EP1342955B1 - Injection system for air-fuel mixture in a combustion chamber - Google Patents

Injection system for air-fuel mixture in a combustion chamber Download PDF

Info

Publication number
EP1342955B1
EP1342955B1 EP03290428A EP03290428A EP1342955B1 EP 1342955 B1 EP1342955 B1 EP 1342955B1 EP 03290428 A EP03290428 A EP 03290428A EP 03290428 A EP03290428 A EP 03290428A EP 1342955 B1 EP1342955 B1 EP 1342955B1
Authority
EP
European Patent Office
Prior art keywords
fuel
injection
air
injection means
circuits
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03290428A
Other languages
German (de)
French (fr)
Other versions
EP1342955A1 (en
Inventor
Gwénaëlle Calvez
Didier Feder
Marion Michau
Frédéric Ravet
José Rodrigues
Alain Schuler
Alain Tipiel
Christophe Viguier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA SAS filed Critical SNECMA SAS
Publication of EP1342955A1 publication Critical patent/EP1342955A1/en
Application granted granted Critical
Publication of EP1342955B1 publication Critical patent/EP1342955B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • F23R3/12Air inlet arrangements for primary air inducing a vortex
    • F23R3/14Air inlet arrangements for primary air inducing a vortex by using swirl vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • F23R3/343Pilot flames, i.e. fuel nozzles or injectors using only a very small proportion of the total fuel to insure continuous combustion

Definitions

  • the present invention relates to the general field of fuel injection systems in a combustion chamber of a gas turbine engine. It is more particularly aimed at an injection system for an air / fuel mixture provided with a multi-mode fuel injection that makes it possible to define at least two independent modes of injection of the air / fuel mixture according to predetermined engine operating speeds. .
  • the injection of fuel is effected, for each injection system, in a single mode via a fuel injector.
  • Two air swirlers centered on the fuel injector each deliver a radial air flow downstream of the fuel injection to achieve the air / fuel mixture to be injected and burned in the combustion chamber.
  • the air flows from the two tendrils are generally defined by a venturi interposed between these tendrils and a bowl mounted downstream of them accelerates the flow of the air / fuel mixture to the combustion chamber.
  • the air / fuel mixture obtained by such injection systems must be optimal to enable ignition of the combustion chamber, ensure stability of the combustion, especially at low operating speeds of the engine, and limit the emissions of polluting discharges in the atmosphere, especially in full engine gas regime. These requirements imply operating modes that are often incompatible with one another. For example, the stability of the combustion flame, necessary in particular at low operating speeds of the engine, is favored by a heterogeneity of the air / fuel mixture having areas rich in air / fuel mixture near areas poor in mixture. Conversely, the formation of pollutants, such as oxides of nitrogen, is limited by combustion in a poor and homogeneous mixture medium.
  • a single-mode fuel injection system as described above does not properly fulfill all the operating requirements listed above. Indeed, the fuel injection of these systems is carried out in areas where the introduced air mass is the lowest, which tends to make the air / fuel mixture heterogeneous.
  • the reduced fuel injection at a single point is further optimized for only one or at most two operating speeds of the engine. In particular, the idling speed of these injection systems is not perfectly ensured which leads to significant levels of carbon monoxide emissions.
  • the US patent is also known US 5,816,049 which proposes a system for injecting an air / fuel mixture whose fuel injection is effected in a multiple manner by orifices provided at a venturi delimiting air flows coming from a radial swirler and an axial swirler and openings opening into the passage of the air flow from the radial swirler.
  • the injection system described in this patent also has drawbacks.
  • the fuel supply of the injection ports is carried out in particular by several supply ducts, which considerably increases the risk of coking the fuel.
  • the particular arrangement of the fuel injection orifices with respect to the injection of air entails significant risks of fuel recovery.
  • the present invention therefore aims to overcome such drawbacks by proposing an injection system comprising a multi-mode injection of the air / fuel mixture which makes it possible to prepare an optimal air / fuel mixture at low speed and high speed conditions in order to limit polluting emissions. It also aims an injection system that limits the risk of coking and prevents any rise in fuel.
  • a system for injecting an air / fuel mixture into a combustion chamber of a gas turbine engine having a longitudinal axis and comprising means for injecting fuel interposed between first and second air injection means, the fuel injection means being disposed in an annular internal cavity of a venturi, the cavity being delimited by a substantially axial upstream wall and a downstream wall; substantially radial, the fuel injection means comprising at least a first fuel intake circuit provided with at least one fuel injection orifice, and a plurality of second fuel intake circuits, independent of the first, each provided with at least one fuel injection port so as to define a plurality of independent modes of injection of the air / fuel mixture according to determined operating modes of the engine, the system injection stage being characterized in that the fuel injection orifice of the first fuel intake circuit is formed in the upstream wall of the venturi in order to inject fuel towards the combustion chamber in a substantially perpendicular general direction a flow of air from the first air injection means, and in that the fuel injection ports of the
  • the injection system allows both to generate a homogeneous and poor air / fuel mixture at high speed conditions in order to limit the pollutant emissions of nitrogen oxides, and to create gas pockets in proportion stoichiometric at low conditions regime to ensure ignition and stability of the combustion flame in the chamber while controlling carbon monoxide emissions.
  • the injection of the air / fuel mixture is effected in a multi-mode manner according to the operating conditions of the engine.
  • the fuel distribution in the injection system can thus be perfectly controlled as a function of the air mass introduced by the air injection means.
  • the injection of fuel in directions perpendicular to the air flows from the air injection means improves the homogenization of the air / fuel mixture.
  • the fuel injection orifices of the first and second fuel intake circuits are regularly distributed around the longitudinal axis and have offset angular positions relative to each other in order to improve the homogenization of the mixture.
  • a single supply duct makes it possible to supply fuel to the first and second fuel intake circuits, for example by means of a plurality of concentric tubes.
  • fuel is supplied by a single conduit which limits the risk of coking by taking advantage of the cooling obtained by the circulation of fuel in the circuits.
  • Additional means for injecting air or fuel centered on the longitudinal axis of the injection system advantageously make it possible to define additional modes of injection of the air / fuel mixture.
  • These means are mounted on a bowl centered on the longitudinal axis and extending downstream from the first air injection means.
  • FIG 1 illustrates partially and in section a combustion chamber 10 equipped with a plurality of systems for injecting an air / fuel mixture 12.
  • the combustion chamber 10 is hooked on an outer casing 14 by unrepresented fastening means. It is for example of the annular type and is delimited by two annular walls 16, 18 connected upstream by an annular chamber bottom 20.
  • the chamber bottom 20 has a plurality of regularly spaced circularly spaced openings about an axis 21 a gas turbine engine equipped with such a combustion chamber.
  • An injection system 12 according to the invention is mounted in each of these openings.
  • the injection systems prepare an air / fuel mixture to be burned in the combustion chamber 10. The gases from this combustion flow downstream in the chamber before feeding a high pressure turbine.
  • the injection system 12 of longitudinal axis XX, comprises fuel injection means interposed between first and second air injection means.
  • first and second air injection means are preferably respectively constituted by internal and external vices 22 arranged radially radially relative to the longitudinal axis XX.
  • These air spins of a type known per se, thus each deliver a flow of air in a substantially radial direction.
  • the external swirler 24 is mounted to be offset radially with respect to the internal swirler 22.
  • the fuel injection means are mounted in an annular internal cavity of an annular venturi 26 centered on the longitudinal axis XX of the injection system and delimiting the air flows coming from the internal and external augers 22 and 22.
  • the fuel injection means comprise at least a first fuel intake circuit 32 and a plurality of second fuel admission circuits 34. These first and second circuits are independent of each other and are defined in particular by the upstream and downstream walls 28 of the venturi 26.
  • the fuel injection means illustrated by the Figures 1 to 3 comprise a single first and a single second fuel intake circuit. Of course, it can be envisaged that these injection means comprise several first and second circuits.
  • the first fuel intake circuit 32 opens towards the combustion chamber 10 in a generally radial direction through at least one fuel injection orifice 36 formed in the upstream wall of the venturi.
  • the second fuel intake circuits 34 open towards the combustion chamber 10 in a generally axial direction via at least one fuel injection orifice 38 formed in the downstream wall of the venturi.
  • the fuel present in the first fuel intake circuit 32 is injected into the flow of the air flow generated by the internal swirler 22 in a general direction substantially perpendicular to this flow.
  • the fuel present in the second fuel intake circuits 34 is injected into the flow of the air flow generated by the external swirler 24 in a general direction substantially perpendicular to this flow.
  • six fuel injection orifices can be provided per fuel intake circuit.
  • the fuel injection orifices 36, 38 of the first and second fuel intake circuits 32, 34 are evenly distributed all around the longitudinal axis XX of the injection system, and the orifices 36 of the first circuits have angular positions offset relative to the orifices 38 of the second circuits. This feature improves the homogeneity of the air / fuel mixture.
  • the injection ports fuel are preferably not arranged vis-a-vis the air outlets of the internal and external tendrils.
  • a fuel injection performed by the first circuit 32 may correspond to an engine idling speed, while a fuel injection made by the first and second circuits may be suitable for a full throttle engine.
  • first fuel intake circuits 32a, 32b and two second fuel intake circuits 34a, 34b there are provided two first fuel intake circuits 32a, 32b and two second fuel intake circuits 34a, 34b.
  • the first fuel intake circuits 32a, 32b each comprise three fuel injection ports 36a, 36b and the second circuits 34a, 34b each also have three fuel injection orifices 38a, 38b so that this system injection 12 makes it possible to define sixteen independent modes of injection of the air / fuel mixture.
  • the fuel injection orifices 36a, 36b, 38a and 38b of the first and second fuel intake circuits are evenly distributed around the longitudinal axis XX of the injection system and that they have angular positions offset relative to each other so as to promote the air / fuel mixture.
  • sixteen first and sixteen second fuel admission circuits may be provided, each of these circuits being provided with two fuel injection orifices.
  • these fuel injection means allow to define 256 independent modes of injection of the air / fuel mixture.
  • the injection system 12 further comprises at least one radial supply duct 40 supplying fuel to both the first and second fuel intake circuits 32, 34.
  • This supply duct 40 advantageously comprises a plurality of tubes, for example concentric, each supplying a fuel intake circuit.
  • the supply duct comprises two tubes 42, 44. More specifically, a first central tube 42 of the duct supplies fuel to the second fuel intake circuit 34, the latter preferably having a torus shape ( figure 3 ).
  • a second conduit 44 concentric with the first, supplies fuel to the first circuit 32.
  • the fuel supply of the fuel intake circuits is effected by a single conduit 40 which limits the risk of coking the fuel.
  • the fuel supply conduits are parallel and independent of each other.
  • the fuel present in the fuel intake circuits is protected from the hot gases resulting from the combustion of the air / fuel mixture by means of heat shields 46 interposed interposed between the circuits 32, 34 and the upstream 28 and downstream walls 30
  • the fuel flowing through the fuel intake circuits also allows the walls of the venturi to be cooled.
  • the heat shields can also serve to separate the different circuits from each other.
  • the injection system further comprises additional means 48 for injecting air or fuel (shown in dotted lines on the figure 2 ) centered on its longitudinal axis XX.
  • additional injection means 48 thus make it possible to define additional modes of injection of the air / fuel mixture.
  • the fuel injection carried out solely by these means may correspond to an engine idling speed, and the fuel injection carried out both by these additional means and through the orifices of the first fuel intake circuits may be suitable for a range of intermediate regimes.
  • a fuel injection by the additional means and by the orifices of the first and second circuits may coincide with a full throttle engine.
  • the additional means 48 for injecting air or fuel are mounted on a bowl 50 centered on the longitudinal axis X-X and extending downstream from the first air injection means.
  • additional means of fuel injection they are constituted for example by a conventional fuel injector through a wall 52 of the bowl 50 forming bottom.
  • a conventional air swirl also passing through the wall 52 of the bottom bowl.
  • a mixing tube 54 is disposed downstream of the external swirler 24.
  • This mixing tube comprises a wall 56 converging downstream and terminating in a substantially radial wall 58 extending into the chamber This tube makes it possible to accelerate the flow of the air / fuel mixture towards the combustion chamber and to prevent the combustion flame from rising upstream.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

