EP1342965A1 - Sac de déshydratant et capuchon de filtre associé pour condenseur à réservoir intégré - Google Patents
Sac de déshydratant et capuchon de filtre associé pour condenseur à réservoir intégré Download PDFInfo
- Publication number
- EP1342965A1 EP1342965A1 EP02251584A EP02251584A EP1342965A1 EP 1342965 A1 EP1342965 A1 EP 1342965A1 EP 02251584 A EP02251584 A EP 02251584A EP 02251584 A EP02251584 A EP 02251584A EP 1342965 A1 EP1342965 A1 EP 1342965A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cap
- pouch
- recited
- desiccant
- receiver
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002274 desiccant Substances 0.000 title claims abstract description 40
- 238000007789 sealing Methods 0.000 claims abstract description 20
- 239000004677 Nylon Substances 0.000 claims abstract description 10
- 229920001778 nylon Polymers 0.000 claims abstract description 10
- 239000000463 material Substances 0.000 claims description 23
- 238000001914 filtration Methods 0.000 claims description 4
- 239000012530 fluid Substances 0.000 abstract description 21
- 239000003463 adsorbent Substances 0.000 abstract description 18
- 238000004378 air conditioning Methods 0.000 abstract description 4
- 239000003507 refrigerant Substances 0.000 description 23
- 235000012431 wafers Nutrition 0.000 description 7
- 238000003780 insertion Methods 0.000 description 6
- 230000037431 insertion Effects 0.000 description 6
- 239000000700 radioactive tracer Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 2
- 240000008100 Brassica rapa Species 0.000 description 1
- 241001043922 Pensacola Species 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000009963 fulling Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 238000009958 sewing Methods 0.000 description 1
- 238000004781 supercooling Methods 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000012815 thermoplastic material Substances 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B43/00—Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
- F25B43/003—Filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2339/00—Details of evaporators; Details of condensers
- F25B2339/04—Details of condensers
- F25B2339/044—Condensers with an integrated receiver
- F25B2339/0441—Condensers with an integrated receiver containing a drier or a filter
Definitions
- Desiccant containing packets have been employed in small diameter receivers that are juxtaposed along one of the condenser headers in an integrated type condenser-receiver.
- These integrated condenser-receiver structures eliminate the need for separate tubing to connect the condenser with the receiver and have become popular due to their reduced spatial requirements.
- the overall dimensions of the integral unit are from about 300 mm - 400 mm in height and about 300 mm - 600 mm in width.
- the axes of the receiver canister and associated header are parallel with the canister attached to and contiguous with the header.
- the desiccant containing package positioned in the receiver dries refrigerant liquid (and the oil and moisture entrained therein) prior to passage of the dried refrigerant to a supercooler unit that is formed integrally with the condenser.
- the desiccant containing package which is to be positioned therein must also comprise a small diameter substantially cylindrical pouch or packet.
- automotive manufacturers desire placing a fluorescent tracer dye wafer or the like in the desiccant package so that leaks in the refrigeration system can be readily determined by use of an ultraviolet light source. See for instance U.S. Patents 5,149,453 and 5,440,910.
- these tracer dye wafers are available in disk shapes having a 3/8" diameter and 3/8" thickness.
- commercial felts that are used to form desiccant containing packages are on the order of about 0.060"-0.120" in thickness.
- One bag used in the receiver of an integrated condenser-receiver is fabricated by folding, over the felt or other bag material and then sewing the one edge shut, thus forming a lopsided tube. One end of this tube is then sewn shut and the packet created by this is filled with desiccant and then the open end is sewn shut creating the bag. The sewn edge along the length of the bag protrudes out from the surface and creates a hindrance to installing the bag in a small diameter integrated receiver condenser.
- the construction of the bag is labor intensive and therefore expensive to fabricate.
- a very thin, non-woven porous nylon material may beneficially be used to form a desiccant containing package that will fit snugly within the aforementioned small diameter receiver or other fluid flow tube or canister of an integrated type condenser-receiver.
