EP1342226B1 - Display device comprising luminophors - Google Patents

Display device comprising luminophors Download PDF

Info

Publication number
EP1342226B1
EP1342226B1 EP01963101A EP01963101A EP1342226B1 EP 1342226 B1 EP1342226 B1 EP 1342226B1 EP 01963101 A EP01963101 A EP 01963101A EP 01963101 A EP01963101 A EP 01963101A EP 1342226 B1 EP1342226 B1 EP 1342226B1
Authority
EP
European Patent Office
Prior art keywords
image
phosphor
intermediate image
types
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01963101A
Other languages
German (de)
French (fr)
Other versions
EP1342226A2 (en
Inventor
Didier Doyen
Jonathan Kervec
Herbert Hoelzemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THOMSON LICENSING
Original Assignee
Thomson Licensing SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson Licensing SAS filed Critical Thomson Licensing SAS
Publication of EP1342226A2 publication Critical patent/EP1342226A2/en
Application granted granted Critical
Publication of EP1342226B1 publication Critical patent/EP1342226B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2003Display of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0242Compensation of deficiencies in the appearance of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0257Reduction of after-image effects
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0261Improving the quality of display appearance in the context of movement of objects on the screen or movement of the observer relative to the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/10Special adaptations of display systems for operation with variable images
    • G09G2320/106Determination of movement vectors or equivalent parameters within the image
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/06Colour space transformation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/16Determination of a pixel data signal depending on the signal applied in the previous frame
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels

Definitions

  • the invention relates to a display device using luminescent materials for displaying the points of an image.
  • the invention is more particularly applicable to plasma display panels as well as cathode ray tubes using high scanning frequencies.
  • Plasma display panels (PDPs) and cathode ray tubes (CRT) have on their front face a layer of luminescent material that transforms either UV radiation or electron radiation into visible light radiation.
  • the luminescent material is commonly called phosphor.
  • the same phosphor is used on the entire front face of the CRT or PDP.
  • three types of phosphor of different colors are generally used to produce a color synthesis.
  • phosphors of different colors have some operating disparities due to the intrinsic characteristics of the materials constituting the phosphors. Among the disparities in operation, the temporal response to an excitation is specific to each type of phosphor.
  • the figure 1 represents phosphor reaction timelines commonly used in PDPs.
  • the Figure 1A represents an excitation time during which electrical discharges are sent into the panel in order to produce unrepresented UV radiation. The UV radiation is then transformed into visible light by the phosphors.
  • the figure 1 B represents the luminous rendering for a blue phosphor, for example a barium and magnesium aluminate doped with divalent europium.
  • the figure 1C represents the light rendering for a color phosphor red, for example a Yttrium Borate doped with trivalent Europium.
  • the figure 1D represents the light rendering for a green phosphor, for example a Manganese-doped Barium Aluminate.
  • the Figures 1B to 1D have different vertical scales that match the maximum values of each curve.
  • the maximum value of blue color is about 4.3 times higher than the maximum value of red color and about 5.5 times higher than the maximum value of green color.
  • the luminous energy efficiency is substantially the same for each of the colors.
  • the figure 1E represents on the one hand the luminous renditions of the three colors with the same scale of luminous intensity and on the other hand the sum of the three luminous renderings which corresponds to a pixel seen by the human eye. If we look at the color corresponding to the sum of the three renderings, we see that the pixel is first blue, then changes from blue to white (or gray depending on intensity), then changes from white to yellow (combination of green and red of substantially the same intensity), and finally changes from yellow to green before going out. In PDPs, discharges are repeated cyclically at the refresh rate of the screen.
  • the retinal persistence of the human eye performs a low-pass type filtering on the color variations that mask this defect.
  • a white object moving on a black background is for example affected by a leading edge of blue color and a trailing edge of yellow color (the green is found to be not perceptible by the human eye in our example).
  • the invention aims to correct this lack of visualization by image processing.
  • the invention is a method of displaying a sequence of video images on a phosphor device comprising at least two types of phosphors.
  • at least one intermediate image is calculated between two successive images, then one of the two successive images is visualized on at least one type of phosphor and at least one other type of phosphor is imaged on the intermediate image.
  • the intermediate image is calculated with motion compensation
  • the two successive images are a current image and a previous image, and in that the intermediate image corresponds to a lagging image on the current image of a duration defined as a function of the types of phosphor.
  • the defined duration is calculated by making the difference between the moments corresponding to the average light emission centers of gravity of the at least two types of phosphor.
  • the invention is also a video sequence display device comprising at least two types of phosphor, said device comprising means for calculating at least one intermediate image placed between two successive images and means for displaying on one of the types of phosphor the intermediate image and on the other type of phosphor one of the successive images.
  • the information to be displayed is shifted.
  • blue phosphors have a much lower remanence time than red or green type phosphors
  • red type phosphors have a lower remanence time than green type phosphors.
  • the visual information displayed corresponds to the image I for the green color and to two intermediate images for the blue and red colors.
  • the calculation of the intermediate image can be done according to different techniques. Those skilled in the art can refer to the publications relating to the image calculations implemented to make the change of the image frequency 50 / 60Hz or 50 / 100Hz.
  • the intermediate image is as close as possible to the image that should be viewed at this time, particularly with regard to moving objects.
  • the intermediate image must be calculated with motion compensation.
  • the compensation in motion is done according to a known technique.
  • Motion vectors 1 are calculated from images 1 and I-1 so that each pixel (composed of the three colors) corresponds to one vector 1, as represented on the figure 3 .
  • the intermediate image is calculated by determining the value of each pixel by associating it with the weighted value of the pixels 3 and 4 of the images I and I-1 pointed by an extrapolated vector 2 which passes through the pixel of the intermediate image to be calculated.
  • intermediate pixel ( pixel 3 ) ⁇ ( tt - Sorting ) + ( pixel 4 ) ⁇ Sorting / tt , with Tt the time separating two images and Sort the duration separating the current image from the intermediate image.
  • the extrapolated vector 2 is for example the mean vector corresponding to the nearest vectors 1.
  • the extrapolated vector 2 points between several pixels of the image 1, then the corresponding pixel of the intermediate image corresponds to the average of the nearest pixels.
  • the time Tri separating the image 1 and the intermediate image is large enough to make a correction but not too important so as not to reverse the visualization fault. It seems quite difficult to precisely determine the ideal time Tri.
  • a simple calculation method giving an effective result consists in calculating the instant corresponding to the mean center of gravity of light emission for each type of phosphor in its environment of use.
  • the time Tri corresponds to the difference between the instant corresponding to the center of gravity of the slowest phosphor and the instant corresponding to the center of gravity of the phosphor associated with the intermediate image.
  • Tr1 4 ms
  • TR2 0.5 ms.
  • center of gravity of light emission it is necessary to understand the moment after the excitation of the luminophore which corresponds to the emission of half of the luminous energy.
  • center of gravity it is necessary to understand the average of the centers of gravity corresponding to different conditions of excitation. Indeed the center of gravity varies according to the duration and intensity of excitation. The average of the centers of gravity can for example be made from the extreme cases of condition of use.
  • the figure 4 represents an exemplary embodiment of a plasma display panel implementing the invention.
  • the PDP receives a signal of YUV type (luminance + 2 chrominance components) for example extracted from a composite video signal.
  • a motion estimator 10 receives the YUV type signal and provides motion vectors calculated from the received signal and a previously stored image.
  • a format converting circuit 11 converts the YUV type signal into three R, G and B type image signals respectively corresponding to the red, green and blue images to be superimposed to obtain a color image. There are three distinct image signals, but in practice it is also possible to use a parallel or serial bus to carry these three image signals.
  • a first image calculation circuit 12 receives, on the one hand, the blue image signal and, on the other hand, the motion vectors.
  • the first image calculation circuit 12 operates for example as indicated above or according to another image calculation algorithm with motion compensation.
  • the signal B 'supplied by the calculation circuit corresponds to the intermediate image in advance of the time Tr1 with respect to the current image for the blue color.
  • a second image calculation circuit 13 receives, on the one hand, the red image signal and, on the other hand, the motion vectors.
  • the second image calculation circuit 13 is of the same type as the first image calculation circuit 12 but using the duration Tr2 for the intermediate image.
  • the signal R 'supplied by the calculation circuit corresponds to the intermediate image for the red color.
  • An image memory 14 receives the green image signal for storage during the calculation of the intermediate images.
  • the memory 14 and the calculation circuits 12 and 13 can in practice be connected to a bus for receiving the R, G and B signals or to provide the signals R ', V and B'.
  • a sub-scan encoding circuit 15 receives the signal V from the image memory 14, the signals B 'and R' from the image calculation circuits 12 and 13 and a synchronization signal from a Synchronization circuit 16.
  • the encoding circuit 15 provides a series of control bits to a column driver 17 for performing column addressing of the plasma panel 18 (also referred to as the plasma panel panel).
  • a line control circuit 19 allows selection by line or group of lines.
  • the synchronization circuit 16 sends the synchronization signals to the encoding circuits 15, column control 17 and line control 19 to ensure correct addressing of 18.
  • the skilled person can refer to various documents of the state of the art to perform the circuits 15 to 19.
  • the embodiment can support many variants.
  • the figure 5 represents a simplified variant.
  • the operating disparities between the green and red phosphors are not perceptible to the human eye. In this particular case, the correction made on the red does not bring any visible effect. It is then possible to replace the second calculation circuit 13 with an image memory 20. This makes it possible to have a circuit that is less complex and therefore less expensive. However, such a simplification is not possible if the operating disparities between all the phosphors are important.
  • circuitry using a microprocessor and a single memory to perform format conversion, intermediate image calculation and storage of unmodified images.
  • the represented architecture will then be realized by programming.
  • the invention can also be used for a CRT device.
  • the three guns of the CRT receive the signals R, G and B 'through shaping circuits.
  • the intermediate image (s) is (are) between the current image and the previous image. It is also possible to place the intermediate image between the current image and the next image.
  • the current image corresponds to the fastest phosphors and the most advanced intermediate image corresponds to the slowest phosphors.
  • such a variant requires the delay of the image flow to be viewed from an image, which makes it necessary to have larger image memories.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Video Image Reproduction Devices For Color Tv Systems (AREA)
  • Luminescent Compositions (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