Arrière-plan de l'inventionBackground of the invention

La présente invention se rapporte au domaine général des systèmes d'injection de carburant dans une chambre de combustion d'un moteur à turbine à gaz. Elle vise plus particulièrement un système d'injection d'un mélange air/carburant muni d'une injection de carburant multi-modes permettant de définir au moins deux modes indépendants d'injection du mélange air/carburant selon des régimes prédéterminés de fonctionnement du moteur.The present invention relates to the general field of fuel injection systems in a combustion chamber of a gas turbine engine. It is more particularly aimed at an injection system for an air / fuel mixture provided with a multi-mode fuel injection that makes it possible to define at least two independent modes of injection of the air / fuel mixture according to predetermined engine operating speeds. .

Dans une chambre de combustion classique d'un moteur à turbine à gaz, l'injection de carburant s'effectue, pour chaque système d'injection, de façon mono-mode par l'intermédiaire d'un injecteur de carburant. Deux vrilles d'air centrées sur l'injecteur de carburant délivrent chacune un flux d'air radial en aval de l'injection de carburant afin de réaliser le mélange air/carburant destiné à être injecté puis brûlé dans la chambre de combustion. Les écoulements d'air issus des deux vrilles sont généralement délimités par un venturi interposé entre ces vrilles et un bol monté en aval de celles-ci accélère l'écoulement du mélange air/carburant vers la chambre de combustion.In a conventional combustion chamber of a gas turbine engine, the injection of fuel is effected, for each injection system, in a single mode via a fuel injector. Two air swirlers centered on the fuel injector each deliver a radial air flow downstream of the fuel injection to achieve the air / fuel mixture to be injected and burned in the combustion chamber. The air flows from the two tendrils are generally defined by a venturi interposed between these tendrils and a bowl mounted downstream of them accelerates the flow of the air / fuel mixture to the combustion chamber.