- the thinness of the material when formed into a cylindrical cross-sectioned pouch or package, will allow sufficient room within the package for insertion of a tracer dye wafer or the like therein.
- the porosity of the fabric will permit adequate fluid permeability so that the refrigerant liquid can permeate the package and dry upon contact with the desiccant housed therein.
- non-woven spun bonded nylon material available under the Cerex PBN-II designation from Cerex Advanced Fabrics, Pensacola, Florida, is especially efficacious in forming these small diameter desiccant packages.
- This material is also sometimes referred to as being a point bonded nylon.
- others have proposed using this particular material to form a saddle-bag shaped absorbent unit of automotive accumulators (see file history for U.S. Patent 6,038,881), one artisan has opined that such use is disfavored since allegedly the material is "difficult to form thermally into concave configurations, had high scrap rates and downtime, and . . . lower thermal strength.” (See file history of U.S. Patent 6,038,881, Incovia Declaration, paragraphs 7 and 9.)
- this particular non-woven material could be easily and durably formed by ultrasonic sealing methods into a small diameter, generally cylindrical shape so as to house desiccant and a tracer dye wafer therein.
- these generally cylindrical packets are especially useful when positioned as a desiccant package in the receiver associated with the aforementioned integrated condenser-receiver.
- a solid particle filter component and an enlarged rim area of the structure are provided as a component of the pouch to minimize bypassing of the desiccant containing package by refrigerant fluid and to enhance filtering efficacy.
- the present invention thus provides an adsorbent package adapted for use in a fluid flow tube of an automotive refrigerant system.
- the fluid flow tube may be, for example, an accumulator or receiver/drier canister or the like.
- the fluid flow tube or canister has a substantially cylindrical side wall and opposing first and second end walls. An inlet opening is formed within the side wall proximate the first end wall, while an outlet opening is formed within the side wall proximate the second end wall.
- the adsorbent package of the present invention includes a desiccant bag having a pouch preferably formed from a tubular strip of non-woven spun bonded nylon material, A first end of the pouch is sealed in a conventional manner to form an end seam. The interior, as defined by the pouch, is then filled with an appropriate granular adsorbent material.
- the second end of the pouch slidably and sealingly receives a filter cap.
- the filter cap includes a body having a cylindrical side wall and a porous end wall which is preferably formed integrally with the side wall.
- the end wall includes a plurality of apertures sized so as to permit refrigerant fluid flow but to restrict desiccant from passing therethrough.
- the cap further includes an attachment device for securing the pouch of the desiccant bag to the body.
- the attachment device preferably comprises an annular ring extending radially outwardly from the body of the cap and positioned along a skirt portion extending from the cap body.
- a resilient sealing ring is formed proximate the porous end wall and extends radially outwardly from the body. The sealing ring forms a living seal by slidably and sealingly engaging an inner surface of the cylindrical side wall of the canister.
- refrigerant flows through the inlet opening of the canister and is directed through the porous end wall of the cap by the sealing ring.
- all fluid flow is directed through the cap by sealing engagement between the sealing ring and the cylindrical side wall of the canister.
- the refrigerant flows through the cap, passing through the desiccant and pouch of the desiccant bag.
- the desiccant removes moisture from the refrigerant while the pouch filters solid particles from the refrigerant.
- a fluid flow tube of an air conditioning system is illustrated generally at 10.
- the fluid flow tube 10 comprises a conventional canister 12 including a cylindrical side wall 14 and opposing first and second end walls 16 and 18 defining a sealed chamber 19.
- An inlet opening 20 is formed within the cylindrical side wall 14 proximate the second end wall 18.
- an outlet opening 22 is formed within the side wall 14 proximate the first end wall 16. Both the inlet and outlet openings 20 and 22 are in fluid communication with the chamber 19.
- the adsorbent package 24 of the present invention is received within the chamber 19 of the canister 12.
