JP4894947B2 - Combustor and combustion method of combustor - Google Patents

Combustor and combustion method of combustor Download PDF

Info

Publication number
JP4894947B2
JP4894947B2 JP2010210352A JP2010210352A JP4894947B2 JP 4894947 B2 JP4894947 B2 JP 4894947B2 JP 2010210352 A JP2010210352 A JP 2010210352A JP 2010210352 A JP2010210352 A JP 2010210352A JP 4894947 B2 JP4894947 B2 JP 4894947B2
Authority
JP
Japan
Prior art keywords
mixing chamber
fuel
combustion
air
air introduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2010210352A
Other languages
Japanese (ja)
Other versions
JP2010281566A (en
Inventor
正平 吉田
義隆 平田
洋 井上
知也 室田
俊文 笹尾
成嘉 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2010210352A priority Critical patent/JP4894947B2/en
Publication of JP2010281566A publication Critical patent/JP2010281566A/en
Application granted granted Critical
Publication of JP4894947B2 publication Critical patent/JP4894947B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、燃焼器及び燃焼器の燃焼方法に関する。   The present invention relates to a combustor and a combustion method for the combustor.

従来の燃焼器構造として、例えば、特許文献(特表2004−50771号公報,US2003/0152880A1)があげられる。この技術では、スワール体外面に燃料供給部を備えた二重円錐バーナが開示されている。   As a conventional combustor structure, for example, there is a patent document (Japanese Patent Publication No. 2004-50771, US2003 / 0152880A1). In this technique, a double cone burner having a fuel supply portion on the outer surface of a swirl body is disclosed.

特表2004−50771号公報Special table 2004-50771

上記従来技術では、逆火や火炎安定性については考慮されていなかった。   In the above prior art, backfire and flame stability are not considered.

本発明の目的は、逆火を抑制し安定した燃焼である燃焼器及び燃焼器の燃焼方法を提供することにある。   An object of the present invention is to provide a combustor and a combustion method for the combustor that can suppress backfire and perform stable combustion.

燃焼用空気と燃料を混合した混合ガスを燃焼して燃焼ガスを生成する燃焼室と、前記燃焼室の入口において中心部に設けられたパイロットバーナと、前記パイロットバーナの周囲に複数配置されたメインバーナとを備え、前記メインバーナは、前記混合ガスを生成する混合室と、前記混合室に液体燃料を供給可能な燃料ノズルと、前記混合室を内部に形成する混合室形成部材と、前記混合室形成部材の外周側から前記混合室に燃焼用空気を供給する空気孔を前記混合室形成部材に周方向及び軸方向で複数設け、前記空気孔内に気体燃料を供給可能な供給孔が穿設する。
A combustion chamber for generating a combustion gas by burning a mixed gas in which combustion air and fuel are mixed; a pilot burner provided at a central portion at an inlet of the combustion chamber; and a plurality of mains disposed around the pilot burner The main burner includes a mixing chamber for generating the mixed gas, a fuel nozzle capable of supplying liquid fuel to the mixing chamber, a mixing chamber forming member for forming the mixing chamber therein, and the mixing A plurality of air holes for supplying combustion air to the mixing chamber from the outer peripheral side of the chamber forming member are provided in the mixing chamber forming member in the circumferential direction and the axial direction, and supply holes capable of supplying gaseous fuel are formed in the air hole. Set up.

本発明によると、逆火を抑制し安定した燃焼である燃焼器及び燃焼器の燃焼方法を提供することができる。   According to the present invention, it is possible to provide a combustor and a combustion method for the combustor that can suppress backfire and perform stable combustion.

本発明の実施形態であるガスタービンプラントの全体構成を示す。The whole structure of the gas turbine plant which is embodiment of this invention is shown. 本発明の実施形態である燃焼器のバーナ構造の断面図を示す。The sectional view of the burner structure of the combustor which is an embodiment of the present invention is shown. 本発明の流路である空気導入孔14部の断面図(図2のIII−III断面)を示す。Sectional drawing (III-III cross section of FIG. 2) of the air introduction hole 14 part which is a flow path of this invention is shown. 本発明の流路である空気導入孔16部の断面図(図2のIV−IV断面)を示す。Sectional drawing (IV-IV cross section of FIG. 2) of the air introduction hole 16 part which is a flow path of this invention is shown. 本発明の流路である空気導入孔の燃料供給部における断面図(図2のV−V断面)を示す。Sectional drawing (VV cross section of FIG. 2) in the fuel supply part of the air introduction hole which is a flow path of this invention is shown. 本発明の流路である空気導入孔の燃料供給部における断面図を示す。Sectional drawing in the fuel supply part of the air introduction hole which is a flow path of this invention is shown. 本発明の実施形態である燃焼器のバーナ構造の断面図を示す。The sectional view of the burner structure of the combustor which is an embodiment of the present invention is shown. 本発明の実施形態である燃焼器のバーナ構造の断面図を示す。The sectional view of the burner structure of the combustor which is an embodiment of the present invention is shown. 本発明の実施形態である燃焼器のバーナ構造の断面図を示す。The sectional view of the burner structure of the combustor which is an embodiment of the present invention is shown. 本発明の流路である空気導入孔214部の断面図を示す。Sectional drawing of the air introduction hole 214 part which is a flow path of this invention is shown. 本発明の流路である空気導入孔218部の断面図を示す。Sectional drawing of the air introduction hole 218 part which is a flow path of this invention is shown. 本発明の実施形態である燃焼器のバーナ構造の断面図を示す。The sectional view of the burner structure of the combustor which is an embodiment of the present invention is shown. 本発明の流路である空気導入孔314部の断面図を示す。Sectional drawing of the air introduction hole 314 part which is a flow path of this invention is shown. 本発明の流路である空気導入孔315部の断面図を示す。Sectional drawing of the air introduction hole 315 part which is a flow path of this invention is shown. 本発明の実施形態である燃焼器のバーナ構造の断面図を示す。The sectional view of the burner structure of the combustor which is an embodiment of the present invention is shown. 本発明の実施形態である燃焼器のバーナ構造図を示す。The burner structure figure of the combustor which is embodiment of this invention is shown. 本発明の実施形態である燃焼器バーナのカバー構造図を示す。The cover structural drawing of the combustor burner which is embodiment of this invention is shown. 本発明の実施形態である燃焼器のバーナ組立構造図を示す。The burner assembly structure figure of the combustor which is embodiment of this invention is shown.

燃焼用空気と燃料を混合する混合室を内部に形成する混合室形成部材を設け、混合室形成部材内に外周側から該混合室に燃焼用空気を供給する流路を設ける。   A mixing chamber forming member for forming a mixing chamber for mixing combustion air and fuel is provided inside, and a flow path for supplying combustion air to the mixing chamber from the outer peripheral side is provided in the mixing chamber forming member.

以下、本発明の燃焼器及び燃焼方法の実施形態を図面を参照しつつ説明する。まず、本発明の第1の実施形態を図1乃至図5を参照しつつ以下に説明する。   Hereinafter, embodiments of a combustor and a combustion method of the present invention will be described with reference to the drawings. First, a first embodiment of the present invention will be described below with reference to FIGS.

図1は、本発明の第1の実施形態である、ガスタービンプラントの全体構成を示し、その中でガスタービン燃焼器の構成を側断面図で示す。図1に示すように、ガスタービンプラントは、主として、空気を圧縮して高圧の燃焼用空気を生成する圧縮機1と、この圧縮機1から導入される圧縮空気と燃料とを混合して燃焼ガスを生成する燃焼器2と、この燃焼器2で生成された燃焼ガスが導入されるガスタービン3とを備えている。なお、圧縮機1とガスタービン3とは連結されている。   FIG. 1 shows an overall configuration of a gas turbine plant according to a first embodiment of the present invention, in which a configuration of a gas turbine combustor is shown in a side sectional view. As shown in FIG. 1, a gas turbine plant mainly combusts a compressor 1 that compresses air to generate high-pressure combustion air, and a mixture of compressed air and fuel introduced from the compressor 1. A combustor 2 that generates gas and a gas turbine 3 into which combustion gas generated by the combustor 2 is introduced are provided. The compressor 1 and the gas turbine 3 are connected.

燃焼器2は、燃焼用空気に燃料を混合する混合室4及びこの混合室4を内部に形成する混合室形成部材である混合室壁5を備えたバーナ11と、混合室4で混合された混合ガスを燃焼して燃焼ガスを生成する燃焼室6と、この燃焼室6を内部に形成する内筒7と、この内筒7からの燃焼ガスをガスタービン3に導くトランジションピース8と、これらバーナ11,内筒7、及びトランジションピース8を内部に収納した外筒9と、この外筒9に支持され、燃焼室6内で混合ガスを点火させる点火栓10とを備えている。このような構成により、圧縮機1からの圧縮空気は図1中矢印アに示すように混合室4内に導入されて燃料と混合され、この混合ガスが燃焼室6内で点火栓10により点火されて燃焼し、燃焼によって生成した燃焼ガスが図1中矢印イに示すようにトランジションピース8を介してガスタービン3に噴射されてガスタービン3を駆動する。これにより、図示しないガスタービン3に連結された発電機が駆動して発電するようになっている。   The combustor 2 was mixed in the mixing chamber 4 with a mixing chamber 4 for mixing fuel into combustion air and a burner 11 having a mixing chamber wall 5 as a mixing chamber forming member for forming the mixing chamber 4 therein. Combustion chamber 6 that combusts mixed gas to generate combustion gas, inner cylinder 7 that forms this combustion chamber 6 inside, transition piece 8 that guides the combustion gas from this inner cylinder 7 to gas turbine 3, and these A burner 11, an inner cylinder 7, and an outer cylinder 9 in which a transition piece 8 is housed, and an ignition plug 10 that is supported by the outer cylinder 9 and ignites a mixed gas in the combustion chamber 6. With such a configuration, the compressed air from the compressor 1 is introduced into the mixing chamber 4 and mixed with fuel as indicated by the arrow a in FIG. 1, and this mixed gas is ignited by the spark plug 10 in the combustion chamber 6. Then, the combustion gas generated by the combustion is injected into the gas turbine 3 through the transition piece 8 as shown by an arrow A in FIG. 1 to drive the gas turbine 3. Thereby, the generator connected to the gas turbine 3 (not shown) is driven to generate power.

図2はバーナ11の詳細構造を表す側断面図である。図2に示すように、混合室4を形成する混合室形成部材の混合室内壁5aは燃焼室6方向(図2中右方向、言い換えれば後述する第1燃料ノズル13の噴出方向)に向かって拡開したディフーザ形状又は中空円錐状の形状をしており、この混合室内壁5aの円錐のほぼ頂点部分には混合室壁5の軸心線L1とほぼ同軸方向となるように燃焼室6の上流位置に第1の燃料を噴出する第1燃料ノズル13が設けられている。また、混合室外壁5bは円筒形状に形成され、混合室壁5には、その周方向複数箇所及び軸心線L1方向(以下、軸方向と記載する)に複数段(本実施の形態では3段)となるように、圧縮機1からの燃焼用空気を混合室4内に導入する空気導入孔14,15,16が穿設されており、軸方向上流側(図2中左側)から空気導入孔14,15,16の順で配置されている。つまり、混合室形成部材内に空気導入孔14,15,16等の流路が形成されている。   FIG. 2 is a side sectional view showing the detailed structure of the burner 11. As shown in FIG. 2, the mixing chamber wall 5a of the mixing chamber forming member forming the mixing chamber 4 is directed toward the combustion chamber 6 (the right direction in FIG. 2, in other words, the ejection direction of the first fuel nozzle 13 described later). It has an expanded diffuser shape or a hollow conical shape, and the combustion chamber 6 has a conical shape substantially coaxial with the axial line L1 of the mixing chamber wall 5 at the substantially apex portion of the cone of the mixing chamber wall 5a. A first fuel nozzle 13 for ejecting the first fuel is provided at the upstream position. Moreover, the mixing chamber outer wall 5b is formed in a cylindrical shape, and the mixing chamber wall 5 has a plurality of stages (three in this embodiment) in the circumferential direction at a plurality of locations and in the axial center line L1 direction (hereinafter referred to as the axial direction). Air introduction holes 14, 15, 16 for introducing combustion air from the compressor 1 into the mixing chamber 4 are formed so as to be air from the upstream side in the axial direction (left side in FIG. 2). The introduction holes 14, 15 and 16 are arranged in this order. That is, flow paths such as air introduction holes 14, 15, 16 are formed in the mixing chamber forming member.

上記の空気導入孔14,15,16のそれぞれでは、空気導入孔14,15,16の内部に第2の燃料を噴出する複数の燃料孔17,18,19が設けられている。この燃料孔17,18,19は、混合室外壁5b近傍の空気導入孔内に設けられ、混合室4の上流部に設けた第2の燃料の燃料マニホールド12と連絡しており、空気導入孔14,15,16の軸心線L2,L3,L4とほぼ垂直方向に第2の燃料を噴出できるようになっている。この第2の燃料は、空気の流れに対してほぼ直角方向に供給される。   In each of the air introduction holes 14, 15, 16, a plurality of fuel holes 17, 18, 19 for ejecting the second fuel are provided inside the air introduction holes 14, 15, 16. The fuel holes 17, 18, 19 are provided in the air introduction hole in the vicinity of the mixing chamber outer wall 5 b and communicate with the second fuel fuel manifold 12 provided in the upstream portion of the mixing chamber 4. The second fuel can be ejected in a direction substantially perpendicular to the axial center lines L2, L3, and L4 of 14, 15, and 16. This second fuel is supplied in a direction substantially perpendicular to the air flow.