Le mélange air/carburant obtenu par de tels systèmes d'injection doit être optimal pour permettre l'allumage de la chambre de combustion, assurer une stabilité de la combustion, notamment aux faibles régimes de fonctionnement du moteur, et limiter les émissions de rejets polluants dans l'atmosphère, en particulier en régime dit de plein gaz du moteur. Ces exigences impliquent des modes de fonctionnement souvent incompatibles entre eux. Par exemple, la stabilité de la flamme de combustion, nécessaire notamment aux faibles régimes de fonctionnement du moteur, est favorisée par une hétérogénéité du mélange air/carburant présentant des zones riches en mélange air/carburant proches de zones pauvres en mélange. A l'inverse, la formation de polluants, comme les oxydes d'azote, est limitée par une combustion en milieu de mélange pauvre et homogène.The air / fuel mixture obtained by such injection systems must be optimal to enable ignition of the combustion chamber, ensure stability of the combustion, especially at low operating speeds of the engine, and limit the emissions of polluting discharges in the atmosphere, especially in full engine gas regime. These requirements imply operating modes that are often incompatible with one another. For example, the stability of the combustion flame, necessary in particular at low operating speeds of the engine, is favored by a heterogeneity of the air / fuel mixture having areas rich in air / fuel mixture near areas poor in mixture. Conversely, the formation of pollutants, such as oxides of nitrogen, is limited by combustion in a poor and homogeneous mixture medium.

Un système d'injection de carburant mono-mode tel que celui décrit précédemment ne permet pas de remplir correctement toutes les exigences de fonctionnement énumérées ci-dessus. En effet, l'injection de carburant de ces systèmes s'effectue dans des zones où la masse d'air introduite est la plus réduite ce qui a tendance à rendre le mélange air/carburant hétérogène. L'injection de carburant réduite à un seul point est en outre optimisée pour seulement un ou au plus deux régimes de fonctionnement du moteur. En particulier, le régime de fonctionnement au ralenti de ces systèmes d'injection n'est pas parfaitement assuré ce qui conduit à des niveaux importants d'émissions en monoxyde de carbone.A single-mode fuel injection system as described above does not properly fulfill all the operating requirements listed above. Indeed, the fuel injection of these systems is carried out in areas where the introduced air mass is the lowest, which tends to make the air / fuel mixture heterogeneous. The reduced fuel injection at a single point is further optimized for only one or at most two operating speeds of the engine. In particular, the idling speed of these injection systems is not perfectly ensured which leads to significant levels of carbon monoxide emissions.

Afin de pallier ces inconvénients, il est connu d'utiliser des chambres de combustion à deux têtes dont le principe consiste à séparer les combustions à faible et à haut régime en munissant la chambre d'injecteurs de carburant répartis sur une tête dite « pilote » et sur une tête dite « décollage » espacée de la précédente à la fois radialement et axialement. Bien que cette solution apparaisse satisfaisante, une chambre à deux têtes reste difficile à piloter et onéreuse compte-tenu du doublement du nombre d'injecteurs de carburant par rapport à une chambre de combustion classique simple tête.In order to overcome these drawbacks, it is known to use two-head combustion chambers, the principle of which consists in separating the low and high speed combustions by providing the chamber with fuel injectors distributed over a so-called "pilot" head. and on a so-called "take-off" head spaced from the previous one both radially and axially. Although this solution appears satisfactory, a two-head chamber remains difficult to fly and expensive given the doubling of the number of fuel injectors compared to a conventional single-head combustion chamber.

On connaît également le brevet américain US 5,816,049 qui propose un système d'injection d'un mélange air/carburant dont l'injection de carburant s'effectue de façon multiple par des orifices prévus au niveau d'un venturi délimitant des écoulements d'air issus d'une vrille radiale et d'une vrille axiale et par des orifices débouchant dans le passage de l'écoulement d'air issu de la vrille radiale. Cependant, le système d'injection décrit dans ce brevet présente également des inconvénients. L'alimentation en carburant des orifices d'injection s'effectue notamment par plusieurs conduits d'alimentation ce qui augmente considérablement les risques de cokéfaction du carburant. De plus, la disposition particulière des orifices d'injection de carburant par rapport à l'injection d'air entraîne des risques importants de remontée de carburant.The US patent is also known US 5,816,049 which proposes a system for injecting an air / fuel mixture whose fuel injection is effected in a multiple manner by orifices provided at a venturi delimiting air flows coming from a radial swirler and an axial swirler and openings opening into the passage of the air flow from the radial swirler. However, the injection system described in this patent also has drawbacks. The fuel supply of the injection ports is carried out in particular by several supply ducts, which considerably increases the risk of coking the fuel. In addition, the particular arrangement of the fuel injection orifices with respect to the injection of air entails significant risks of fuel recovery.

Objet et résumé de l'inventionObject and summary of the invention

La présente invention vise donc à pallier de tels inconvénients en proposant un système d'injection comportant une injection multi-modes du mélange air/carburant qui permet de préparer un mélange air/carburant optimal aux conditions de faible régime et de régime élevé afin de limiter les émissions polluantes. Elle vise également un système d'injection qui limite les risques de cokéfaction et empêche toute remontée de carburant.The present invention therefore aims to overcome such drawbacks by proposing an injection system comprising a multi-mode injection of the air / fuel mixture which makes it possible to prepare an optimal air / fuel mixture at low speed and high speed conditions in order to limit polluting emissions. It also aims an injection system that limits the risk of coking and prevents any rise in fuel.

A cet effet, il est prévu un système d'injection d'un mélange air/carburant dans une chambre de combustion d'un moteur à turbine à gaz, le système d'injection ayant un axe longitudinal et comportant des moyens d'injection de carburant interposés entre des premiers et des seconds moyens d'injection d'air, les moyens d'injection de carburant étant disposés dans une cavité interne annulaire d'un venturi, la cavité étant délimitée par une paroi amont sensiblement axiale et par une paroi aval sensiblement radiale, les moyens d'injection de carburant comportant au moins un premier circuit d'admission de carburant muni d'au moins un orifice d'injection de carburant, et une pluralité de seconds circuits d'admission de carburant, indépendants des premiers, munis chacun d'au moins un orifice d'injection de carburant de façon à définir une pluralité de modes indépendants d'injection du mélange air/carburant selon des régimes déterminés de fonctionnement du moteur, le système d'injection étant caractérisé en ce que l'orifice d'injection de carburant du premier circuit d'admission de carburant est pratiqué dans la paroi amont du venturi afin d'injecter du carburant vers la chambre de combustion selon une direction générale sensiblement perpendiculaire à un flux d'air issu des premiers moyens d'injection d'air, et en ce que les orifices d'injection de carburant des seconds circuits d'admission de carburant sont pratiqués dans la paroi aval du venturi afin d'injecter du carburant vers la chambre de combustion selon une direction générale sensiblement perpendiculaire à un flux d'air issu des seconds moyens d'injection d'air.For this purpose, there is provided a system for injecting an air / fuel mixture into a combustion chamber of a gas turbine engine, the injection system having a longitudinal axis and comprising means for injecting fuel interposed between first and second air injection means, the fuel injection means being disposed in an annular internal cavity of a venturi, the cavity being delimited by a substantially axial upstream wall and a downstream wall; substantially radial, the fuel injection means comprising at least a first fuel intake circuit provided with at least one fuel injection orifice, and a plurality of second fuel intake circuits, independent of the first, each provided with at least one fuel injection port so as to define a plurality of independent modes of injection of the air / fuel mixture according to determined operating modes of the engine, the system injection stage being characterized in that the fuel injection orifice of the first fuel intake circuit is formed in the upstream wall of the venturi in order to inject fuel towards the combustion chamber in a substantially perpendicular general direction a flow of air from the first air injection means, and in that the fuel injection ports of the second fuel intake circuits are formed in the downstream wall of the venturi to inject fuel to the combustion chamber in a general direction substantially perpendicular to a flow of air from the second air injection means.