- the adsorbent package 24 includes a desiccant bag 26 having a pouch 28.
- the pouch 28 is formed from a fluid permeable material, preferably a non-woven spun bonded nylon as set forth above. More particularly, the pouch 28 is preferably made from a tubular sleeve of the spun bonded nylon material which has been cut into lengths and filled with an appropriate granular adsorbent material or desiccant 30.
- a first end 32 of the pouch 28 is sealed along a seam 34.
- this end seam is formed by suitably tucking in a portion of the tube side wall and flattening an end portion under conditions which causes the spun bonded nylon material to fuse together and seal the end of the pouch 28.
- the sealing is effected by use of an ultrasonic welding machine.
- RF and heat sealing methods can also be mentioned.
- a second end 36 of the pouch 28 is substantially cylindrical and concentrically receives a filter cap 38.
- the filter cap 38 is concentrically received within the side wall 14 of the canister 12.
- the filter cap 38 includes a body 40 preferably molded from a thermoplastic material.
- the preferred material is a polypropylene, however any similar soft pliable thermoplastic may be readily substituted therefor.
- the material selected should preferably tolerate temperatures within a range of -20° to 250°F and should be compatible with the particular refrigerant used in the air conditioning system.
- the body 40 comprises a cylindrical side wall or skirt 42 supporting a porous end wall 44.
- the porous end wall 44 is preferably integrally molded with the cylindrical side wall 42 and includes a plurality of apertures 46 (Fig. 3).
- the apertures 46 are sized to have a diameter large enough to permit refrigerant flow therethrough but small enough to prevent passage of the desiccant 30.
- the porous end wall 44 may comprise a screen material fixed to the side wall 42.
- an attachment device preferably an annular attachment ring 48, extends radially outwardly from the skirt and is slidably received within the pouch 28 for securing the desiccant bag 26 to the cap 38.
- the pouch is ultrasonically welded to the attachment ring 48. It should be appreciated that other means of attachment, including heat, RF, and vibration welding may be readily substituted therefor.
- the pouch 28 may be secured to the cap 38 by means of a mechanical fastener, such as a snap ring.
- a sealing ring 50 extends radially outwardly from, and is preferably integrally formed with, the body 40 proximate the end wall 44.
- the sealing ring 50 is dimensioned to be concentrically received within and sealingly engage the cylindrical side wall 14 of the canister 12. As described above, the sealing ring 50 should be sufficiently resilient so as to provide sealing engagement with the canister side wall 14.
- the sealing ring 50 provides a living seal to prevent refrigerant flow between the end cap 38 and the side wall 14.
- refrigerant enters the accumulator 10 through the inlet opening 20 of the canister 12 as indicated by arrow 52 in Fig. 2.
- the refrigerant is directed through the apertures 46 in the porous end wall 44 by the sealing ring 50.
- fluid flow is not permitted around the cap 38 due to the seal formed between the sealing ring 50 and the canister 12.
- Refrigerant flows through the cap 38 and into the desiccant bag 26. Moisture is removed from the refrigerant by the desiccant 30 while solid particles are filtered by the pouch 28 and apertures 46. The treated refrigerant then exits the accumulator 10 through the outlet 22 in the canister 12 as indicated by arrow 54 in Fig. 2.
- the present invention provides an adsorbent package 24 which efficiently removes moisture and filters solid particles from a refrigerant entering a fluid flow tube or canister structure such as an accumulator or receiver/drier.
- FIGs. 4 and 5 there is shown another embodiment wherein an annular snap ring 102 is used to securely fasten the top of the pouch 28 to the cap 38.
- attachment ring 48 is provided circumferentially around the body 40 of the cap.
- end 36 of the pouch 28 is slidably received over the attachment ring 48
- Snap ring 102 having ridge 106 formed along its internal diameter is then slid up over the ridge or ring 48 to firmly lock the pouch within the grasp of the engaging ridge members 106, 48.