なお、第1燃料ノズル13には、第1燃料供給系統20から第1燃料が供給されるようになっており、燃料孔17,18,19には第2燃料供給系統21から第2燃料が供給されるようになっている(図1参照)。第1燃料,第2燃料は同一種類の気体燃料あるいは液体燃料でも良く、例えば、発熱量の異なる気体燃料でも良い、また、第1の燃料を液体燃料,第2の燃料を気体燃料としても良い。さらに、液体燃料のみを第1燃料ノズル13に供給する場合、気体燃料のみを燃料孔17,18,19に供給する場合、液体燃料を第1燃料ノズル13に供給すると同時に気体燃料を燃料孔17,18,19に供給する場合がガスタービンの運用上考えられる。   The first fuel nozzle 13 is supplied with the first fuel from the first fuel supply system 20, and the second fuel is supplied to the fuel holes 17, 18, 19 from the second fuel supply system 21. (See FIG. 1). The first fuel and the second fuel may be the same type of gaseous fuel or liquid fuel, for example, may be gaseous fuels having different calorific values, or the first fuel may be liquid fuel and the second fuel may be gaseous fuel. . Further, when only liquid fuel is supplied to the first fuel nozzle 13, when only gaseous fuel is supplied to the fuel holes 17, 18, 19, the liquid fuel is supplied to the first fuel nozzle 13 and simultaneously the gaseous fuel is supplied to the fuel holes 17. , 18, 19 may be considered in the operation of the gas turbine.

第1の実施形態では、第1燃料ノズル13に液体燃料のみを供給する場合と、燃料孔17,18,19に気体燃料のみを供給する場合のガスタービンの運用方法について以下説明する。   In the first embodiment, an operation method of the gas turbine when only liquid fuel is supplied to the first fuel nozzle 13 and when only gaseous fuel is supplied to the fuel holes 17, 18, and 19 will be described below.

上記の空気導入孔14,15,16は、燃焼用空気の混合室4への導入角度が混合室壁5の少なくとも周方向に向かって偏向するように設けられており、さらに詳しくは、混合室4の上流側では、液体燃料の第1燃料ノズル13の噴出位置近傍に向かって燃焼用空気噴流、あるいは気体燃料と燃焼用空気との混合噴流を噴出するように配置され、混合室4の下流側に向かうにしたがって、燃焼用空気噴流、あるいは気体燃料と燃焼用空気との混合噴流が混合室壁5の内周面5aに沿うように配置される。この詳細について、図3,図4、及び先の図2を用いて説明する。   The air introduction holes 14, 15, 16 are provided so that the angle at which combustion air is introduced into the mixing chamber 4 is deflected toward at least the circumferential direction of the mixing chamber wall 5. 4 is arranged so as to eject a combustion air jet or a mixed jet of gaseous fuel and combustion air toward the vicinity of the ejection position of the first fuel nozzle 13 for liquid fuel, and downstream of the mixing chamber 4. A combustion air jet or a mixed jet of gaseous fuel and combustion air is arranged along the inner peripheral surface 5 a of the mixing chamber wall 5 toward the side. Details will be described with reference to FIGS. 3 and 4 and FIG.

図3は、空気導入孔14が穿設された軸方向位置における混合室壁5の横断面図(図2中III−III断面)であり、図4は、空気導入孔16が穿設された軸方向位置における混合室壁5の横断面図(図2中IV−IV断面)である。   FIG. 3 is a cross-sectional view of the mixing chamber wall 5 at the axial position where the air introduction hole 14 is drilled (III-III section in FIG. 2), and FIG. 4 is a diagram where the air introduction hole 16 is drilled. It is a cross-sectional view (IV-IV cross section in FIG. 2) of the mixing chamber wall 5 in the axial position.

図3及び図4において、Xは空気導入孔14,16の軸心線L2,L4と混合室壁5の軸心線L1とのオフセット距離(すなわち、軸心線L1と軸心線L2,L4のそれぞれとを双方に垂直に直交する線分で結んだ際のその線分の長さ)、Dは空気導入孔14,16が穿設された軸方向位置における混合室壁5の内径である。本実施形態では、混合室壁5の軸方向下流側(図2中右側)に向かうにしたがってX/Dが大きくなるように、空気導入孔14,15,16の周方向角度を変化させて設けている。これにより、混合室4の上流位置ではX/Dが小さくなり、図3中矢印ウに示すように空気導入孔14から噴出される燃焼用空気は混合室壁5の軸心線L1近傍(すなわち液体燃料の第1燃料ノズル13の噴出位置近傍)に向かって流入するようになっている。一方、混合室4の下流位置ではX/Dが大きくなり、図4中矢印エに示すように空気導入孔16から噴出される燃焼用空気は混合室壁5の内周面5aに沿うように流入するようになっている。   3 and 4, X is an offset distance between the axis L2 and L4 of the air introduction holes 14 and 16 and the axis L1 of the mixing chamber wall 5 (that is, the axis L1 and the axes L2 and L4). , D is the inner diameter of the mixing chamber wall 5 at the axial position where the air introduction holes 14 and 16 are drilled. . In the present embodiment, the circumferential angle of the air introduction holes 14, 15, 16 is changed so that X / D increases toward the downstream side in the axial direction (right side in FIG. 2) of the mixing chamber wall 5. ing. Thereby, X / D becomes small in the upstream position of the mixing chamber 4, and the combustion air ejected from the air introduction hole 14 is near the axial center line L 1 of the mixing chamber wall 5 (that is, as shown by an arrow C in FIG. 3). The liquid fuel flows toward the vicinity of the ejection position of the first fuel nozzle 13. On the other hand, X / D increases at the downstream position of the mixing chamber 4 so that the combustion air ejected from the air introduction hole 16 is along the inner peripheral surface 5a of the mixing chamber wall 5 as shown by the arrow D in FIG. Inflow.

また、本実施形態においては、空気導入孔14,15,16の軸方向角度についても軸心線L1方向位置に応じて変化をつけて設けている。すなわち、図2に示すように、混合室壁5内の最も上流側である空気導入孔14についてはその軸心線L2と混合室壁5の内周面5aとの角度α1を比較的大きくし(例えば、空気導入孔14の軸心線L2を含む平面が軸心線L1と略垂直に交わるような略角度とする)、混合室壁5内の中・下流側である空気導入孔15,16についてはその軸心線L3,L4と混合室壁内周面5aとの角度α2を比較的小さくしている(例えば約90°程度)。これにより、空気導入孔14からの燃焼用空気が上述したX/Dを小さくした効果と合わせて軸心線L1に対して(液体燃料の第1燃料ノズル13から噴出される液体燃料に対して)略直角に流入するようになっている。   In the present embodiment, the axial angles of the air introduction holes 14, 15, and 16 are also changed according to the position of the axial center line L <b> 1. That is, as shown in FIG. 2, the angle α1 between the axial center line L2 and the inner peripheral surface 5a of the mixing chamber wall 5 is relatively increased for the air introduction hole 14 which is the most upstream side in the mixing chamber wall 5. (For example, the plane including the axis L2 of the air introduction hole 14 is at an angle such that the plane intersecting the axis L1 substantially perpendicularly) 16, the angle α2 between the axis L3, L4 and the mixing chamber wall inner peripheral surface 5a is relatively small (for example, about 90 °). Thereby, the combustion air from the air introduction hole 14 is combined with the effect of reducing the above-mentioned X / D with respect to the axial center line L1 (with respect to the liquid fuel ejected from the first fuel nozzle 13 of the liquid fuel. ) It flows in at a substantially right angle.

また、空気導入孔15,16については上述したようにX/Dが比較的大きくなることから周方向の偏向量が大きく、そのため空気導入孔15,16の出口(混合室4側)の口径が大きくなり、上記空気導入孔14と同様の角度α1とした場合には隣同士の導入孔出口が干渉してしまって空気導入孔15,16の周方向の設置数を少なくしなければならないが、本実施の形態によれば、角度をα2として空気導入孔15,16の軸心線L3,L4と内周面5aとの角度を略直角として出口の径を小さくでき、これにより空気導入孔15,16の周方向の設置数を確保することができるようになっている。このような構成とすることで、混合室4及び混合室壁5をコンパクト化することができるようになっている。   Further, as described above, since the X / D becomes relatively large for the air introduction holes 15 and 16, the amount of deflection in the circumferential direction is large, so that the diameter of the outlet (mixing chamber 4 side) of the air introduction holes 15 and 16 is large. When the angle α1 is the same as that of the air introduction hole 14, the adjacent introduction hole outlets interfere with each other, and the number of air introduction holes 15 and 16 installed in the circumferential direction must be reduced. According to the present embodiment, it is possible to reduce the diameter of the outlet by making the angle α2 and the angle between the axial center lines L3, L4 of the air introduction holes 15 and 16 and the inner peripheral surface 5a substantially perpendicular, thereby reducing the air introduction hole 15. , 16 can be secured in the circumferential direction. With such a configuration, the mixing chamber 4 and the mixing chamber wall 5 can be made compact.

図5は空気導入孔14に穿設された燃料孔17の位置における混合室壁5の断面図(図2中V−V断面)である。燃料孔17は一つ空気導入孔に一つ、軸心線L1に対して直角に形成され、気体燃料は図中矢印オに示すように、空気導入孔14の中心に向って供給されるように構成されている。   FIG. 5 is a cross-sectional view of the mixing chamber wall 5 at the position of the fuel hole 17 formed in the air introduction hole 14 (VV cross section in FIG. 2). One fuel hole 17 is formed in one air introduction hole and perpendicular to the axis L1, and the gaseous fuel is supplied toward the center of the air introduction hole 14 as shown by an arrow O in the figure. It is configured.

次に、上記構成の本発明のガスタービン燃焼器及びその燃料供給による燃焼方法の第1の実施形態により得られる作用を以下に項目ごとに順に説明する。   Next, the operation obtained by the first embodiment of the combustion method by the gas turbine combustor of the present invention having the above-described configuration and its fuel supply will be described in order for each item below.

(1)火炎の逆火防止作用。本実施の形態において燃料孔17,18,19から気体燃料を供給する場合、燃料孔17,18,19から空気導入孔14,15,16に向かって気体燃料を噴出し、この気体燃料と圧縮機1から導入される燃焼用空気とを空気導入孔14,15,16から混合室4内に導入する。気体燃料孔17,18,19から噴出された気体燃料、及び燃焼用空気を混合室4内で充分に混合して均質な予混合ガスとし、混合室4の下流側の燃焼室6において燃焼させることによって、ガスタービン3に燃焼ガスを供給する。 (1) Action to prevent backfire of flame. In the present embodiment, when gaseous fuel is supplied from the fuel holes 17, 18, 19, the gaseous fuel is ejected from the fuel holes 17, 18, 19 toward the air introduction holes 14, 15, 16, and the gaseous fuel and compression are performed. Combustion air introduced from the machine 1 is introduced into the mixing chamber 4 through the air introduction holes 14, 15, 16. The gaseous fuel ejected from the gaseous fuel holes 17, 18, and 19 and the combustion air are sufficiently mixed in the mixing chamber 4 to form a homogeneous premixed gas and burned in the combustion chamber 6 on the downstream side of the mixing chamber 4. Thus, the combustion gas is supplied to the gas turbine 3.

ここで、例えば空気導入孔14,15,16が気体燃料孔17,18,19から噴出された気体燃料と燃焼用空気とを予混合するのに充分な長さを有するような構造で、且つ、下流側へ縮径したり、曲がり部があったりした場合には、空気導入孔14,15,16内での混合ガスの自発発火、又は燃焼室6から混合室4を経て空気導入孔14,15,16内への火炎の逆火が生じた場合、縮径の上流部の流速の遅い領域や曲がり部に発生する渦に火炎が保持されてしまう恐れがある。また、燃焼器2に導入される燃焼用空気は圧縮機1で圧縮して生成され、各流路を流下する過程において塵埃等が含まれることも少なくない。このため、空気導入孔14,15,16に導入される燃焼用空気に可燃性の塵埃等が含まれる場合には、その塵埃等が火種になって空気導入孔14,15,16内の縮径上流部の流速の遅い領域や曲がり部に発生する渦に火炎が保持されてしまう恐れがある。   Here, for example, the air introduction holes 14, 15, 16 have a structure that is long enough to premix the gaseous fuel ejected from the gaseous fuel holes 17, 18, 19 and the combustion air, and When the diameter is reduced to the downstream side or when there is a bent portion, the self-ignition of the mixed gas in the air introduction holes 14, 15, 16, or the air introduction hole 14 from the combustion chamber 6 through the mixing chamber 4. , 15, 16, there is a risk that the flame may be held in a vortex generated in a low-velocity region or a bent portion in the upstream portion of the reduced diameter. In addition, the combustion air introduced into the combustor 2 is generated by being compressed by the compressor 1, and dust and the like are often included in the process of flowing down each flow path. For this reason, when the combustion air introduced into the air introduction holes 14, 15, 16 includes flammable dust or the like, the dust or the like becomes a fire type and the inside of the air introduction holes 14, 15, 16 is contracted. There is a risk that the flame may be held in a vortex generated in a region where the flow velocity is low in the upstream portion of the diameter or in a bent portion.

