EP1344112A2 - Projection lens - Google Patents

Projection lens

Info

Publication number
EP1344112A2
EP1344112A2 EP01989598A EP01989598A EP1344112A2 EP 1344112 A2 EP1344112 A2 EP 1344112A2 EP 01989598 A EP01989598 A EP 01989598A EP 01989598 A EP01989598 A EP 01989598A EP 1344112 A2 EP1344112 A2 EP 1344112A2
Authority
EP
European Patent Office
Prior art keywords
lens
refractive power
lens group
lenses
projection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01989598A
Other languages
German (de)
French (fr)
Inventor
Karl-Heinz Schuster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Zeiss SMT GmbH
Original Assignee
Carl Zeiss SMT GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10126946A external-priority patent/DE10126946A1/en
Application filed by Carl Zeiss SMT GmbH filed Critical Carl Zeiss SMT GmbH
Publication of EP1344112A2 publication Critical patent/EP1344112A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70241Optical aspects of refractive lens systems, i.e. comprising only refractive elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/14Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
    • G02B13/143Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation for use with ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/22Telecentric objectives or lens systems

Definitions

  • the invention relates to a projection lens according to the preamble of patent claim 1.
  • a projection lens is known from DE 199 42 281.8, FIGS. 8-10, the first lens group of which has negative refractive power and consists of 4 negative lenses. Also known from EP 712 019 A2, US 5,969,803, US 5,986,824 and DE 198 18 444 AI projection lenses with a first lens group of negative refractive power, which consist of at least four negative lenses.
  • a projection lens that has a lens group of negative refractive power, which consists of three negative lenses.
  • Projection lenses are known from the documents US Pat. No. 6,084,723, EP 721 150 A2, US Pat. No. 6,088,171 and DE 198 18 444 A1 which have a lens group of negative refractive power, by means of which a first waist is formed, and which consists of four negative lenses, after the first negative lens a lens with positive refractive power is arranged.
  • a lens group of negative refractive power is known from DE 199 42 281, FIGS. 2-4, which consists of four negative lenses, a positive lens being arranged after the second negative lens.
  • a meniscus lens that is bent to the image is provided as a positive lens.
  • the object of the invention was to develop a lens group of negative refractive power which has an advantageous effect on the imaging properties of a projection lens.
  • the object of the invention is achieved by the features given in claim 1.
  • the invention was also based on the object of improving the imaging properties of a projection objective, in particular for an illumination wavelength of 193 nm, with low use of calcium fluoride.
  • This lens group of negative refractive power consists of four lenses of negative refractive power, with a lens of positive refractive power being arranged after the third lens of negative refractive power, the imaging properties of the objective could be improved.
  • This configuration with the lens of positive refractive power has a particularly advantageous effect from the astigmatism and the coma correction.
  • the lens of positive refractive power is provided on the object side with a convex lens surface.
  • Figure 1 projection exposure system
  • FIG. 2 lithography objective, in particular for 193 nm
  • FIG. 3 lithography objective, in particular for the wavelength 193 nm
  • Figure 4 Lithography lens, especially for one
  • Illumination wavelength of 351 nm and FIG. 5 lithography objective, in particular for one
  • the projection exposure system 1 has an illumination device 3 and a projection objective 5.
  • the projection objective comprises a lens arrangement 19 with an aperture diaphragm AP, an optical axis 7 being defined by the lens arrangement 19.
  • a mask 9 is arranged between the illumination device 3 and the projection lens 5 and is held in the beam path by means of a mask holder 11.
  • Such masks 9 used in microlithography have a micrometer to nanometer structure.
  • This structure of the mask is imaged on the image plane 13 by means of the projection lens 5 down to a factor of ten, in particular by a factor of four.
  • a substrate or a wafer 15 positioned by a substrate holder 17 is held in the image plane 13.
  • the minimum structures that can still be resolved depend on the wavelength ⁇ of the light used for the illumination and on the image-side aperture of the projection lens 5, the maximum achievable resolution of the projection exposure system 1 increasing with decreasing wavelength of the illumination device 3 and with increasing aperture of the projection lens 5.
  • FIGS. 2 and 5 Different embodiments of lens arrangements 19 are shown in FIGS. 2 and 5.
  • FIG. 2 shows a lens arrangement 19 which is designed for an illumination wavelength of 193 nm and an image-side aperture of 0.75. With this lens arrangement, the distance between the project plane 0 and image plane 0 '1000 mm.
  • the projection lens shown comprises 31 lenses L1-L31, which can be divided into six lens groups LG1-LG6.
  • a first lens group LG1 has positive refractive power and consists of the lenses L1-L5.
  • the adjoining lens group LG2 has an overall negative refractive power; on.
  • the first lens of this lens group L6 is a thick meniscus lens, the center thickness of which is at least 15% of the maximum lens diameter in the region of the optical axis. This lens has a particularly advantageous effect on the leveling of the image shell in the tangential and sagital directions.
  • Two further lenses of negative refractive power track this lens L6.
  • two biconave lenses are provided for these lenses L7 and L8.
  • the adjoining lens L9 has positive refractive power.
  • This lens L9 is a meniscus lens bent towards the image with a concave radius of curvature on the image side. This lens has an advantageous effect with regard to astigmatism, coma and gutter defects.
  • the subsequent lens L10 has negative refractive power and is a meniscus lens that is bent towards the image.
  • This lens L10 is provided with an asphere on the image side. This asphere in particular allows image errors in the area between the image field zone and the image field edge to be corrected. This correction in particular increases the image quality in the sagital direction.
  • a waist is formed by this second lens group LG2, which has negative refractive power.
  • the subsequent third lens group LG3 has positive refractive power and consists of lenses L1 1 to L14.
  • This third lens group LG3 is followed by a fourth lens group LG4, which has negative refractive power and through which a second waist is formed.
  • This fourth lens group LG4 comprises the lenses L15-L18, the lens L15 being a meniscus lens bent toward the image with a concave surface curvature on the image side.
  • the fifth lens group LG5 comprises the lenses L19-L27 and has positive refractive power overall.
  • An aperture is arranged between the positive lenses L21 and L22.
  • the maximum diameter of this lens group or the projection lens is approx. 240 mm.
  • the sixth lens group LG6 also has positive refractive power and comprises the lenses L28-L31, the lens L31 being a plane-parallel plate.
  • the L30 lens which is heavily exposed to radiation, consists of calcium fluoride to reduce compaction. Quartz glass is provided as the lens material for the other lenses.
  • quartz glass as a lens material has the advantage that, compared to calcium fluoride, this material is available on the market and is a cheaper material compared to fluoride crystals such as calcium fluoride and barium fluoride, to name just a few.
  • the longitudinal color error for the bandwidth of 0.25 pm, i.e. ⁇ 0.125 pm is a maximum of ⁇ 57.5 nm.
  • the transverse color error does not reach a value greater than ⁇ 1.2 nm for ⁇ ⁇ 0.125pm.
  • the RMS value is an established measure, eg established in CODE N, how strongly the wavefront deviates from the wavefront of an ideal spherical wave. In this exemplary embodiment, the RMS value for all pixels is less than 7.0 m ⁇ .
  • the numerical aperture of this projection lens is 0J5.
  • the transverse color error in this embodiment variant is at most ⁇ 0.82 nm for ⁇ ⁇ 0.125 pm and the longitudinal color error is at most ⁇ 57.5 nm.
  • the lens data of the modified variant with two calcium fluoride lenses are shown in Table 2.
  • L710 is air at 950mbar
  • the lens arrangement 19 shown in FIG. 3 has 31 lenses L1-L31, which can be divided into six lens groups LG1-LG6.
  • the distance between object plane 0 and image plane 0 ' is 1000 mm.
  • the first lens group has positive refractive power and consists of the lenses L1-L5.
  • the first lens L1 is a biconcave lens and has negative refractive power.
  • the subsequent lenses L2-L5 are biconvex lenses that have positive refractive power.
  • the second lens group LG2 consists of the lenses L6-L10, the lenses L6 to L8 having negative refractive power.
  • the lens L9 has positive refractive power.
  • This lens L9 is in turn a meniscus lens with a concave surface on the image side.
  • the lens L10 has a negative refractive power and is provided with an aspherical lens surface on the image side. This lens surface can be used to correct, in particular, higher-order image errors.
  • the adjoining lens group LG3 has positive refractive power.
  • a stomach is formed by this lens group with the lenses L1 1-L14.
  • the lens L14 is provided with a flat surface on the image side.
  • the arrangement of the lens group LG3 has the special feature that unusually large air gaps are provided on both sides between the lens groups LG2 and LG4 adjacent to the lens group LG3.
  • the special arrangement of the third lens group reduced the derivative of the wavefront across all image heights.
  • the sum of the two air spaces before and after the LG3 is significantly larger than the sum of the glass thicknesses of the following lens group LG 4. This has a particularly advantageous effect on the transverse aberrations.
  • the fourth lens group LG4 through which a second waist is formed, consists of the lenses L15-L18.
  • the lens L15 is bent towards the object.
  • the lens L19, the lens group LG5 adjoining it, has lens surfaces which are bent and approximately parallel to the image.
  • the difference in the radii is less than 3% based on the smaller radius. In particular, the absolute radius difference is less than 4mm.
  • the refractive power of this lens L19 is, with f ⁇ > 4000, very low.
  • the lens group LG5 comprises the further lenses L20-L27, an aperture being arranged between the lens L21-L22.
  • the last lens group LG6 is formed by the lenses L28-L31, where L31 is a plane parallel plate.
  • This lens arrangement 19 shown in FIG. 3 is designed for the wavelength 193 nm.
  • the bandwidth of the light source is 0.25 pm.
  • a field of 10.5 ⁇ 26 mm can be exposed by means of this lens arrangement 19.
  • the numerical aperture of this lens arrangement is 0.75 on the image side.
  • the RMS value as a deviation from the ideal spherical wave is monochromatic less than 5m ⁇ referred to 193nm.
  • the transverse color error is smaller than ⁇ 1.4 nm for ⁇ ⁇ 0.125 pm and the longitudinal color error is smaller than ⁇ 58J5nm in the entire image field.
  • L710 is air at 950mbar
  • the lens arrangement 19 of a lithography objective shown in FIG. 4 is designed for the exposure wavelength of 351 nm.
  • the light source should have a maximum bandwidth "of 3.25 pm.
  • the numerical aperture is 0J5.
  • This lens array 19 has a length from the object plane 0 to the image plane on O'von 1000mm.
  • This lens arrangement 19 shown in FIG. 4 can be subdivided into six lens groups LG1-LG6.
  • the first lens group begins with a negative lens Ll, followed by the four positive lenses L2 - L5. This first lens group has positive refractive power.
  • the second lens group begins with a meniscus lens L6 of negative refractive power, which is curved toward the object. This negative lens is followed by two further negative lenses L 7 and L 8.
  • the following lens L9 is a meniscus lens with positive refractive power, which has a convex lens surface on the object side and is therefore curved toward the lens.
  • the last lens of the second lens group is a meniscus lens of negative refractive power which is curved toward the image and is aspherized on the convex lens surface arranged on the image side. This second lens group has negative refractive power.
  • the third lens group is formed by the following five lenses L1 1 - L15. In the middle of the third lens group, two thick positive lenses are arranged, the surfaces of which face one another and are strongly curved. A very thin positive lens L13, which has almost no refractive power, is arranged between these two thick positive lenses. This lens is of lesser importance, so that this lens can be dispensed with if necessary with minor modifications to the lens structure.
  • This third lens group has positive refractive power.
  • the fourth lens group is formed by three negative lenses L16 - L18.
  • the fifth lens group is formed by lenses L19-L27.
  • the aperture is arranged after the first three positive lenses L19 - L21.
  • Two thick positive lenses are arranged after the diaphragm, in which the surfaces facing each other have a strong curvature.
  • This arrangement of the lenses L22 and L23 has an advantageous effect on the spherical aberration.
  • This arrangement of the lenses L22 and L23 makes it one of the Principle of the "best shape lens" taken into account, ie there are strongly curved surfaces in a beam path of approximately parallel beams.
  • the sixth lens group has a negative lens L28 as the first lens, followed by two thick lenses.
  • all lenses consist of the material with a refractive index of 1.506 at 351 nm, for example the material FK5 from Schott.
  • quartz glass can be used as the lens material for the last two lenses of this lens group.
  • the exact lens data can be found in Table 4. With this lens arrangement, a field of 8 x 26 mm can be exposed with an aperture of 0J5 on the image side. A bandwidth of around 3.25pm is permitted with this lens.
  • the RMS value as a deviation from the ideal spherical wave is monochromatically less than 6 m ⁇ .
  • the transverse color error is smaller than ⁇ 0.1 nm for ⁇ ⁇ 1.625 pm and the longitudinal color error is smaller than ⁇ 104nm in the entire image field. This allows structure widths of 180 nm to be created.
  • the aspherical surfaces are given by the equation:
  • the aspherical surfaces are given by the equation:
  • L710 is air at 950mbar
  • FIG. 5 shows a lens arrangement 19 with an aperture of 0.7 on the image side, which can be divided into six lens groups and consists only of spherical lenses.
  • this exemplary embodiment has an extremely long first lens group which comprises the lenses L1-L5.
  • This elongated abdomen is largely formed by the thick positive lenses L4 and L5. Due to this first elongated abdomen, only slight distortion is achieved with spherical lenses, a poorer entrance telecentricity due to the shape of this first abdomen, which can be compensated for by the lighting system, being accepted.
  • This first lens group has positive refractive power.
  • the second lens group L2 comprises four negative lenses, again a positive meniscus lens L9, which is curved toward the object, being arranged between the third negative lens L8 and fourth negative lens L10. In this embodiment, no aspherical lens surface is provided.
  • This configuration of the first lens group LG2 with negative refractive power allows in particular astigmatism, coma and channel defects to be corrected.
  • the third lens group comprises the lenses L1 1 - L15 and has positive refractive power. In contrast to the first exemplary embodiment, the lenses L12 and L14 are less pronounced in this exemplary embodiment. This third lens group in particular has a positive effect on the imaging quality in the quadrants.
  • the fourth lens group LG4 is formed by three negative lenses despite the high aperture of 0J0 and thus has negative refractive power.
  • the subsequent fifth lens group LG5, which has positive refractive power, begins with the three positive lenses L19-L21, behind which an aperture is arranged.
  • two thick positive lenses L22 and L23 are arranged behind the diaphragm, which are formed with lens surfaces that are strongly curved with respect to one another.
  • the adjoining lenses L24 and L25 are intended for the correction of the oblique spherical aberration in the sagital and tangential direction.
  • the sixth lens group LG6 comprises the lenses L28-L31 and has positive refractive power.
  • the length from image plane 0 to objective plane 0 ' is 1000 mm, an image field of 8 x 26 mm being illuminated. All lenses are made of crown glass, e.g. FK 5 from SCHOTT. With a diagonal field of view diameter of 27.20 mm, the lens requires laser light with a half width of approx. 4.3 pm for the imaging of 210 nm wide structures. For a ⁇ of ⁇ 2.15 pm, the longitudinal color error is ⁇ 140 nm, the transverse color error is a maximum of 2.4 nm. The exact lens data can be found in Table 5.
  • L710 is air at 950 mbar.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Lenses (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

The invention relates to a projection illumination system and a projection lens comprising a lens arrangement consisting of at least one group of negative refractive lenses (LG2). Said lens group is comprised of at least 4 negative refractive lenses. A positive refractive lens (L9) is arranged in said lens group (LG2) after the third negative refractive lens (L8).