- the pouch can be snugly secured to the cap without the need of a heat or ultrasonic sealing of the cap over the top portion of the pouch.
- the ridge 106 is directly axially above a ramp 109 or inclined surface to help ensure locking of the ridge 106 over the attachment ring 48 that is formed on the skirt of the cap member.
- Fig. 6 shows the pouch of Fig. 4 in position prior to filling of the desiccant therein and, ipso facto , prior to insertion of the cap into the end 36 of the pouch and insertion of the snap ring 102 over the body 40 of the cap.
- both a longitudinal seam 702 and end seam 34 are provided in the strip of textile fabric to form the open ended tubular shaped pouch shown in the drawing.
- These seams, as aforementioned, are preferably formed by ultrasonic welding means, but other sealing methods may also be used.
- Fig. 7 shows another embodiment of the invention in which the cap and associated filter are not used.
- This pouch is designed for snug, frictional engagement within the confines of a small diameter canister of the type normally encountered in the receiver/drier of an integrated condenser/receiver of the type described above and wherein one particular embodiment is shown in U.S. Patent 5,813,249.
- a top end seam 704 is provided to form the closed pouch structure.
- Fig. 8 is a fragmentary schematic of an integrated condenser/receiver of the type shown in the '249 patent shown here with a small diameter adsorbent package of the invention disposed within the receiver.
- condenser inlet tubes 502 communicate with the upstream section 520 of generally cylindrical header 504.
- the header is divided into two sections by partition 506.
- Inlet 508 provides communication for refrigerant flow from the condenser through the header 504 and into receiver 510.
- the receiver is juxtaposed alongside the condenser header 504 and is directly connected thereto by welding, brazing, or other conventional joining techniques.
- the diameter of the receiver canister is quite small -- on the order of about 18 mm - 35 mm. This necessitates that the working diameter or interior area of the desiccant containing pouch should be such as to allow for adequate volume of desiccant material therein, and the interior diameter of the package should also allow for containment of a tracer dye wafer therein, without impeding the flow of the refrigerant containing fluid therethrough.
- outlet 512 provides fluid communication between the downstream end 514 of the receiver and downstream section 522 of the header 504.
- the downstream section of the header communicates with supercooler tubes 530.
- the Fig. 8 apparatus operates to permit condensed refrigerant flow from the condenser tubes 502 into the upstream section 520 of header 504.
- This condensed refrigerant carrying oil, some moisture and possibly solids therein, flows into the upstream portion 591 of receiver 510 through inlet 508.
- the fluid mix then flows downstream as shown through the filter cap 38 and desiccant bag 28 into the downstream section 514 of the header and then into the supercooling unit.
- the pouch 28 is advantageously formed of non-woven spun bonded nylon material such as that sold under the previously mentioned PBN-II designation.
- This material is supplied in the thickness of from about 3 mils. - 22 mils. At present, it is preferred to employ a thickness of about 15 mils. This ensures adequate cross-sectional area permitting dye wafer insertion into the pouch and adequate desiccant volume and fluid permeation.
- Air permeability for this material reportedly ranges from about 100 cfm/ft 2 to about 1380 cfm/ft 2 . Air permeability of the preferred 15 mil thickness is about 200 cfm/ft 2 to 300 cfm/ft 2 .