また、空気導入孔内部に火炎を保持する渦を発生する機構がない場合でも、比較例(特表2004−50771号公報)のように、スワール体の外表面に燃料供給部のような構造物が存在すると、この構造物によってスワール体周囲の空気の流れを乱したり、構造物の下流方向に比較的強い小さな渦が発生したりするため、この渦によって空気導入孔14,15,16内部に火炎が保持されることが考えられる。特に、比較例のように、スワール体の空気入口近傍に燃料供給部のような構造物が存在する場合、構造物によって発生した渦が減衰することなくスワール体に流入するため、火炎保持の可能性が高くなる。また、スワール体の空気入口部に空気流の乱れや渦が発生した場合、スワール体入口部の静圧分布が変化するため、燃焼器の軸方向に開口された空気入口部の軸方向位置でスワール体に流入する空気流量が設計値と異なるため、スワール体内部の燃料濃度分布が乱れ燃焼振動が発生したり、燃焼振動によって火炎戻りが発生したりする可能性がある。   Further, even when there is no mechanism for generating a vortex for holding a flame inside the air introduction hole, a structure such as a fuel supply unit is provided on the outer surface of the swirl body as in the comparative example (Japanese Patent Publication No. 2004-50771). Is present, this structure disturbs the flow of air around the swirl body and generates a relatively strong small vortex in the downstream direction of the structure. It is conceivable that a flame is held in the air. In particular, as in the comparative example, when there is a structure such as a fuel supply part near the air inlet of the swirl body, the vortex generated by the structure flows into the swirl body without being attenuated. Increases nature. In addition, when air flow turbulence or vortices occur at the air inlet of the swirl body, the static pressure distribution at the swirl body inlet changes, so the axial position of the air inlet that opens in the axial direction of the combustor Since the flow rate of air flowing into the swirl body is different from the design value, the fuel concentration distribution inside the swirl body may be disturbed to cause combustion vibrations, or there may be a flame return due to the combustion vibrations.

このような事態が生じた場合、混合室壁5の過熱による変形・破損を招き、ガスタービンプラント全体の損傷を考慮する必要がある。   When such a situation occurs, the mixing chamber wall 5 is deformed or broken due to overheating, and it is necessary to consider damage to the entire gas turbine plant.

これに対し、本実施の形態においては、燃焼用空気と気体燃料孔17,18,19から噴出された気体燃料とを混合して混合室4に導入する空気導入孔14,15,16が下流側へ縮径した形状を有さないこと、渦が発生する曲がり部などがない構造としていることから、自発発火や火炎戻り、あるいは燃焼用空気に可燃性の塵埃等の混入により空気導入孔14,15,16内部に火炎が侵入しても、空気導入孔14,15,16内に留まらずに直ちに混合室4内に噴出されるので、逆火した火炎が保持されるといった事態を防止できる。   On the other hand, in the present embodiment, the air introduction holes 14, 15, 16 for mixing the combustion air and the gaseous fuel ejected from the gaseous fuel holes 17, 18, 19 and introducing them into the mixing chamber 4 are downstream. Therefore, the air introduction hole 14 may be caused by spontaneous ignition, flame return, or mixing of flammable dust into the combustion air. 15, 16, even if a flame penetrates, it does not stay in the air introduction holes 14, 15, 16, but is immediately ejected into the mixing chamber 4, so that it is possible to prevent a situation where a backfired flame is held. .

また、本実施の形態においては、燃料孔17,18,19が空気導入孔14,15,16の内部に形成されているため、空気導入孔14,15,16の周辺に空気の流れを乱したり渦を発生させたりするような構造物が存在しないため、混合室に流入する空気流の流量変動などが発生しにくくなり、火炎戻りの発生を抑制できる。このようにして、本発明の実施の形態によれば火炎の逆火を抑制することができる。   Further, in the present embodiment, since the fuel holes 17, 18, 19 are formed inside the air introduction holes 14, 15, 16, the air flow is disturbed around the air introduction holes 14, 15, 16. Since there is no structure that generates vortices or vortices, fluctuations in the flow rate of the airflow flowing into the mixing chamber are less likely to occur, and the occurrence of flame return can be suppressed. Thus, according to the embodiment of the present invention, it is possible to suppress the backfire of the flame.

(2)NOx発生量の低減作用。本実施の形態においては、図5に示したように、燃料孔17,18,19を空気導入孔14,15,16の内部で空気の流れとほぼ直角方向に噴出するように形成する。燃料孔17から噴出した気体燃料は、燃料孔17と対向する空気導入孔14の壁面14aに衝突して分散するため、空気導入孔14を流れる空気流との接触面積が増加して空気流との混合が促進される。 (2) NOx generation reduction action. In the present embodiment, as shown in FIG. 5, the fuel holes 17, 18, 19 are formed inside the air introduction holes 14, 15, 16 so as to be ejected in a direction substantially perpendicular to the air flow. Since the gaseous fuel ejected from the fuel hole 17 collides with the wall surface 14a of the air introduction hole 14 facing the fuel hole 17 and is dispersed, the contact area with the air flow flowing through the air introduction hole 14 increases, Is promoted.

また、燃料流量が増加すると燃料の噴出速度が増加するため燃料が壁面14aに衝突した際の分散が著しくなり空気流との混合がさらに促進される。   Further, when the fuel flow rate is increased, the fuel ejection speed is increased, so that the dispersion when the fuel collides with the wall surface 14a becomes remarkable, and the mixing with the air flow is further promoted.

さらに、本実施の形態では、空気導入孔14,15,16の内部で空気の流れに対し、燃料孔17から噴出する気体燃料がほぼ直角に噴出するように形成されており、さらに、気体燃料の貫通力(距離)に対し、空気導入孔14の直径を比較的小さくできる構造なので、壁面14aへの衝突速度が減衰しにくくなり、気体燃料が分散して空気流との混合が促進される。   Further, in the present embodiment, the gas fuel ejected from the fuel hole 17 is ejected substantially at right angles to the air flow inside the air introduction holes 14, 15, 16. Since the diameter of the air introduction hole 14 can be made relatively small with respect to the penetration force (distance), the collision speed to the wall surface 14a is not easily attenuated, and the gaseous fuel is dispersed to promote mixing with the air flow. .

これにより、空気導入孔14,15,16内に導入された燃焼用空気と気体燃料は空気導入孔14,15,16内で十分に混合され(以下、この状態の燃焼用空気及び気体燃料を1次混合ガスと記載する)、その後空気導入孔14,15,16から混合室4内に噴出し、その噴出の際に発生する渦流によって混合が促進される(以下、この状態の燃焼用空気及び気体燃料を2次混合ガスと記載する)。なお、この渦流は、流路がステップ状に拡大する際に通常発生するものである。   As a result, the combustion air and the gaseous fuel introduced into the air introduction holes 14, 15, and 16 are sufficiently mixed in the air introduction holes 14, 15, and 16 (hereinafter, the combustion air and the gaseous fuel in this state are mixed together). (Hereinafter referred to as the primary mixed gas), and then jetted into the mixing chamber 4 from the air introduction holes 14, 15, 16, and mixing is promoted by the vortex generated during the jetting (hereinafter, combustion air in this state) And gaseous fuel is described as a secondary gas mixture). Note that this vortex is normally generated when the flow path expands in a step shape.

このとき、本実施の形態においては、前述したように混合室壁5の軸方向下流側に向かうにしたがってX/Dが大きくなるように空気導入孔14,15,16の周方向角度を変化させて設ける。これにより、混合室4の上流位置においては空気導入孔14から噴出される2次混合ガスが液体燃料の第1燃料ノズル13の燃料噴出位置近傍に向かって流入する。これにより、空気導入孔14から噴出される2次燃焼ガス同士が速い速度で互いに衝突し合うため、混合がより一層促進される。一方、混合室4の中・下流位置では空気導入孔15,16から導入された2次混合ガスが混合室壁5の内周面5aに沿うように流入する。これにより、混合室4内に強い旋回流が発生し、この旋回流により各空気導入孔15,16から噴出した2次混合ガス同士が衝突されて、混合が大幅に促進される。このようにして、空気導入孔14,15,16から噴出された2次混合ガスは混合室4内において、充分に混合される。   At this time, in the present embodiment, as described above, the circumferential angle of the air introduction holes 14, 15, 16 is changed so that X / D increases toward the downstream side in the axial direction of the mixing chamber wall 5. Provide. Thereby, in the upstream position of the mixing chamber 4, the secondary mixed gas ejected from the air introduction hole 14 flows toward the vicinity of the fuel ejection position of the first fuel nozzle 13 for liquid fuel. Thereby, since the secondary combustion gases ejected from the air introduction hole 14 collide with each other at a high speed, mixing is further promoted. On the other hand, in the middle / downstream position of the mixing chamber 4, the secondary mixed gas introduced from the air introduction holes 15, 16 flows along the inner peripheral surface 5 a of the mixing chamber wall 5. As a result, a strong swirling flow is generated in the mixing chamber 4, and the secondary mixed gas ejected from the air introduction holes 15, 16 collides with the swirling flow, so that mixing is greatly promoted. In this way, the secondary mixed gas ejected from the air introduction holes 14, 15, 16 is sufficiently mixed in the mixing chamber 4.

また、本実施の形態においては、上流側の空気導入孔ほど空気導入孔の長さが長く構成されているため、上流側の空気導入孔ほど空気導入孔の内部で気体燃料と燃焼用空気の1次混合が促進される。   In the present embodiment, the length of the air introduction hole is longer in the upstream side air introduction hole, so that the upstream side air introduction hole has a larger amount of gaseous fuel and combustion air inside the air introduction hole. Primary mixing is promoted.

一方、液体燃料の第1燃料ノズル13から噴出される液体燃料は、空気導入孔14から噴出され略直角に衝突してくる燃焼用空気のせん断力によって微粒化され、且つその一部は蒸発して気体化するので、旋回流によって混合室4の下流に向かって流されつつ空気導入孔15,16から噴出する燃焼用空気との混合が促進される(以下、この液体燃料,気体燃料、及び燃焼用空気が混合された状態を予混合ガスと記載する)。   On the other hand, the liquid fuel ejected from the first fuel nozzle 13 of the liquid fuel is atomized by the shearing force of the combustion air ejected from the air introduction hole 14 and colliding at a substantially right angle, and a part thereof is evaporated. Therefore, mixing with the combustion air ejected from the air introduction holes 15 and 16 while being flowed toward the downstream of the mixing chamber 4 by the swirling flow is promoted (hereinafter, this liquid fuel, gaseous fuel, and A state in which combustion air is mixed is referred to as a premixed gas).

このようにして、同一構造の混合室4内において、気体燃料と燃焼用空気、あるいは液体燃料と燃焼用空気が充分に混合して均質な予混合ガスを生成することができるので、何れの燃料を用いてもNOxの発生量を低減することができる。   In this way, in the mixing chamber 4 having the same structure, the gaseous fuel and the combustion air, or the liquid fuel and the combustion air can be sufficiently mixed to generate a homogeneous premixed gas. Even if is used, the amount of NOx generated can be reduced.

(3)コーキング防止作用。本実施の形態によれば、混合室4上流位置ではX/Dが小さいことから、図3に示すように空気導入孔14から噴出される燃焼用空気が混合室壁5の軸心線L1付近に向かって流入するため、この中心領域にのみ強い旋回力が作用し、混合室壁5の内周面5a近傍では旋回流が減衰して旋回力が比較的小さくなる。このため、液体燃料の第1燃料ノズル13から噴出された液体燃料の液滴が旋回流の旋回作用によって混合室内周面5aに衝突するのを防止できる。したがって、コーキングの発生を防止することができる。 (3) Anti-coking effect. According to the present embodiment, since X / D is small at the upstream position of the mixing chamber 4, the combustion air ejected from the air introduction hole 14 is near the axis L <b> 1 of the mixing chamber wall 5 as shown in FIG. 3. Therefore, a strong swirl force acts only on the central region, and the swirl flow is attenuated near the inner peripheral surface 5a of the mixing chamber wall 5 so that the swirl force becomes relatively small. For this reason, it is possible to prevent the liquid fuel droplets ejected from the first fuel nozzle 13 of the liquid fuel from colliding with the mixing chamber peripheral surface 5a due to the swirling action of the swirling flow. Therefore, the occurrence of coking can be prevented.

また、液体燃料の第1燃料ノズル13の噴出位置近傍には噴出した小さな液滴が停滞する淀み域が発生する場合がある。この淀み域が発生すると、混合室内周面5aに液滴が付着する可能性が大きくなり、コーキングの発生の要因となる。本実施の形態によれば、上述したように燃焼用空気が周方向全域から液体燃料の第1燃料ノズル13の燃料噴出位置近傍に向かって流入するため、液体燃料の液滴が混合室内周面5aに付着しやすい上記淀み域の発生を抑制することができる。これにより、コーキングの発生を確実に防止することができる。   In addition, a stagnation region in which small ejected liquid droplets stagnate may occur in the vicinity of the ejection position of the first fuel nozzle 13 for liquid fuel. When this stagnation region occurs, the possibility of droplets adhering to the peripheral surface 5a of the mixing chamber increases, which causes coking. According to the present embodiment, as described above, the combustion air flows from the entire circumferential direction toward the vicinity of the fuel ejection position of the first fuel nozzle 13 of the liquid fuel. Occurrence of the stagnation region that easily adheres to 5a can be suppressed. Thereby, generation | occurrence | production of coking can be prevented reliably.

またさらに、粒径の比較的大きな液滴はその慣性力により旋回流の旋回力に逆らって混合室壁内周面5aに衝突することが考えられるが、本実施の形態によれば、混合室内周面5aの周方向全域にわたり空気導入孔14,15,16を設けているため、内周面5aに衝突しようとした液滴を空気導入孔14,15,16から噴出される燃焼用空気により吹き飛ばすことができる。これにより、さらに確実にコーキングの発生を防止できる。   Furthermore, it is conceivable that a droplet having a relatively large particle size collides with the mixing chamber wall inner peripheral surface 5a against the swirling force of the swirling flow due to its inertial force. Since the air introduction holes 14, 15, 16 are provided over the entire circumferential direction of the peripheral surface 5 a, the droplets that try to collide with the inner peripheral surface 5 a are caused by the combustion air ejected from the air introduction holes 14, 15, 16. Can be blown away. Thereby, the occurrence of coking can be prevented more reliably.

