phenylacetamid, l-(2,4-Dicωoφhenyl)-2-(lH-l,2,4-triazol-l-yl)-ethanon-O-φhenylmethyl)-oxim, l-(2-Methyl-l-naphthalenyl)-lH-pyrrol-2,5-dion, l-(3,5-Dichlθφhenyl)-3-(2-propenyl)-2,5-pyrrohdindion, l-[(Diiodmethyl)-sulfonyl]-4-methyl-benzol, l-[[2-(2,4-Dichloφhenyl)-l,3-dioxolan-2-yl]-methyl]-lH-imidazol, l-[[2-(4-Chlθφhenyl)-3-phenyloxiranyl]-methyl]-lH-l,2,4-triazol, l-[l-[2-[(2,4-Dichloφhenyl)-methoxy]-phenyl]-ethenyl]-lH-imidazol, l-Methyl-5-nonyl-2-φhenylmethyl)-3-pyrrolidinol,
2^6'-Dibrom-2-memyl-4'- fluoπnethoxy-4-1rifluormemyl-l,3-tM_ιzol-5-c_-rboxa-_i 2,6-Dichlor-5-(memyllMo)-4-pyrimidinyl-thiocyanat, 2,6-DicMor-N-(4- fluoπnethylbenzyl)-benzamid, 2,6-Dichlor-N-[[4-(Mfluormethyl)-phenyl]-methyl]-benzaιnid, 2-(2,3,3-Triiod-2-propenyl)-2H-tetrazol,
2-[(l-Methyle l)-sulfonyl]-5-(trichlorme l)-l,3,4-thiadiazol,
2-[[6-Deoxy-4-O-(4-O-methyl-ß-D-glycopyranosyl)-a-D-glucopyranosyl]-amino]-4- me oxy-lH-ρyrrolo[2,3-d]pyrimidin-5-carbonitril, 2-Aminobutan,
2-Brom-2-φrommethyl)-pentandinitril,
2-Chlor-N-(2,3-dihydro-l,l,3-1rimethyl-lH-inden-4-yl)-3-pyridincarboxamid,
2-Chlor-N-(2,6-dimethylphenyl)-N-(isothiocyanatomethyl)-acetamid,
2-Phenylphenol(OPP), 3,4-Dichlor- 1 -[4-(difluormethoxy)-phenyl]- lH-pyrrol-2,5-dion,
3,5-Dichlor-N-[cyan[(l-methyl-2-propynyl)-oxy]-methyl]-benzamid,
3-( 1 , 1 -Dimethylpropyl- 1 -oxo- 1 H-inden-2-carbonitril,
3-[2-(4-Chlθφhenyl)-5-ethoxy-3-isoxazolidinyl]-pyridin,
4-Chlor-2-cyan-N,N-dimethyl-5-(4-methylphenyl)-lH-imidazol-l-sulfonamid, 4-Methyl-tetrazolo[l,5-a]quinazolin-5(4H)-on,
8-Hydroxychinolinsulfat,
9H-X- then-9-c-u:bonsäure-2-[φhenyl--mino)-carbonyl]-hydrazid, bis-(l-Methylethyl)-3-memyl-4-[(3-memylbenzoyl)-oxy]-2,5-thiophendicarboxylat, eis- 1 -(4-Chlθφhenyl)-2-(l H- 1 ,2,4-triazol- 1 -yl)-cycloheptanol, cis-4-[3-[4-(l , 1 -Dimethylpropyl)-phenyl-2-methylpropyl]-2,6-dimethyl-moφholin- hydrochlorid,
Ethyl-[(4-chloφhenyl)-azo]-cyanoacetat,
Kaliumhydrogencarbonat,
Methantetrathiol-Natriumsalz, Me l-l-(2,3-d dro-2,2-dime l-lH-inden-l-yl)-lH-imidazol-5-carboxylat,
Methyl-N-(2,6-d-memylphenyl)-N-(5-isoxazolylcarbonyl)-DL-alaninat,
Methyl-N-(chloracetyl)-N-(2,6-dimethylphenyl)-DL-alaninat,
N-(2,6-Dimethylphenyl)-2-memoxy-N-(tefr-ιhydro-2-oxo-3-_ r-myl)-acet-t_nid,
N-(2,6-Dime ylphenyl)-2-memoxy-N-(tefrahydro-2-oxo-3-thienyl)-acetamid, N-(2-CUor-4-r-ifrophenyl)-4-memyl-3-nitro-benzolsulfonamid,
N-(4-Cyclohexylphenyl)- 1 ,4,5,6-tetrahydro-2-pyrimidinamin, N-(4-Hexylphenyl)-l,4,5,6-tetrahydro-2-pyrimidinamin, N-(5-Chlor-2-methylphenyl)-2-methoxy-N-(2-oxo-3-oxazolidinyl)-acetamid, N-(6-Methoxy)~3-pyridinyl)-cycloprop-mcarboxamid, N-[2,2,2-Trichlor- 1 -[(chloracetyl)-_-mino]-ethyl]-benzarnid, N-[3-Chlor-4,5-bis-(2-propmyloxy)-phenyl]-N'-memoxy-meth-ιmmid-ιmid,
N-Formyl-N-hydroxy-DL-alanin -Natriumsalz,
O,O-Diethyl-[2-(dipropylamino)-2-oxoethyl]-ethylphosphoramidothioat, O-Methyl-S-phenyl-phenylpropylphosphoramidothioat, S-Methyl-l,2,3-benzothiadiazol-7-carbothioat, spiro[2H]- 1 -Benzopyran-2, 1 '(3Η)-isobenzofuran]-3'-on,
Bakterizide:
Bronopol, Dichlorophen, Nitrapyrin, Nickel-dimethyldithiocarbamat, Kasugamycin, Octhilinon, Furancarbonsäure, Oxytetracyclin, Probenazol, Streptomycin, Tecloftalam,
Kupfersulfat und andere Kupfer-Zubereitungen.
Insektizide / Akarizide / Nematizide:
Abamectin, Acephate, Acetamiprid, Acrinathrin, Alanycarb, Aldicarb, Aldoxycarb,
Alpha-cypermethrin, Alphamethrin, Amitraz, Avermectin, AZ 60541, Azadirachtin, Azamethiphos, Azinphos A, Azinphos M, Azocyclotin,
Bacillus popilliae, Bacillus sphaericus, Bacillus subtilis, Bacillus thuringiensis, Baculoviren, Beauveria bassiana, Beauveria tenella, Bendiocarb, Benfuracarb, Ben- sultap, Benzoximate, Betacyfluthrin, Bifenazate, Bifenthrin, Bioethanomethrin, Bio- permethrin, BPMC, Bromophos A, Bufencarb, Buprofezin, Butathiofos, Butocarb- oxim, Butylpyridaben,
Cadusafos, Carbaryl, Carbofuran, Carbophenothion, Carbosulfan, Cartap, Chloetho- carb, Chlorethoxyfos, Chlorfenapyr, Chlorfenvinphos, Chlorfluazuron, Chlormephos, Chloφyrifos, Chloφyrifos M, Chlovaporthrin, Cis-Resmethrin, Cispermethrin, Clo- cythrin, Cloethocarb, Clofentezine, Cyanophos, Cycloprene, Cycloprothrin, Cyfluthrin, Cyhalothrin, Cyhexatin, Cypermethrin, Cyromazine,
Deltamethrin, Demeton M, Demeton S, Demeton-S-methyl, Diafenthiuron, Diazinon,
Dichlorvos, Diflubenzuron, Dimethoat, Dimethylvinphos, Diofenolan, Disulfoton, Docusat-sodium, Dofenapyn,
Eflusilanate, Emamectin, Empenthrin, Endosulfan, Entomopfthora spp., Esfenvale- rate, Ethiofencarb, Ethion, Ethoprophos, Etofenprox, Etoxazole, Etrimfos,
Fenamiphos, Fenazaquin, Fenbutatin oxide, Fenitrothion, Fenothiocarb, Fenoxacrim, Fenoxycarb, Fenpropathrin, Fenpyrad, Fenpyrithrin, Fenpyroximate, Fenvalerate, Fipronil, Fluazuron, Flubrocythrinate, Flucycloxuron, Flucythrinate, Flufenoxuron, Flutenzine, Fluvalinate, Fonophos, Fosmethilan, Fosthiazate, Fubfenprox, Furathio- carb,
Granuloseviren
Halofenozide, HCH, Heptenophos, Hexaflumuron, Hexythiazox, Hydroprene,
Imidacloprid, Isazofos, Isofenphos, Isoxathion, Ivermectin,
Kernpolyederviren
Lambda-cyhalothrin, Lufenuron
Malathion, Mecarbam, Metaldehyd, Methamidophos, Metharhizium anisopliae, Metharhizium flavoviride, Methidathion, Methiocarb, Methomyl, Methoxyfenozide, Metolcarb, Metoxadiazone, Mevinphos, Milbemectin, Monocrotophos, Naled, Nitenpyram, Nithiazine, Novaluron
Omethoat, Oxamyl, Oxydemethon M
Paecilomyces fumosoroseus, Parathion A, Parathion M, Permethrin, Phenthoat, Pho- rat, Phosalone, Phosmet, Phosphamidon, Phoxim, Pirimicarb, Pirimiphos A, Piri- miphos M, Profenofos, Promecarb, Propoxur, Prothiofos, Prothoat, Pymetrozine, Pyraclofos, Pyresmethrin, Pyrethrum, Pyridaben, Pyridathion, Pyrimidifen, Pyripro- xyfen,
Quinalphos,
Ribavirin
Salithion, Sebufos, Silafluofen, Spinosad, Sulfotep, Sulprofos,
Tau-fluvalinate, Tebufenozide, Tebufenpyrad, Tebupirimiphos, Teflubenzuron, Tefluthrin, Temephos, Temivinphos, Terbufos, Tetrachlorvinphos, Theta-cyper- methrin, Thiamethoxam, Thiapronil, Thiatriphos, Thiocyclam hydrogen oxalate, Thiodicarb, Thiofanox, Thuringiensin, Tralocythrin, Tralomethrin, Triarathene, Tri- azamate, Triazophos, Triazuron, Trichlophenidine, Trichlorfon, Triflumuron, Tri- methacarb, Thiacloprid,