Description

Beschreibung:Description:
Proi ektionsobi ektivProactive ective
Die Erfindung betrifft ein Projektionsobjektiv nach dem Oberbegriff des Patentanspruchs 1.The invention relates to a projection lens according to the preamble of patent claim 1.
Aus der DE 199 42 281.8, Figur 8-10 ist ein Projektionsobjektive bekannt, deren erste Linsengruppe mit negativer Brechkraft aus 4 Negativlinsen besteht. Ebenfalls sind aus der EP 712 019 A2, US 5,969,803, US 5,986,824 und DE 198 18 444 AI Projektionsobjektive mit einer ersten Linsengruppe negativer Brechkraft bekannt, die aus mindestens vier Negativlinsen bestehen.A projection lens is known from DE 199 42 281.8, FIGS. 8-10, the first lens group of which has negative refractive power and consists of 4 negative lenses. Also known from EP 712 019 A2, US 5,969,803, US 5,986,824 and DE 198 18 444 AI projection lenses with a first lens group of negative refractive power, which consist of at least four negative lenses.
Aus der US 5,990,926 ist ein Projektionsobjektiv bekannt, daß eine Linsengruppe negativer Brechkraft aufweist, welche aus drei Negativlinsen besteht. Aus den Schriften US 6,084,723, EP 721 150 A2, US 6,088,171 und DE 198 18 444 AI sind Projektionsobjektive bekannt, die eine Linsengruppe negativer Brechkraft aufweisen, durch die eine erste Taille gebildet wird, und die aus vier Negativlinsen besteht, wobei nach der ersten Negativlinse eine Linse positiver Brechkraft angeordnet ist.From US 5,990,926 a projection lens is known that has a lens group of negative refractive power, which consists of three negative lenses. Projection lenses are known from the documents US Pat. No. 6,084,723, EP 721 150 A2, US Pat. No. 6,088,171 and DE 198 18 444 A1 which have a lens group of negative refractive power, by means of which a first waist is formed, and which consists of four negative lenses, after the first negative lens a lens with positive refractive power is arranged.
Aus der DE 199 42 281, Figur 2-4 ist eine Linsengruppe negativer Brechkraft bekannt, die aus vier Negativlinsen besteht, wobei nach der zweiten Negativlinse eine Positivlinse angeordnet ist. Als Positivlmse ist ein zum Bild durchgebogene Meniskenlinse vorgesehen.A lens group of negative refractive power is known from DE 199 42 281, FIGS. 2-4, which consists of four negative lenses, a positive lens being arranged after the second negative lens. A meniscus lens that is bent to the image is provided as a positive lens.
Der Erfindung lag die Aufgabe zugrunde eine Linsengruppe negativer Brechkraft zu entwickeln, die sich vorteilhaft auf die Abbildungseigenschaften eines Projektionsobjektives auswirkt.The object of the invention was to develop a lens group of negative refractive power which has an advantageous effect on the imaging properties of a projection lens.
Die Aufgabe der Erfindung wird durch die im Patentanspruch 1 gegebenen Merkmale gelöst. Weiterhin lag der Erfindung die Aufgabe zugrunde die Abbildungseigenschaften eines Projektionsobjektives, insbesondere für eine Beleuchtungswellenlänge von 193 nm, bei geringen Kalziumfluorideinsatz zu verbessern.The object of the invention is achieved by the features given in claim 1. The invention was also based on the object of improving the imaging properties of a projection objective, in particular for an illumination wavelength of 193 nm, with low use of calcium fluoride.
Durch die Maßnahme eine Linsengruppe negativer Brechkraft derart auszubilden, daß diese Linsengruppe negativer Brechkraft aus vier Linsen negativer Brechkraft besteht, wobei nach der dritten Linse negativer Brechkraft eine Linse positiver Brechkraft angeordnet ist, konnte die Abbildungseigenschaften des Objektives verbessert werden. Diese Konfiguration mit der Linse positiver Brechkraft wirkt sich insbesondere vorteilhaft aus den Astigmatismus und die Komakorrektur aus.The measure of forming a lens group of negative refractive power in such a way that this lens group of negative refractive power consists of four lenses of negative refractive power, with a lens of positive refractive power being arranged after the third lens of negative refractive power, the imaging properties of the objective could be improved. This configuration with the lens of positive refractive power has a particularly advantageous effect from the astigmatism and the coma correction.
Es hat sich als vorteilhaft herausgestellt als Positivlinse eine Meniskenlinse vorzusehen. Dies erlaubt es zusätzlich den Rinnenfehler günstig zu beeinflussen.It has proven to be advantageous to provide a meniscus lens as a positive lens. This also allows the channel error to be influenced favorably.
Weiterhin hat es hat sich als vorteilhaft herausgestellt, daß die Linse positiver Brechkraft objektseitig mit einer konvexen Linsenoberfläche versehen ist.Furthermore, it has been found to be advantageous that the lens of positive refractive power is provided on the object side with a convex lens surface.
Weitere vorteilhafte Maßnahmen sind in weiteren Unteransprüchen beschrieben.Further advantageous measures are described in further subclaims.
Anhand einiger folgender Ausftihrungsbeispiele wird die Erfindung näher beschrieben.The invention is described in more detail with reference to some of the following exemplary embodiments.
Es zeigtIt shows
Figur 1: Projektionsbelichtungsanlage;Figure 1: projection exposure system;
Figur 2: Lithographieobjektiv, insbesondere f r 193 nm;FIG. 2: lithography objective, in particular for 193 nm;
Figur 3 Lithographieobjektiv, insbesondere für die Wellenlänge 193 nm;FIG. 3 lithography objective, in particular for the wavelength 193 nm;
Figur 4: Lithographieobjektiv, insbesondere für eineFigure 4: Lithography lens, especially for one
Beleuchtungswellenlänge von 351 nm und Figur 5: Lithographieobjektiv, insbesondere für eineIllumination wavelength of 351 nm and FIG. 5: lithography objective, in particular for one
Beleuchtungswellenlänge von 351 nm. Anhand von Figur 1 wird zunächst der prinzipielle Aufbau einer Projektionsbelichtungsanlage beschrieben. Die Projektionsbelichtungsanlage 1 weist eine Beleuchtungseinrichtung 3 und ein Projektionsobjektiv 5 auf. Das Projektionsobjektiv umfaßt eine Linsenanordnung 19 mit einer Aperturblende AP, wobei durch die Linsenanordnung 19 eine optische Achse 7 definiert wird. Zwischen Beleuchtungseinrichtung 3 und Projektionsobjektiv 5 ist eine Maske 9 angeordnet, die mittels eines Maskenhalters 11 im Strahlengang gehalten wird. Solche in der Mikrolithographie verwendeten Masken 9 weisen eine Mikrometer- bis Nanometerstruktur auf. Diese Struktur der Maske wird mittels des Projektionsobjektives 5 bis zu einem Faktor von zehn, insbesondere um den Faktor vier, verkleinert auf eine Bildebene 13 abgebildet wird. In der Bildebene 13 wird ein durch einen Substrathalter 17 positioniertes Substrat bzw. ein Wafer 15 gehalten. Die noch auflösbaren minimalen Strukturen hängen von der Wellenlänge λ des für die Beleuchtung verwendeten Lichtes sowie von der bildseitigen Apertur des Projektionsobjektives 5 ab, wobei die maximal erreichbare Auflösung der Projektionsbelichtungsanlage 1 mit abnehmender Wellenlänge der Beleuchtungseinrichtung 3 und mit zunehmender Apertur des Projektionsobjektives 5 steigt.Illumination wavelength of 351 nm. The basic structure of a projection exposure system is first described with reference to FIG. 1. The projection exposure system 1 has an illumination device 3 and a projection objective 5. The projection objective comprises a lens arrangement 19 with an aperture diaphragm AP, an optical axis 7 being defined by the lens arrangement 19. A mask 9 is arranged between the illumination device 3 and the projection lens 5 and is held in the beam path by means of a mask holder 11. Such masks 9 used in microlithography have a micrometer to nanometer structure. This structure of the mask is imaged on the image plane 13 by means of the projection lens 5 down to a factor of ten, in particular by a factor of four. A substrate or a wafer 15 positioned by a substrate holder 17 is held in the image plane 13. The minimum structures that can still be resolved depend on the wavelength λ of the light used for the illumination and on the image-side aperture of the projection lens 5, the maximum achievable resolution of the projection exposure system 1 increasing with decreasing wavelength of the illumination device 3 and with increasing aperture of the projection lens 5.
Verschiedene Ausführungsformen von Linsenanordnungen 19 sind in den Figuren 2 und 5 gezeigt.Different embodiments of lens arrangements 19 are shown in FIGS. 2 and 5.
Figur 2 zeigt ein Linsenanordnung 19, die für eine Beleuchtungswellenlänge von 193 nm und einer bildseitigen Apertur von 0,75 ausgelegt ist. Bei dieser Linsenanordnung ist der Abstand zwischen der Projektebene 0 und Bildebene 0' 1000 mm. Das dargestellte Projektionsobjektiv umfaßt 31 Linsen L1-L31, die in sechs Linsengruppen LG1-LG6 unterteilt werden können.FIG. 2 shows a lens arrangement 19 which is designed for an illumination wavelength of 193 nm and an image-side aperture of 0.75. With this lens arrangement, the distance between the project plane 0 and image plane 0 '1000 mm. The projection lens shown comprises 31 lenses L1-L31, which can be divided into six lens groups LG1-LG6.
Eine erste Linsengruppe LG1 weist positive Brechkraft auf und besteht aus den Linsen L1-L5. Die sich daran anschließende Linsengruppe LG2 weist insgesamt negative Brechkraft; auf. Bei der ersten Linse dieser Linsengruppe L6 handelt es sich um eine dicke Meniskenlinse, deren Mittendicke im Bereich der optischen Achse mindestens 15 % des maximalen Linsendurchmessers beträgt. Diese Linse wirkt sich insbesondere vorteilhaft auf die Ebnung der Bildschale in tangentialer und sagitaler Richtung aus. Auf diese Linse L6 verfolgen zwei weitere Linsen negativer Brechkraft. In diesem Ausfuhrungsbeispiel sind für diese Linsen L7 und L8 zwei bikonave Linsen vorgesehen. Die sich daran anschließende Linse L9 weist positive Brechkraft auf. Diese Linse L9 ist eine zum Bild hin durchgebogene Meniskenlinse mit bildseitigem konkavem Krümmungsradius. Mittels dieser Linse bewirkt einen vorteilhaften Effekt bezüglich Astigmatismus, Koma und Rinnenfehler.A first lens group LG1 has positive refractive power and consists of the lenses L1-L5. The adjoining lens group LG2 has an overall negative refractive power; on. The first lens of this lens group L6 is a thick meniscus lens, the center thickness of which is at least 15% of the maximum lens diameter in the region of the optical axis. This lens has a particularly advantageous effect on the leveling of the image shell in the tangential and sagital directions. Two further lenses of negative refractive power track this lens L6. In this exemplary embodiment, two biconave lenses are provided for these lenses L7 and L8. The adjoining lens L9 has positive refractive power. This lens L9 is a meniscus lens bent towards the image with a concave radius of curvature on the image side. This lens has an advantageous effect with regard to astigmatism, coma and gutter defects.