The invention aims at correcting display defects caused by the disparity between luminophors of the display device. The correction is obtained by image processing. The invention concerns a display method for a sequence of video images on a device comprising luminophors including at least two types of luminophors and the device comprising the means for implementing said method. The correction is obtained by calculating an intermediate image between two successive images, then in displaying on one type of luminophor one of the successive images and simultaneously on another type of luminophor the intermediate image.

Description

L'invention se rapporte à un dispositif de visualisation utilisant des matériaux luminescents pour visualiser les points d'une image. L'invention s'applique plus particulièrement aux panneaux d'affichage au plasma ainsi qu'aux tubes cathodiques utilisant des fréquences de balayage élevées.The invention relates to a display device using luminescent materials for displaying the points of an image. The invention is more particularly applicable to plasma display panels as well as cathode ray tubes using high scanning frequencies.

Les panneaux d'affichage au plasma (PDP) ainsi que les tubes cathodiques (CRT) comportent sur leur face avant une couche en matériau luminescent qui transforme soit un rayonnement UV soit un rayonnement électronique en rayonnement lumineux visible. Le matériau luminescent est communément appelé luminophore.Plasma display panels (PDPs) and cathode ray tubes (CRT) have on their front face a layer of luminescent material that transforms either UV radiation or electron radiation into visible light radiation. The luminescent material is commonly called phosphor.

Pour les écrans monochromes, on utilise le même luminophore sur la totalité de la face avant du CRT où du PDP. Par contre, pour les écrans couleurs, on utilise généralement trois types de luminophore de couleurs différentes pour réaliser une synthèse de couleur. Pour des applications spécifiques, il est possible d'avoir des écrans disposant de deux ou plus de trois types de luminophore.For monochrome screens, the same phosphor is used on the entire front face of the CRT or PDP. On the other hand, for color screens, three types of phosphor of different colors are generally used to produce a color synthesis. For specific applications, it is possible to have screens with two or more types of phosphor.