Vamidothion, Vaniliprole, Verticillium lecanii
YI 5302
Zeta-cypermethrin, Zolaprofos
(lR-cis)-[5-(Theny--methyl)-3---ür- yl]-me l-3-[(dihy(fro-2-oxo-3(2H)-fi«anyli- den)-methyl]-2,2-dimethylcyclopropancarboxylat (3-Phenoxyphenyl)-methyl-2,2,3,3-tetramethylcyclopropanecarboxylat l-[(2-Chlor-5-thiazolyl)methyl]tetrahydro-3,5-dimethyl-N-nitro-l,3,5-triazin-2(lH)- imin
2-(2-Chlor-6-fluoφhenyl)-4-[4-(l,l-dimethylethyl)phenyl]-4,5-dihydro-oxazol 2-(Acetlyoxy)-3 -dodecyl- 1 ,4-naphthalindion
2-Chlor-N-[ [ [4-( 1 -phenylethoxy)-phenyl] -amino] -carbonyl] -benzamid
2-Chlor-N-[[[4-(2,2-dichlor-l,l-difluorethoxy)-phenyl]-amino]-carbonyl]-benzamid
3 -Methylphenyl-propylcarbamat
4-[4-(4-Ethoxyphenyl)-4-methylpentyl]-l-fluor-2-phenoxy-benzol 4-Chlor-2-(l,l-dimethylethyl)-5-[[2-(2,6-dimethyl-4-phenoxyρhenoxy)ethyl]thio]-
3 (2H)-pyridazinon
4-Chlor-2-(2-chlor-2-methylpropyl)-5- [(6-iod-3 -pyridinyl)methoxy] -3 (2H)-pyridazi- non
4-Chlor-5-[(6-chlor-3-pyridinyl)methoxy]-2-(3,4-dichlθφhenyl)-3(2H)-pyridazinon Bacillus thuringiensis strain EG-2348
B enzoesäure [2-benzoyl- 1 -( 1 , 1 -dimethy lethyl)-hydrazid
Butansäure 2,2-dimethyl-3-(2,4-dichloφhenyl)-2-oxo- 1 -oxaspiro[4.5]dec-3-en-4-yl- ester
[3-[(6-Chlor-3-pyridinyl)methyl]-2-thiazolidinyliden]-cyanamid Dihydro-2-(nitromethylen)-2H- 1 ,3-thiazine-3(4H)-carboxaldehyd
Ethyl-[2-[[l,6-dihydro-6-oxo-l-(phenylmethyl)-4-pyridazinyl]oxy]ethyl]-carbamat
N-(3,4,4-Trifluor- 1 -oxo-3-butenyl)-glycin
N-(4-Chloφhenyl)-3-[4-(difluormethoxy)phenyl]-4,5-dihydro-4-phenyl-lH-pyrazol-
1-carboxamid N-[(2-Chlor-5-thiazolyl)methyl]-N'-methyl-N"-nitro-guanidin
N-Methyl-N'-(l-methyl-2-propenyl)-l,2-hydrazindicarbothioamid
N-Methyl-N'-2-propenyl- 1 ,2-hydrazindicarbothioamid
O,O-Diethyl-[2-(dipropylamino)-2-oxoethyl]-ethylphosphoramidothioat
Auch eine Mischung mit anderen bekannten Wirkstoffen, wie Herbiziden oder mit
Düngemitteln und Wachstumsregulatoren ist möglich. Darüber hinaus weisen die erfindungsgemäßen Verbindungen der Formel (I) auch sehr gute antimykotische Wirkungen auf. Sie besitzen ein sehr breites antimyko- tisches Wirkungsspektrum, insbesondere gegen Dermatophyten und Sprosspilze, Schimmel und diphasische Pilze ( z.B. gegen Candida-Spezies wie Candida albicans,
Candida glabrata) sowie Epidermophyton floccosum, Aspergillus-Spezies wie Aspergillus niger und Aspergillus fumigatus, Trichophyton-Spezies wie Trichophy- ton mentagrophytes, Microsporon-Spezies wie Microsporon canis und audouinii. Die Aufzählung dieser Pilze stellt keinesfalls eine Beschränkung des erfaßbaren myko- tischen Spektrums dar, sondern hat nur erläuternden Charakter.
Die Wirkstoffe können als solche, in Form ihrer Formulierungen oder den daraus bereiteten Anwendungsformen, wie gebrauchsfertige Lösungen, Suspensionen, Spritzpulver, Pasten, lösliche Pulver, Stäubemittel und Granulate angewendet werden. Die Anwendung geschieht in üblicher Weise, z.B. durch Gießen, Verspritzen, Versprühen,