erreichen. Die darauffolgende Linse L10 weist negative Brechkraft auf und ist eine zum Bild hin durchgebogene Meniskenlinse. Diese Linse L10 ist bildseitig mit einer Asphäre versehen. Durch diese Asphäre können insbesondere Bildfehler im Bereich zwischen Bildfeldzone und Bildfeldrand korrigiert werden. Diese Korrektur bewirkt insbesondere eine Erhöhung der Bildqualität in sagitaler Richtung. Durch diese zweite Linsengruppe LG2 die negative Brechkraft aufweist wird eine Taille gebildet.to reach. The subsequent lens L10 has negative refractive power and is a meniscus lens that is bent towards the image. This lens L10 is provided with an asphere on the image side. This asphere in particular allows image errors in the area between the image field zone and the image field edge to be corrected. This correction in particular increases the image quality in the sagital direction. A waist is formed by this second lens group LG2, which has negative refractive power.
Die sich anschließende dritte Linsengruppe LG3 weist positive Brechkraft auf und besteht aus den Linsen Ll 1 bis L14. Auf diese dritte Linsengruppe LG3 folgt eine vierte Linsengruppe LG4, die negative Brechkraft aufweist und durch die eine zweite Taille gebildet wird. Diese vierte Linsengruppe LG4 umfaßt die Linsen L15-L18, wobei es sich bei der Linse L15 um eine zum Bild hin durchgebogene Meniskenlinse mit bildseitig konkaver Flächenkrümmung handelt handelt.The subsequent third lens group LG3 has positive refractive power and consists of lenses L1 1 to L14. This third lens group LG3 is followed by a fourth lens group LG4, which has negative refractive power and through which a second waist is formed. This fourth lens group LG4 comprises the lenses L15-L18, the lens L15 being a meniscus lens bent toward the image with a concave surface curvature on the image side.
Die fünfte Linsengruppe LG5 umfaßt die Linsen L19-L27 und weist insgesamt positive Brechkraft auf. Zwischen der positiven Linse L21 und L22 ist eine Blende angeordnet. Der maximale Durchmesser dieser Linsengruppe bzw. des Projektionsobjektives beträgt ca. 240mm. Die sechste Linsengruppe LG6 weist ebenfalls positive Brechkraft auf und umfaßt die Linsen L28-L31, wobei die Linse L31 eine planparallele Platte ist. Die strahlungsmäßig stark belastete Linse L30 besteht zur Verringerung von Compaction aus Kalziumfluorid. Für die übrigen Linsen ist als Linsenmaterial Quarzglas vorgesehen. Die Verwendung von Quarzglas als Linsenmaterial hat den Vorteil, daß dieses Material im Vergleich zum Kalziumfluorid zum einen am Markt verfügbar ist und im Vergleich zu Fluoridkristallen ,wie z.B. Kalziumfluorid und Bariumfluorid, um hier nur einige zu nennen, ein preiswerteres Material ist. Bei einem Bildfeld von 28,04 mm beträgt der Farblängsfehler für die Bandbreite von 0,25 pm , also ± 0,125 pm maximal ± 57,5nm. Der Farbquerfehler erreicht für Δλ ± 0,125pm keinen größeren Wert als ± 1,2 nm. Der RMS-Wert ist ein etabliertes Maß, z.B. im CODE N etabliert, wie stark jeweils die Wellenfront von der Wellenfront einer idealen Kugelwelle abweicht. Bei diesem Ausfuhrungsbeispiel ist der RMS-Wert bei allen Bildpunkten kleiner als 7,0 mλ. Die numerische Apertur dieses Projektionsobjektives beträgt 0J5.The fifth lens group LG5 comprises the lenses L19-L27 and has positive refractive power overall. An aperture is arranged between the positive lenses L21 and L22. The maximum diameter of this lens group or the projection lens is approx. 240 mm. The sixth lens group LG6 also has positive refractive power and comprises the lenses L28-L31, the lens L31 being a plane-parallel plate. The L30 lens, which is heavily exposed to radiation, consists of calcium fluoride to reduce compaction. Quartz glass is provided as the lens material for the other lenses. The use of quartz glass as a lens material has the advantage that, compared to calcium fluoride, this material is available on the market and is a cheaper material compared to fluoride crystals such as calcium fluoride and barium fluoride, to name just a few. With a field of view of 28.04 mm, the longitudinal color error for the bandwidth of 0.25 pm, i.e. ± 0.125 pm, is a maximum of ± 57.5 nm. The transverse color error does not reach a value greater than ± 1.2 nm for Δλ ± 0.125pm. The RMS value is an established measure, eg established in CODE N, how strongly the wavefront deviates from the wavefront of an ideal spherical wave. In this exemplary embodiment, the RMS value for all pixels is less than 7.0 mλ. The numerical aperture of this projection lens is 0J5.
Die genauen Linsendaten sind Tabelle 1 zu entnehmen.The exact lens data can be found in Table 1.
Tabelle 1Table 1
FL RADIEN DICKEN GLAESER HMAX 193.304nm 193.804nmFL RADIEN THICK GLASS HMAX 193.304nm 193.804nm
1 UNENDL 14.6448 L710 62.030 .999982 .9999821 UNENDL 14.6448 L710 62.030 .999982 .999982
2 -166.55059 7.0000 SIO2 62.490 1.560289 1.5595052 -166.55059 7.0000 SIO2 62.490 1.560289 1.559505
3 506.05751 7.6109 HE 68.747 .999712 .9997123 506.05751 7.6109 HE 68.747 .999712 .999712
4 2154.09731 17.8345 SIO2 71.001 1.560289 1.5595054 2154.09731 17.8345 SIO2 71.001 1.560289 1.559505
5 -236.44399 .7000 HE 72.626 .999712 .9997125 -236.44399 .7000 HE 72.626 .999712 .999712
6 1300.07069 17.5997 SIO2 76.997 1.560289 1.5595056 1300.07069 17.5997 SIO2 76.997 1.560289 1.559505
7 -300.86909 .7000 HE 77.840 .999712 .9997127 -300.86909 .7000 HE 77.840 .999712 .999712
8 485.10529 18.6566 SIO2 79.774 1.560289 1.5595058 485.10529 18.6566 SIO2 79.774 1.560289 1.559505
9 -465.03408 .7000 HE 79.824 .999712 .9997129 -465.03408 .7000 HE 79.824 .999712 .999712
10 269.93230 21.2497 SIO2 78.221 1.560289 1.55950510 269.93230 21.2497 SIO2 78.221 1.560289 1.559505
11 -759.19722 .7000 HE 77.300 .999712 .99971211 -759.19722 .7000 HE 77.300 .999712 .999712
12 210.59503 26.0777 SIO2 71.714 1.560289 1.55950512 210.59503 26.0777 SIO2 71.714 1.560289 1.559505
13 100.59316 23.6901 HE 60.361 .999712 .99971213 100.59316 23.6901 HE 60.361 .999712 .999712
14 -1723.36549 6.3000 SIO2 60.021 1.560289 . 1.55950514 -1723.36549 6.3000 SIO2 60.021 1.560289. 1.559505
15 134.93156 23.1342 HE 58.507 .999712 .99971215 134.93156 23.1342 HE 58.507 .999712 .999712
16 -253.77701 6.3000 SIO2 58.968 1.560289 1.55950516 -253.77701 6.3000 SIO2 58.968 1.560289 1.559505
17 207.65329 3.7881 HE 63.355 .999712 .99971217 207.65329 3.7881 HE 63.355 .999712 .999712
18 248.43656 10.0000 SIO2 64.814 1.560289 1.55950518 248.43656 10.0000 SIO2 64.814 1.560289 1.559505
19 289.02332 27.2836 HE 66.785 .999712 .99971219 289.02332 27.2836 HE 66.785 .999712 .999712
20 -149.66622 8.0000 SIO2 68.386 1.560289 1.55950520 -149.66622 8.0000 SIO2 68.386 1.560289 1.559505
21 -343.08973 A 12.2670 HE 76.791 .999712 .99971221 -343.08973 A 12.2670 HE 76.791 .999712 .999712
22 -261.71401 14.0893 SIO2 82.489 1.560289 1.55950522 -261.71401 14,0893 SIO2 82,489 1,560289 1,559505
23 -158.93251 .7056 HE 84.325 .999712 .99971223 -158.93251 .7056 HE 84.325 .999712 .999712
24 2089.67024 36.8436 SIO2 99.088 1.560289 1.55950524 2089.67024 36.8436 SIO2 99.088 1.560289 1.559505
25 -197.66453 .7000 HE 101.087 .999712 .99971225 -197.66453 .7000 HE 101.087 .999712 .999712
26 656.07716 36.9267 SIO2 106.566 1.560289 1.55950526 656.07716 36.9267 SIO2 106.566 1.560289 1.559505
27 -310.68503 15.0566 HE 106.873 .999712 .999712 163.06222 40.6761 SIO2 96.385 1.560289 1.55950527 -310.68503 15.0566 HE 106.873 .999712 .999712 163.06222 40.6761 SIO2 96.385 1.560289 1.559505
-4111.47456 3.5361 HE 93.567 .999712 .999712-4111.47456 3.5361 HE 93.567 .999712 .999712
250.51145 15.0000 SIO2 82.093 1.560289 1.559505250.51145 15.0000 SIO2 82.093 1.560289 1.559505
127.80623 29.9608 HE 70.545 .999712 .999712127.80623 29.9608 HE 70.545 .999712 .999712
-395.01305 6.3000 SIO2 69.409 1.560289 1.559505-395.01305 6.3000 SIO2 69.409 1.560289 1.559505
365.10790 20.3664 HE 65.891 .999712 .999712365.10790 20.3664 HE 65.891 .999712 .999712
-193.49584 6.3000 SIO2 65.302 1.560289 1.559505-193.49584 6.3000 SIO2 65.302 1.560289 1.559505
181.51555 36.3017 HE 65.615 .999712 .999712181.51555 36.3017 HE 65.615 .999712 .999712
-117.90431 6.3037 SIO2 66.498 1.560289 1.559505-117.90431 6.3037 SIO2 66.498 1.560289 1.559505
1509.29994 19.7322 HE 77.925 .999712 .9997121509.29994 19.7322 HE 77.925 .999712 .999712
-217.57963 13.5438 SIO2 79.866 1.560289 1.559505-217.57963 13.5438 SIO2 79.866 1.560289 1.559505
-187.32781 .7000 HE 85.009 .999712 .999712-187.32781 .7000 HE 85.009 .999712 .999712
-1458.10055 33.4944 SIO2 97.198 1.560289 1.559505-1458.10055 33.4944 SIO2 97.198 1.560289 1.559505
-205.38045 .7000 HE 101.387 .999712 .999712-205.38045 .7000 HE 101.387 .999712 .999712
975.11627 38.4016 SIO2 113.083 1.560289 1.559505975.11627 38.4016 SIO2 113.083 1.560289 1.559505
-328.97948 -.1900 HE 114.925 .999712 .999712-328.97948 -.1900 HE 114.925 .999712 .999712
UNENDL 7.0480 HE 116.031 .999712 .999712 BLENDE .0000 116.031UNENDL 7.0480 HE 116.031 .999712 .999712 PANEL .0000 116.031
862.15240 33.9785 SIO2 119.182 1.560289 1.559505862.15240 33.9785 SIO2 119.182 1.560289 1.559505
-429.49378 .7000 HE 119.854 .999712 .999712-429.49378 .7000 HE 119.854 .999712 .999712
290.91831 39.9124 SIO2 118.102 1.560289 1.559505290.91831 39.9124 SIO2 118.102 1.560289 1.559505
-1135.09587 25.2506 HE 116.490 .999712 .999712-1135.09587 25.2506 HE 116.490 .999712 .999712
-250.90293 12.0000 SIO2 115.346 1.560289 1.559505-250.90293 12.0000 SIO2 115.346 1.560289 1.559505
-2698.09888 15.7215 HE 114.878 .999712 .999712-2698.09888 15.7215 HE 114.878 .999712 .999712
-428.51713 35.3166 SIO2 114.769 1.560289 1.559505-428.51713 35.3166 SIO2 114.769 1.560289 1.559505
-229.75028 .7000 HE 116.163 .999712 .999712-229.75028 .7000 HE 116.163 .999712 .999712
157.14389 29.4847 SIO2 100.025 1.560289 1.559505157.14389 29.4847 SIO2 100.025 1.560289 1.559505
407.42757 .7000 HE 97.710 .999712 .999712407.42757 .7000 HE 97.710 .999712 .999712
135.43900 26.6103 SIO2 86.777 1.560289 1.559505135.43900 26.6103 SIO2 86.777 1.560289 1.559505
312.12527 12.0496 HE 82.745 .999712 .999712312.12527 12.0496 HE 82.745 .999712 .999712
1941.44476 12.0000 SIO2 80.391 1.560289 1.5595051941.44476 12.0000 SIO2 80.391 1.560289 1.559505
299.45406 .7000 HE 70.837 .999712 .999712299.45406 .7000 HE 70.837 .999712 .999712
134.94509 33.4425 SIO2 64.789 1.560289 1.559505134.94509 33.4425 SIO2 64.789 1.560289 1.559505
56.32593 1.3033 HE 42.057 .999712 .99971256.32593 1.3033 HE 42.057 .999712 .999712
53.43496 33.3158 CAF2 41.245 1.501436 1.50094653.43496 33.3158 CAF2 41.245 1.501436 1.500946
353.20173 3.0808 HE 31.464 .999712 .999712353.20173 3.0808 HE 31.464 .999712 .999712
UNENDL 3.0000 SIO2 29.528 1.560289 1.559505UNENDL 3.0000 SIO2 29.528 1.560289 1.559505
UNENDL 12.0000 L710 27.867 .999982 .999982UNENDL 12.0000 L710 27.867 .999982 .999982
UNENDL 14.020* 1.0 1.0UNENDL 14,020 * 1.0 1.0