De la sorte, le système d'injection permet à la fois de générer un mélange air/carburant homogène et pauvre aux conditions de régime élevé afin de limiter les émissions polluantes d'oxydes d'azote, et de créer des poches de gaz en proportion stoechiométrique aux conditions de faible régime afin de garantir l'allumage et la stabilité de la flamme de combustion dans la chambre tout en maîtrisant les émissions de monoxyde de carbone. L'injection du mélange air/carburant s'effectue de façon multi-modes suivant les conditions de fonctionnement du moteur. La répartition de carburant dans le système d'injection peut ainsi être parfaitement contrôlée en fonction de la masse d'air introduite par les moyens d'injection d'air. De plus, l'injection de carburant selon des directions perpendiculaires aux écoulements d'air issus des moyens d'injection d'air améliore l'homogénéisation du mélange air/carburant.In this way, the injection system allows both to generate a homogeneous and poor air / fuel mixture at high speed conditions in order to limit the pollutant emissions of nitrogen oxides, and to create gas pockets in proportion stoichiometric at low conditions regime to ensure ignition and stability of the combustion flame in the chamber while controlling carbon monoxide emissions. The injection of the air / fuel mixture is effected in a multi-mode manner according to the operating conditions of the engine. The fuel distribution in the injection system can thus be perfectly controlled as a function of the air mass introduced by the air injection means. In addition, the injection of fuel in directions perpendicular to the air flows from the air injection means improves the homogenization of the air / fuel mixture.

Avantageusement, les orifices d'injection de carburant des premiers et seconds circuits d'admission de carburant sont régulièrement répartis autour de l'axe longitudinal et ont des positions angulaires décalés les uns par rapport aux autres afin d'améliorer l'homogénéisation du mélange.Advantageously, the fuel injection orifices of the first and second fuel intake circuits are regularly distributed around the longitudinal axis and have offset angular positions relative to each other in order to improve the homogenization of the mixture.

Un conduit unique d'alimentation permet d'alimenter en carburant les premiers et seconds circuits d'admission de carburant par exemple par l'intermédiaire d'une pluralité de tubes concentriques. Ainsi, l'alimentation en carburant s'effectue par un unique conduit ce qui limite les risques de cokéfaction en profitant du refroidissement obtenu par la circulation du carburant dans les circuits.A single supply duct makes it possible to supply fuel to the first and second fuel intake circuits, for example by means of a plurality of concentric tubes. Thus, fuel is supplied by a single conduit which limits the risk of coking by taking advantage of the cooling obtained by the circulation of fuel in the circuits.

Des moyens supplémentaires d'injection d'air ou de carburant centrés sur l'axe longitudinal du système d'injection permettent avantageusement de définir des modes additionnels d'injection du mélange air/carburant. Ces moyens sont montés sur un bol centré sur l'axe longitudinal et s'étendant vers l'aval depuis les premiers moyens d'injection d'air.Additional means for injecting air or fuel centered on the longitudinal axis of the injection system advantageously make it possible to define additional modes of injection of the air / fuel mixture. These means are mounted on a bowl centered on the longitudinal axis and extending downstream from the first air injection means.

Brève description des dessinsBrief description of the drawings

D'autres caractéristiques et avantages de la présente invention ressortiront de la description faite ci-dessous, en référence aux dessins annexés qui en illustrent un exemple de réalisation dépourvu de tout caractère limitatif. Sur les figures:

  • la figure 1 est une vue en coupe et partielle d'une chambre de combustion équipée de systèmes d'injection selon un exemple de réalisation de l'invention ;
  • la figure 2 est une vue partielle et agrandie d'un système d'injection de la figure 1 ;
  • la figure 3 est une vue en perspective et en écorché d'un système d'injection de la figure 1 ; et
  • la figure 4 est une vue schématique de face d'un système d'injection selon un autre exemple de réalisation de l'invention.
Other features and advantages of the present invention will emerge from the description given below, with reference to the accompanying drawings which illustrate an embodiment having no limiting character. In the figures:
  • the figure 1 is a sectional and partial view of a combustion chamber equipped with injection systems according to an exemplary embodiment of the invention;
  • the figure 2 is a partial and enlarged view of an injection system of the figure 1 ;
  • the figure 3 is a perspective and cutaway view of an injection system from the figure 1 ; and
  • the figure 4 is a schematic front view of an injection system according to another embodiment of the invention.

Description détaillée d'un mode de réalisationDetailed description of an embodiment

On se réfère à la figure 1 qui illustre partiellement et en coupe une chambre de combustion 10 équipée d'une pluralité de systèmes d'injection d'un mélange air/carburant 12. La chambre de combustion 10 est accrochée sur un carter externe 14 par des moyens de fixation non représentés. Elle est par exemple du type annulaire et est délimitée par deux parois annulaires 16, 18 reliées en amont par un fond de chambre annulaire 20. Le fond de chambre 20 comporte une pluralité d'ouvertures régulièrement espacées de façon circulaire autour d'un axe 21 du moteur à turbine à gaz équipée d'une telle chambre de combustion. Un système d'injection 12 conforme à l'invention est monté dans chacune de ces ouvertures. Les systèmes d'injection préparent un mélange air/carburant destiné à être brûlé dans la chambre de combustion 10. Les gaz issus de cette combustion s'écoulent vers l'aval dans la chambre avant d'alimenter une turbine haute pression.We refer to the figure 1 which illustrates partially and in section a combustion chamber 10 equipped with a plurality of systems for injecting an air / fuel mixture 12. The combustion chamber 10 is hooked on an outer casing 14 by unrepresented fastening means. It is for example of the annular type and is delimited by two annular walls 16, 18 connected upstream by an annular chamber bottom 20. The chamber bottom 20 has a plurality of regularly spaced circularly spaced openings about an axis 21 a gas turbine engine equipped with such a combustion chamber. An injection system 12 according to the invention is mounted in each of these openings. The injection systems prepare an air / fuel mixture to be burned in the combustion chamber 10. The gases from this combustion flow downstream in the chamber before feeding a high pressure turbine.

Comme plus particulièrement illustré par la figure 2, le système d'injection 12, d'axe longitudinal X-X, comporte des moyens d'injection de carburant interposés entre des premiers et des seconds moyens d'injection d'air. Ces premiers et seconds moyens d'injection d'air sont de préférence constitués respectivement par des vrilles interne 22 et externe 24 disposées radialement par rapport à l'axe longitudinal X-X. Ces vrilles d'air, de type connu en soi, délivrent donc chacune un flux d'air dans une direction sensiblement radiale. La vrille externe 24 est montée de façon à être décalée radialement par rapport à la vrille interne 22.As more particularly illustrated by the figure 2 , the injection system 12, of longitudinal axis XX, comprises fuel injection means interposed between first and second air injection means. These first and second air injection means are preferably respectively constituted by internal and external vices 22 arranged radially radially relative to the longitudinal axis XX. These air spins, of a type known per se, thus each deliver a flow of air in a substantially radial direction. The external swirler 24 is mounted to be offset radially with respect to the internal swirler 22.