Verstreuen, Verstäuben, Verschäumen, Bestreichen usw. Es ist femer möglich, die Wirkstoffe nach dem Ultra-Low- Volume- Verfahren auszubringen oder die Wirkstoffzubereitung oder den Wirkstoff selbst in den Boden zu injizieren. Es kann auch das Saatgut der Pflanzen behandelt werden.
Beim Einsatz der erfindungsgemäßen Wirkstoffe als Fungizide können die Aufwandmengen je nach Applikationsart innerhalb eines größeren Bereiches variiert werden. Bei der Behandlung von Pflanzenteilen liegen die Aufwandmengen an Wirkstoff im allgemeinen zwischen 0,1 und 10.000 g ha, vorzugsweise zwischen 10 und 1.000 g ha. Bei der Saatgutbehandlung liegen die Aufwandmengen an Wirkstoff im allgemeinen zwischen 0,001 und 50 g pro Kilogramm Saatgut, vorzugsweise zwischen 0,01 und 10 g pro Kilogramm Saatgut. Bei der Behandlung des Bodens liegen die Aufwandmengen an Wirkstoff im allgemeinen zwischen 0,1 und 10.000 g/ha, vorzugsweise zwischen 1 und 5.000 g/ha. Die zum Schutz technischer Materialien verwendeten Mittel enthalten die Wirkstoffe im allgemeinen in einer Menge zwischen 1 und 95 Gew.-%, vorzugsweise zwischen 10 und 75 Gew.-%.
Die Anwendungskonzentrationen der erfindungsgemäßen Wirkstoffe richten sich nach der Art und dem Vorkommen der zu bekämpfenden Mikroorganismen sowie nach der Zusammensetzung des zu schützenden Materials. Die optimale Einsatzmenge kann durch Testreihen ermittelt werden. Im allgemeinen liegen die Anwendungskonzentrationen im Bereich von 0,001 bis 5 Gew.-%, vorzugsweise von 0,05 bis 1,0 Gew.-%, bezogen auf das zu schützende Material.
Die Wirksamkeit und das Wirkungsspektrum der erfindungsgemäß im Materialschutz zu verwendenden Wirkstoffe bzw. der daraus herstellbaren Mittel, Konzentrate oder ganz allgemein Formulierungen kann erhöht werden, wenn gegebenenfalls weitere antimikrobiell wirksame Verbindungen, Fungizide, Bakterizide, Herbizide,
Insektizide oder andere Wirkstoffe zur Vergrößerung des Wirkungsspektrums oder Erzielung besonderer Effekte wie z.B. dem zusätzlichen Schutz vor Insekten zugesetzt werden. Diese Mischungen können ein breiteres Wirkungsspektrum besitzen als die erfindungsgemäßen Verbindungen.
Wie bereits oben erwähnt, können erfindungsgemäß alle Pflanzen und deren Teile behandelt werden. In einer bevorzugten Ausführungsform werden wild vorkommende oder durch konventionelle biologische Zuchtmethoden, wie Kreuzung oder Protoplastenfusion erhaltenen Pflanzenarten und Pflanzensorten sowie deren Teile behandelt. In einer weiteren bevorzugten Ausfiihrungsform werden transgene Pflanzen und Pflanzensorten, die durch gentechnologische Methoden gegebenenfalls in Kombination mit konventionellen Methoden erhalten wurden (Genetic Modified Organisms) und deren Teile behandelt. Der Begriff "Teile" bzw. "Teile von Pflanzen" oder "Pflanzenteile" wurde oben erläutert. Besonders bevorzugt werden erfindungsgemäß Pflanzen der jeweils handelsüblichen oder in Gebrauch befindlichen Pflanzensorten behandelt.