なお、例えば液体燃料の第1燃料ノズル13に圧力噴霧式渦巻型液体燃料ノズルを用いる場合、液体燃料の第1燃料ノズル13から噴出した液滴は遠心力により軸心線L1の外周側に向かって噴出することになる。このような場合でも、本実施の形態によれば、上述したように燃焼用空気が周方向全域から液体燃料の第1燃料ノズル13の燃料噴出位置近傍に向かって流入するため、噴出された液滴が外周側に拡がるのを抑制し、液滴が混合室内周面5aに衝突するのを防止できる。さらにこの場合には、燃焼用空気による液体燃料へのせん断力を最大限に作用させることができるため、液滴を微粒化し混合を大幅に促進させることが可能である。   For example, when a pressure spray type spiral liquid fuel nozzle is used as the first fuel nozzle 13 for liquid fuel, droplets ejected from the first fuel nozzle 13 for liquid fuel are directed toward the outer periphery of the axis L1 by centrifugal force. Will erupt. Even in such a case, according to the present embodiment, as described above, the combustion air flows from the entire circumferential direction toward the vicinity of the fuel ejection position of the first fuel nozzle 13 of the liquid fuel. It is possible to suppress the droplets from spreading to the outer peripheral side, and to prevent the droplets from colliding with the mixing chamber peripheral surface 5a. Further, in this case, since the shearing force to the liquid fuel by the combustion air can be exerted to the maximum extent, it is possible to atomize the droplets and greatly promote the mixing.

(4)燃焼安定性の向上作用。本実施の形態によれば、空気導入孔の入口部となる混合室外壁5bに空気流の乱れや渦を発生させるような構造物が存在しないため、混合室内部へ安定した空気流量を供給できるため燃焼安定性が向上する。 (4) Improvement of combustion stability. According to the present embodiment, since there is no structure that generates turbulence or vortices in the mixing chamber outer wall 5b serving as the inlet portion of the air introduction hole, a stable air flow rate can be supplied into the mixing chamber. Therefore, combustion stability is improved.

また、本実施の形態によれば混合室壁5の軸方向下流側に向かうにしたがってX/Dが大きくなるように空気導入孔14,15,16の周方向角度を変化させて設ける。これにより、混合室壁5の軸方向下流位置ほどX/Dが大きくなり、混合室4の出口領域では予混合ガスが強い旋回流を生じながら燃焼領域に流入する。これにより、混合室4の出口領域ではその軸心位置近傍に再循環領域が形成されて、燃焼安定性を向上することができる。   In addition, according to the present embodiment, the circumferential angle of the air introduction holes 14, 15, 16 is changed so that X / D becomes larger toward the downstream side in the axial direction of the mixing chamber wall 5. Thereby, X / D becomes large as the axial direction downstream position of the mixing chamber wall 5, and the premixed gas flows into the combustion region while generating a strong swirling flow in the outlet region of the mixing chamber 4. Thereby, in the exit area of the mixing chamber 4, a recirculation area is formed in the vicinity of the axial center position, and the combustion stability can be improved.

(5)その他の作用。本実施の形態によれば、バーナ11の空気導入孔14,15,16の内部に燃料孔17,18,19が一体化して形成されているため、バーナ11外形は円筒形でコンパクトな形状になり、逆火を誘発する原因となるはく離渦などが発生する割合が小さくなる。 (5) Other effects. According to the present embodiment, since the fuel holes 17, 18, and 19 are integrally formed inside the air introduction holes 14, 15, and 16 of the burner 11, the outer shape of the burner 11 is cylindrical and has a compact shape. Thus, the rate of occurrence of separation vortices that cause flashback is reduced.

(6)効率向上。本実施の形態によれば、燃焼用空気の流れがスムーズになるためバーナ11の圧力損失を小さくすることができるため、ガスタービンの全体の効率を向上することができる。 (6) Improved efficiency. According to the present embodiment, since the flow of combustion air becomes smooth, the pressure loss of the burner 11 can be reduced, so that the overall efficiency of the gas turbine can be improved.

次に、本発明のガスタービン燃焼器の第2の実施形態を図6を参照しつつ説明する。図6は本実施の形態における空気導入孔14と燃料孔17の一部分を表す側断面図である。   Next, a second embodiment of the gas turbine combustor of the present invention will be described with reference to FIG. FIG. 6 is a side sectional view showing a part of the air introduction hole 14 and the fuel hole 17 in the present embodiment.

第1の本実施の形態においては、前述したように燃料孔17,18,19が空気導入孔の内部に空気の流れとほぼ直角方向に噴出するように形成されているため、燃料孔から噴出した気体燃料は空気導入孔の対向する壁面に衝突し拡散されるため、空気導入孔の内部での1次混合が大幅に促進される。   In the first embodiment, as described above, the fuel holes 17, 18, 19 are formed in the air introduction hole so as to be ejected in a direction substantially perpendicular to the air flow. The gaseous fuel thus collided with the opposing wall surface of the air introduction hole is diffused, so that the primary mixing inside the air introduction hole is greatly promoted.

図6(a)から図6(d)に示した本実施の形態も、第1の実施の形態と同様に空気の流れとほぼ直角方向に噴出するように形成されている。   The present embodiment shown in FIGS. 6 (a) to 6 (d) is also formed so as to be ejected in a direction substantially perpendicular to the air flow, as in the first embodiment.

図6(a)は一つの空気導入孔14に二つの燃料孔17aを形成したもので、燃料孔17aが互いに対向する位置に形成されているため、気体燃料は図中矢印オに示すように空気導入孔14の中心に向かって噴出される。   In FIG. 6A, two fuel holes 17a are formed in one air introduction hole 14. Since the fuel holes 17a are formed at positions facing each other, the gaseous fuel is indicated by an arrow o in the figure. It is ejected toward the center of the air introduction hole 14.

また、図6−bは一つの空気導入孔14に四つの燃料孔17bを形成したもので、図6(a)の構造と同様に燃料孔17bが互いに対向する位置に形成されているため、気体燃料は図中矢印カに示すように空気導入孔14の中心に向かって噴出される。   FIG. 6B shows a case where four fuel holes 17b are formed in one air introduction hole 14, and the fuel holes 17b are formed at positions facing each other as in the structure of FIG. 6A. The gaseous fuel is ejected toward the center of the air introduction hole 14 as indicated by an arrow in the figure.

図6(a),(b)ともに燃料孔数が第1の実施の形態より増加しているため空気との接触面積が増加し混合が促進される。また、図6(a),(b)ともに燃料孔がそれぞれ対向する位置に形成されており、燃料孔から噴出した気体燃料が空気孔の中央部で衝突し拡散するため、空気との接触面積の増加に伴い混合が促進される。さらに、本実施の形態では、供給燃料流量が増加するほど燃料孔17a,17bから噴出する噴出速度が増加し、気体燃料が衝突した時の拡散が著しくなり混合が促進される。   6 (a) and 6 (b), the number of fuel holes is increased from that in the first embodiment, so that the contact area with air is increased and mixing is promoted. 6A and 6B, the fuel holes are formed at opposing positions, and the gaseous fuel ejected from the fuel holes collides and diffuses at the center of the air hole, so that the contact area with the air Mixing is promoted with the increase of. Further, in the present embodiment, as the flow rate of the supplied fuel increases, the ejection speed ejected from the fuel holes 17a and 17b increases, so that the diffusion when the gaseous fuel collides becomes remarkable and the mixing is promoted.

図6(c)は一つの空気導入孔14に二つの燃料孔17cを形成したもので、燃料孔17cを空気孔の内壁近傍に設置することよって、気体燃料を図中矢印キに示すように空気導入孔の壁面を沿うに噴出させ、気体燃料が空気導入孔の内部で旋回するように構成したものである。空気導入孔14の内部で燃料孔17cから噴出した気体燃料は図中矢印キに示すように、旋回しながら流下するため、燃焼用空気との接触時間が長くなり、混合が大幅に促進される。また、本実施の形態では一つの空気孔に二つの燃料孔を設置した場合を例に説明したが、燃料孔が一つの場合でも混合を促進させる効果は期待できる。   FIG. 6 (c) shows a case where two fuel holes 17c are formed in one air introduction hole 14, and the gaseous fuel is indicated by an arrow K in the figure by installing the fuel hole 17c in the vicinity of the inner wall of the air hole. The gas fuel is jetted along the wall surface of the air introduction hole so that the gaseous fuel swirls inside the air introduction hole. Since the gaseous fuel ejected from the fuel hole 17c inside the air introduction hole 14 flows down while swirling as shown by arrows in the figure, the contact time with the combustion air becomes longer and mixing is greatly promoted. . Further, in the present embodiment, the case where two fuel holes are provided in one air hole has been described as an example, but the effect of promoting mixing can be expected even when there is one fuel hole.

図6(a),(b),(c)は何れも空気流との接触面積や接触時間が増加する効果で1次混合が促進され、その結果、混合室4での2次混合も促進されるため、NOxの発生量をさらに低減することができる。   6 (a), 6 (b), and 6 (c), the primary mixing is promoted by the effect of increasing the contact area and the contact time with the air flow. As a result, the secondary mixing in the mixing chamber 4 is also promoted. Therefore, the amount of NOx generated can be further reduced.

図6(d)は空気導入孔14に断面積の異なる燃料孔17d,17eを形成したもので、燃料孔17dからは主気体燃料を噴出し、燃料孔17eからは主気体燃料と発熱量の異なる副気体燃料を噴出するように構成したものである。   FIG. 6D shows fuel holes 17d and 17e having different cross-sectional areas formed in the air introduction hole 14. The main gas fuel is ejected from the fuel hole 17d, and the main gas fuel and the calorific value of the fuel hole 17e are generated. It is configured to eject different sub-gas fuels.

石油化学プラントなどでは、主燃料を生成する過程で様々な副生燃料が生成される場合が考えられる。プラントのガスタービン発電設備では、このような副生ガスをガスタービン燃焼器の燃料とし用いる要求が増加することが考えられるが、本実施の形態では、燃料孔17dより主気体燃料を図中矢印ケに示すように噴出し、副生燃料を燃料孔17eより図中矢印クに示すように噴出し、空気導入孔の内部で、空気,主燃料,副生燃料を混合させることができるため、混合が促進する。また、燃料孔17eの断面積は副生燃料の流量によって調整するものであり、さらに、燃料孔17eに供給する気体は窒素や蒸気などでも良く、可燃性の気体燃料に限ることはない。   In petrochemical plants, various by-product fuels may be generated in the process of generating main fuel. In the gas turbine power generation facility of the plant, it is considered that the demand for using such a by-product gas as a fuel for the gas turbine combustor is increased. In the present embodiment, the main gas fuel is indicated by an arrow in the figure from the fuel hole 17d. As shown in the figure, the by-product fuel is ejected from the fuel hole 17e as shown by an arrow in the figure, and air, main fuel, and by-product fuel can be mixed inside the air introduction hole. Mixing is promoted. The cross-sectional area of the fuel hole 17e is adjusted by the flow rate of the by-product fuel, and the gas supplied to the fuel hole 17e may be nitrogen or steam, and is not limited to combustible gaseous fuel.

次に、本発明のガスタービン燃焼器の第3の実施形態を図7を参照しつつ説明する。本実施の形態は、混合室壁の軸方向長さを延長し、空気導入孔の軸方向配置を上流側に集中させたものである。   Next, a third embodiment of the gas turbine combustor of the present invention will be described with reference to FIG. In this embodiment, the axial length of the mixing chamber wall is extended, and the axial arrangement of the air introduction holes is concentrated on the upstream side.

この図7に示すように、本実施の形態のバーナ111では、混合室壁105の拡がり角度を前述の第1の実施の形態における混合室壁5よりも小さくしつつ軸方向長さを長く形成し、空気導入孔114,115,116,117,118を混合室壁105の上流側に集中して設けている。これら空気導入孔114,115,116,117,118は、第1の実施の形態と同様に混合室壁105の軸方向下流側に向かうにしたがってX/Dが大きくなるように、すなわち空気導入孔114ではX/Dが小さく、空気導入孔118ではX/Dが大きくなるように周方向角度を変化させて設けている。なお、本実施の形態では、空気導入孔114,115,116,117,118の軸方向角度については軸心線L5方向位置に応じて変化をつけず、空気導入孔114,115,116,117,118の軸心線(図示せず)を含む平面が軸心線L5とそれぞれ略垂直に交わるような角度としている。   As shown in FIG. 7, in the burner 111 of the present embodiment, the axial length is made longer while the expansion angle of the mixing chamber wall 105 is made smaller than that of the mixing chamber wall 5 in the first embodiment described above. The air introduction holes 114, 115, 116, 117, and 118 are concentrated on the upstream side of the mixing chamber wall 105. These air introduction holes 114, 115, 116, 117, and 118 are arranged so that the X / D becomes larger toward the downstream side in the axial direction of the mixing chamber wall 105 as in the first embodiment, that is, the air introduction holes. The circumferential angle is changed so that X / D is small at 114 and X / D is large at the air introduction hole 118. In the present embodiment, the air introduction holes 114, 115, 116, 117, 118 are not changed in the axial direction angle according to the position of the axial center line L 5, and the air introduction holes 114, 115, 116, 117 are not changed. , 118 and the plane including the axial center line (not shown) intersects with the axial center line L5 substantially perpendicularly.