Les moyens d'injection de carburant sont montés dans une cavité interne annulaire d'un venturi annulaire 26 centré sur l'axe longitudinal X-X du système d'injection et délimitant les écoulements d'air issus des vrilles interne 22 et externe 24. Le venturi comporte notamment une paroi amont 28 s'étendant dans une direction sensiblement axiale depuis la vrille interne 22 et se prolongeant par une paroi aval 30 sensiblement radiale reliée à la vrille externe 24.The fuel injection means are mounted in an annular internal cavity of an annular venturi 26 centered on the longitudinal axis XX of the injection system and delimiting the air flows coming from the internal and external augers 22 and 22. includes an upstream wall 28 extending in a substantially axial direction from the internal swirler 22 and extending through a substantially radial downstream wall 30 connected to the external swirler 24.

Les moyens d'injection de carburant comportent au moins un premier circuit d'admission de carburant 32 et une pluralité de seconds circuits 34 d'admission de carburant. Ces premiers et seconds circuits sont indépendants entre eux et sont notamment délimités par les parois amont 28 et aval 30 du venturi 26. Pour des raisons de commodité de représentation, les moyens d'injection de carburant illustrés par les figures 1 à 3 comportent un unique premier et un unique second circuits d'admission de carburant. Bien entendu, on peut envisager que ces moyens d'injection comportent plusieurs premiers et seconds circuits.The fuel injection means comprise at least a first fuel intake circuit 32 and a plurality of second fuel admission circuits 34. These first and second circuits are independent of each other and are defined in particular by the upstream and downstream walls 28 of the venturi 26. For reasons of convenience of representation, the fuel injection means illustrated by the Figures 1 to 3 comprise a single first and a single second fuel intake circuit. Of course, it can be envisaged that these injection means comprise several first and second circuits.

Le premier circuit d'admission de carburant 32 s'ouvre vers la chambre de combustion 10 dans une direction générale sensiblement radiale par l'intermédiaire d'au moins un orifice d'injection de carburant 36 pratiqué dans la paroi amont du venturi. Les seconds circuits d'admission de carburant 34 s'ouvrent vers la chambre de combustion 10 dans une direction générale sensiblement axiale par l'intermédiaire d'au moins un orifice d'injection de carburant 38 pratiqué dans la paroi aval du venturi. Ainsi, conformément à l'invention, le carburant présent dans le premier circuit d'admission de carburant 32 est injecté dans l'écoulement du flux d'air généré par la vrille interne 22 selon une direction générale sensiblement perpendiculaire à ce flux. De même, le carburant présent dans les seconds circuits d'admission de carburant 34 est injecté dans l'écoulement du flux d'air généré par la vrille externe 24 selon une direction générale sensiblement perpendiculaire à ce flux. A titre d'exemple, il peut être prévu six orifices d'injection de carburant par circuit d'admission de carburant.The first fuel intake circuit 32 opens towards the combustion chamber 10 in a generally radial direction through at least one fuel injection orifice 36 formed in the upstream wall of the venturi. The second fuel intake circuits 34 open towards the combustion chamber 10 in a generally axial direction via at least one fuel injection orifice 38 formed in the downstream wall of the venturi. Thus, according to the invention, the fuel present in the first fuel intake circuit 32 is injected into the flow of the air flow generated by the internal swirler 22 in a general direction substantially perpendicular to this flow. Similarly, the fuel present in the second fuel intake circuits 34 is injected into the flow of the air flow generated by the external swirler 24 in a general direction substantially perpendicular to this flow. By way of example, six fuel injection orifices can be provided per fuel intake circuit.

Selon une caractéristique avantageuse de l'invention, les orifices d'injection de carburant 36, 38 des premiers et seconds circuits d'admission de carburant 32, 34 sont répartis régulièrement tout autour de l'axe longitudinal X-X du système d'injection, et les orifices 36 des premiers circuits ont des positions angulaires décalées par rapport aux orifices 38 des seconds circuits. Cette caractéristique permet d'améliorer l'homogénéité du mélange air/carburant. En outre, les orifices d'injection de carburant ne sont de préférence pas disposés en vis à vis des sorties d'air des vrilles interne et externe.According to an advantageous characteristic of the invention, the fuel injection orifices 36, 38 of the first and second fuel intake circuits 32, 34 are evenly distributed all around the longitudinal axis XX of the injection system, and the orifices 36 of the first circuits have angular positions offset relative to the orifices 38 of the second circuits. This feature improves the homogeneity of the air / fuel mixture. In addition, the injection ports fuel are preferably not arranged vis-a-vis the air outlets of the internal and external tendrils.

La présence d'au moins un premier et d'une pluralité de seconds circuits d'admission de carburant indépendants munis chacun d'au moins un orifice d'injection de carburant permet de définir une pluralité de modes indépendants d'injection du mélange air/carburant selon des régimes déterminés de fonctionnement du moteur. Par exemple, dans le cas de moyens d'injection de carburant comportant un unique premier et un unique second circuits d'admission de carburant comme illustré sur les figures 1 à 3, une injection de carburant effectuée par le premier circuit 32 peut correspondre à un régime de ralenti du moteur, tandis qu'une injection de carburant réalisée par le premier et le second circuits peut convenir à un régime plein gaz du moteur.The presence of at least a first and a plurality of second independent fuel intake circuits each provided with at least one fuel injection port makes it possible to define a plurality of independent modes of injection of the air / fuel mixture. fuel according to determined operating modes of the engine. For example, in the case of fuel injection means comprising a single first and a single second fuel intake circuit as illustrated in FIGS. Figures 1 to 3 , a fuel injection performed by the first circuit 32 may correspond to an engine idling speed, while a fuel injection made by the first and second circuits may be suitable for a full throttle engine.

Selon un autre exemple de réalisation de l'invention illustré schématiquement sur la figure 4, il est prévu deux premiers circuits d'admission de carburant 32a, 32b et deux seconds circuits d'admission de carburant 34a, 34b. Les premiers circuits d'admission de carburant 32a, 32b comportent chacun trois orifices d'injection de carburant 36a, 36b et les seconds circuits 34a, 34b comportent chacun également trois orifices d'injection de carburant 38a, 38b de sorte que ce système d'injection 12 permet de définir seize modes indépendants d'injection du mélange air/carburant. Sur cette figure, on remarque également que les orifices d'injection de carburant 36a, 36b, 38a et 38b des premiers et seconds circuits d'admission de carburant sont répartis régulièrement tout autour de l'axe longitudinal X-X du système d'injection et qu'ils ont des positions angulaires décalées les uns par rapport aux autres de façon à favoriser le mélange air/carburant.According to another exemplary embodiment of the invention illustrated schematically on the figure 4 there are provided two first fuel intake circuits 32a, 32b and two second fuel intake circuits 34a, 34b. The first fuel intake circuits 32a, 32b each comprise three fuel injection ports 36a, 36b and the second circuits 34a, 34b each also have three fuel injection orifices 38a, 38b so that this system injection 12 makes it possible to define sixteen independent modes of injection of the air / fuel mixture. In this figure, we also note that the fuel injection orifices 36a, 36b, 38a and 38b of the first and second fuel intake circuits are evenly distributed around the longitudinal axis XX of the injection system and that they have angular positions offset relative to each other so as to promote the air / fuel mixture.