Je nach Pflanzenarten bzw. Pflanzensorten, deren Standort und Wachstumsbedin- gungen (Böden, Klima, Vegetationsperiode, Ernährung) können durch die erfindungsgemäße Behandlung auch überadditive ("synergistische") Effekte auftreten. So sind beispielsweise erniedrigte Aufwandmengen und/oder Erweiterungen des Wirkungsspektrums und/oder eine Verstärkung der Wirkung der erfmdungsgemäß verwendbaren Stoffe und Mittel, besseres Pflanzenwachstum, erhöhte Toleranz gegen- über hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasser- bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, höhere Ernteerträge, höhere Qualität und/oder höherer Emährungswert der Ernteprodukte, höhere Lagerfähigkeit und/oder Bearbeitbarkeit der Ernteprodukte möglich, die über die eigentlich zu erwartenden Effekte hinaus- gehen.
Zu den bevorzugten erfindungsgemäß zu behandelnden transgenen (gentechnologisch erhaltenen) Pflanzen bzw. Pflanzensorten gehören alle Pflanzen, die durch die gentechnologische Modifikation genetisches Material erhielten, welches diesen Pflanzen besondere vorteilhafte wertvolle Eigenschaften ("Traits") verleiht. Beispiele für solche Eigenschaften sind besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasser- bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, höhere Ernteerträge, höhere Qualität und oder höherer Emährungswert der Ernteprodukte, höhere Lagerfähigkeit und/oder Bearbeitbarkeit der Ernteprodukte. Weitere und besonders hervorgehobene Beispiele für solche Eigenschaften sind eine erhöhte Abwehr der Pflanzen gegen tierische und mikro- bielle Schädlinge, wie gegenüber Insekten, Milben, pflanzenpathogenen Pilzen, Bakterien und/oder Viren sowie eine erhöhte Toleranz der Pflanzen gegen bestimmte herbizide Wirkstoffe. Als Beispiele transgener Pflanzen werden die wichtigen Kul- tuφflan-zen, wie Getreide (Weizen, Reis), Mais, Soja, Kartoffel, Baumwolle, Raps sowie Obstpflanzen (mit den Früchten Äpfel, Birnen, Zitrusfrüchten und Weintrauben) erwähnt, wobei Mais, Soja, Kartoffel, Baumwolle und Raps besonders hervorgehoben werden. Als Eigenschaften ("Traits") werden besonders hervorgehoben die erhöhte Abwehr der Pflanzen gegen Insekten durch in den Pflanzen entstehende Toxine, insbesondere solche, die durch das genetische Material aus Bacillus Thuringiensis (z.B. durch die Gene CryΙA(a), CryIA(b), CryΙA(c), CryllA, CrylllA, CryIIIB2, Cry9c Cry2Ab, Cry3Bb und CrylF sowie deren Kombinationen) in den Pflanzen erzeugt werden (im folgenden "Bt Pflanzen"). Als Eigenschaften ("Traits") werden weiterhin besonders hervorgehoben die erhöhte Toleranz der Pflanzen gegenüber bestimmten herbiziden Wirkstoffen, beispielsweise Imidazolinonen,
Sulfonylharnstoffen, Glyphosate oder Phosphinotricin (z.B. "PAT"-Gen). Die jeweils die gewünschten Eigenschaften ("Traits") verleihenden Gene können auch in Kombinationen miteinander in den transgenen Pflanzen vorkommen. Als Beispiele für "Bt Pflanzen" seien Maissorten, Baumwollsorten, Sojasorten und Kartoffelsorten genannt, die unter den Handelsbezeichnungen YIELD GARD® (z.B. Mais, Baumwolle, Soja), KnockOut® (z.B. Mais), StarLink® (z.B. Mais), Bollgard® (Baumwolle), Nucoton® (Baumwolle) und NewLeaf® (Kartoffel) vertrieben werden. Als Beispiele für Herbizid tolerante Pflanzen seien Maissorten, Baumwollsorten und Sojasorten genannt, die unter den Handelsbezeichnungen Roundup Ready® (Tole- ranz gegen Glyphosate z.B. Mais, Baumwolle, Soja), Liberty Link® (Toleranz gegen