* DIESE HOEHE WIRKT NICHT ALS BEGRENZUNG 10 ist Luft bei 950mbar* THIS HEIGHT DOES NOT WORK AS LIMIT 10 is air at 950mbar
ASPHAERISCHE KONSTANTEN DER FLACHE 21 K= 0,10137327 * 10+' Ci = 0,40139591 * 10" C2 = 0,11813452 * 10 -12 C3= 0,45259406 * 10"16 ^ C4 - = -2"«95^946«96* *ι 1^0"/u C5 = 0.11174027 * 10 23 C6 = -0,62923814 * 10"28 ASPHAERIC CONSTANT OF THE FLAT 21 K = 0.10137327 * 10 + 'Ci = 0.40139591 * 10 "C 2 = 0.11813452 * 10 -12 C 3 = 0.45259406 * 10 " 16 ^ C 4 - = -2 " « 95 ^ 946 « 96 * * ι 1 ^ 0 "/ u C 5 = 0.11174027 * 10 23 C 6 = -0.62923814 * 10 " 28
Durch vorsehen der Linsen Ll 1 aus Kalziumfluorid und geringfügigen Modifikationen des Linsen der Linsenanordnung 19 kann eine Verringerung des Farbquerfehlers um 30 % erreicht werden. Bei einem Bildfeld von 28,04mm beträgt der Farbquerfehler bei dieser Ausführungsvariante für λ ± 0,125 pm maximal ±0,82 nm und der Farblängsfehler beträgt maximal ± 57,5nm. Die Linsendaten der modifizierten Variante mit zwei Kalziumfluoridlinsen sind Tabelle 2 zu entnehmen.By providing the lenses L1 1 made of calcium fluoride and making minor modifications to the lenses of the lens arrangement 19, a 30% reduction in the lateral color error can be achieved. With a field of view of 28.04 mm, the transverse color error in this embodiment variant is at most ± 0.82 nm for λ ± 0.125 pm and the longitudinal color error is at most ± 57.5 nm. The lens data of the modified variant with two calcium fluoride lenses are shown in Table 2.
Tabelle 2Table 2
193.304nm ml301a Brechzahlen193,304nm ml301a refractive indices
FL RADIEN DICKEN GLAESER HMAX 193.304nm 193.804nmFL RADIEN THICK GLASS HMAX 193.304nm 193.804nm
1 UNENDL 14.5311 L710 62.030 .999982 .9999821 UNENDL 14.5311 L710 62.030 .999982 .999982
2 -168.01710 7.0000 SIO2 62.491 1.560289 1.5595052 -168.01710 7.0000 SIO2 62.491 1.560289 1.559505
3 494.67225 7.8655 HE 68.711 .999712 .9997123 494.67225 7.8655 HE 68.711 .999712 .999712
4 2470.60478 17.5906 SIO2 70.967 1.560289 1.5595054 2470.60478 17.5906 SIO2 70.967 1.560289 1.559505
5 -238.16599 .7000 HE 72.602 .999712 .9997125 -238.16599 .7000 HE 72.602 .999712 .999712
6 1299.55339 17.5821 SIO2 77.012 1.560289 1.5595056 1299.55339 17.5821 SIO2 77.012 1.560289 1.559505
7 -301.66419 .7000 HE 77.869 .999712 .9997127 -301.66419 .7000 HE 77.869 .999712 .999712
8 481.31484 18.6248 SIO2 79.887 1.560289 1.5595058 481.31484 18.6248 SIO2 79.887 1.560289 1.559505
9 -473.57399 .7000 HE 79.949 .999712 .9997129 -473.57399 .7000 HE 79.949 .999712 .999712
10 266.88043 21.7634 SIO2 78.439 1.560289 1.55950510 266.88043 21.7634 SIO2 78.439 1.560289 1.559505
11 -708.35185 .7000 HE 77.528 .999712 .99971211 -708.35185 .7000 HE 77.528 .999712 .999712
12 214.11073 26.1927 SIO2 71.854 1.560289 1.55950512 214.11073 26.1927 SIO2 71.854 1.560289 1.559505
13 100.96743 23.5803 HE 60.436 .999712 .99971213 100.96743 23.5803 HE 60.436 .999712 .999712
14 -1862.02312 6.3000 SIO2 60.094 1.560289 1.55950514 -1862.02312 6.3000 SIO2 60.094 1.560289 1.559505
15 134.04061 23.1274 HE 58.551 .999712 .99971215 134.04061 23.1274 HE 58.551 .999712 .999712
16 -258.86710 6.3000 SIO2 59.015 1.560289 1.55950516 -258.86710 6.3000 SIO2 59.015 1.560289 1.559505
17 209.11797 4.1357 HE 63.332 .999712 .99971217 209.11797 4.1357 HE 63.332 .999712 .999712
18 260.76414 10.0000 SIO2 64.773 1.560289 1.55950518 260.76414 10.0000 SIO2 64.773 1.560289 1.559505
19 306.31791 26.7167 HE 66.774 .999712 .99971219 306.31791 26.7167 HE 66.774 .999712 .999712
20 -150.53952 8.0000 SIO2 68.362 1.560289 1.55950520 -150.53952 8.0000 SIO2 68.362 1.560289 1.559505
21 -343.08973 A 12.2234 HE 76.639 .999712 .999712 -255.62602 14.5522 CAF2 82.065 1.501436 1.50094621 -343.08973 A 12.2234 HE 76.639 .999712 .999712 -255.62602 14.5522 CAF2 82.065 1.501436 1.500946
-155.60089 .7135 HE 84.050 .999712 .999712-155.60089 .7135 HE 84.050 .999712 .999712
2570.44473 36.4559 SIO2 99.015 1.560289 1.5595052570.44473 36.4559 SIO2 99.015 1.560289 1.559505
-197.34110 .7000 HE 101.069 .999712 .999712-197.34110 .7000 HE 101.069 .999712 .999712
658.21211 37.5330 SIO2 106.976 1.560289 1.559505658.21211 37.5330 SIO2 106.976 1.560289 1.559505
-304.78835 12.5228 HE 107.346 .999712 .999712-304.78835 12.5228 HE 107.346 .999712 .999712
165.31624 40.9031 SIO2 97.479 1.560289 1.559505165.31624 40.9031 SIO2 97.479 1.560289 1.559505
-4380.57486 4.7796 HE 94.694 .999712 .999712-4380.57486 4.7796 HE 94.694 .999712 .999712
229.18415 15.0000 SIO2 81.886 1.560289 1.559505229.18415 15.0000 SIO2 81.886 1.560289 1.559505
127.94022 29.9427 HE 70.764 .999712 .999712127.94022 29.9427 HE 70.764 .999712 .999712
-406.54392 6.3000 SIO2 69.593 1.560289 1.559505-406.54392 6.3000 SIO2 69.593 1.560289 1.559505
319.24233 21.1149 HE 65.789 .999712 .999712319.24233 21.1149 HE 65.789 .999712 .999712
-194.65176 6.3000 SIO2 65.210 1.560289 1.559505-194.65176 6.3000 SIO2 65.210 1.560289 1.559505
181.88877 36.3561 HE 65.538 .999712 .999712181.88877 36.3561 HE 65.538 .999712 .999712
-117.18877 6.3000 SIO2 66.424 1.560289 1.559505-117.18877 6.3000 SIO2 66.424 1.560289 1.559505
1557.90278 19.4997 HE 77.908 .999712 .9997121557.90278 19.4997 HE 77.908 .999712 .999712
-219.93598 13.5189 SIO2 79.860 1.560289 1.559505-219.93598 13.5189 SIO2 79.860 1.560289 1.559505
-188.67644 .7000 HE 84.977 .999712 .999712-188.67644 .7000 HE 84.977 .999712 .999712
-1338.43234 33.3397 SIO2 96.879 1.560289 1.559505-1338.43234 33.3397 SIO2 96.879 1.560289 1.559505
-203.66807 .7000 HE 101.108 .999712 .999712-203.66807 .7000 HE 101.108 .999712 .999712
940.74664 37.9766 SIO2 113.017 1.560289 1.559505940.74664 37.9766 SIO2 113.017 1.560289 1.559505
-328.34415 .0000 HE 114.751 .999712 .999712-328.34415 .0000 HE 114.751 .999712 .999712
UNENDL 7.0063 HE 115.860 .999712 .999712UNENDL 7.0063 HE 115.860 .999712 .999712
BLENDE .0000 115.860IRIS .0000 115.860
852.93737 33.9995 SIO2 119.015 1.560289 1.559505852.93737 33.9995 SIO2 119.015 1.560289 1.559505
-429.06783 .7000 HE 119.681 .999712 .999712-429.06783 .7000 HE 119.681 .999712 .999712
293.26753 39.6485 SIO2 117.910 1.560289 1.559505293.26753 39.6485 SIO2 117.910 1.560289 1.559505
-1122.40839 25.1587 HE 116.310 .999712 .999712-1122.40839 25.1587 HE 116.310 .999712 .999712
-250.45086 12.0000 SIO2 115.174 1.560289 1.559505-250.45086 12.0000 SIO2 115.174 1.560289 1.559505
-2403.16353 15.7564 HE 114.736 .999712 .999712-2403.16353 15.7564 HE 114.736 .999712 .999712
-418.77311 35.6541 SIO2 114.623 1.560289 1.559505-418.77311 35.6541 SIO2 114.623 1.560289 1.559505
-229.51380 .7000 HE 116.090 .999712 .999712-229.51380 .7000 HE 116.090 .999712 .999712
157.59158 29.5131 SIO2 100.117 1.560289 1.559505157.59158 29.5131 SIO2 100.117 1.560289 1.559505
411.55925 .7000 HE 97.819 .999712 .999712411.55925 .7000 HE 97.819 .999712 .999712
135.23398 26.6934 SIO2 86.824 1.560289 1.559505135.23398 26.6934 SIO2 86.824 1.560289 1.559505
312.28548 12.0796 HE 82.801 .999712 .999712312.28548 12.0796 HE 82.801 .999712 .999712
1974.55831 12.0000 SIO2 80.455 1.560289 1.5595051974.55831 12.0000 SIO2 80.455 1.560289 1.559505
304.24095 .7000 HE 70.960 .999712 .999712304.24095 .7000 HE 70.960 .999712 .999712
135.28036 33.4905 SIO2 64.839 1.560289 1.559505135.28036 33.4905 SIO2 64.839 1.560289 1.559505
56.37313 1.2983 HE 42.062 .999712 .99971256.37313 1.2983 HE 42.062 .999712 .999712
53.46309 33.2706 CAF2 41.247 1.501436 1.50094653.46309 33.2706 CAF2 41.247 1.501436 1.500946
351.07410 3.0893 HE 31.472 .999712 .999712351.07410 3.0893 HE 31.472 .999712 .999712
UNENDL 3.0000 SIO2 29.536 1.560289 1.559505UNENDL 3.0000 SIO2 29.536 1.560289 1.559505
UNENDL 12.0000 L710 27.875 .999982 .999982UNENDL 12.0000 L710 27.875 .999982 .999982
UNENDL 14.020* 1.0 1.0 * DIESE HOEHE WIRKT NICHT ALS BEGRENZUNGUNENDL 14,020 * 1.0 1.0 * THIS HEIGHT DOES NOT WORK AS A LIMIT
L710 ist Luft bei 950mbarL710 is air at 950mbar
ASPHAERISCHE KONSTANTEN FLÄCHE 21 :Aspheric constant area 21:
K = -0,10137327 * 10+2 Ci = 0,40139591 * 10"07 C2 = 0,11813452 * 10"12 C3 = 0,45259406 * 10"16 C4 = -0,29594696 * 10"20' C5 = 0,11174027 * 10'23 C6 = -0,62923814 * 10"28 K = -0.10137327 * 10 +2 Ci = 0.40139591 * 10 "07 C 2 = 0.11813452 * 10 " 12 C 3 = 0.45259406 * 10 "16 C 4 = -0.29594696 * 10 " 20 'C 5 = 0.11174027 * 10 '23 C 6 = -0.62923814 * 10 "28
Die in Figur 3 dargestellt Linsenanordnung 19 weist 31 Linsen L1-L31 auf, die in sechs Linsengruppen LG1-LG6 unterteilbar sind. Der Abstand zwischen Objektebene 0 und Bildebene 0' beträgt 1000 mm.The lens arrangement 19 shown in FIG. 3 has 31 lenses L1-L31, which can be divided into six lens groups LG1-LG6. The distance between object plane 0 and image plane 0 'is 1000 mm.
Die erste Linsengruppe weist positive Brechkraft auf und besteht aus den Linsen L1-L5. Die erste Linse Ll ist eine bikonkave Linse und weist negative Brechkraft auf. Die darauf folgende Linsen L2-L5 sind bikonvexe Linsen, die positive Brechkraft aufweisen.The first lens group has positive refractive power and consists of the lenses L1-L5. The first lens L1 is a biconcave lens and has negative refractive power. The subsequent lenses L2-L5 are biconvex lenses that have positive refractive power.
Die zweite Linsengruppe LG2 besteht aus den Linsen L6-L10, wobei die Linsen L6 bis L8 negative Brechkraft aufweisen. Die Linse L9 weist positive Brechkraft auf. Diese Linse L9 ist wiederum eine Meniskenlinse mit bildseitig konkaver Krümmungsfläche. Die Linse L10 weist negative Brechkraft auf und ist bildseitig mit einer asphärischen Linsenoberfläche versehen. Mittels dieser Linsenoberfläche lassen sich insbesondere Bildfehler höherer Ordnung korrigieren.The second lens group LG2 consists of the lenses L6-L10, the lenses L6 to L8 having negative refractive power. The lens L9 has positive refractive power. This lens L9 is in turn a meniscus lens with a concave surface on the image side. The lens L10 has a negative refractive power and is provided with an aspherical lens surface on the image side. This lens surface can be used to correct, in particular, higher-order image errors.
Die sich daran anschließende Linsengruppe LG3 weist positive Brechkraft auf. Durch diese Linsengruppe mit den Linsen Ll 1-L14 wird ein Bauch gebildet. Die Linse L14 ist bildseitig mit einer planen Oberfläche versehen. Die Anordnung der Linsengruppe LG3 weist die Besonderheit auf, daß beidseitig zwischen den an die Linsengruppe LG3 angrenzenden Linsengruppen, LG2 und LG4, ungewohnt große Luftabstände vorgesehen sind. Bei diesem doppelt telezentrischen Objektiv mit hoher numerischer Apertur von 0,75 bei geringem Einsatz von Asphären und einer Baulänge von 00'= 1000mm konnte durch die spezielle Anordnung der dritten Linsengruppe die Ableitung der Wellenfront über alle Bildhöhen verringert werden. Die Summe der beiden Lufträume vor und nach der LG3 ist deutlich größer als die Summe der Glasdicken der nachfolgenden Linsengruppe LG 4. Dies wirkt sich insbesondere vorteilhaft auf die Queraberrationen aus.The adjoining lens group LG3 has positive refractive power. A stomach is formed by this lens group with the lenses L1 1-L14. The lens L14 is provided with a flat surface on the image side. The arrangement of the lens group LG3 has the special feature that unusually large air gaps are provided on both sides between the lens groups LG2 and LG4 adjacent to the lens group LG3. With this double telecentric lens with a high numerical aperture of 0.75 with little use of aspheres and a length of 00 '= 1000mm, the special arrangement of the third lens group reduced the derivative of the wavefront across all image heights. The sum of the two air spaces before and after the LG3 is significantly larger than the sum of the glass thicknesses of the following lens group LG 4. This has a particularly advantageous effect on the transverse aberrations.