また、これら空気導入孔115,116,117,118のそれぞれの内部には気体燃料を噴出する複数の気体燃料孔119,120,121,122が図6(a)に示したように、空気導入孔115,116,117,118の内部でそれぞれと対向するように設けられており、第2の実施の形態と同様にこれら空気導入孔115,116,117,118の軸心線(図示せず)とほぼ直角方向に気体燃料を噴出できるようになっている。   Further, a plurality of gaseous fuel holes 119, 120, 121, and 122 for ejecting gaseous fuel are introduced into the air introducing holes 115, 116, 117, and 118, respectively, as shown in FIG. The holes 115, 116, 117, 118 are provided so as to face each other, and the axial center lines (not shown) of the air introduction holes 115, 116, 117, 118 are provided as in the second embodiment. ) And gaseous fuel can be ejected in a direction substantially perpendicular to.

また、混合室壁105の内周面105aの軸心線L5に対する拡がり角度を混合室4の上・中流側では比較的小さいα3、下流側では比較的大きいα4となるようにし、出口領域で拡がり角度が大きくなるように形成している。   Further, the expansion angle of the inner peripheral surface 105a of the mixing chamber wall 105 with respect to the axial center line L5 is set to be relatively small α3 on the upper and middle flow sides of the mixing chamber 4 and relatively large α4 on the downstream side, and spreads in the outlet region. The angle is formed to be large.

以上のように構成した本実施の形態によれば、前述した第1,2の実施の形態と同様に、火炎の逆化防止,NOx発生量の低減,コーキング防止,燃焼安定性の向上作用をそれぞれ得ることができると共に、さらに以下のような作用を得ることができる。   According to the present embodiment configured as described above, as in the first and second embodiments described above, the effects of preventing flame inversion, reducing NOx generation, preventing coking, and improving combustion stability are achieved. Each can be obtained, and the following actions can be obtained.

(7)燃焼安定性のさらなる向上作用。本実施の形態においては、混合室壁105をその内周面105aの軸心線L5に対する拡がり角度が出口領域で大きくなるように形成しているので、この出口領域において予混合ガスの軸方向速度を減速させると共に、火炎の外周側に再循環流領域(図5中Tに示す部分)を形成することができ、その結果、火炎の保炎力を増大して例えば火炎の軸方向の不安定振動等を防止することができる。したがって、燃焼安定性をさらに向上することができる。 (7) Further improvement of combustion stability. In the present embodiment, the mixing chamber wall 105 is formed such that the expansion angle of the inner peripheral surface 105a with respect to the axial center line L5 is larger in the outlet region. Therefore, the axial velocity of the premixed gas in this outlet region And a recirculation flow region (portion indicated by T in FIG. 5) can be formed on the outer peripheral side of the flame, and as a result, the flame holding force of the flame is increased, for example, instability in the axial direction of the flame. Vibration and the like can be prevented. Therefore, combustion stability can be further improved.

(8)火炎の逆火のさらなる防止作用。本実施の形態によれば、前述の第1の実施の形態と同様に気体燃料を気体燃料孔119,120,121,122から噴出する場合、空気導入孔115,116,117,118の上流側近傍に、空気流の乱れや渦を発生させる構造物がないため、空気導入孔115,116,117,118内での火炎の保持を防止することが可能であるが、第1の実施の形態及び本実施の形態のように混合室4,104内に旋回流を形成すると、混合室出口領域において旋回流の中心部(軸心線L1,L5部)に再循環領域が発生することにより燃焼安定性を向上することはできるが、場合によっては燃焼領域から混合室4,104内へ火炎が戻る可能性がある。 (8) Further prevention of flashback of flame. According to the present embodiment, when gaseous fuel is ejected from the gaseous fuel holes 119, 120, 121, and 122 as in the first embodiment, the upstream side of the air introduction holes 115, 116, 117, and 118. Since there is no structure that generates turbulence or vortices in the vicinity, it is possible to prevent the flame from being held in the air introduction holes 115, 116, 117, and 118. The first embodiment When a swirl flow is formed in the mixing chambers 4 and 104 as in the present embodiment, combustion occurs due to a recirculation region generated in the central portion (axial center lines L1 and L5) of the swirl flow in the mixing chamber outlet region. Stability can be improved, but in some cases the flame may return from the combustion zone into the mixing chamber 4,104.

ここで、上記(7)で述べたように、本実施の形態によれば燃焼安定性をさらに向上することができるので、出口領域における予混合ガスの旋回力を弱めても燃焼安定性を第1の実施の形態と同程度に保持することが可能である。すなわち、各空気流入孔114,115,116,117,118のX/Dを小さく設定して出口領域での旋回流を弱め、再循環領域の形成を弱めて火炎の戻りを抑制した上で、出口領域での拡がり角度α4を大きくして火炎の保炎力を増大して燃焼安定性を維持すると言った具合に、X/D及び出口拡がり角度α4を調整することにより予混合ガスの旋回力と軸方向速度とのバランスを調整して、燃焼安定性を維持しつつ燃焼領域から混合室104内部への火炎の逆火を抑制することができる。したがって、火炎の逆火をさらに防止することができる。   Here, as described in (7) above, according to the present embodiment, the combustion stability can be further improved. Therefore, even if the swirling force of the premixed gas in the outlet region is weakened, the combustion stability is improved. It is possible to hold the same level as in the first embodiment. That is, the X / D of each air inflow hole 114, 115, 116, 117, 118 is set small to weaken the swirling flow in the outlet region, and to suppress the return of the flame by weakening the formation of the recirculation region, The swirl force of the premixed gas is adjusted by adjusting the X / D and the outlet spread angle α4 in such a manner that the flame holding force of the flame is increased to maintain the combustion stability by increasing the spread angle α4 in the outlet region. And the axial speed can be adjusted to suppress the backfire of the flame from the combustion region to the inside of the mixing chamber 104 while maintaining the combustion stability. Therefore, the backfire of the flame can be further prevented.

(9)NOx発生量のさらなる低減作用。本実施の形態によれば、混合室壁105の軸方向長さを比較的長く形成して空気導入孔114,115,116,117,118を上流側に集中して配置することで、混合室104での混合距離を長くすることができる。これにより、各空気流入孔115,116,117,118から噴出した2次混合ガス(気体燃料と燃焼用空気)同士の混合を一層促進することができる。 (9) Further reduction of NOx generation amount. According to the present embodiment, the axial length of the mixing chamber wall 105 is formed to be relatively long, and the air introduction holes 114, 115, 116, 117, 118 are concentrated on the upstream side, so that the mixing chamber The mixing distance at 104 can be increased. Thereby, mixing of the secondary mixed gas (gaseous fuel and combustion air) ejected from each air inflow hole 115,116,117,118 can further be accelerated | stimulated.

また、液体燃料を液体燃料ノズル113から噴出する場合においても、混合距離が長くなる分液体燃料ノズル113から噴出した液体燃料が蒸発する割合も多くなり、液体燃料と燃焼用空気との混合についてもさらに促進してより均質な予混合ガスを生成することができる。したがって、NOxの発生量をさらに低減することができる。   Further, even when the liquid fuel is ejected from the liquid fuel nozzle 113, the proportion of the liquid fuel ejected from the liquid fuel nozzle 113 increases as the mixing distance becomes longer, and the mixing of the liquid fuel and the combustion air also occurs. It can be further promoted to produce a more homogeneous premixed gas. Therefore, the amount of NOx generated can be further reduced.

(10)液体燃料ノズルの加熱抑制作用。本実施の形態では、混合室104の最も上流側の空気導入孔114には気体燃料孔が形成されていないため、空気導入孔114からは専ら燃焼用空気が噴出されることになる。 (10) Heat suppression action of the liquid fuel nozzle. In the present embodiment, since the gaseous fuel hole is not formed in the air introduction hole 114 on the most upstream side of the mixing chamber 104, combustion air is exclusively ejected from the air introduction hole 114.

気体燃料孔から気体燃料を噴出して燃焼する場合、燃料の供給し始めや燃料供給系統の不具合などによって燃料濃度が低くなった時、火が点いたり消えたりするフリッカ現象が発生することがある。フリッカが発生すると燃焼器内部の圧力が変動し、この圧力変動によって火炎が混合室104の内部に逆流し、混合室104の内部や液体燃料ノズル113が加熱される場合があるが、本実施の形態では、液体燃料ノズル113に最も近い空気導入孔114からは専ら燃焼用空気が噴出されているため、空気導入孔114から噴出する燃焼用空気によって液体燃料ノズル113は冷却されるため、フリッカ現象が発生しても液体燃料ノズル113が加熱されるのを抑制することができる。   When gas fuel is ejected from a gas fuel hole and burned, when the fuel concentration becomes low due to the start of fuel supply or a failure of the fuel supply system, a flicker phenomenon may occur in which the fire starts or disappears . When flicker occurs, the pressure inside the combustor fluctuates, and this fluctuation in pressure may cause the flame to flow back into the mixing chamber 104 and heat the inside of the mixing chamber 104 and the liquid fuel nozzle 113. In the embodiment, since the combustion air is exclusively ejected from the air introduction hole 114 closest to the liquid fuel nozzle 113, the liquid fuel nozzle 113 is cooled by the combustion air ejected from the air introduction hole 114, so that the flicker phenomenon Even if this occurs, the liquid fuel nozzle 113 can be prevented from being heated.

(11)燃焼振動の発生の抑制作用。本実施の形態は、予混合ガスを生成するための混合距離を長くしているので、前述した第1の実施の形態よりも比較的予混合燃焼に近い燃焼特性を実現できる。このような予混合燃焼を行う場合、燃焼器2内部の圧力(すなわち混合室104及び燃焼室6内の圧力)が周期的に変化する燃焼振動が発生する場合がある。この燃焼振動にはいくつかの振動モードが存在し、燃焼状態によって特定の振動モードが励起されると燃焼振動の圧力振幅が増大する。燃焼振動の圧力振幅が大きくなると、燃焼器2を構成する部品の摺動面が磨耗するため、燃焼振動の発生を防止することは重要である。 (11) The action of suppressing the occurrence of combustion vibrations. In this embodiment, since the mixing distance for generating the premixed gas is increased, it is possible to realize combustion characteristics that are relatively close to premixed combustion as compared with the first embodiment described above. When such premixed combustion is performed, combustion vibration in which the pressure inside the combustor 2 (that is, the pressure in the mixing chamber 104 and the combustion chamber 6) periodically changes may occur. There are several vibration modes in this combustion vibration. When a specific vibration mode is excited by the combustion state, the pressure amplitude of the combustion vibration increases. When the pressure amplitude of the combustion vibration is increased, the sliding surfaces of the parts constituting the combustor 2 are worn, so it is important to prevent the occurrence of the combustion vibration.

本実施の形態のようなガスタービンプラントの場合、一般に燃焼器2内の圧力とガスタービン3内の圧力とが一定の圧力比になると、燃焼ガスの流速が第1段静翼スロート部30(図1参照)において音速に達する。このように流体の流れが音速に達すると音響学的には音波が伝播しない固体壁とみなされるため、本実施の形態においては、燃焼器2の両端(すなわち上記第1段静翼スロート部30と燃焼器2入口部)を境界条件とする振動モードが発生する可能性があり、この場合、圧力波は第1段静翼スロート部30ともう一方の反射端となる燃焼器2入口部との間で反射が繰り返されて、定常波が形成されて圧力振幅が大きくなる恐れがある。   In the case of the gas turbine plant as in the present embodiment, generally, when the pressure in the combustor 2 and the pressure in the gas turbine 3 become a constant pressure ratio, the flow velocity of the combustion gas is changed to the first stage stationary blade throat section 30 (FIG. 1). Reach the speed of sound. Thus, when the flow of the fluid reaches the speed of sound, it is regarded as a solid wall in which acoustic waves do not propagate acoustically. Therefore, in the present embodiment, both ends of the combustor 2 (that is, the first stage stationary blade throat portion 30 and the combustion chamber) In this case, the pressure wave is reflected between the first stage stationary blade throat 30 and the combustor 2 inlet which is the other reflection end. May be repeated to form a standing wave and increase the pressure amplitude.

本実施の形態においては、一方の反射端となる燃焼器2入口部に反射率の小さい中空円錐形状の混合壁105を設置しているため、圧力波が混合壁105に進行しても圧力波にダンピング作用を及ぼして燃焼振動の発生を抑制することができる。なお、この燃焼振動の発生の抑制作用は前述した第1,2の実施の形態においても得られるものである。   In the present embodiment, since the mixing wall 105 having a low conical shape is installed at the inlet of the combustor 2 serving as one reflection end, even if the pressure wave travels to the mixing wall 105, the pressure wave It is possible to suppress the occurrence of combustion vibration by exerting a damping action on the gas. Note that this action of suppressing the occurrence of combustion vibrations can also be obtained in the first and second embodiments described above.

次に、本発明のガスタービン燃焼器及びその燃料供給方法による燃焼方法の第4の実施の形態を図8を参照しつつ説明する。本実施の形態は、混合室出口部の拡がり角度を第3の実施の形態より狭く形成したものである。   Next, a fourth embodiment of the combustion method according to the gas turbine combustor and the fuel supply method of the present invention will be described with reference to FIG. In the present embodiment, the expansion angle of the mixing chamber outlet is narrower than that of the third embodiment.