Phosphinotricin, z.B. Raps), IMI® (Toleranz gegen Imidazolinone) und STS® (Toleranz gegen Sulfonylharnstoffe z.B. Mais) vertrieben werden. Als herbizid-resistente (konventionell auf Herbizid-Toleranz gezüchtete) Pflanzen seien auch die unter der Bezeichnung Clearfield® vertriebenen Sorten (z.B. Mais) erwähnt. Selbstverständlich gelten diese Aussagen auch für in der Zukunft entwickelte bzw. zukünftig auf den
Markt kommende Pflanzensorten mit diesen oder zukünftig entwickelten genetischen Eigenschaften ("Traits").
Die aufgeführten Pflanzen können besonders vorteilhaft erfindungsgemäß mit den Verbindungen der allgemeinen Formel (I) bzw. den erfindungsgemäßen Wirkstoffmischungen behandelt werden. Die bei den Wirkstoffen bzw. Mischungen oben angegebenen Vorzugsbereiche gelten auch für die Behandlung dieser Pflanzen. Besonders hervorgehoben sei die Pflanzenbehandlung mit den im vorliegenden Text speziell aufgeführten Verbindungen bzw. Mischungen.
Herstellung und Verwendung von erfindungsgemäßen Stoffen werden durch die folgenden Beispiele veranschaulicht.
Herstellungsbeispiele
Beispiel 1
3,13 g (10 mMol) (2,6-Dichlor-4-pyridyl)-methylamin werden in 20 ml Methanol gelöst und mit 0,89 g (10 mMol) Methyl-cyanimidoformiat versetzt. Man rührt das Reaktionsgemisch 12 Stunden bei Raumtemperatur und engt dann unter verminder- tem Druck ein. Der ölige Rückstand wird mit Petrolether verrührt, wobei ein kristallines Produkt anfällt. Dieses wird abgesaugt und an der Luft getrocknet. Man erhält 1,92 g (84 % der Theorie) an N'-Cyano-N-[(2,6-dichlor-4-ρyridinyl)-methyl]-imido- formamid vom Schmelzpunkt 160°C.
Nach den zuvor angegebenen Methoden werden auch die in der folgenden Tabelle 1 aufgeführten erfindungsgemäßen Stoffe der Formel (I) hergestellt.
Tabelle 1
Nerwendungsbeispiele
Beispiel A
Erysiphe-Test (Gerste) / Resistenzinduktion
Lösungsmittel: 48,8 Gewichtsteile Ν, Ν - Dimethylformamid
Emulgator: 1,2 Gewichtsteile Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1
Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.
Zur Prüfung auf resistenzinduzierende Wirksamkeit bespritzt man junge Getreide- pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge. 4 Tage nach der Behandlung werden die Pflanzen mit Sporen von Erysiphe graminis f. sp. hordei inokuliert. Anschließend werden die Pflanzen in einem Gewächshaus bei 70 % relativer Luftfeuchtigkeit und einer Temperatur von 18 C aufgestellt.
7 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein
Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.
Wirkstoffe, Aufwandmengen und Versuchsergebnisse gehen aus der folgenden Tabelle hervor. Tabelle A
Erysiphe-Test (Gerste) / Resistenzinduktion
Erfindungs gemäß :