Die vierte Linsengruppe LG4, durch die eine zweite Taille gebildet wird, besteht aus den Linsen L15-L18. Die Linse L15 ist zum Objekt hin durchgebogen. Die Linse L19, der sich daran anschließenden Linsengruppe LG5, weist zum Bild hin durchgebogene und annähernd parallel verlaufende Linsenoberflächen auf. Die Differenz der Radien ist kleiner als 3% bezogen auf den kleineren Radius. Insbesondere ist die Absolute Radiendifferenz kleiner als 4mm. Die Brechkraft dieser Linse L19 ist, mit fι > 4000, sehr gering.The fourth lens group LG4, through which a second waist is formed, consists of the lenses L15-L18. The lens L15 is bent towards the object. The lens L19, the lens group LG5 adjoining it, has lens surfaces which are bent and approximately parallel to the image. The difference in the radii is less than 3% based on the smaller radius. In particular, the absolute radius difference is less than 4mm. The refractive power of this lens L19 is, with fι> 4000, very low.
Die Linsengruppe LG5 umfaßt die weiteren Linsen L20-L27, wobei zwischen der Linse L21-L22 eine Blende angeordnet ist. Die letzte Linsengruppe LG6 wird durch die Linsen L28-L31 gebildet, wobei L31 eine Planparallelplatte ist.The lens group LG5 comprises the further lenses L20-L27, an aperture being arranged between the lens L21-L22. The last lens group LG6 is formed by the lenses L28-L31, where L31 is a plane parallel plate.
Diese in Fig. 3 gezeigte Linsenanordnung 19 ist für die Wellenlänge 193 nm ausgelegt. Die Bandbreite der Lichtquelle beträgt 0,25 pm. Mittels dieser Linsenanordnung 19 ist ein Feld von 10,5 x 26 mm belichtbar. Die numerische Apertur dieser Linsenanordnung beträgt bildseitig 0,75. Der RMS-Wert als Abweichung von der idealen Kugelwelle ist monochromatisch kleiner als 5mλ bezogen 193nm. Der Farbquerfehler ist für Δλ ± 0,125 pm kleiner als ±1,4 nm und der Farblängsfehler ist kleiner als ± 58J5nm im gesamten Bildfeld.This lens arrangement 19 shown in FIG. 3 is designed for the wavelength 193 nm. The bandwidth of the light source is 0.25 pm. A field of 10.5 × 26 mm can be exposed by means of this lens arrangement 19. The numerical aperture of this lens arrangement is 0.75 on the image side. The RMS value as a deviation from the ideal spherical wave is monochromatic less than 5mλ referred to 193nm. The transverse color error is smaller than ± 1.4 nm for Δλ ± 0.125 pm and the longitudinal color error is smaller than ± 58J5nm in the entire image field.
Die genauen Linsendaten sind Tabelle 3 zu entnehmen.The exact lens data can be found in Table 3.
Tabelle 3Table 3
Ml 650pMl 650p
BRECHZAHL 1/2 FREIERFRESH NUMBER 1/2 FREE
FLA £CHE RADIEN DICKEN GLAESER 193.304nm DURCHMESSERFLAT RADIEN THICK GLASSES 193.304nm DIAMETER
0 0.000000000 45.969574340 L710 0.99998200 56.080 1 -163.893583594 7.000000000 SIO2 1.56028895 62.298 2 543.276868900 6.914746504 HE 0.99971200 68.527 3 4925.150504439 17.003634307 SIO2 1.56028895 70.200 -237.663812578 0.700000000 HE 0.99971200 71.8920 0.000000000 45.969574340 L710 0.99998200 56.080 1 -163.893583594 7.000000000 SIO2 1.56028895 62.298 2 543.276868900 6.914746504 HE 0.99971200 68.527 3 4925.150504439 17.003634307 SIO2 1.56028895 70.200 -237.663812578 0.700000000 HE 0.99971200 71.892
1399.349047982 18.279497082 SIO2 1.56028895 76.2601399.349047982 18.279497082 SIO2 1.56028895 76.260
-282.822296960 0.700000001 HE 0.99971200 77.210-282.822296960 0.700000001 HE 0.99971200 77.210
485.041831962 19.095677657 SIO2 1.56028895 79.259485.041831962 19.095677657 SIO2 1.56028895 79.259
-448.790019973 0.700000000 HE 0.99971200 79.327-448.790019973 0.700000000 HE 0.99971200 79.327
261.052873524 21.940801476 SIO2 1.56028895 77.716261.052873524 21.940801476 SIO2 1.56028895 77.716
-776.403478410 0.700000000 HE 0.99971200 76.687-776.403478410 0.700000000 HE 0.99971200 76.687
210.308913355 25.735549153 SIO2 1.56028895 71.175210.308913355 25.735549153 SIO2 1.56028895 71.175
99.341848189 22.473973608 HE 0.99971200 59.88399.341848189 22.473973608 HE 0.99971200 59.883
0.000000000 8.009409065 SIO2 1.56028895 59.5650.000000000 8.009409065 SIO2 1.56028895 59.565
130.189257019 24.765647204 HE 0.99971200 57.743130.189257019 24.765647204 HE 0.99971200 57.743
-236.044200760 7.570027862 SIO2 1.56028895 58.334-236.044200760 7.570027862 SIO2 1.56028895 58.334
225.745307153 1.721089583 HE 0.99971200 62.796225.745307153 1.721089583 HE 0.99971200 62.796
249.257978944 10.000000000 SIO2 1.56028895 63.335249.257978944 10.000000000 SIO2 1.56028895 63.335
290.876194298 26.689502502 HE 0.99971200 65.179290.876194298 26.689502502 HE 0.99971200 65.179
-157.850195148 8.000000000 SIO2 1.56028895 67.322-157.850195148 8.000000000 SIO2 1.56028895 67.322
-343.089730000A 21.241706809 HE 0.99971200 74.633-343.089730000A 21.241706809 HE 0.99971200 74.633
-300.686931187 19.035466008 SIO2 1.56028895 85.971-300.686931187 19.035466008 SIO2 1.56028895 85.971
-166.339801171 1.155814165 HE 0.99971200 88.981-166.339801171 1.155814165 HE 0.99971200 88.981
1242.960741027 39.709671515 SIO2 1.56028895 103.3811242.960741027 39.709671515 SIO2 1.56028895 103.381
-217.561562194 0.700000000 HE 0.99971200 105.365-217.561562194 0.700000000 HE 0.99971200 105.365
873.041438293 28.701760134 SIO2 1.56028895 108.135873.041438293 28.701760134 SIO2 1.56028895 108.135
-394.309651697 0.700000002 HE 0.99971200 108.176-394.309651697 0.700000002 HE 0.99971200 108.176
168.490233663 42.038473874 SIO2 1.56028895 100.522168.490233663 42.038473874 SIO2 1.56028895 100.522
0.000000000 13.298461584 HE 0.99971200 97.4590.000000000 13.298461584 HE 0.99971200 97.459
198.769354524 7.491654073 SIO2 1.56028895 79.508198.769354524 7.491654073 SIO2 1.56028895 79.508
127.110375082 32.181225955 HE 0.99971200 72.267127.110375082 32.181225955 HE 0.99971200 72.267
-412.500785204 6.000000000 SIO2 1.56028895 70.633-412.500785204 6.000000000 SIO2 1.56028895 70.633
396.017439811 16.248991558 HE 0.99971200 67.019396.017439811 16.248991558 HE 0.99971200 67.019
-267.221433894 6.000000000 SIO2 1.56028895 66.551-267.221433894 6.000000000 SIO2 1.56028895 66.551
168.512314408 36.354622161 HE 0.99971200 65.389168.512314408 36.354622161 HE 0.99971200 65.389
-122.758597736 6.049883829 SIO2 1.56028895 66.079-122.758597736 6.049883829 SIO2 1.56028895 66.079
766.523644100 27.033401060 HE 0.99971200 75.781766.523644100 27.033401060 HE 0.99971200 75.781
-159.522000000 16.394944690 SIO2 1.56028895 77.809-159.522000000 16.394944690 SIO2 1.56028895 77.809
-155.641000000 0.700000000 HE 0.99971200 84.996-155.641000000 0.700000000 HE 0.99971200 84.996
0.000000000 27.995555874 SIO2 1.56028895 101.0510.000000000 27.995555874 SIO2 1.56028895 101.051
-266.016738680 0.890470375 HE 0.99971200 103.561-266.016738680 0.890470375 HE 0.99971200 103.561
0.000000000 30.098513441 SIO2 1.56028895 110.6680.000000000 30.098513441 SIO2 1.56028895 110.668
-290.836485170 7.000000010 HE 0.99971200 112.215-290.836485170 7.000000010 HE 0.99971200 112.215
0.000000000 0.431524267 HE 0.99971200 115.7180.000000000 0.431524267 HE 0.99971200 115.718
1323.425726038 33.775984345 SIO2 1.56028895 119.8851323.425726038 33.775984345 SIO2 1.56028895 119.885
-354.247417821 0.700000000 HE 0.99971200 120.693-354.247417821 0.700000000 HE 0.99971200 120.693
253.851238303 43.981502597 SIO2 1.56028895 119.436253.851238303 43.981502597 SIO2 1.56028895 119.436
-1091.287744312 24.113176044 HE 0.99971200 117.882-1091.287744312 24.113176044 HE 0.99971200 117.882
-256.378455601 10.108953957 SIO2 1.56028895 116.975-256.378455601 10.108953957 SIO2 1.56028895 116.975
510547.419151742 13.749960972 HE 0.99971200 115.781 50 -549.718956763 46.950737825 SIO2 1.56028895 115.712510547.419151742 13.749960972 HE 0.99971200 115.781 50 -549.718956763 46.950737825 SIO2 1.56028895 115.712
51 -237.550046531 0.733009323 HE 0.99971200 117.03051 -237.550046531 0.733009323 HE 0.99971200 117.030
52 152.354106326 27.736146606 SIO2 1.56028895 98.47652 152.354106326 27.736146606 SIO2 1.56028895 98.476
53 340.293718782 0.709804301 HE 0.99971200 95.98153 340.293718782 0.709804301 HE 0.99971200 95.981
54 131.460836161 25.026141744 SIO2 1.56028895 85.57854 131.460836161 25.026141744 SIO2 1.56028895 85.578
55 293.107264484 10.404798830 HE 0.99971200 82.20555 293.107264484 10.404798830 HE 0.99971200 82.205
56 1251.239137872 12.817811407 SIO2 1.56028895 81.00156 1251.239137872 12.817811407 SIO2 1.56028895 81.001
57 260.342262866 1.378798137 HE 0.99971200 70.43657 260.342262866 1.378798137 HE 0.99971200 70.436
58 130.810580199 34.683194416 SIO2 1.56028895 64.39058 130.810580199 34.683194416 SIO2 1.56028895 64.390
59 55.085948639 0.700000000 HE 0.99971200 41.18159 55.085948639 0.700000000 HE 0.99971200 41.181
60 52.721068002 33.140446950 CAF2 1.50143563 40.63160 52.721068002 33.140446950 CAF2 1.50143563 40.631
61 357.005545933 2.868260812 HE 0.99971200 30.93661 357.005545933 2.868260812 HE 0.99971200 30.936
62 0.000000000 3.000000000 SIO2 1.56028895 29.21262 0.000000000 3.000000000 SIO2 1.56028895 29.212
63 0.000000000 12.000000000 L710 0.99998200 27.57263 0.000000000 12.000000000 L710 0.99998200 27.572
64 0.000000000 0.000000000 1.00000000 14.02064 0.000000000 0.000000000 1.00000000 14,020
L710 ist Luft bei 950mbarL710 is air at 950mbar
ASPHAERISCHE KONSTANTENASPHERIC CONSTANTS
FLAECHE NR. 20AREA NO. 20
K 10.1373K 10.1373
CI 4.01395910e-008CI 4.01395910e-008
C2 1.18134520e-013C2 1.18134520e-013
C3 4.52594060e-017C3 4.52594060e-017
C4 -2.95946970e-021C4 -2.95946970e-021
C5 1.11740260e-024C5 1.11740260e-024
C6 -6.29238120e-029C6 -6.29238120e-029
C7 0.00000000e+000C7 0.00000000e + 000
C8 0.00000000e+000C8 0.00000000e + 000
C9 0.00000000e+000C9 0.00000000e + 000
ANTEIL ZERNTKE DER ASPHAERISCHEN FLAECHE NR. 21SHARE OF ZERNTKE OF THE ASPHAERIC AREA NO. 21
ZER9 = 227.260 μmZER9 = 227.260 μm
ZER16 = 6.79061 μmZER16 = 6.79061 μm
ZER25 = 1.17273 μmZER25 = 1.17273 μm
ZER36 = 0.100691 μmZER36 = 0.100691 μm
ZER49 = -0.00116301 μmZER49 = -0.00116301 μm
Bezogen auf einen halben freien Durchmesser von 74.633 mm Diejn Figur 4 dargestellte Linsenanordnung 19 eines Lithographieobjektiv ist für die Belichtungswellenlänge von 351nm ausgelegt. Die Lichtquelle sollte maximal eine Bandbreite "von 3,25 pm aufweisen. Die numerische Apertur beträgt 0J5. Diese Linsenanordnung 19 weist eine Baulänge von Objektebene 0 zu Bildebene O'von 1000mm auf.Based on a half free diameter of 74,633 mm The lens arrangement 19 of a lithography objective shown in FIG. 4 is designed for the exposure wavelength of 351 nm. The light source should have a maximum bandwidth "of 3.25 pm. The numerical aperture is 0J5. This lens array 19 has a length from the object plane 0 to the image plane on O'von 1000mm.