Selon encore un autre exemple de réalisation non représenté sur les figures, il peut être prévu seize premiers et seize seconds circuits d'admission de carburant, ces circuits étant chacun muni de deux orifices d'injection de carburant. De la sorte, ces moyens d'injection de carburant permettent de définir 256 modes indépendants d'injection du mélange air/carburant.According to yet another embodiment not shown in the figures, sixteen first and sixteen second fuel admission circuits may be provided, each of these circuits being provided with two fuel injection orifices. In this way, these fuel injection means allow to define 256 independent modes of injection of the air / fuel mixture.

Sur les figures 1 et 2, on remarque que le système d'injection 12 selon l'invention comporte en outre au moins un conduit radial d'alimentation 40 alimentant en carburant à la fois les premiers et seconds circuits d'admission de carburant 32, 34. Ce conduit d'alimentation 40 comporte avantageusement une pluralité de tubes, par exemple concentriques, alimentant chacun un circuit d'admission de carburant. Dans le cas illustré par la figure 2, le conduit d'alimentation comporte deux tubes 42, 44. Plus précisément, un premier tube central 42 du conduit alimente en carburant le second circuit d'admission de carburant 34, ce dernier ayant de préférence une forme de tore (figure 3). Un second conduit 44, concentrique au premier, alimente en carburant le premier circuit 32. Dans le cas de plusieurs premiers et plusieurs seconds circuits d'admission de carburant, il est prévu autant de tubes concentriques qu'il y a de circuits. Ainsi, l'alimentation de carburant des circuits d'admission de carburant s'effectue par un conduit unique 40 ce qui limite les risques de cokéfaction du carburant. Alternativement, on peut envisager que les conduits d'alimentation en carburant soient parallèles et indépendants entre eux.On the figures 1 and 2 it is noted that the injection system 12 according to the invention further comprises at least one radial supply duct 40 supplying fuel to both the first and second fuel intake circuits 32, 34. This supply duct 40 advantageously comprises a plurality of tubes, for example concentric, each supplying a fuel intake circuit. In the case illustrated by the figure 2 , the supply duct comprises two tubes 42, 44. More specifically, a first central tube 42 of the duct supplies fuel to the second fuel intake circuit 34, the latter preferably having a torus shape ( figure 3 ). A second conduit 44, concentric with the first, supplies fuel to the first circuit 32. In the case of several first and second fuel intake circuits, there are provided as many concentric tubes as there are circuits. Thus, the fuel supply of the fuel intake circuits is effected by a single conduit 40 which limits the risk of coking the fuel. Alternatively, it is conceivable that the fuel supply conduits are parallel and independent of each other.

Le carburant présent dans les circuits d'admission de carburant est protégé des gaz chauds issus de la combustion du mélange air/carburant par l'intermédiaire d'écrans thermiques 46 notamment interposés entre les circuits 32, 34 et les parois amont 28 et aval 30 du venturi 26. Le carburant qui circule dans les circuits d'admission de carburant permet également de refroidir les parois du venturi. Dans le cas de plusieurs premiers et plusieurs seconds circuits d'admission de carburant, les écrans thermiques peuvent également servir à séparer les différents circuits les uns des autres.The fuel present in the fuel intake circuits is protected from the hot gases resulting from the combustion of the air / fuel mixture by means of heat shields 46 interposed interposed between the circuits 32, 34 and the upstream 28 and downstream walls 30 The fuel flowing through the fuel intake circuits also allows the walls of the venturi to be cooled. In the case of several first and second fuel intake circuits, the heat shields can also serve to separate the different circuits from each other.

Selon une autre caractéristique avantageuse de l'invention, le système d'injection comporte en outre des moyens supplémentaires 48 d'injection d'air ou de carburant (représentés en pointillés sur la figure 2) centrés sur son axe longitudinal X-X. Ces moyens supplémentaires d'injection 48 permettent ainsi de définir des modes additionnels d'injection du mélange air/carburant. Par exemple, dans le cas de moyens supplémentaires d'injection de carburant, l'injection de carburant réalisée uniquement par ces moyens peut correspondre à un régime de ralenti du moteur, et l'injection de carburant effectuée à la fois par ces moyens supplémentaires et par les orifices des premiers circuits d'admission de carburant peut convenir à toute une gamme de régimes intermédiaires. Enfin, une injection de carburant par les moyens supplémentaires et par les orifices des premiers et seconds circuits peut coïncider avec un régime plein gaz du moteur.According to another advantageous characteristic of the invention, the injection system further comprises additional means 48 for injecting air or fuel (shown in dotted lines on the figure 2 ) centered on its longitudinal axis XX. These additional injection means 48 thus make it possible to define additional modes of injection of the air / fuel mixture. For example, in the case of additional means of fuel injection, the fuel injection carried out solely by these means may correspond to an engine idling speed, and the fuel injection carried out both by these additional means and through the orifices of the first fuel intake circuits may be suitable for a range of intermediate regimes. Finally, a fuel injection by the additional means and by the orifices of the first and second circuits may coincide with a full throttle engine.

De préférence, les moyens supplémentaires 48 d'injection d'air ou de carburant sont montés sur un bol 50 centré sur l'axe longitudinal X-X et s'étendant vers l'aval depuis les premiers moyens d'injection d'air. Dans le cas de moyens supplémentaires d'injection de carburant, ceux-ci sont constitués par exemple par un injecteur de carburant classique traversant une paroi 52 du bol 50 formant fond. De même, lorsqu'il s'agit de moyens supplémentaires d'injection d'air, ceux-ci peuvent être formés par une vrille d'air classique traversant également la paroi 52 du bol formant fond.Preferably, the additional means 48 for injecting air or fuel are mounted on a bowl 50 centered on the longitudinal axis X-X and extending downstream from the first air injection means. In the case of additional means of fuel injection, they are constituted for example by a conventional fuel injector through a wall 52 of the bowl 50 forming bottom. Similarly, when it comes to additional means of air injection, they can be formed by a conventional air swirl also passing through the wall 52 of the bottom bowl.

Enfin, on peut également noter qu'un tube de mélange 54 est disposé en aval de la vrille externe 24. Ce tube de mélange comporte une paroi 56 convergeant vers l'aval et se terminant par une paroi 58 sensiblement radiale se prolongeant dans la chambre de combustion par un déflecteur 60. Ce tube permet d'accélérer l'écoulement du mélange air/carburant vers la chambre de combustion et d'empêcher que la flamme de combustion ne remonte vers l'amont.Finally, it may also be noted that a mixing tube 54 is disposed downstream of the external swirler 24. This mixing tube comprises a wall 56 converging downstream and terminating in a substantially radial wall 58 extending into the chamber This tube makes it possible to accelerate the flow of the air / fuel mixture towards the combustion chamber and to prevent the combustion flame from rising upstream.