図8は本実施の形態のバーナの詳細構造を表す側断面図である。なお、この図8において、前述の第3の実施の形態の図7と同様の部分には同符号を付し、説明を省略する。   FIG. 8 is a side sectional view showing the detailed structure of the burner according to the present embodiment. In FIG. 8, parts similar to those in FIG. 7 of the third embodiment described above are denoted by the same reference numerals, and description thereof is omitted.

この図8に示すように、本実施の形態のバーナ111′では、混合室104の出口部が混合室104の拡がり角度α3より小さなα5に形成し、第3の実施の形態より混合室104の出口部の断面積を小さくして予混合ガスの出口流速を加速させたものである。   As shown in FIG. 8, in the burner 111 ′ of the present embodiment, the outlet portion of the mixing chamber 104 is formed at α5 smaller than the expansion angle α3 of the mixing chamber 104, and the mixing chamber 104 of the third embodiment is formed. The cross-sectional area of the outlet portion is reduced to accelerate the outlet flow velocity of the premixed gas.

以上のように構成した本実施の形態によれば、前述した第3の実施の形態と同様に、火炎の逆化防止,NOx発生量の低減,コーキング防止,燃焼安定性の向上作用,液体燃料ノズルの過熱抑制作用,燃焼振動の発生の抑制作用をそれぞれ得ることができると共に、さらに以下のような作用を得ることができる。   According to the present embodiment configured as described above, flame inversion prevention, NOx generation reduction, coking prevention, combustion stability improving action, liquid fuel, as in the third embodiment described above. A nozzle overheating suppressing action and a combustion vibration suppressing action can be obtained, and the following actions can be obtained.

(12)NOx発生量のさらなる低減作用。本実施の形態においては、混合室壁105をその内周面105aの軸心線L5に対する拡がり角度が出口領域で小さくなるように形成しているので、この出口領域において予混合ガスの軸方向速度を加速させることができ、その結果、混合室104の下流に保持される予混合火炎の位置を、第3の実施の形態より下流側に保持することができる。したがって、火炎が下流側に保持される分だけ予混合距離が長くなるため、燃料と燃焼用空気の混合が促進されNOxの発生量を低減することができる。 (12) Further reduction of NOx generation amount. In the present embodiment, the mixing chamber wall 105 is formed so that the expansion angle of the inner peripheral surface 105a with respect to the axial center line L5 becomes smaller in the outlet region, so the axial velocity of the premixed gas in this outlet region As a result, the position of the premixed flame held downstream of the mixing chamber 104 can be held downstream of the third embodiment. Therefore, since the premixing distance is increased by the amount that the flame is held downstream, the mixing of fuel and combustion air is promoted, and the amount of NOx generated can be reduced.

次に、本発明のガスタービン燃焼器の第5の実施の形態を図9乃至図11を参照しつつ説明する。本実施の形態は、混合室の内壁を中空円筒状に形成し、軸方向上流側の空気導入孔の断面積を下流側の空気導入孔より大きく形成したものである。   Next, a fifth embodiment of the gas turbine combustor of the present invention will be described with reference to FIGS. In the present embodiment, the inner wall of the mixing chamber is formed in a hollow cylindrical shape, and the cross-sectional area of the air introduction hole on the upstream side in the axial direction is formed larger than the air introduction hole on the downstream side.

図9に示すように、本実施の形態のバーナ211では、混合室壁205の内周壁205aを軸方向で同じ径の円筒形に形成し、最も上流側の空気導入孔214は他の空気導入孔215,216,217,218よりその内径を大きく形成してある。これら空気導入孔214,215,216,217,218は図10,図11に示すように、第3の実施の形態と同様に混合室壁205の軸方向下流側に向かうにしたがってX/Dが大きくなるように、すなわち空気導入孔214ではX/Dが小さく、空気導入孔218ではX/Dが大きくなるように周方向角度を変化させて設けている。   As shown in FIG. 9, in the burner 211 of the present embodiment, the inner peripheral wall 205a of the mixing chamber wall 205 is formed in a cylindrical shape having the same diameter in the axial direction, and the air introduction hole 214 on the most upstream side is another air introduction hole. The inner diameter is larger than the holes 215, 216, 217, and 218. As shown in FIGS. 10 and 11, these air introduction holes 214, 215, 216, 217, and 218 have X / D as they go to the downstream side in the axial direction of the mixing chamber wall 205 as in the third embodiment. The circumferential angle is changed so as to increase, that is, the air introduction hole 214 has a small X / D and the air introduction hole 218 has a large X / D.

また、これら空気導入孔215,216,217,218のそれぞれの内部には気体燃料を噴出する複数の気体燃料孔219,220,221,222が空気導入孔215,216,217,218の内部でそれぞれと対向するように設けられており、第3の実施の形態と同様にこれら空気導入孔215,216,217,218の軸心線(図示せず)とほぼ直角方向に気体燃料を噴出できるようになっている。   In addition, a plurality of gaseous fuel holes 219, 220, 221, and 222 for ejecting gaseous fuel are formed inside the air introducing holes 215, 216, 217, and 218, respectively. It is provided so as to face each other, and gaseous fuel can be ejected in a direction substantially perpendicular to the axial center lines (not shown) of these air introduction holes 215, 216, 217, and 218, as in the third embodiment. It is like that.

また、混合室壁205の内周面205aの軸心線L5に対する拡がり角度を混合室204の下流側では比較的大きいα6となるようにし、出口領域で拡がり角度が大きくなるように形成している。   Further, the expansion angle with respect to the axis L5 of the inner peripheral surface 205a of the mixing chamber wall 205 is set to be relatively large α6 on the downstream side of the mixing chamber 204, and the expansion angle is increased in the outlet region. .

以上のように構成した本実施の形態によれば、前述した第3の実施の形態と同様な作用を得ることができると共に、さらに以下のような作用を得ることができる。   According to the present embodiment configured as described above, the same operation as that of the third embodiment described above can be obtained, and the following operation can be further obtained.

(13)バーナ製作コストの低減作用。本実施の形態においては、混合室壁205の内周面205aが中空円筒形になっているため、第1〜4の実施の形態に比較して製作コストを低減する効果が期待できる。また、混合室壁205を中空円筒形状にした場合、第1〜4の実施の形態とは異なり、混合室204の上流側の流速が減速して、火炎戻りを誘発する恐れがあるが、本実施の形態では上流側の空気流入孔214の断面積を大きくすることで、混合室204の上流側における予混合気の流速の減速を抑えることができるため、火炎戻りを防止することが可能となる。 (13) Reduction of burner production cost. In the present embodiment, since the inner peripheral surface 205a of the mixing chamber wall 205 has a hollow cylindrical shape, an effect of reducing the manufacturing cost can be expected as compared with the first to fourth embodiments. In addition, when the mixing chamber wall 205 is formed in a hollow cylindrical shape, unlike the first to fourth embodiments, the flow velocity on the upstream side of the mixing chamber 204 may be reduced to induce flame return. In the embodiment, by increasing the cross-sectional area of the upstream air inflow hole 214, it is possible to suppress the deceleration of the flow velocity of the premixed gas on the upstream side of the mixing chamber 204, and thus it is possible to prevent flame return. Become.

次に、本発明のガスタービン燃焼器の第6の実施の形態を図12乃至図14を参照しつつ説明する。本実施の形態は、大きな中空円筒状の混合室の内部に小さな中空円錐状の混合室を形成し、それぞれの混合室に燃焼用空気を導入する空気導入孔を形成したものである。   Next, a sixth embodiment of the gas turbine combustor of the present invention will be described with reference to FIGS. In the present embodiment, a small hollow conical mixing chamber is formed inside a large hollow cylindrical mixing chamber, and an air introduction hole for introducing combustion air into each mixing chamber is formed.

図12に示すように、本実施の形態のバーナ311では、第二の混合室壁305の内周壁305aを円筒形に形成し、第二の混合室壁305に、第二の混合室304に燃焼用空気を導入する空気導入孔315,316,317,318を形成すると共に、第二の混合室304の上流端に、第二の混合室304より小さな中空円錐状の第一の混合室322を形成し、第一の混合室322に燃焼用空気を導入する空気導入孔314を形成し、第一の混合室322の上流端に液体燃料ノズル313を配置したものである。   As shown in FIG. 12, in the burner 311 of this embodiment, the inner peripheral wall 305a of the second mixing chamber wall 305 is formed in a cylindrical shape, and the second mixing chamber wall 305 has the second mixing chamber 304. Air introduction holes 315, 316, 317, and 318 for introducing combustion air are formed, and a hollow conical first mixing chamber 322 smaller than the second mixing chamber 304 is formed at the upstream end of the second mixing chamber 304. , An air introduction hole 314 for introducing combustion air into the first mixing chamber 322 is formed, and a liquid fuel nozzle 313 is disposed at the upstream end of the first mixing chamber 322.

図13に示すように、第一の混合室322に燃焼用空気を導入する空気導入孔314はバーナ311の下流側から観て、図中矢印コに示すように、時計周りに旋回が作用するように形成されており、第二の混合室304の空気導入孔314は、図14に示すようにバーナ311の下流側から観て図中矢印サに示すように、反時計周りに旋回が作用するように形成されている。また、第二の混合室304に形成された空気導入孔315,316,317,318は図4に示すように、旋回が強く作用するように形成されている。   As shown in FIG. 13, when viewed from the downstream side of the burner 311, the air introduction hole 314 for introducing the combustion air into the first mixing chamber 322 turns clockwise as indicated by an arrow C in the figure. As shown in FIG. 14, the air introduction hole 314 of the second mixing chamber 304 is swung counterclockwise as shown by an arrow S in the drawing as viewed from the downstream side of the burner 311. It is formed to do. Further, as shown in FIG. 4, the air introduction holes 315, 316, 317, and 318 formed in the second mixing chamber 304 are formed so that the swirl acts strongly.

また、これら空気導入孔316,317,318のそれぞれの内部には気体燃料を噴出する複数の気体燃料孔319,320,321が空気導入孔316,317,318の内部でそれぞれと対向するように設けられており、第5の実施の形態と同様にこれら空気導入孔316,317,318の軸心線(図示せず)とほぼ直角方向に気体燃料を噴出できるようになっている。   In addition, a plurality of gaseous fuel holes 319, 320, and 321 for ejecting gaseous fuel are respectively disposed in the air introduction holes 316, 317, and 318 so as to face the inside of the air introduction holes 316, 317, and 318, respectively. As in the fifth embodiment, gaseous fuel can be ejected in a direction substantially perpendicular to the axial center lines (not shown) of these air introduction holes 316, 317, and 318.

また、混合室壁305の内周面305aの軸心線L5に対する拡がり角度を混合室304の下流側では比較的大きいα6となるようにし、出口領域で拡がり角度が大きくなるように形成している。   Further, the expansion angle of the inner peripheral surface 305a of the mixing chamber wall 305 with respect to the axis L5 is set to be relatively large α6 on the downstream side of the mixing chamber 304, and the expansion angle is increased in the outlet region. .

以上のように構成した本実施の形態によれば、前述した第5の実施の形態と同様な作用を得ることができると共に、さらに以下のような作用を得ることができる。   According to the present embodiment configured as described above, the same operation as that of the fifth embodiment described above can be obtained, and the following operation can be further obtained.

液体燃料ノズル313から液体燃料を噴出する場合、第1から第5の実施の形態と同様に、本実施の形態でも空気導入孔314から流入する空気流のせん断力を利用し、液体燃料ノズル313から噴出した液滴を微粒化する。微粒化された液滴は空気導入孔314から流入した空気流に随伴され、すなわち時計方向に旋回しながら第二の混合室へ流下する。第二の混合室304に設けられた空気導入孔315,316,317,318は全て、図14に示したように反時計周りに旋回が作用するように形成されているため、第一の混合室322の出口部においては相反する方向に旋回する空気流が交差するため、その境界部においては非常に強いせん断力が働き、第一の混合室322の出口部を通過する液滴はさらに微粒化が促進され空気流との混合も良くなりNOxの発生量を低減することができる。   In the case where liquid fuel is ejected from the liquid fuel nozzle 313, as in the first to fifth embodiments, the shear force of the airflow flowing from the air introduction hole 314 is also used in the present embodiment, and the liquid fuel nozzle 313 is used. The droplets ejected from are atomized. The atomized droplets are accompanied by the air flow flowing in from the air introduction hole 314, that is, flow down to the second mixing chamber while turning clockwise. Since the air introduction holes 315, 316, 317, and 318 provided in the second mixing chamber 304 are all formed so as to rotate counterclockwise as shown in FIG. Since the air flow swirling in the opposite directions intersects at the outlet portion of the chamber 322, a very strong shearing force acts at the boundary portion, and the droplets passing through the outlet portion of the first mixing chamber 322 are further finely divided. And the mixing with the air flow is improved, and the amount of NOx generated can be reduced.

また、液体燃料ノズル313から噴霧した液滴が円錐状に広がる場合、第一の混合室322の内周面に付着する恐れがある。混合室322の内周面に付着した液滴は液膜となり第二の混合室304へ流下するが、第一の混合室322の出口部には空気流の強いせん断力が作用するため、第一の混合室322の出口部で液膜がちぎられて微粒化することによって、空気流との混合も良くなりNOxの発生量を低減することができる。   In addition, when the droplet sprayed from the liquid fuel nozzle 313 spreads in a conical shape, there is a possibility that it adheres to the inner peripheral surface of the first mixing chamber 322. The droplets adhering to the inner peripheral surface of the mixing chamber 322 become a liquid film and flow down to the second mixing chamber 304. However, since a strong shearing force of airflow acts on the outlet of the first mixing chamber 322, the first When the liquid film is broken and atomized at the outlet of one mixing chamber 322, the mixing with the air flow is improved and the amount of NOx generated can be reduced.