Diese in Fig. 4 gezeigte Linsenanordnung 19 ist in sechs Linsengruppen LG1-LG6 unterteilbar. Die erste Linsengruppe beginnt mit einer Negativlinse Ll auf die vier Positivlinsen L2 - L5 folgen. Diese erste Linsengruppe weist positive Brechkraft auf. Die zweite Linsengruppe beginnt mit einer Meniskenlinse L6 negativer Brechkraft, die zum Objekt hin gewölbt ist. Auf diese Negativlinse folgen zwei weitere Negativlinsen L 7 und L 8. Die darauffolgende Linse L9 ist eine Meniskenlinse positiver Brechkraft, die objektseitig eine konvexe Linsenoberfläche aufweist und somit zum Objektiv hin gewölbt ist. Als letzte Linse der zweiten Linsengruppe ist eine zum Bild hin gewölbte Meniskenlinse negativer Brechkraft vorgesehen, die auf der bildseitig angeordneten konvexen Linsenoberfläche asphärisiert ist. Diese zweite Linsengruppe weist negative Brechkraft auf.This lens arrangement 19 shown in FIG. 4 can be subdivided into six lens groups LG1-LG6. The first lens group begins with a negative lens Ll, followed by the four positive lenses L2 - L5. This first lens group has positive refractive power. The second lens group begins with a meniscus lens L6 of negative refractive power, which is curved toward the object. This negative lens is followed by two further negative lenses L 7 and L 8. The following lens L9 is a meniscus lens with positive refractive power, which has a convex lens surface on the object side and is therefore curved toward the lens. The last lens of the second lens group is a meniscus lens of negative refractive power which is curved toward the image and is aspherized on the convex lens surface arranged on the image side. This second lens group has negative refractive power.
Die dritte Linsengruppe wird durch die folgenden fünf Linsen Ll 1 - L15 gebildet. In der Mitte der dritten Linsengruppe sind zwei dicke Positivlinsen angeordnet, deren zueinander weisenden Oberflächen stark gekrümmt sind. Zwischen diesen beiden dicken Positivlinsen ist eine sehr dünne Positivlinse L13 angeordnet, die fast keine Brechkraft aufweist. Diese Linse ist von geringerer Bedeutung, so daß auf diese Linse bei Bedarf unter geringen Modifikationen des Objektivaufbaues verzichtet werden kann. Diese dritte Linsengruppe weist positive Brechkraft auf.The third lens group is formed by the following five lenses L1 1 - L15. In the middle of the third lens group, two thick positive lenses are arranged, the surfaces of which face one another and are strongly curved. A very thin positive lens L13, which has almost no refractive power, is arranged between these two thick positive lenses. This lens is of lesser importance, so that this lens can be dispensed with if necessary with minor modifications to the lens structure. This third lens group has positive refractive power.
Die vierte Linsengruppe wird durch drei Negativlinsen L16 - L18 gebildet.The fourth lens group is formed by three negative lenses L16 - L18.
Die fünfte Linsengruppe wird durch die Linsen L19 - L27 gebildet. Nach den ersten drei Positivlinsen L19 - L21 ist die Blende angeordnet. Nach der Blende sind zwei dicke Positivlinsen angeordnet, bei denen die zueinander gewandten Oberflächen eine starke Krümmung aufweisen. Diese Anordnung der Linsen L22 und L23 wirkt sich vorteilhaft auf die sphärische Aberration aus. Es wird durch diese Anordnung der Linsen L22 und L23 eine dem Prinzip der "Linse bester Form" Rechnung getragen, d.h. in einem Strahlengang annähernd paralleler Strahlen stehen stark gekrümmte Flächen. Gleichzeitig werden gezielte Beiträge zur Unterkorrektur der schiefen sphärische Aberration bereitgestellt, die in Verbindung mit den beiden nachgestellten Menisken L24 und L25, die auf die schiefe sphärische Aberration überkorrigierend wirken, eine hervorragende Gesamtkorrektur ermöglichen. Die Brennweiten dieser Linsen sind fι2 = 465,405 mm und f34 = 448,462 mm.The fifth lens group is formed by lenses L19-L27. The aperture is arranged after the first three positive lenses L19 - L21. Two thick positive lenses are arranged after the diaphragm, in which the surfaces facing each other have a strong curvature. This arrangement of the lenses L22 and L23 has an advantageous effect on the spherical aberration. This arrangement of the lenses L22 and L23 makes it one of the Principle of the "best shape lens" taken into account, ie there are strongly curved surfaces in a beam path of approximately parallel beams. At the same time, targeted contributions to undercorrecting the oblique spherical aberration are provided, which, in conjunction with the two menisci L24 and L25, which have an overcorrective effect on the oblique spherical aberration, enable an excellent overall correction. The focal lengths of these lenses are fι 2 = 465.405 mm and f 34 = 448.462 mm.
Die sechste Linsengruppe weist als erste Linse eine Negativlinse L28 auf, auf die zwei dicke Linsen folgen. In dem gezeigten Ausführungsbeispiel ist vorgesehen, daß alle Linsen aus dem Material mit einer Brechzahl von 1,506 bei 351nm , z.B dem Material FK5 von Schott, bestehen.The sixth lens group has a negative lens L28 as the first lens, followed by two thick lenses. In the exemplary embodiment shown, it is provided that all lenses consist of the material with a refractive index of 1.506 at 351 nm, for example the material FK5 from Schott.
Zur Reduzierung von Compaction kann vorgesehen, sein als Linsenmaterial für die letzten beiden Linsen dieser Linsengruppe Quarzglas zu verwenden.To reduce compaction, quartz glass can be used as the lens material for the last two lenses of this lens group.
Die exakten Linsendaten sind der Tabelle 4 zu entnehmen. Mit dieser Linsenanordnung ist ein Bidlfeld von 8 x 26 mm mit einer bildseitigen Apertur von 0J5 belichtbar . Bei diesem Objektiv ist eine Bandbreite von etwa 3,25pm zulässig. Der RMS-Wert als Abweichung von der idealen Kugelwelle ist monochromatisch kleiner als 6 mλ. Der Farbquerfehler ist für Δλ± 1,625 pm kleiner als ± 0,1 nm und der Farblängsfehler ist kleiner im gesamten Bildfeld als ±104nm. Damit können Strukturbreiten von 180nm erzeugt werden.The exact lens data can be found in Table 4. With this lens arrangement, a field of 8 x 26 mm can be exposed with an aperture of 0J5 on the image side. A bandwidth of around 3.25pm is permitted with this lens. The RMS value as a deviation from the ideal spherical wave is monochromatically less than 6 mλ. The transverse color error is smaller than ± 0.1 nm for Δλ ± 1.625 pm and the longitudinal color error is smaller than ± 104nm in the entire image field. This allows structure widths of 180 nm to be created.
Die asphärische Flächen werden in allen Ausführungsbeispielen durch die Gleichung : Die asphärischen Flächen werden durch die Gleichung:In all exemplary embodiments, the aspherical surfaces are given by the equation: The aspherical surfaces are given by the equation:
δ • h » hδ • h »h
P(h) + C, h4 + + Cn h 2n + 2 δ = l/RP (h) + C, h 4 + + C n h 2n + 2 δ = l / R
\ + ^\ -(\ + K) *δ *b » h » h\ + ^ \ - (\ + K) * δ * b »h» h
beschrieben, wobei P die Pfeilhöhe als Funktion des Radius h (Höhe zur optischen Achse 7) mit den in den Tabellen angegebenen asphärischen Konstanten C\ bis Cn ist. R ist der in den Tabellen angegebene Scheitelradius. described, where P is the arrow height as a function of the radius h (height to the optical axis 7) with the aspherical constants C \ to C n given in the tables. R is the vertex radius given in the tables.
L 15 102.07790 10.0000 FK5 77.455 1.505235L 15 102.07790 10.0000 FK5 77.455 1.505235
100.38160 40.1873 L710 73.370 .999982100.38160 40.1873 L710 73.370 .999982
L 16 -504.79995 6.0000 FK5 71.843 1.506235L 16 -504.79995 6.0000 FK5 71.843 1.506235
130.61081 34.6867 L710 64.992 .999982130.61081 34.6867 L710 64.992 .999982
L 17 -153.51955 6.0000 FK5 64.734 1.506235L 17 -153.51955 6.0000 FK5 64.734 1.506235
284.44035 34.2788 L710 67.573 .999982284.44035 34.2788 L710 67.573 .999982
L 18 -114.12583 8.2925 FK5 68.531 1.506235L 18 -114.12583 8.2925 FK5 68.531 1.506235
731.33965 20.4412 L710 84.132 .999982731.33965 20.4412 L710 84.132 .999982
L 19 -291.19603 24.2439 FK5 86.387 1.506235L 19 -291.19603 24.2439 FK5 86.387 1.506235
-173.68634 .7000 L710 93.185 .999982-173.68634 .7000 L710 93.185 .999982
L 20 -10453.06716 28.2387 FK5 111.655 1.506235L 20 -10453.06716 28.2387 FK5 111.655 1.506235
-304.21017 .7000 L710 114.315 .999982-304.21017 .7000 L710 114.315 .999982
L 21 -2954.65846 30.7877 FK5 122.647 1.506235L 21 -2954.65846 30.7877 FK5 122.647 1.506235
-312.03660 7.0000 L710 124.667 .999982-312.03660 7.0000 L710 124.667 .999982
BLENDE UNENDL .0000 131.182 .999982IRIS INFINITE .0000 131.182 .999982
L 22 1325.30512 52.2352 FK5 133.384 1.506235L 22 1325.30512 52.2352 FK5 133.384 1.506235
-282.76663 .7000 L710 135.295 .999982-282.76663 .7000 L710 135.295 .999982
L 23 276.96510 52.6385 FK5 134.809 1.506235L 23 276.96510 52.6385 FK5 134.809 1.506235
-1179.05517 25.2703 L710 132.935 .999982-1179.05517 25.2703 L710 132.935 .999982
L 24 -311.05526 10.0000 FK5 131.670 1.506235L 24 -311.05526 10.0000 FK5 131.670 1.506235
-587.25843 10.5026 L710 130.474 .999982-587.25843 10.5026 L710 130.474 .999982
L 25 -374.19522 15.0000 FK5 130.116 1.506235L 25 -374.19522 15.0000 FK5 130.116 1.506235
-293.45628 .7000 L710 130.127 .999982-293.45628 .7000 L710 130.127 .999982
L 26 198.19004 29.6167 FK5 111.971 1.506235L 26 198.19004 29.6167 FK5 111.971 1.506235
535.50347 .7000 L710 109.450 .999982535.50347 .7000 L710 109.450 .999982
L 27 132.82366 34.0368 FK5 94.581 1.506235L 27 132.82366 34.0368 FK5 94.581 1.506235
361.69797 12.8838 L710 90.620 .999982361.69797 12.8838 L710 90.620 .999982
L 28 7006.77771 9.7505 FK5 88.792 1.506235L 28 7006.77771 9.7505 FK5 88.792 1.506235
349.77435 1.0142 L710 79.218 .999982349.77435 1.0142 L710 79.218 .999982
L 29 174.38688 38.8434 FK5 73.443 1.506235L 29 174.38688 38.8434 FK5 73.443 1.506235
55.37159 4.9107 L710 45.042 .99998255.37159 4.9107 L710 45.042 .999982
L 30 55.08813 42.8799 FK5 43.842 1.506235L 30 55.08813 42.8799 FK5 43.842 1.506235
807.41351 1.9795 L710 30.725 .999982807.41351 1.9795 L710 30.725 .999982
UNENDL 3.0000 FK5 29.123 1.506235UNENDL 3.0000 FK5 29.123 1.506235
UNENDL 12.0000 27.388 .999982UNENDL 12.0000 27.388 .999982
L710 ist Luft bei 950mbarL710 is air at 950mbar
ASPHAERISCHE KONSTANTEN der bildseitigen Linsenoberfläche der Linse L10:Aspherical constants of the image-side lens surface of lens L10:
K = -0,10137327 x 102 C, = 0,40139591 x 10"7 C2 = 0,011813452 x 10"12 K = -0.10137327 x 10 2 C, = 0.40139591 x 10 "7 C 2 = 0.011813452 x 10 "12
C3 = 0,45259406 x 10"16 C 3 = 0.45259406 x 10 "16
C4 = 0,29594697 x 10"20 C 4 = 0.29594697 x 10 "20
C5 = 0,11174026 x lO-23 C 5 = 0.11174026 x 10 -23