Claims

Patentansprüche
1. Dichloφyridylmethylcyanamidine der Formel
in welcher
R für Wasserstoff, Alkyl oder gegebenenfalls substituiertes Aralkyl steht und
R für Wasserstoff, gegebenenfalls substituiertes Alkyl, gegebenenfalls substituiertes Alkoxy, gegebenenfalls substituiertes Alkylthio, gegebenenfalls substituiertes Aryl, gegebenenfalls substituiertes Aryloxy oder gegebenenfalls substituiertes Arylthio steht.
2. Dichloφyridylmethylcyanamidine der Formel (I) gemäß Anspruch 1, in welcher
Rl für Wasserstoff, Alkyl mit 1 bis 4 Kohlenstoffatomen oder für Aralkyl mit 6 bis 10 Kohlenstoffatomen im Arylteil und 1 bis 4 Kohlenstoffatomen im Alkylteil steht und
R2 für Wasserstoff, Alkyl mit 1 bis 4 Kohlenstoffatomen, Alkoxy mit 1 bis 4 Kohlenstoffatomen, Alkylthio mit 1 bis 4 Kohlenstoffatomen, für Aryl mit 6 bis 10 Kohlenstoffatomen, Aryloxy mit 6 bis 10 Kohlenstoffatomen oder Arylthio mit 6 bis 10 Köhlenstoffatomen steht, wobei die drei letztgenannten Reste jeweils einfach bis dreifach, gleichartig oder verschieden substituiert sein können durch Fluor, Chlor, Brom und oder Alkyl mit 1 bis 4 Kohlenstoffatomen.
3. Dichloφyridylmethylcyanamidine der Formel (I) gemäß Anspmch 1, in wel- eher
Rl für Wasserstoff, Methyl, Ethyl oder Benzyl steht und
R für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, Methoxy, Ethoxy, n- oder i-Propoxy, n-, i-, s- oder t-Butoxy,
Methylthio, Ethylthio, n- oder i-Propylthio, n-, i-, s- oder t-Butylthio steht, oder für Phenyl, Phenoxy oder Phenylthio steht, wobei die drei letztgenannten Reste jeweils einfach bis dreifach, gleichartig oder verschieden substituiert sein können durch Fluor, Chlor, Brom, Methyl und/oder Ethyl.
4. Dichloφyridylmethylcyanamidin gemäß Anspmch 1, gekennzeichnet durch die Formel
5. Dichloφyridylmethylcyanamidin gemäß Anspmch 1, gekennzeichnet durch die Formel
Dichloφyridylmethylcyanamidin gemäß Ansprach 1, gekennzeichnet durch die Formel
7. Dichloφyridylmethylcyanamidin gemäß Ansprach 1, gekennzeichnet durch die Formel
Verfahren zur Herstellung von Dichloφyridylmethylcyanamidinen der Formel (I) gemäß Ansprach 1, dadurch gekennzeichnet, dass man Dichloφyri- dylmethylamine der Formel
in welcher
Rl die oben angegebene Bedeutung hat,
mit Cyaniminen der Formel
in welcher
R2 die oben angegebene Bedeutung hat und
X für jeweils gegebenenfalls substituiertes Alkoxy, Alkylthio, Aryloxy oder Arylthio steht,
gegebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt.
9. Mittel zur Bekämpfung von unerwünschten Mikroorganismen, gekennzeichnet durch einen Gehalt an mindestens einem Dichloφyridylmethylcyanamidin der Formel (I) gemäß Ansprach 1 neben Streckmitteln und/oder ober- flächenaktiven Stoffen .
10. Verwendung von Dichloφyridylmethylcyanamidinen der Formel (I) gemäß Ansprach 1 zur Bekämpfung von unerwünschten Mikroorganismen.
11. Verfahren zur Bekämpfung von unerwünschten Mikroorganismen, dadurch gekennzeichnet, dass man Dichloφyridylmethylcyanamidine der Formel (I) gemäß Anspmch 1 auf die Mikroorganismen und/oder deren Lebensraum ausbringt.
2. Verfahren zur Herstellung von Mitteln zur Bekämpfung von unerwünschten Mikroorganismen, dadurch gekennzeichnet, dass man Dichloφyridylmethylcyanamidine der Formel (I) gemäß Ansprach 1 mit Streckmitteln und/oder oberflächenaktiven Stoffen vermischt.
EP01271358A 2000-12-18 2001-12-05 Dichlorpyridylmethylcyanamidine Withdrawn EP1345904A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10063114A DE10063114A1 (de) 2000-12-18 2000-12-18 Dichlorpyridylmethylcyanamidine
DE10063114 2000-12-18
PCT/EP2001/014230 WO2002050037A1 (de) 2000-12-18 2001-12-05 Dichlorpyridylmethylcyanamidine