Claims (11)

  1. An injection system (12) for injecting an air/fuel mixture into a combustion chamber (10) of a gas turbine engine, said injection system having a longitudinal axis (X-X) and comprising fuel injection means interposed between first and second air injection means (22, 24), said fuel injection means being disposed in an annular internal cavity (32, 34) of a Venturi (26), said cavity being defined by a substantially axial upstream wall (28) and by a substantially radial downstream wall (30), said fuel injection means comprising at least a first fuel admission circuit (32) provided with at least one fuel injection orifice (36), and a plurality of second fuel admission circuits (34) independent from the first fuel admission circuit(s), each being provided with at least one fuel injection orifice (38) so as to define a plurality of independent modes of injecting the air/fuel mixture depending on determined operating speeds of the engine, said injection system being characterized in that the fuel injection orifice (36) of the first fuel admission circuit is formed in the upstream wall of the Venturi so as to inject fuel towards the combustion chamber in a general direction that is substantially perpendicular to a flow of air coming from the first air injection means (22), and in that the fuel injection orifices (38) of the second fuel admission circuits are formed in the downstream wall of the Venturi so as to inject fuel towards the combustion chamber in a general direction that is substantially perpendicular to a flow of air coming from the second air injection means (24).
  2. A system according to claim 1, characterized in that the fuel injection orifices (36, 38) of said first and second fuel admission circuits (32, 34) are distributed regularly all around said longitudinal axis.
  3. A system according to claim 1 or claim 2, characterized in that the fuel injection orifice (36) of said first fuel admission circuit (32) has an angular position that is offset relative to the fuel injection orifices (38) of said second fuel admission circuits (34).
  4. A system according to any one of claims 1 to 3, characterized in that the second fuel admission circuits (34) are toroidal in shape.
  5. A system according to any one of claims 1 to 4, characterized in that it further comprises at least one radial feed duct (40) feeding fuel to the first and second fuel admission circuits (32, 34).
  6. A system according to claim 5, characterized in that the feed duct comprises a plurality of concentric tubes (42, 44) each feeding a fuel admission circuit.
  7. A system according to any one of claims 1 to 6, characterized in that it further comprises additional air injection means (48) centered on the longitudinal axis (X-X) of the injection system.
  8. A system according to any one of claims 1 to 6, characterized in that it further comprises additional fuel injection means (48) centered on the longitudinal axis (X-X) of the injection system.
  9. A system according to claim 7 or claim 8, characterized in that said additional injection means are mounted on a bowl (50) centered on said longitudinal axis and extending downstream from the first air injection means (22).
  10. A system according to any one of claims 1 to 9, characterized in that the first and second air injection means (22, 24) are disposed radially relative to said longitudinal axis.
  11. A system according to any one of claims 1 to 10, characterized in that the first and second air injection means are constituted respectively by an inner swirler (22) and by an outer swirler (24).
EP03290428A 2002-03-07 2003-02-21 Injection system for air-fuel mixture in a combustion chamber Expired - Lifetime EP1342955B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0202875A FR2836986B1 (en) 2002-03-07 2002-03-07 MULTI-MODEL INJECTION SYSTEM FOR AN AIR / FUEL MIXTURE IN A COMBUSTION CHAMBER
FR0202875 2002-03-07

Publications (2)

Publication Number Publication Date
EP1342955A1 EP1342955A1 (en) 2003-09-10
EP1342955B1 true EP1342955B1 (en) 2008-09-03

Family

ID=27741452

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03290428A Expired - Lifetime EP1342955B1 (en) 2002-03-07 2003-02-21 Injection system for air-fuel mixture in a combustion chamber

Country Status (9)

Country Link
US (1) US6799427B2 (en)
EP (1) EP1342955B1 (en)
JP (1) JP4188724B2 (en)
CA (1) CA2420313C (en)
DE (1) DE60323286D1 (en)
ES (1) ES2312731T3 (en)
FR (1) FR2836986B1 (en)
RU (1) RU2303199C2 (en)
UA (1) UA76427C2 (en)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10340826A1 (en) * 2003-09-04 2005-03-31 Rolls-Royce Deutschland Ltd & Co Kg Homogeneous mixture formation by twisted injection of the fuel
DE10348604A1 (en) * 2003-10-20 2005-07-28 Rolls-Royce Deutschland Ltd & Co Kg Fuel injector with filmy fuel placement
US7065972B2 (en) * 2004-05-21 2006-06-27 Honeywell International, Inc. Fuel-air mixing apparatus for reducing gas turbine combustor exhaust emissions
US8348180B2 (en) 2004-06-09 2013-01-08 Delavan Inc Conical swirler for fuel injectors and combustor domes and methods of manufacturing the same
JP4626251B2 (en) 2004-10-06 2011-02-02 株式会社日立製作所 Combustor and combustion method of combustor
GB2432655A (en) * 2005-11-26 2007-05-30 Siemens Ag Combustion apparatus
FR2897107B1 (en) * 2006-02-09 2013-01-18 Snecma CROSS-SECTIONAL COMBUSTION CHAMBER WALL HAVING MULTIPERFORATION HOLES
US7870737B2 (en) * 2007-04-05 2011-01-18 United Technologies Corporation Hooded air/fuel swirler for a gas turbine engine
DE102007043626A1 (en) 2007-09-13 2009-03-19 Rolls-Royce Deutschland Ltd & Co Kg Gas turbine lean burn burner with fuel nozzle with controlled fuel inhomogeneity
US8215116B2 (en) * 2008-10-02 2012-07-10 General Electric Company System and method for air-fuel mixing in gas turbines
US7712314B1 (en) 2009-01-21 2010-05-11 Gas Turbine Efficiency Sweden Ab Venturi cooling system
US8256226B2 (en) * 2009-04-23 2012-09-04 General Electric Company Radial lean direct injection burner
JP5083302B2 (en) * 2009-12-14 2012-11-28 株式会社日立製作所 Combustor and gas turbine combustor, and method for supplying air to the combustor
IT1399989B1 (en) * 2010-05-05 2013-05-09 Avio Spa INJECTION UNIT FOR A COMBUSTOR OF A GAS TURBINE
US8850819B2 (en) 2010-06-25 2014-10-07 United Technologies Corporation Swirler, fuel and air assembly and combustor
JP4894947B2 (en) * 2010-09-21 2012-03-14 株式会社日立製作所 Combustor and combustion method of combustor
US8973368B2 (en) * 2011-01-26 2015-03-10 United Technologies Corporation Mixer assembly for a gas turbine engine
US9920932B2 (en) * 2011-01-26 2018-03-20 United Technologies Corporation Mixer assembly for a gas turbine engine
RU2456510C1 (en) * 2011-02-18 2012-07-20 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" Continuous-action combustion chamber
JP5772245B2 (en) * 2011-06-03 2015-09-02 川崎重工業株式会社 Fuel injection device
US9423137B2 (en) * 2011-12-29 2016-08-23 Rolls-Royce Corporation Fuel injector with first and second converging fuel-air passages
DE102013204307A1 (en) * 2013-03-13 2014-09-18 Siemens Aktiengesellschaft Jet burner with cooling channel in the base plate
RU2527011C1 (en) * 2013-05-23 2014-08-27 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" Continuous combustion chamber
US10001281B2 (en) * 2015-04-17 2018-06-19 General Electric Company Fuel nozzle with dual-staged main circuit
EP3098514A1 (en) * 2015-05-29 2016-11-30 Siemens Aktiengesellschaft Combustor arrangement
US20160377293A1 (en) * 2015-06-25 2016-12-29 Delavan Inc Fuel injector systems
US9803552B2 (en) * 2015-10-30 2017-10-31 General Electric Company Turbine engine fuel injection system and methods of assembling the same
US10739003B2 (en) 2016-10-03 2020-08-11 United Technologies Corporation Radial fuel shifting and biasing in an axial staged combustor for a gas turbine engine
US10344981B2 (en) * 2016-12-16 2019-07-09 Delavan Inc. Staged dual fuel radial nozzle with radial liquid fuel distributor
US10634355B2 (en) * 2016-12-16 2020-04-28 Delavan Inc. Dual fuel radial flow nozzles
RU185201U1 (en) * 2017-12-01 2018-11-26 Публичное Акционерное Общество "Одк-Сатурн" CONTINUOUS COMBUSTION CAMERA
CN111867717B (en) * 2018-03-07 2021-07-06 沙伯环球技术有限公司 Process and reactor for the pyrolytic conversion of hydrocarbon gases
MX2021004563A (en) * 2018-10-23 2022-06-22 Sabic Global Technologies Bv Method and reactor for conversion of hydrocarbons.
US10557630B1 (en) 2019-01-15 2020-02-11 Delavan Inc. Stackable air swirlers
US11725819B2 (en) 2021-12-21 2023-08-15 General Electric Company Gas turbine fuel nozzle having a fuel passage within a swirler
EP4202305A1 (en) * 2021-12-21 2023-06-28 General Electric Company Fuel nozzle and swirler