C6 = -0,62923812 x 10"28 C 6 = -0.62923812 x 10 "28
In Figur 5 ist eine Linsenanordnung 19 mit einer bildseitigen Apertur von 0,7, die in sechs Linsengruppen unterteilbar ist und nur aus sphärischen Linsen besteht, gezeigt. Dieses Ausführungsbeispiel weist im Gegensatz zu Figur 4 eine äußerst lang ausgeprägte erste Linsengruppe auf, die die Linsen Ll - L5 umfaßt. Dieser langgestreckte Bauch wird maßgeblich durch die dicken Positivlinsen L4 und L5 gebildet. Durch diesen ersten langgestreckten Bauch wird nur mit sphärischen Linsen eine geringe Verzeichnung erreicht, wobei eine durch die Form dieses ersten Bauches begründete schlechtere Eingangstelezentrie, die durch das Beleuchtungssystem ausgeglichen werden kann, hingenommen wird. Diese erste Linsengruppe weist positive Brechkraft auf.FIG. 5 shows a lens arrangement 19 with an aperture of 0.7 on the image side, which can be divided into six lens groups and consists only of spherical lenses. In contrast to FIG. 4, this exemplary embodiment has an extremely long first lens group which comprises the lenses L1-L5. This elongated abdomen is largely formed by the thick positive lenses L4 and L5. Due to this first elongated abdomen, only slight distortion is achieved with spherical lenses, a poorer entrance telecentricity due to the shape of this first abdomen, which can be compensated for by the lighting system, being accepted. This first lens group has positive refractive power.
Die zweite Linsengruppe L2 umfaßt vier Negativlinsen, wobei wiederum zwischen der dritten Negativlinse L8 und vierten Negativlinse L10 eine positive Meniskenlinse L9, die zum Objekt hin gekrümmt ist, angeordnet ist. Bei diesem Ausführungsbeispiel ist keine asphärische Linsenoberfläche vorgesehen. Durch diese Konfiguration der ersten Linsengruppe LG2 mit negativer Brechkraft lassen sich insbesondere Astigmatismus, Koma und Rinnenfehler korrigieren.The second lens group L2 comprises four negative lenses, again a positive meniscus lens L9, which is curved toward the object, being arranged between the third negative lens L8 and fourth negative lens L10. In this embodiment, no aspherical lens surface is provided. This configuration of the first lens group LG2 with negative refractive power allows in particular astigmatism, coma and channel defects to be corrected.
Die dritte Linsengruppe umfaßt die Linsen Ll 1 - L15 und weist positive Brechkraft auf. Bei diesem Ausführungsbeispiel sind im Gegensatz zum ersten Ausführungsbeispiel die Linsen L12 und L14 weniger stark ausgeprägt. Diese dritte Linsengruppe hat insbesondere eine positive Wirkung auf die Abbildungsqualität in den Quadranten.The third lens group comprises the lenses L1 1 - L15 and has positive refractive power. In contrast to the first exemplary embodiment, the lenses L12 and L14 are less pronounced in this exemplary embodiment. This third lens group in particular has a positive effect on the imaging quality in the quadrants.
Die vierte Linsengruppe LG4 wird trotz der hohen Öffnung von 0J0 nur durch drei Negativlinsen gebildet und weist somit negative Brechkraft auf. Die sich anschließende fünfte Linsengruppe LG5, die positive Brechkraft aufweist, beginnt mit den drei Positivlinsen L19 - L21, hinter denen eine Blende angeordnet ist. Hinter der Blende sind wiederum zwei dicke Positivlinsen L22 und L23 angeordnet, die mit zueinander stark gekrümmten Linsenoberflächen ausgebildet sind. Die Brennweiten betragen f] = 481,6 und f3 = 431,429. Die sich daran anschließenden Linsen L24 und L25 sind für die Korrektur der schiefen sphärischen Abberation in sagitaler und tangentialer Richtung vorgesehen.The fourth lens group LG4 is formed by three negative lenses despite the high aperture of 0J0 and thus has negative refractive power. The subsequent fifth lens group LG5, which has positive refractive power, begins with the three positive lenses L19-L21, behind which an aperture is arranged. In turn, two thick positive lenses L22 and L23 are arranged behind the diaphragm, which are formed with lens surfaces that are strongly curved with respect to one another. The focal lengths are f] = 481.6 and f 3 = 431.429. The adjoining lenses L24 and L25 are intended for the correction of the oblique spherical aberration in the sagital and tangential direction.
Die sechste Linsengruppe LG6 umfaßt die Linsen L28 - L31 und weist positive Brechkraft auf. Dieses Objektiv weist eine numerische Apertur von OJ bei einer Wellenlänge von λ = 351,14 nm auf. Die Länge von Bildebene 0 zu Objektivebene 0' beträgt 1000 mm, wobei ein Bildfeld von 8 x 26 mm beleuchtet wird. Alle Linsen sind aus Kronglas, z.B. FK 5 der Firma SCHOTT, hergestellt. Das Objektiv benötigt bei einem diagonalen Bildfelddurchmesser von 27,20 mm für die Abbildung von 210 nm breiten Strukturen Laserlicht mit einer Halbwertsbreite von ca. 4,3 pm. Für ein Δλ von ± 2,15 pm beträgt der Farblängsfehler ±140 nm, der Farbquerfehler maximal 2,4 nm. Die genauen Linsendaten sind der Tabelle 5 zu entnehmen.The sixth lens group LG6 comprises the lenses L28-L31 and has positive refractive power. This lens has a numerical aperture of OJ at a wavelength of λ = 351.14 nm. The length from image plane 0 to objective plane 0 'is 1000 mm, an image field of 8 x 26 mm being illuminated. All lenses are made of crown glass, e.g. FK 5 from SCHOTT. With a diagonal field of view diameter of 27.20 mm, the lens requires laser light with a half width of approx. 4.3 pm for the imaging of 210 nm wide structures. For a Δλ of ± 2.15 pm, the longitudinal color error is ± 140 nm, the transverse color error is a maximum of 2.4 nm. The exact lens data can be found in Table 5.
Tabelle 5Table 5
M1439aM1439a
LINSE RADIEN DICKEN GLAESER Vz LinsenBrechzahl durchmesser bei 351 nmLENS RADIEN THICK GLASSES Vz lens refractive index diameter at 351 nm
00
UNENDL 37.4632 L710 60.122 .999982UNENDL 37.4632 L710 60.122 .999982
Ll -765.87757 6.1000 FK5 60.667 1.506235Ll -765.87757 6.1000 FK5 60.667 1.506235
189.10818 15.0560 L710 63.489 .999982189.10818 15.0560 L710 63.489 .999982
L2 -1924.23712 14.8631 FK5 64.889 1.506235L2 -1924.23712 14.8631 FK5 64.889 1.506235
-210.10849 .7000 L710 66.477 .999982-210.10849 .7000 L710 66.477 .999982
L3 -1771.07074 12.9447 FK5 69.458 1.506235L3 -1771.07074 12.9447 FK5 69.458 1.506235
-265.44452 .7944 L710 70.441 .999982-265.44452 .7944 L710 70.441 .999982
L4 4429.34036 57.0511 FK5 72.296 1.506235L4 4429.34036 57.0511 FK5 72.296 1.506235
-157.99293 10.8676 L710 76.220 .999982-157.99293 10.8676 L710 76.220 .999982
L5 1697.66973 44.3818 FK5 72.396 1.506235L5 1697.66973 44.3818 FK5 72.396 1.506235
-160.27202 3.1174 L710 69.891 .999982-160.27202 3.1174 L710 69.891 .999982
L6 -270.20389 6.1000 FK5 64.496 1.506235L6 -270.20389 6.1000 FK5 64.496 1.506235
145.59587 23.8094 L710 59.327 .999982 L7 -216.22267 6.1000 FK5 59.111 1.506235145.59587 23.8094 L710 59.327 .999982 L7 -216.22267 6.1000 FK5 59.111 1.506235
264.18566 22.2709 L710 60.114 .999982264.18566 22.2709 L710 60.114 .999982
L8 -154.67894 6.1000 FK5 60.693 1.506235L8 -154.67894 6.1000 FK5 60.693 1.506235
682.06879 .7398 L710 66.605 .999982682.06879 .7398 L710 66.605 .999982
L9 613.14630 9.9262 FK5 67.195 1.506235L9 613.14630 9.9262 FK5 67.195 1.506235
5830.30332 11.7064 L710 68.965 .9999825830.30332 11.7064 L710 68.965 .999982
L10 -302.46010 6.1037 FK5 70.262 1.506235L10 -302.46010 6.1037 FK5 70.262 1.506235
-1240.99707 11.3919 L710 74.655 .999982-1240.99707 11.3919 L710 74.655 .999982
Ll l -304.61263 14.0742 FK5 76.744 1.506235Ll l -304.61263 14.0742 FK5 76.744 1.506235
-173.33791 .7386 L710 78.915 .999982-173.33791 .7386 L710 78.915 .999982
L12 -18363.19083 29.3863 FK5 86.930 1.506235L12 -18363.19083 29.3863 FK5 86.930 1.506235
-186.22288 .7000 L710 88.783 .999982-186.22288 .7000 L710 88.783 .999982
L13 1172.01143 16.5023 FK5 92.295 1.506235L13 1172.01143 16.5023 FK5 92.295 1.506235
-590.45415 .7000 L710 92.625 .999982-590.45415 .7000 L710 92.625 .999982
L14 157.32134 37.1074 FK5 92.978 1.506235L14 157.32134 37.1074 FK5 92.978 1.506235
6181.16889 .7000 L710 91.301 .9999826181.16889 .7000 L710 91.301 .999982
L15 146.43371 14.3174 FK5 82.500 1.506235L15 146.43371 14.3174 FK5 82.500 1.506235
202.92507 50.3624 L710 80.095 .999982202.92507 50.3624 L710 80.095 .999982
L16 -572.56205 6.1000 FK5 66.246 1.506235L16 -572.56205 6.1000 FK5 66.246 1.506235
121.14512 30.5565 L710 59.998 .999982121.14512 30.5565 L710 59.998 .999982
L17 -157.40409 6.1000 ' FK5 59.747 1.506235L17 -157.40409 6.1000 ' FK5 59.747 1.506235
256.95256 32.8427 L710 61.781 .999982256.95256 32.8427 L710 61.781 .999982
L18 -98.80342 7.8212 FK5 62.557 1.506235L18 -98.80342 7.8212 FK5 62.557 1.506235
641.39965 18.1478 L710 77.492 .999982641.39965 18.1478 L710 77.492 .999982
L19 -308.76412 25.1716 FK5 80.101 1.506235L19 -308.76412 25.1716 FK5 80.101 1.506235
-160.15183 .7198 L710 86.681 .999982-160.15183 .7198 L710 86.681 .999982
L20 -1043.39436 24.1973 FK5 100.363 1.506235L20 -1043.39436 24.1973 FK5 100.363 1.506235
-240.97724 .7732 L710 102.908 .999982-240.97724 .7732 L710 102.908 .999982
L21 1125.18771 28.8421 FK5 114.949 1.506235L21 1125.18771 28.8421 FK5 114.949 1.506235
-430.47634 5.0000 L710 116.447 .999982-430.47634 5.0000 L710 116.447 .999982
UNENDL 2.0000 L710 120.343 .999982UNENDL 2.0000 L710 120.343 .999982
BLENDE .0000 120.343IRIS .0000 120.343
L22 -3902.89359 42.5513 FK5 120.388 1.506235L22 -3902.89359 42.5513 FK5 120.388 1.506235
-230.34901 .7000 L710 122.380 .999982-230.34901 .7000 L710 122.380 .999982
L23 245.03767 46.6321 FK5 123.915 1.506235L23 245.03767 46.6321 FK5 123.915 1.506235
; -1881.85244 29.1602 L710 122.327 .999982; -1881.85244 29.1602 L710 122.327 .999982
L24 -267.61242 10.0000 FK5 121.023 1.506235L24 -267.61242 10.0000 FK5 121.023 1.506235
-375.94475 6.6966 L710 120.815 .999982-375.94475 6.6966 L710 120.815 .999982
L25 -319.48578 12.2841 FK5 120.185 1.506235L25 -319.48578 12.2841 FK5 120.185 1.506235
-264.83170 .7000 L710 120.270 .999982-264.83170 .7000 L710 120.270 .999982
L26 212.78046 21.2016 FK5 105.054 1.506235L26 212.78046 21.2016 FK5 105.054 1.506235
451.72928 .7000 L710 103.107 .999982451.72928 .7000 L710 103.107 .999982
L27 124.48521 34.0506 FK5 90.946 1.506235L27 124.48521 34.0506 FK5 90.946 1.506235
347.71817 14.6164 L710 87.431 .999982347.71817 14.6164 L710 87.431 .999982
L28 -10967.28804 15.6165 FK5 84.762 1.506235L28 -10967.28804 15.6165 FK5 84.762 1.506235
347.69074 .7000 L710 73.470 .999982 L29 175.92874 41.2004 FK5 69.063 1.506235347.69074 .7000 L710 73.470 .999982 L29 175.92874 41.2004 FK5 69.063 1.506235
53.54834 4.2189 L710 42.333 .99998253.54834 4.2189 L710 42.333 .999982
L30 53.63724 40.1656 FK5 41.450 1.506235L30 53.63724 40.1656 FK5 41.450 1.506235
1252.66340 3.3571 L710 30.075 .9999821252.66340 3.3571 L710 30.075 .999982
L31 UNENDL 3.0000 FK5 27.101 1.506235L31 UNENDL 3.0000 FK5 27.101 1.506235
UNENDL 12.0000 L710 25.514 .999982UNENDL 12.0000 L710 25.514 .999982
UNENDL 13.603* 1.0UNENDL 13,603 * 1.0
L710 ist Luft bei 950 mbar. L710 is air at 950 mbar.