Publications (1)

Publication Number Publication Date
EP1345904A1 true EP1345904A1 (de) 2003-09-24

Family

ID=7667671

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01271358A Withdrawn EP1345904A1 (de) 2000-12-18 2001-12-05 Dichlorpyridylmethylcyanamidine

Country Status (7)

Country Link
US (1) US20050049285A1 (de)
EP (1) EP1345904A1 (de)
JP (1) JP2004516281A (de)
KR (1) KR20030059332A (de)
AU (1) AU2002221930A1 (de)
DE (1) DE10063114A1 (de)
WO (1) WO2002050037A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4513808B2 (ja) * 2004-07-02 2010-07-28 株式会社クレハ 2,6−ジクロロ−4−ピリジルメチルアミン誘導体および農園芸用病害防除剤

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2854600A1 (de) * 1978-12-18 1980-06-26 Basf Ag Substituierte cyanamide
DE4138026A1 (de) * 1991-11-19 1993-06-03 Bayer Ag Substituierte pyridin-4-carbonsaeureamide
WO1993025080A1 (en) * 1992-06-11 1993-12-23 Nippon Soda Co., Ltd. Termite-proofing agent
DE4232561A1 (de) * 1992-09-29 1994-03-31 Bayer Ag Bekämpfung von Fischparasiten
GB9711127D0 (en) * 1997-05-29 1997-07-23 Leo Pharm Prod Ltd Novel cyanoguanidines
DE69831085D1 (de) * 1997-09-10 2005-09-08 Dainippon Ink & Chemicals 2,6-dichlor-4-pyridinmethanolderivate als chemikalien für die landwirtschaft

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0250037A1 *

Also Published As

Publication number Publication date
US20050049285A1 (en) 2005-03-03
AU2002221930A1 (en) 2002-07-01
JP2004516281A (ja) 2004-06-03
WO2002050037A1 (de) 2002-06-27
DE10063114A1 (de) 2002-06-20
KR20030059332A (ko) 2003-07-07

Similar Documents

Publication Publication Date Title
EP1474407A1 (de) Difluormethyl thiazolyl carboxanilide
EP1474406A1 (de) Disubstituierte thiazolylcarboxanilide und ihre verwendung als mikrobizide
WO2000014071A2 (de) Pyrazol-carboxanilide fungizide
WO2000076979A1 (de) Pyridincarboxamide und ihre verwendung als pflanzenschutzmittel
EP1392695A2 (de) Triazolopyrimidine
EP1513824A1 (de) Furancarboxamide
EP1501832A1 (de) Triazolopyrimidine
DE10121162A1 (de) Triazolopyrimidine
EP1509513A1 (de) Oxathiincarboxamide
WO2002088125A2 (de) Triazolopyrimidine mit fungizider wirkung
DE10219035A1 (de) Biphenylcarboxamide
WO2004024692A1 (de) Heterocyclylcarbonyl-aminocyclopropancarbonsäure-derivate
WO2001012587A1 (de) Aminosalicylsäureamide und ihre verwendung zur bekämpfung von pflanzenschädigenden organismen
EP1490370A2 (de) Triazolopyrimidine
WO2003024938A1 (de) Phthalazinone und deren verwendung zur bekämpfung von undewünchten mikroorganismen
WO2002050059A1 (de) Azinylsulfonylimidazole als mikrobizide mittel
EP1345904A1 (de) Dichlorpyridylmethylcyanamidine
EP1345934A2 (de) Sulfonylpyrrole
WO2002050038A1 (de) Dichlorpyridylmethylimine zur verwendung als pflanzenschutzmittel
EP1117654A1 (de) Sulfonyltriazol-derivate und ihre verwendung zur bekämpfung von mikrroorganismen
EP1114036A1 (de) Sulfonyloxazolone und ihre verwendung zur bekämpfung von unerwünschten mikroorganismen
WO2000032563A1 (de) Substituierte oxime

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030718

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20040211

RBV Designated contracting states (corrected)

Designated state(s): CH DE FR GB IT LI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060218