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1306873C (en) * 1987-04-27 1992-09-01 Jack R. Taylor Low coke fuel injector for a gas turbine engine
US5623827A (en) * 1995-01-26 1997-04-29 General Electric Company Regenerative cooled dome assembly for a gas turbine engine combustor
FR2752917B1 (en) * 1996-09-05 1998-10-02 Snecma ADVANCED HOMOGENIZATION INJECTION SYSTEM
US5816049A (en) * 1997-01-02 1998-10-06 General Electric Company Dual fuel mixer for gas turbine combustor
US6161387A (en) * 1998-10-30 2000-12-19 United Technologies Corporation Multishear fuel injector
US6256995B1 (en) * 1999-11-29 2001-07-10 Pratt & Whitney Canada Corp. Simple low cost fuel nozzle support
US6367262B1 (en) * 2000-09-29 2002-04-09 General Electric Company Multiple annular swirler

Also Published As

Publication number Publication date
CA2420313A1 (en) 2003-09-07
JP4188724B2 (en) 2008-11-26
US20040025508A1 (en) 2004-02-12
CA2420313C (en) 2010-05-04
US6799427B2 (en) 2004-10-05
ES2312731T3 (en) 2009-03-01
EP1342955A1 (en) 2003-09-10
UA76427C2 (en) 2006-08-15
FR2836986A1 (en) 2003-09-12
DE60323286D1 (en) 2008-10-16
FR2836986B1 (en) 2004-11-19
JP2003262337A (en) 2003-09-19
RU2303199C2 (en) 2007-07-20

Similar Documents

Publication Publication Date Title
EP1342955B1 (en) Injection system for air-fuel mixture in a combustion chamber
CA2588952C (en) Turbojet engine combustion chamber
EP1314933B1 (en) Multi-stage injection system of an air/fuel mixture in a gas turbine combustion chamber
EP2671028B1 (en) Injector for the combustion chamber of a gas turbine having a dual fuel circuit, and combustion chamber provided with at least one such injector
EP1953455B1 (en) Injection system with double injector
CA2398669C (en) Tw0-head staged annular combustion chamber
EP0828115A1 (en) Fuel injection system for a combustion chamber
FR2715460A1 (en) Burner structure.
EP0933594A1 (en) Gas turbine combustion chamber for liquid fuel
EP3368826B1 (en) Aerodynamic injection system for aircraft turbine engine, having improved air/fuel mixing
FR2969253A1 (en) SECONDARY FUEL INJECTOR WITHOUT TETONS
EP3784958B1 (en) Injection system for an annular combustion chamber of a gas turbine
FR2694799A1 (en) Conventional annular combustion chamber with several injectors - includes base mounted circumferentially alternately for pilot and full gas providing idling or take off power with air blown to fuel cone
FR2695460A1 (en) Gas annular turbine combustion chamber with several injectors - includes injectors in tubular base domes for idling, with full gas take off injectors alternating circumferentially and domes being interconnected
US11060483B2 (en) Hybrid rocket engine with improved solid fuel segment
EP0718559B1 (en) Fuel distribution system for the injection heads of a double annular combustor
FR3022986B1 (en) METHOD FOR IGNITING A TURBOMACHINE COMBUSTION CHAMBER
EP3247945B1 (en) Ensemble comprising a fuel injection system for an aircraft turbomachine combustion chamber and a fuel injector
FR3105985A1 (en) IMPROVED INJECTOR MULTIPOINT CIRCUIT
WO2024052611A1 (en) Device and method for injecting a hydrogen-air mixture for a turbine engine burner
WO2023057722A1 (en) Device for injecting dihydrogen and air
FR3141755A1 (en) Combustion chamber of a turbomachine
FR3114614A1 (en) Pre-chamber ignition device for a positive-ignition internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030227

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

RIN1 Information on inventor provided before grant (corrected)

Inventor name: FEDER, DIDIER

Inventor name: MICHAU, MARION

Inventor name: SCHULER, ALAIN

Inventor name: RODRIGUES, JOSE

Inventor name: VIGUIER, CHRISTOPHE

Inventor name: TIPIEL, ALAIN

Inventor name: RAVET, FREDERIC

Inventor name: CALVEZ, GWENAELLE

AKX Designation fees paid

Designated state(s): DE ES FR GB IT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SNECMA

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: CALVEZ, GWENAELLE

Inventor name: FEDER, DIDIER

Inventor name: RODRIGUES, JOSE

Inventor name: SCHULER, ALAIN

Inventor name: VIGUIER, CHRISTOPHE

Inventor name: MICHAU, MARION

Inventor name: TIPIEL, ALAIN

Inventor name: RAVET, FREDERIC

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60323286

Country of ref document: DE

Date of ref document: 20081016

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2312731

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090604

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20130207

Year of fee payment: 11

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140222

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: SAFRAN AIRCRAFT ENGINES

Effective date: 20170719

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220124

Year of fee payment: 20

Ref country code: DE

Payment date: 20220119

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20220120

Year of fee payment: 20

Ref country code: IT

Payment date: 20220119

Year of fee payment: 20

Ref country code: FR

Payment date: 20220119

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60323286

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20230220

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20230220