Claims

Patentansprüche: claims:
1. Projektionsobjektive mit einer Linsenanordnung, die mindestens eine Linsengruppe (LG2) negativer Brechkraft aufweist, wobei diese Linsengruppe mindestens 4 Linsen negativer Brechkraft umfaßt, dadurch gekennzeichnet, daß bei dieser Linsengruppe (LG2) nach der dritten Linse (L8) negativer Brechkraft eine Linse (L9) positiver Brechkraft angeordnet ist.1.Projection lenses with a lens arrangement which has at least one lens group (LG2) of negative refractive power, this lens group comprising at least 4 lenses of negative refractive power, characterized in that in this lens group (LG2) after the third lens (L8) negative refractive power a lens ( L9) positive refractive power is arranged.
2. Projektionsobjektiv nach Anspruch 1, dadurch gekennzeichnet, daß die in der Linsengruppe negativer Brechkraft (LG2) angeordnete Linse (L9) positiver Brechkraft eine Meniskenlinse ist.2. Projection objective according to claim 1, characterized in that the lens (L9) of positive refractive power arranged in the lens group of negative refractive power (LG2) is a meniscus lens.
3. Projektionsobjektive nach einem der vorangegangen Ansprüche, dadurch gekennzeichnet, daß die in der Linsengruppe negativer Brechkraft (LG2) angeordnete Linse (L9) positiver Brechkraft objektseitig eine konvexe Linsenoberfläche aufweist.3. Projection lenses according to one of the preceding claims, characterized in that the lens (L9) arranged in the lens group of negative refractive power (LG2) has a convex lens surface on the object side.
4. Projektionsobjektiv nach einem der vorangegangen Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Projektionsobjektiv mindestens eine zweite Linsengruppe negativer Brechkraft (LG4) umfaßt.4. Projection lens according to one of the preceding claims 1 to 3, characterized in that the projection lens comprises at least a second lens group of negative refractive power (LG4).
5. Projektionsobjektiv nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß in der ersten Linsengruppe (LG2) negativer Brechkraft (LG2)die Linse (L9) positiver Brechkraft angeordnet ist.5. Projection lens according to one of claims 1 to 4, characterized in that in the first lens group (LG2) negative refractive power (LG2) the lens (L9) positive refractive power is arranged.
6. Doppelt telezentrisches Projektionsobjektiv mit einer bildseitigen numerischen Apertur von mindestens OJ und mit einer Linsengruppe, in der eine Blende angeordnet ist, dadurch gekennzeichnet, daß die vor der Blende auf der dem Reticle zugewandten Seite angeordneten Linsen ausschließlich positive Brechkraft besitzen, wobei die erste Linse (L19) dieser Linsen positiver Brechkraft eine positive Brennweite zwischen dem 4-25 fachen Wert des Objekt - Bildabstandes besitzt. 6. Double telecentric projection lens with an image-side numerical aperture of at least OJ and with a lens group in which an aperture is arranged, characterized in that the lenses arranged in front of the aperture on the side facing the reticle have only positive refractive power, the first lens (L19) of these lenses of positive refractive power has a positive focal length between 4-25 times the value of the object - image distance.
7. Doppelt telezentrisches Projektionsobjektiv nach dem Oberbegriff des Anspruchs 6, dadurch gekennzeichnet, daß die erste Linse (L19) dieser Linsen positiver Brechkraft eine Radiendifferenz aufweist, die kleiner als 4% des Objekt- Bildabstandes 00 'ist.7. Double telecentric projection lens according to the preamble of claim 6, characterized in that the first lens (L19) of these lenses having a positive refractive power has a radius difference which is less than 4% of the object image distance 00 '.
8. Doppelt telezentrisches Projektionsobjektiv umfassend eine erste Linsengruppe positiver Brechkraft , eine zweite Linsengruppe negativer Brechkraft , eine dritte Linsengruppe positiver Brechkraft und einer vierten Linsengruppe negativer Brechkraft, dadurch gekennzeichnet, daß zwischen der zweiten (LG2) und der dritten Linsengruppen (LG3) und der dritten (LG3) und der vierten Linsengruppe (LG4) jeweils ein Luftraum vorgesehen ist, wobei die Summe dieser Lufträume die Summe der Linsendicken der vierten Linsengruppe (LG4) um mindestens 30% übersteigt.8. Double telecentric projection lens comprising a first lens group of positive refractive power, a second lens group of negative refractive power, a third lens group of positive refractive power and a fourth lens group of negative refractive power, characterized in that between the second (LG2) and the third lens groups (LG3) and the third (LG3) and the fourth lens group (LG4) each have an air space, the sum of these air spaces exceeding the sum of the lens thicknesses of the fourth lens group (LG4) by at least 30%.
9. Doppelt telezentrisches Objektiv nach Anspruch 8, dadurch gekennzeichnet, daß der Luftzwischenraum zwischen der dritten (LG3) und der vierten Linsengruppe (LG4) eine Ersteckung in axialer Richtung aufweist, die einen Wert von mindestens 50% von der Summe der Glasdicken der Linsengruppe (LG4) erreicht.9. Double telecentric lens according to claim 8, characterized in that the air gap between the third (LG3) and the fourth lens group (LG4) has an axial extent which is at least 50% of the sum of the glass thicknesses of the lens group ( LG4) reached.
10. Doppelt telezentrischen Objektiv nach Anspruch 8 oder 9, dadurch gekennzeichnet, daß der zweite Luftzwischenraum zwischen der dritten (LG3) und der vierten Linsengruppe (LG4) eine Erstreckung in axialer Richtung aufweist, die einen Wert von mindestens 60% der Erstreckung des Luftzwischenraumes zwischen der zweiten (LG2) und dritten Linsengruppe (LG3) erreicht.10. Double telecentric lens according to claim 8 or 9, characterized in that the second air gap between the third (LG3) and the fourth lens group (LG4) has an extent in the axial direction which has a value of at least 60% of the extent of the air gap between the second (LG2) and third lens group (LG3).
11. Projektionsbelichtungsanlage der Mikrolithographie, dadurch gekennzeichnet, daß diese Projektionsbelichtungsanlage ein Projektionsobjektiv (5) mit einer Linsenanordnung (19) nach mindestens einem der Ansprüche 1 bis 10 enthält.11. Projection exposure system of microlithography, characterized in that this projection exposure system contains a projection objective (5) with a lens arrangement (19) according to at least one of Claims 1 to 10.
12. Verfahren zur Herstellung mikrostrukturierter Bauteile, bei dem ein mit einer lichtempfindlichen Schicht versehenes Substrat mittels einer Maske (9) und einer Projektionsbelichtungsanlage (1) mit einer Linsenanordnung (19) nach mindestens einem der Ansprüche 1 bis 10 durch ultraviolettes Laserlicht belichtet wird und gegebenenfalls nach entwickeln der lichtempfindlichen Schicht entsprechend einem auf der Maske enthalten Muster strukturiert wird. 12. A method for producing microstructured components, in which a substrate provided with a light-sensitive layer is exposed by means of a mask (9) and a projection exposure system (1) with a lens arrangement (19) according to at least one of claims 1 to 10 by ultraviolet laser light and, if appropriate to develop the photosensitive layer according to a pattern contained on the mask.
EP01989598A 2000-12-22 2001-12-15 Projection lens Withdrawn EP1344112A2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10065944 2000-12-22
DE10065944 2000-12-22
DE10126946 2001-06-01
DE10126946A DE10126946A1 (en) 2000-11-02 2001-06-01 Projection objective lens e.g. for lithography, includes positive refractive power lens in group of negative refractive power lenses
PCT/EP2001/014846 WO2002052303A2 (en) 2000-12-22 2001-12-15 Projection lens

Publications (1)

Publication Number Publication Date
EP1344112A2 true EP1344112A2 (en) 2003-09-17

Family

ID=26008138

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01989598A Withdrawn EP1344112A2 (en) 2000-12-22 2001-12-15 Projection lens

Country Status (4)

Country Link
US (1) US6954316B2 (en)
EP (1) EP1344112A2 (en)
JP (1) JP2004524554A (en)
WO (1) WO2002052303A2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10064685A1 (en) * 2000-12-22 2002-07-04 Zeiss Carl Lithography lens with a first lens group consisting exclusively of lenses with positive refractive power
JP2009104184A (en) * 2002-07-04 2009-05-14 Nikon Corp Projection optical system, exposure device, and device manufacturing method
JP2005017734A (en) * 2003-06-26 2005-01-20 Nikon Corp Projecting optical system, exposure unit, and device manufacturing method
US7551361B2 (en) * 2003-09-09 2009-06-23 Carl Zeiss Smt Ag Lithography lens system and projection exposure system provided with at least one lithography lens system of this type
US8208198B2 (en) 2004-01-14 2012-06-26 Carl Zeiss Smt Gmbh Catadioptric projection objective
US6906866B2 (en) * 2003-10-15 2005-06-14 Carl Zeiss Smt Ag Compact 1½-waist system for sub 100 nm ArF lithography
US20080151365A1 (en) 2004-01-14 2008-06-26 Carl Zeiss Smt Ag Catadioptric projection objective
KR101213831B1 (en) 2004-05-17 2012-12-24 칼 짜이스 에스엠티 게엠베하 Catadioptric projection objective with intermediate images
CN101387736B (en) * 2007-09-13 2012-05-23 鸿富锦精密工业(深圳)有限公司 Projecting lens
TWI390244B (en) * 2009-06-12 2013-03-21 Largan Precision Co Ltd Imaging lens assembly
DE102015218328B4 (en) * 2015-09-24 2019-01-17 Carl Zeiss Smt Gmbh Optical system for field imaging and / or pupil imaging

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE68916451T2 (en) 1988-03-11 1994-11-17 Matsushita Electric Ind Co Ltd Optical projection system.
US5164750A (en) * 1990-11-08 1992-11-17 Yoshi Adachi Aspheric surface topographer
KR100213181B1 (en) * 1992-07-31 1999-08-02 윤종용 Projection optical apparatus
JP3291818B2 (en) * 1993-03-16 2002-06-17 株式会社ニコン Projection exposure apparatus and semiconductor integrated circuit manufacturing method using the apparatus
JP3360387B2 (en) * 1993-11-15 2002-12-24 株式会社ニコン Projection optical system and projection exposure apparatus
JPH08179204A (en) * 1994-11-10 1996-07-12 Nikon Corp Projection optical system and projection aligner
JP3500745B2 (en) * 1994-12-14 2004-02-23 株式会社ニコン Projection optical system, projection exposure apparatus, and projection exposure method
JP3454390B2 (en) 1995-01-06 2003-10-06 株式会社ニコン Projection optical system, projection exposure apparatus, and projection exposure method
JP3819048B2 (en) 1995-03-15 2006-09-06 株式会社ニコン Projection optical system, exposure apparatus including the same, and exposure method
JP3624973B2 (en) * 1995-10-12 2005-03-02 株式会社ニコン Projection optical system
JP3757536B2 (en) * 1996-10-01 2006-03-22 株式会社ニコン Projection optical system, exposure apparatus including the same, and device manufacturing method
US6018424A (en) * 1996-12-11 2000-01-25 Raytheon Company Conformal window design with static and dynamic aberration correction
JP3823436B2 (en) 1997-04-03 2006-09-20 株式会社ニコン Projection optical system
DE19818444A1 (en) 1997-04-25 1998-10-29 Nikon Corp Focusing lens system and projection illumination system
US5990926A (en) 1997-07-16 1999-11-23 Nikon Corporation Projection lens systems for excimer laser exposure lithography
JP3925576B2 (en) * 1997-07-24 2007-06-06 株式会社ニコン Projection optical system, exposure apparatus including the optical system, and device manufacturing method using the apparatus
US6075650A (en) * 1998-04-06 2000-06-13 Rochester Photonics Corporation Beam shaping optics for diverging illumination, such as produced by laser diodes
US5986824A (en) 1998-06-04 1999-11-16 Nikon Corporation Large NA projection lens system with aplanatic lens element for excimer laser lithography
US5969803A (en) 1998-06-30 1999-10-19 Nikon Corporation Large NA projection lens for excimer laser lithographic systems
US6298084B1 (en) 1998-11-24 2001-10-02 Motorola, Inc. Bad frame detector and turbo decoder
EP1006388A3 (en) * 1998-11-30 2002-05-02 Carl Zeiss Reduction projection objective lens for microlithography
DE19942281A1 (en) 1999-05-14 2000-11-16 Zeiss Carl Fa Projection lens has system filter screen, constrictions and bulges, negative lens, and positive lenses
DE19855108A1 (en) * 1998-11-30 2000-05-31 Zeiss Carl Fa Microlithographic reduction lens, projection exposure system and method
DE19855157A1 (en) * 1998-11-30 2000-05-31 Zeiss Carl Fa Projection lens
EP1094350A3 (en) * 1999-10-21 2001-08-16 Carl Zeiss Optical projection lens system
JP2003535356A (en) * 1999-12-29 2003-11-25 カール・ツアイス・スティフツング・トレーディング・アズ・カール・ツアイス Projection objective lens with aspheric lens surfaces arranged adjacently
EP1344111A1 (en) * 2000-12-22 2003-09-17 Carl Zeiss SMT AG Objective with at least one aspherical lens
DE10152528A1 (en) 2001-10-24 2003-05-08 Delphi Tech Inc Radar protection system has second sampling circuit acted upon via line that delays pulse from evaluation pulse generator relative to transmission pulse to define second monitoring region

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02052303A3 *

Also Published As

Publication number Publication date
WO2002052303A3 (en) 2002-10-31
JP2004524554A (en) 2004-08-12
US20030048547A1 (en) 2003-03-13
US6954316B2 (en) 2005-10-11
WO2002052303A2 (en) 2002-07-04

Similar Documents

Publication Publication Date Title
DE69531153T3 (en) Optical projection system with exposure device
DE69933973T2 (en) CATADIOPRIC OPTICAL SYSTEM AND EQUIPPED EXPOSURE DEVICE
EP1855160B1 (en) Projection exposure device, projection exposure method and use of a projection lens
EP1686405A1 (en) Microlithographic reduction lens with five lens groups
EP1199590A1 (en) 8 mirror microlithography projection lens
EP1282011A2 (en) Reflective projection lens for EUV photolithography
DE10210899A1 (en) Refractive projection lens for immersion lithography
EP1260845A2 (en) Catadioptric reduction lens
WO2000070407A1 (en) Projection lens for microlithography
WO2002033467A1 (en) 8-mirrored microlithographic projector lens
EP1122608A2 (en) Projection exposure system with reflective reticle
EP1483626A2 (en) Refractive projection lens
WO1998028644A1 (en) Reticular objective for microlithography-projection exposure installations
DE102008007449A1 (en) Illumination optics for illuminating an object field of a projection exposure apparatus for microlithography
DE19833481A1 (en) Projection optical system for exposure system used in semiconductor device, liquid crystal display element manufacture
WO2005050321A1 (en) Refractive projection objective for immersion lithography
EP1344112A2 (en) Projection lens
EP1235112B1 (en) Objective subsystem for illumination system
DE102005024290A1 (en) Imaging system, in particular for a microlithographic projection exposure apparatus
DE4203464B4 (en) Catadioptric reduction objective
EP1217412B1 (en) Lithography objective with a first lens group comprising lenses of positive power only and method for producing microstructured components with such an objective
DE10104177A1 (en) Catadioptric reduction lens
DE10016176A1 (en) Microlithographic illumination system, has optical element that can detect entire light beam with continuously differentiable surface in near field and asymmetrical with respect to optical axis
DE102023200548A1 (en) Chromatically corrected imaging illumination optics for use in a projection exposure system for lithography
WO2018184720A2 (en) Projection lens, projection exposure installation and projection exposure method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030411

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CARL ZEISS SMT AG

17Q First examination report despatched

Effective date: 20080226

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080708