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Drying Of Gases (AREA)
- Air-Conditioning For Vehicles (AREA)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20020251584 EP1342965B1 (fr) | 2002-03-06 | 2002-03-06 | Sac de déshydratant et capuchon de filtre associé pour condenseur à réservoir intégré |
DE2002615455 DE60215455T2 (de) | 2002-03-06 | 2002-03-06 | Beutel mit Trocknungsmittel und dazugehöriger Filterdeckel für Verflüssiger mit Einbausammler |
HK04101472A HK1058700A1 (en) | 2002-03-06 | 2004-02-28 | Integrated condenser-receiver desiccant bag and associated filter cap |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20020251584 EP1342965B1 (fr) | 2002-03-06 | 2002-03-06 | Sac de déshydratant et capuchon de filtre associé pour condenseur à réservoir intégré |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1342965A1 true EP1342965A1 (fr) | 2003-09-10 |
EP1342965B1 EP1342965B1 (fr) | 2006-10-18 |
Family
ID=27741232
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20020251584 Expired - Lifetime EP1342965B1 (fr) | 2002-03-06 | 2002-03-06 | Sac de déshydratant et capuchon de filtre associé pour condenseur à réservoir intégré |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1342965B1 (fr) |
DE (1) | DE60215455T2 (fr) |
HK (1) | HK1058700A1 (fr) |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3308957A (en) * | 1964-08-28 | 1967-03-14 | Gen Motors Corp | Desiccant and strainer assembly |
US4272264A (en) * | 1974-08-08 | 1981-06-09 | Multiform Desiccant Products, Inc. | Adsorbent package |
US4303425A (en) * | 1979-12-03 | 1981-12-01 | Menardi-Southern Corp. | Filter bag assembly |
US4493868A (en) * | 1982-12-14 | 1985-01-15 | Kimberly-Clark Corporation | High bulk bonding pattern and method |
US5022902A (en) * | 1989-10-26 | 1991-06-11 | Stanhope Products Company | Adsorbent package that is resistant to high temperature |
US5149453A (en) | 1985-02-25 | 1992-09-22 | H. B. Fuller Automotive Products, Inc. | Method for detecting leakage in a refrigeration system |
US5440910A (en) | 1993-06-07 | 1995-08-15 | Florian; David W. | Key adaptor |
US5813249A (en) | 1995-07-18 | 1998-09-29 | Denso Corporation | Refrigeration cycle |
EP0867320A2 (fr) * | 1997-03-25 | 1998-09-30 | Deutsche Controls GmbH | Dispositif de conditionnement d'air |
US6038881A (en) | 1998-04-07 | 2000-03-21 | Multisorb Technologies, Inc. | Adsorbent unit for air conditioning system |
JP2000213830A (ja) * | 1999-01-22 | 2000-08-02 | Sharp Corp | 冷凍サイクル用のドライヤ |
JP2000346500A (ja) * | 1999-06-01 | 2000-12-15 | Sanden Corp | 冷媒乾燥器 |
US6170287B1 (en) * | 1999-08-27 | 2001-01-09 | Delphi Technologies, Inc. | Desiccant installation for refrigerant condenser with integral receiver |
WO2001024911A1 (fr) * | 1999-10-06 | 2001-04-12 | Stanhope Products Company | Desiccant cartridge retention device |
JP2001263869A (ja) * | 2000-03-23 | 2001-09-26 | Calsonic Kansei Corp | リキッドタンク |
US20020092317A1 (en) * | 2000-01-28 | 2002-07-18 | Stanhope Products Company | Integrated condenser-receiver desiccant bag and associated filter cap |
-
2002
- 2002-03-06 EP EP20020251584 patent/EP1342965B1/fr not_active Expired - Lifetime
- 2002-03-06 DE DE2002615455 patent/DE60215455T2/de not_active Expired - Lifetime
-
2004
- 2004-02-28 HK HK04101472A patent/HK1058700A1/xx not_active IP Right Cessation
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3308957A (en) * | 1964-08-28 | 1967-03-14 | Gen Motors Corp | Desiccant and strainer assembly |
US4272264A (en) * | 1974-08-08 | 1981-06-09 | Multiform Desiccant Products, Inc. | Adsorbent package |
US4303425A (en) * | 1979-12-03 | 1981-12-01 | Menardi-Southern Corp. | Filter bag assembly |
US4493868A (en) * | 1982-12-14 | 1985-01-15 | Kimberly-Clark Corporation | High bulk bonding pattern and method |
US5149453A (en) | 1985-02-25 | 1992-09-22 | H. B. Fuller Automotive Products, Inc. | Method for detecting leakage in a refrigeration system |
US5022902A (en) * | 1989-10-26 | 1991-06-11 | Stanhope Products Company | Adsorbent package that is resistant to high temperature |