L'utilisation de luminophores de différentes couleurs présentent quelques disparités de fonctionnement dues aux caractéristiques intrinsèques des matériaux constituant les luminophores. Parmi les disparités de fonctionnement, la réponse temporelle à une excitation est propre à chaque type de luminophore.The use of phosphors of different colors have some operating disparities due to the intrinsic characteristics of the materials constituting the phosphors. Among the disparities in operation, the temporal response to an excitation is specific to each type of phosphor.

Pour les CRT, on ne perçoit généralement pas ce défaut sur des écran basse définition, par exemple de type TV. Malgré tout, on peut percevoir de légers défauts sur les écrans très haute définition (par exemple 1600 x 1200 pixels) utilisant des fréquences de rafraîchissement élevées (par exemple >120 Hz).For CRTs, this defect is generally not perceived on low definition screens, for example of the TV type. Nevertheless, one can perceive slight defects on screens very high definition (for example 1600 x 1200 pixels) using high refresh rates (for example> 120 Hz).

Pour les PDP, les disparités sont très importantes. La figure 1 représente des chronogrammes de réaction de luminophore couramment utilisés dans les PDP. La figure 1A représente une durée d'excitation pendant laquelle on envoie des décharges électriques dans le panneau afin de produire un rayonnement UV non représenté. Le rayonnement UV est ensuite transformé en lumière visible par les luminophores. La figure 1 B représente le rendu lumineux pour un luminophore de couleur bleue, par exemple un Aluminate de Baryum et Magnésium dopé à l'Europium divalent. La figure 1C représente le rendu lumineux pour un luminophore de couleur rouge, par exemple un Borate d'Yttrium dopé à l'Europium trivalent. La figure 1D représente le rendu lumineux pour un luminophore de couleur verte, par exemple un Aluminate de Baryum dopé au Manganèse.For PDPs, disparities are very important. The figure 1 represents phosphor reaction timelines commonly used in PDPs. The Figure 1A represents an excitation time during which electrical discharges are sent into the panel in order to produce unrepresented UV radiation. The UV radiation is then transformed into visible light by the phosphors. The figure 1 B represents the luminous rendering for a blue phosphor, for example a barium and magnesium aluminate doped with divalent europium. The figure 1C represents the light rendering for a color phosphor red, for example a Yttrium Borate doped with trivalent Europium. The figure 1D represents the light rendering for a green phosphor, for example a Manganese-doped Barium Aluminate.

Les figures 1B à 1D disposent d'échelles verticales différentes qui font correspondre les valeurs maxima de chacune des courbes. Dans la réalité, la valeur maximale de couleur bleue est environ 4,3 fois supérieur à la valeur maximale de couleur rouge et environ 5,5 fois supérieur à la valeur maximale de couleur verte. Toutefois, le rendement énergétique lumineux est sensiblement le même pour chacune des couleurs. Ces chronogrammes permettent de visualiser la répartition, énergétique par couleur. A titre d'exemple, il est indiqué pour une excitation donnée les durées pour lesquelles la lumière émise devient inférieure à 10% de la valeur maximale d'émission. Ainsi, moins d'une milliseconde après la fin ,de l'excitation, la couleur bleue est pratiquement éteinte alors que les couleurs rouge et verte sont encore proche de leur niveau maximal, l'extinction du rouge et du vert correspondant respectivement à 11 et 13 ms.The Figures 1B to 1D have different vertical scales that match the maximum values of each curve. In reality, the maximum value of blue color is about 4.3 times higher than the maximum value of red color and about 5.5 times higher than the maximum value of green color. However, the luminous energy efficiency is substantially the same for each of the colors. These chronograms make it possible to visualize the distribution, energetic by color. By way of example, it is indicated for a given excitation the durations for which the emitted light becomes less than 10% of the maximum emission value. Thus, less than a millisecond after the end of the excitation, the blue color is practically extinguished while the red and green colors are still close to their maximum level, the extinction of red and green respectively corresponding to 11 and 13 ms.