さらにまた、混合室内部にこのような空気流の乱れを発生させると、気体燃料燃焼時に火炎戻りが発生した場合、この空気の乱れに火炎が保持されバーナ311が焼損する恐れがあるが、本実施の形態では燃料孔319,320,321が第一の混合室322の下流側の空気導入孔316,317,318にのみ形成されているため、空気の乱れ領域には気体燃料が供給されないため火炎が第二の混合室304の内部に保持される可能性が低い。   Furthermore, if such air flow turbulence is generated in the mixing chamber, if a flame return occurs during combustion of gaseous fuel, the turbulence of the air may hold the flame and burner 311 may be burned. In the embodiment, since the fuel holes 319, 320, and 321 are formed only in the air introduction holes 316, 317, and 318 on the downstream side of the first mixing chamber 322, gaseous fuel is not supplied to the air turbulence region. There is a low possibility that the flame is held inside the second mixing chamber 304.

また、上記の説明では、第一,二の混合室の空気流の旋回方向が逆となるように形成したが、それぞれの混合室の旋回方向が同一でも同じ効果が期待できる。   In the above description, the air flow swirl directions of the first and second mixing chambers are reversed, but the same effect can be expected even if the swirl directions of the respective mixing chambers are the same.

なお、以上説明してきた本発明の第1乃至第6の実施の形態においては、液体燃料の第1燃料ノズル13,113,213,313について特に記載しなかったが、例えば液体燃料の第1燃料ノズル13,113,213,313としては圧力噴霧式の渦巻型ノズル(シングルオリフィス型、又はダブルオリフィス型のどちらでもよい),圧力噴霧式の衝突型ノズル、又は噴霧空気式ノズル等、いかなる噴霧方式の液体燃料ノズルを用いてもよい。また、いずれの実施の形態においても液体燃料の第1燃料ノズル13,113,213,313を1個しか設置しなかったが、これに限らず、1つの混合室に対して複数の液体燃料ノズルを設けるようにしてもよい。   In the first to sixth embodiments of the present invention described above, the first fuel nozzles 13, 113, 213, and 313 for liquid fuel are not particularly described. For example, the first fuel for liquid fuel is used. As the nozzles 13, 113, 213, and 313, any spraying method such as a pressure spray type spiral nozzle (either a single orifice type or a double orifice type), a pressure spray type collision type nozzle, or a spray air type nozzle may be used. Alternatively, a liquid fuel nozzle may be used. In each embodiment, only one liquid fuel first fuel nozzle 13, 113, 213, 313 is installed. However, the present invention is not limited to this, and a plurality of liquid fuel nozzles are provided for one mixing chamber. May be provided.

次に、本発明のガスタービン燃焼器の第7の実施の形態を図15を参照しつつ説明する。本実施の形態は、第1の実施の形態のバーナをパイロットバーナとして中心部に設け、第3の実施の形態のバーナをメインバーナとしてパイロットバーナの周囲に複数配置し、これらを組み合わせて燃焼器に設けたものである。   Next, a seventh embodiment of the gas turbine combustor of the present invention will be described with reference to FIG. In the present embodiment, the burner of the first embodiment is provided in the center as a pilot burner, a plurality of burners of the third embodiment are arranged around the pilot burner as a main burner, and these are combined to be a combustor Is provided.

図15は本実施の形態における燃焼器の入口部分を拡大して示す側断面図である。なお、この図15において、前述の第1及び第3の実施の形態の図2及び図7と同様の部分には同符号を付し、説明を省略する。   FIG. 15 is an enlarged side sectional view showing an inlet portion of the combustor according to the present embodiment. In FIG. 15, the same parts as those in FIGS. 2 and 7 in the first and third embodiments described above are denoted by the same reference numerals, and the description thereof is omitted.

この図15に示すように、本実施の形態では、燃焼室6の入口において、第1の実施の形態で示したバーナ11をパイロットバーナとして中心部に設け、第3の実施の形態で示したバーナ111をメインバーナとしてパイロットバーナの周囲に複数配置している。また、これらパイロットバーナ11の出口部と各メインバーナ111の出口部との間にはプレート31をそれぞれ設け、火炎の保炎を補助するようになっている。なお、パイロットバーナ11の液体燃料の第1燃料ノズル13には液体燃料供給系38,気体燃料孔17,18,19には気体燃料系39が、メインバーナ111の液体燃料ノズル113には液体燃料供給系40,気体燃料孔119,120,121,122には気体燃料系41が接続されている。   As shown in FIG. 15, in the present embodiment, the burner 11 shown in the first embodiment is provided at the center as a pilot burner at the inlet of the combustion chamber 6 and is shown in the third embodiment. A plurality of burners 111 are arranged around the pilot burner as a main burner. In addition, a plate 31 is provided between the outlet portion of the pilot burner 11 and the outlet portion of each main burner 111 to assist the flame holding. The liquid fuel supply system 38 is provided for the liquid fuel first fuel nozzle 13 of the pilot burner 11, the gas fuel system 39 is provided for the gas fuel holes 17, 18, and 19, and the liquid fuel nozzle 113 is provided for the liquid fuel nozzle 113 of the main burner 111. A gaseous fuel system 41 is connected to the supply system 40 and the gaseous fuel holes 119, 120, 121, 122.

第1の実施形態で示したバーナ11は、第3の実施形態のバーナ111に比べて混合室壁5の拡がり角度が比較的大きく軸方向の混合距離が短く形成されており、空気導入孔14,15,16が混合室壁5の上・中・下流側全体に渡って設けられているので、火炎が混合室4内に接近しても混合室壁5の温度上昇を抑制することができる。したがって、燃焼空気流量に対する燃料(液体燃料又は気体燃料、あるいは液体燃料及び気体燃料)流量の割合を高く設定することができ、バーナ111と比べて拡散燃焼に近い燃焼状態で安定燃焼を行うことが可能である。このため、本実施の形態では上記したようにバーナ11をパイロットバーナとし、燃空比や燃焼ガスの流量変化の激しいガスタービンプラントの起動・昇速時から点火して用いるようにする。   Compared with the burner 111 of the third embodiment, the burner 11 shown in the first embodiment has a relatively large expansion angle of the mixing chamber wall 5 and a short mixing distance in the axial direction. , 15, 16 are provided over the entire upper, middle, and downstream sides of the mixing chamber wall 5, so that the temperature rise of the mixing chamber wall 5 can be suppressed even when the flame approaches the mixing chamber 4. . Therefore, the ratio of the fuel (liquid fuel or gas fuel, or liquid fuel and gas fuel) flow rate to the combustion air flow rate can be set high, and stable combustion can be performed in a combustion state closer to diffusion combustion than the burner 111. Is possible. For this reason, in the present embodiment, as described above, the burner 11 is used as a pilot burner, and is used after being ignited at the time of start-up / acceleration of the gas turbine plant in which the fuel-air ratio and the combustion gas flow rate change are severe.

一方、第3の実施形態のバーナ111はバーナ11に比べて軸方向の混合距離が長く予混合燃焼に近い燃焼特性を有するため、燃焼安定範囲が狭くなる。したがって、本実施の形態では上記したようにバーナ111をメインバーナとし、燃焼用空気の流量変化が小さくなるガスタービンプラントの低負荷時(上記起動・昇速時を終えた状態)から点火して、定負荷状態となったらバーナ111の燃焼割合を増加させるように運用することで、NOx発生量の低減を図ることができる。   On the other hand, the burner 111 of the third embodiment has a longer combustion distance in the axial direction than the burner 11 and has combustion characteristics close to that of premixed combustion, so the combustion stability range is narrowed. Therefore, in the present embodiment, as described above, the burner 111 is used as the main burner, and the gas turbine plant is ignited from a low load (a state where the start-up / acceleration is finished) when the flow rate change of the combustion air is small. When the constant load state is reached, the NOx generation amount can be reduced by operating the burner 111 so as to increase the combustion rate.

以上のように構成した本実施の形態によれば、異なった燃焼特性を有するバーナ11とバーナ111とを組み合わせて用いることにより、ガスタービンの起動・昇速時から定負荷領域までの広い負荷変動の範囲に渡って安定燃焼を行うことが可能となる。   According to the present embodiment configured as described above, by using a combination of the burner 11 and the burner 111 having different combustion characteristics, a wide load fluctuation from the start-up / acceleration of the gas turbine to a constant load region. It becomes possible to perform stable combustion over the range.

なお、上記本発明の第7の実施の形態においては、パイロットバーナとメインバーナとに別構造のバーナを用いるようにしたが、これに限らず、同じ構造のバーナを用いるようにしてもよい。すなわち、第1の実施の形態のバーナ11は燃料流量を制御するだけで拡散燃焼状態から予混合燃焼状態まで変化させることが可能であるので、例えばバーナ11をパイロットバーナとメインバーナの両方に用いるようにしてもよい。これによっても上記第7の実施の形態と同様の効果を得ることが可能である。   In the seventh embodiment of the present invention, burners having different structures are used for the pilot burner and the main burner. However, the present invention is not limited to this, and burners having the same structure may be used. That is, since the burner 11 of the first embodiment can be changed from the diffusion combustion state to the premixed combustion state only by controlling the fuel flow rate, for example, the burner 11 is used for both the pilot burner and the main burner. You may do it. Also by this, it is possible to obtain the same effect as the seventh embodiment.

さらに、メインバーナとして第3の実施の形態と第4の実施の形態を混在させても上記第7の実施の形態と同様の効果を得ることが可能である。   Furthermore, even if the third embodiment and the fourth embodiment are mixed as a main burner, it is possible to obtain the same effect as the seventh embodiment.

また、第1の実施の形態で説明したように、第7の実施の形態では、空気流入孔の上流側に空気の流れを乱したり渦を発生したりする構造物が存在しない。   Further, as described in the first embodiment, in the seventh embodiment, there is no structure that disturbs the air flow or generates vortices upstream of the air inflow hole.

比較例(特表2004−50771号公報)のように、スワール体の外表面に燃料供給部のような構造物が存在すると、この構造物によってスワール体周囲の空気の流れを乱したり、構造物の下流方向に比較的強い小さな渦が発生したりするため、この渦によって空気導入孔内部に火炎が保持されてしまう可能性がある。   If a structure such as a fuel supply unit is present on the outer surface of the swirl body as in the comparative example (Japanese Patent Publication No. 2004-50771), the structure may disturb the flow of air around the swirl body, Since a relatively strong small vortex is generated in the downstream direction of the object, the vortex may hold a flame inside the air introduction hole.

特に、第7の実施の形態のように、複数のスワール体を配置したマルチ構造の場合には、隣接するスワール体の燃料供給部によって発生した渦がスワール体に流入することが考えられる。このため、発生した渦の影響により複数のスワール体のうち、特定のスワール体の入口部の静圧分布が変化し、スワール体に流入する空気流量が設計値と異なり、それぞれのスワール体内部の燃料濃度分布が乱れ燃焼振動が発生したり、燃焼振動の増大によって火炎戻りが発生したりする可能性が考えられる。   In particular, as in the seventh embodiment, in the case of a multi-structure in which a plurality of swirl bodies are arranged, it is conceivable that vortices generated by the fuel supply portions of adjacent swirl bodies flow into the swirl body. For this reason, among the plurality of swirl bodies, the static pressure distribution at the inlet of a specific swirl body changes due to the influence of the generated vortex, and the flow rate of air flowing into the swirl body is different from the design value. There is a possibility that the fuel concentration distribution is disturbed and combustion vibrations occur, or that flame return occurs due to an increase in combustion vibrations.

しかし、本実施の形態では、バーナ11,111の空気導入孔近傍に空気の流れを乱したり、渦を発生させたりする構造物が存在しないため、火炎戻りの発生を抑制することができる。また、渦の発生が少ないため、各バーナへの空気流量配分が設計値となり、NOx排出量が増加したり、燃焼振動が増加したりすることを抑制できる。   However, in the present embodiment, since there is no structure that disturbs the air flow or generates vortices in the vicinity of the air introduction holes of the burners 11 and 111, the occurrence of flame return can be suppressed. In addition, since the generation of vortices is small, the distribution of air flow to each burner becomes a design value, and it is possible to suppress an increase in NOx emissions and an increase in combustion vibration.

次に、本発明のガスタービン燃焼器の第8の実施の形態を図16乃至図18を参照しつつ以下に説明する。   Next, an eighth embodiment of the gas turbine combustor of the present invention will be described below with reference to FIGS.

本実施の形態は、バーナの製作方法に関するもので、第3の実施の形態で説明した図3に示すバーナ111を例に挙げその製作方法について説明する。   The present embodiment relates to a method for manufacturing a burner. The method for manufacturing the burner will be described by taking the burner 111 shown in FIG. 3 described in the third embodiment as an example.

図16はバーナ111の混合室105を示したもので、その内部は流れ方向に拡大する中空円錐形状の壁面105aが形成されている。混合室105の外周壁105bには、周方向に延長して連絡した小溝119a,120a,121a,122aが軸方向に4本形成されており、さらに、小溝119a,120a,121a,122aと直交し、混合室105の軸方向に伸びる大溝130a,131a,132a,133a,134a,135aが形成されている。   FIG. 16 shows the mixing chamber 105 of the burner 111, in which a hollow conical wall surface 105a expanding in the flow direction is formed. The outer peripheral wall 105b of the mixing chamber 105 has four small grooves 119a, 120a, 121a, 122a that extend in the circumferential direction and communicate with each other in the axial direction, and are orthogonal to the small grooves 119a, 120a, 121a, 122a. Large grooves 130a, 131a, 132a, 133a, 134a, 135a extending in the axial direction of the mixing chamber 105 are formed.