US5440910A (en) | 1993-06-07 | 1995-08-15 | Florian; David W. | Key adaptor |
US5813249A (en) | 1995-07-18 | 1998-09-29 | Denso Corporation | Refrigeration cycle |
EP0867320A2 (fr) * | 1997-03-25 | 1998-09-30 | Deutsche Controls GmbH | Dispositif de conditionnement d'air |
US6038881A (en) | 1998-04-07 | 2000-03-21 | Multisorb Technologies, Inc. | Adsorbent unit for air conditioning system |
JP2000213830A (ja) * | 1999-01-22 | 2000-08-02 | Sharp Corp | 冷凍サイクル用のドライヤ |
JP2000346500A (ja) * | 1999-06-01 | 2000-12-15 | Sanden Corp | 冷媒乾燥器 |
US6170287B1 (en) * | 1999-08-27 | 2001-01-09 | Delphi Technologies, Inc. | Desiccant installation for refrigerant condenser with integral receiver |
WO2001024911A1 (fr) * | 1999-10-06 | 2001-04-12 | Stanhope Products Company | Desiccant cartridge retention device |
US20020092317A1 (en) * | 2000-01-28 | 2002-07-18 | Stanhope Products Company | Integrated condenser-receiver desiccant bag and associated filter cap |
JP2001263869A (ja) * | 2000-03-23 | 2001-09-26 | Calsonic Kansei Corp | リキッドタンク |
Non-Patent Citations (3)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 11 3 January 2001 (2001-01-03) * |
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 15 6 April 2001 (2001-04-06) * |
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 26 1 July 2002 (2002-07-01) * |
Also Published As
Publication number | Publication date |
---|---|
HK1058700A1 (en) | 2004-05-28 |
DE60215455D1 (de) | 2006-11-30 |
DE60215455T2 (de) | 2007-08-23 |
EP1342965B1 (fr) | 2006-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6474098B2 (en) | Integrated condenser-receiver desiccant bag and associated filter cap | |
JP2560195B2 (ja) | レシーバー乾燥器およびその製作方法 | |
US4291548A (en) | Liquid accumulator | |
US5716432A (en) | Desiccant container | |
US5215660A (en) | Filter drier for refrigeration system | |
EP1574796A2 (fr) | Cartouche déshydratante avec filtre intégral | |
US5289697A (en) | Refrigerant receiver/drier | |
EP0754147B1 (fr) | Recipient pour deshydratant | |
US5596882A (en) | Receiver for refrigerant and method of making same | |
US6623549B1 (en) | Dye wafer retention in a desiccant container | |
EP2016351B1 (fr) | Ensemble poche à desséchant et filtre | |
US20060196219A1 (en) | Accumulator with full-flow filtering | |
US5685087A (en) | Fluid flow adsorbent container | |
US7275390B2 (en) | Desiccant cartridge for an integrated condenser/receiver and method of making same | |
EP1342965B1 (fr) | Sac de déshydratant et capuchon de filtre associé pour condenseur à réservoir intégré | |
US6155072A (en) | Snap on desiccant bag | |
US7275392B2 (en) | Internal cage tube bag | |
JPH06249550A (ja) | カーエアコン用のレシーバドライヤ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
17P | Request for examination filed |
Effective date: 20040213 |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1058700 Country of ref document: HK |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB IT |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: FLOW DRY TECHNOLOGY LTD |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20061018 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 60215455 Country of ref document: DE Date of ref document: 20061130 Kind code of ref document: P |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: FLOW DRY TECHNOLOGY, INC |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: GR Ref document number: 1058700 Country of ref document: HK |
|
EN | Fr: translation not filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20070719 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20070306 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070306 Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070601 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20080329 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061018 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090306 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20180328 Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60215455 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191001 |