また、混合室105の上流側内部には燃料ノズル113が挿入されるノズル設置孔105cが形成され、混合室105の上流側外壁は下流側外周壁105bより小さな外周壁105dに形成されている。本実施の形態では、混合室外周壁105bに形成する大溝130a,131a,132a,133a,134a,135aは小溝119a,120a,121a,122aよりその断面積を大きくなるように形成してある。   Further, a nozzle installation hole 105c into which the fuel nozzle 113 is inserted is formed in the upstream side of the mixing chamber 105, and the upstream outer wall of the mixing chamber 105 is formed in an outer peripheral wall 105d smaller than the downstream outer peripheral wall 105b. In the present embodiment, the large grooves 130a, 131a, 132a, 133a, 134a, and 135a formed in the mixing chamber outer peripheral wall 105b are formed to have a larger cross-sectional area than the small grooves 119a, 120a, 121a, and 122a.

図17は混合室105のカバー136で、その下流端(図左側)には混合室105の燃料マニホールド102にガス燃料を供給する配管137が設置されており、混合室上流端外周壁105dと合致する挿入孔138が形成されている。また、カバー136の内周壁136aは、混合室外周壁105bと合致するように形成されている。   FIG. 17 shows a cover 136 of the mixing chamber 105. A pipe 137 for supplying gas fuel to the fuel manifold 102 of the mixing chamber 105 is installed at the downstream end (left side in the figure), which matches the outer peripheral wall 105d of the mixing chamber upstream end. An insertion hole 138 is formed. Further, the inner peripheral wall 136a of the cover 136 is formed so as to coincide with the mixing chamber outer peripheral wall 105b.

図18は図16に示した混合室105に、図17に示したカバー136を混合室105の下流側から挿入して設置したもので、接合点WA,WBを溶接して混合室105とカバー136を固定している。混合室105にカバー136を挿入することによって、混合室105の上流部には燃料マニホールド102が形成され、混合室外周壁105bに形成した小溝119a,120a,121a,122aは大溝130a,131a,132a,133a,134a,135aを介して燃料マニホールド102と連絡されることになる。   FIG. 18 shows the mixing chamber 105 shown in FIG. 16 installed with the cover 136 shown in FIG. 17 inserted from the downstream side of the mixing chamber 105. The joining points WA and WB are welded to the mixing chamber 105 and the cover. 136 is fixed. By inserting the cover 136 into the mixing chamber 105, the fuel manifold 102 is formed in the upstream portion of the mixing chamber 105, and the small grooves 119a, 120a, 121a, 122a formed in the mixing chamber outer peripheral wall 105b are large grooves 130a, 131a, 132a, The fuel manifold 102 is communicated via 133a, 134a, and 135a.

混合室105とカバー136を溶接後、混合室外周壁105bに形成した大溝130a,131a,132a,133a,134a,135aの周方向の中間で且つ、小溝119a,120a,121a,122aの軸線上に空気孔114,115,116,117,118を形成する。空気孔をカバー136の外表面から混合室105の内部に形成すると、その空気孔の内部に混合室外周壁105bに形成した小溝の断面が形成され、図7に示した燃料孔119,120,121,122となる。   After the mixing chamber 105 and the cover 136 are welded, air is placed in the middle in the circumferential direction of the large grooves 130a, 131a, 132a, 133a, 134a, 135a formed in the mixing chamber outer peripheral wall 105b and on the axis of the small grooves 119a, 120a, 121a, 122a. Holes 114, 115, 116, 117, 118 are formed. When the air holes are formed in the mixing chamber 105 from the outer surface of the cover 136, a cross section of a small groove formed in the mixing chamber outer peripheral wall 105b is formed inside the air hole, and the fuel holes 119, 120, 121 shown in FIG. , 122.

先に述べたように、燃料マニホールド122と小溝119a,120a,121a,122aは連絡されているため、燃料配管137から燃料マニホールド122に燃料を供給すると図18に示した矢印ケのように流れ、例えば、一つの空気孔115に相対する二つ燃料孔119b,119cから燃料が供給され、空気孔115の内部で燃焼用空気と混合し、第三の実施の形態で説明した効果を得ることが可能となる。   As described above, since the fuel manifold 122 and the small grooves 119a, 120a, 121a, and 122a are in communication with each other, when fuel is supplied from the fuel pipe 137 to the fuel manifold 122, the fuel manifold 122 flows as indicated by arrows in FIG. For example, the fuel is supplied from the two fuel holes 119b and 119c facing the one air hole 115 and mixed with the combustion air inside the air hole 115, so that the effect described in the third embodiment can be obtained. It becomes possible.

さらに、小溝の断面積を制御することによって燃料孔119b,119cの燃料噴出速度をコントロールし、図5に示したように燃料同士を空気孔内で衝突させて拡散し、燃焼用空気との接触面積を多くすることによって燃料と空気の混合促進を図ることが可能となる。   Further, the fuel injection speed of the fuel holes 119b and 119c is controlled by controlling the cross-sectional area of the small groove, and as shown in FIG. 5, the fuel collides with each other in the air hole and diffuses to contact the combustion air. By increasing the area, it becomes possible to promote mixing of fuel and air.

本発明は、逆火を抑制し安定した燃焼である燃焼器及び燃焼器の燃焼方法を提供できる。   INDUSTRIAL APPLICABILITY The present invention can provide a combustor and a combustion method for the combustor that can suppress backfire and perform stable combustion.

1…圧縮機、2…燃焼器、3…ガスタービン、4…混合室、5…混合室壁、6…燃焼室、7…内筒、8…トランジションピース、9…外筒、10…点火栓、11…バーナ、12…マニホールド、13…第1燃料ノズル、14,15,16…空気導入孔、17,18,19…燃料孔、20…第1燃料供給系統、21…第2燃料供給系統。   DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Combustor, 3 ... Gas turbine, 4 ... Mixing chamber, 5 ... Mixing chamber wall, 6 ... Combustion chamber, 7 ... Inner cylinder, 8 ... Transition piece, 9 ... Outer cylinder, 10 ... Spark plug , 11 ... burner, 12 ... manifold, 13 ... first fuel nozzle, 14, 15, 16 ... air introduction hole, 17, 18, 19 ... fuel hole, 20 ... first fuel supply system, 21 ... second fuel supply system .

Claims (5)

燃焼用空気と燃料を混合した混合ガスを燃焼して燃焼ガスを生成する燃焼室と、前記燃焼室の入口において中心部に設けられたパイロットバーナと、前記パイロットバーナの周囲に複数配置されたメインバーナとを備えた燃焼器において、
前記メインバーナは、前記混合ガスを生成する混合室と、前記混合室に液体燃料を供給可能な燃料ノズルと、前記混合室を内部に形成する混合室形成部材と、前記混合室形成部材の外周側から前記混合室に燃焼用空気を供給する空気孔を前記混合室形成部材に周方向及び軸方向で複数有し、前記空気孔内に気体燃料を供給可能な供給孔が穿設されている
ことを特徴とする燃焼器。
A combustion chamber for generating a combustion gas by burning a mixed gas in which combustion air and fuel are mixed; a pilot burner provided at a central portion at an inlet of the combustion chamber; and a plurality of mains disposed around the pilot burner In a combustor with a burner,
The main burner includes a mixing chamber that generates the mixed gas, a fuel nozzle that can supply liquid fuel to the mixing chamber, a mixing chamber forming member that forms the mixing chamber therein, and an outer periphery of the mixing chamber forming member A plurality of air holes for supplying combustion air from the side to the mixing chamber are provided in the mixing chamber forming member in the circumferential direction and the axial direction, and supply holes capable of supplying gaseous fuel are formed in the air holes.
Combustor characterized by that.
請求項1に記載の燃焼器において、
前記パイロットバーナは、前記混合ガスを生成する混合室と、前記混合室に液体燃料を供給可能な燃料ノズルと、前記混合室を内部に形成する混合室形成部材と、前記混合室形成部材の外周側から前記混合室に燃焼用空気を供給する空気孔を前記混合室形成部材に周方向及び軸方向で複数有している
ことを特徴とする燃焼器。
The combustor according to claim 1.
The pilot burner includes a mixing chamber that generates the mixed gas, a fuel nozzle that can supply liquid fuel to the mixing chamber, a mixing chamber forming member that forms the mixing chamber therein, and an outer periphery of the mixing chamber forming member A plurality of air holes for supplying combustion air to the mixing chamber from the side are provided in the mixing chamber forming member in the circumferential direction and the axial direction.
Combustor characterized by that.
請求項2に記載の燃焼器において、
前記パイロットバーナの空気孔内には、気体燃料を供給可能な供給孔が穿設されていることを特徴とする燃焼器。
The combustor according to claim 2, wherein
A combustor, wherein a supply hole capable of supplying gaseous fuel is formed in an air hole of the pilot burner .
請求項に記載の燃焼器において、
前記パイロットバーナの混合室は、前記メインバーナの混合室に比べて、軸方向の混合距離が短く形成されていることを特徴とする燃焼器。
The combustor according to claim 2 , wherein
The combustor according to claim 1, wherein the mixing chamber of the pilot burner is formed with a shorter mixing distance in the axial direction than the mixing chamber of the main burner .
請求項2に記載の燃焼器において、
前記パイロットバーナの混合室又は前記メインバーナの混合室のうち、少なくとも一方は、該混合室の上流側から下流側にしたがい広がりを有するディフーザ状に形成したことを特徴とする燃焼器。
The combustor according to claim 2, wherein
A combustor characterized in that at least one of the mixing chamber of the pilot burner or the mixing chamber of the main burner is formed in a diffuser shape that expands from the upstream side to the downstream side of the mixing chamber .
JP2010210352A 2010-09-21 2010-09-21 Combustor and combustion method of combustor Expired - Lifetime JP4894947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010210352A JP4894947B2 (en) 2010-09-21 2010-09-21 Combustor and combustion method of combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010210352A JP4894947B2 (en) 2010-09-21 2010-09-21 Combustor and combustion method of combustor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004293182A Division JP4626251B2 (en) 2004-10-06 2004-10-06 Combustor and combustion method of combustor

Publications (2)

Publication Number Publication Date
JP2010281566A JP2010281566A (en) 2010-12-16
JP4894947B2 true JP4894947B2 (en) 2012-03-14

Family

ID=43538452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010210352A Expired - Lifetime JP4894947B2 (en) 2010-09-21 2010-09-21 Combustor and combustion method of combustor

Country Status (1)

Country Link
JP (1) JP4894947B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5636335B2 (en) * 2011-05-27 2014-12-03 新潟原動機株式会社 Gas turbine combustor
JP5650677B2 (en) * 2012-02-28 2015-01-07 三菱日立パワーシステムズ株式会社 Gas turbine combustor, gas turbine combustor operating method, and burner for gas turbine combustor
DE102013016201A1 (en) * 2013-09-28 2015-04-02 Dürr Systems GmbH "Burner head of a burner and gas turbine with such a burner"
CN104676648B (en) * 2015-01-09 2017-02-22 北京航空航天大学 Center fractionation based low-pollution combustor with RQL (rich burn-quench-lean burn) precombustion fraction and LPP (lean premixed prevaporized) main combustion fraction
KR102595333B1 (en) 2021-09-17 2023-10-27 두산에너빌리티 주식회사 Combustor and gas turbine comprising the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2297151B (en) * 1995-01-13 1998-04-22 Europ Gas Turbines Ltd Fuel injector arrangement for gas-or liquid-fuelled turbine
CA2225263A1 (en) * 1997-12-19 1999-06-19 Rolls-Royce Plc Fluid manifold
US6427447B1 (en) * 2001-02-06 2002-08-06 United Technologies Corporation Bulkhead for dual fuel industrial and aeroengine gas turbines
FR2824625B1 (en) * 2001-05-10 2003-08-15 Inst Francais Du Petrole DEVICE AND METHOD FOR INJECTING A LIQUID FUEL INTO AN AIRFLOW FOR A COMBUSTION CHAMBER
FR2836986B1 (en) * 2002-03-07 2004-11-19 Snecma Moteurs MULTI-MODEL INJECTION SYSTEM FOR AN AIR / FUEL MIXTURE IN A COMBUSTION CHAMBER

Also Published As

Publication number Publication date
JP2010281566A (en) 2010-12-16

Similar Documents

Publication Publication Date Title
JP4626251B2 (en) Combustor and combustion method of combustor
JP3940705B2 (en) Gas turbine combustor and fuel supply method thereof
KR101749875B1 (en) Gas turbine combustor and gas turbine engine equipped with same
US7926282B2 (en) Pure air blast fuel injector
JP5188238B2 (en) Combustion apparatus and burner combustion method
JP5470662B2 (en) Gas turbine combustor
JP4653985B2 (en) Combustor and gas turbine combustor, and method for supplying air to the combustor
US7997896B2 (en) Premix burner with staged liquid fuel supply and also method for operating a premix burner
JP4894947B2 (en) Combustor and combustion method of combustor
JP4571612B2 (en) Gas turbine combustor and fuel supply method thereof
JP4400314B2 (en) Gas turbine combustor and fuel supply method for gas turbine combustor
JP5083302B2 (en) Combustor and gas turbine combustor, and method for supplying air to the combustor
JP5610446B2 (en) Gas turbine combustor
JP2005147459A (en) Gas turbine combustor and method of supplying fuel to it
US11725824B2 (en) Turbulence generator mixer for rotating detonation engine
JP2020085270A (en) Gas turbine combustor and gas turbine

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101001

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111212

R151 Written notification of patent or utility model registration

Ref document number: 4894947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250