La figure 1E représente d'une part les rendus lumineux des trois couleurs avec une même échelle d'intensité lumineuse et d'autre part la somme des trois rendus lumineux qui correspond à un pixel vu par l'oeil humain. Si on s'intéresse à la couleur correspondant à la somme des trois rendus, on s'aperçoit que le pixel est d'abord bleu, puis passe du bleu au blanc (ou gris suivant l'intensité), ensuite passe du blanc au jaune (combinaison du vert et du rouge sensiblement de même intensité), et enfin passe du jaune au vert avant de s'éteindre. Dans les PDP, les décharges se répètent cycliquement à la fréquence de rafraîchissement de l'écran.The figure 1E represents on the one hand the luminous renditions of the three colors with the same scale of luminous intensity and on the other hand the sum of the three luminous renderings which corresponds to a pixel seen by the human eye. If we look at the color corresponding to the sum of the three renderings, we see that the pixel is first blue, then changes from blue to white (or gray depending on intensity), then changes from white to yellow (combination of green and red of substantially the same intensity), and finally changes from yellow to green before going out. In PDPs, discharges are repeated cyclically at the refresh rate of the screen.

Dans le cas d'une image fixe, la persistance rétinienne de l'oeil humain réalise un filtrage de type passe-bas sur les variations de couleur qui masque ce défaut.In the case of a still image, the retinal persistence of the human eye performs a low-pass type filtering on the color variations that mask this defect.

Par contre, lorsque l'on a une image mobile, l'oeil devient plus sensible à la variation de couleur sur les transitions de couleur qui se déplacent. Ainsi un objet blanc se déplaçant sur un fond noir se voit par exemple affecter d'un bord d'attaque de couleur bleue et d'un bord de fuite de couleur jaune (le vert se trouve être non perceptible par l'oeil humain dans notre exemple).On the other hand, when one has a moving image, the eye becomes more sensitive to the color variation on moving color transitions. Thus a white object moving on a black background is for example affected by a leading edge of blue color and a trailing edge of yellow color (the green is found to be not perceptible by the human eye in our example).

Pour remédier à ce genre de problème, les seules solutions connues sont de trouver de nouveaux luminophores afin de pouvoir utiliser trois types de luminophore ayant des caractéristiques voisines.To remedy this kind of problem, the only known solutions are to find new phosphors in order to use three types of phosphor with similar characteristics.

L'invention visé à corriger ce défaut de visualisation par traitement d'image. Afin de diminuer les effets de traînée de couleur, on retarde ou on avance la visualisation des images suivant la couleur Rouge, Verte ou bleue concernée.The invention aims to correct this lack of visualization by image processing. In order to reduce the effects of color drag, we delay or advance the visualization of the images according to the red, green or blue color concerned.

Ainsi, l'invention est un procédé de visualisation d'une séquence d'images vidéo sur un dispositif à luminophore comportant au moins deux types de luminophores. Dans le procédé, on calcule au moins une image intermédiaire entre deux images successives, puis on visualise sur au moins un type de luminophore l'une des deux images successives et simultanément sur au moins un autre type de luminophore l'image intermédiaire.Thus, the invention is a method of displaying a sequence of video images on a phosphor device comprising at least two types of phosphors. In the method, at least one intermediate image is calculated between two successive images, then one of the two successive images is visualized on at least one type of phosphor and at least one other type of phosphor is imaged on the intermediate image.

Pour optimiser l'amélioration obtenue, l'image intermédiaire est calculée avec compensation de mouvementTo optimize the improvement obtained, the intermediate image is calculated with motion compensation

Préférentiellement, les deux images successives sont une image courante et une image précédente, et en ce que l'image intermédiaire correspond à une image en retard sur l'image courante d'une durée définie en fonction des types de luminophore.Preferably, the two successive images are a current image and a previous image, and in that the intermediate image corresponds to a lagging image on the current image of a duration defined as a function of the types of phosphor.

Pour optimiser le rendu de correction, la durée définie est calculée en faisant la différence entre les instants correspondant aux centres de gravité moyens d'émission lumineuse des au moins deux types de luminophore.To optimize the correction rendering, the defined duration is calculated by making the difference between the moments corresponding to the average light emission centers of gravity of the at least two types of phosphor.

L'invention est également un dispositif de visualisation de séquence vidéo comportant au moins deux types de luminophore, ledit dispositif comportant des moyens pour calculer au moins une image intermédiaire placée entre deux images successives et des moyens pour visualiser sur l'un des types de luminophore l'image intermédiaire et sur l'autre type de luminophore l'une des images successives.The invention is also a video sequence display device comprising at least two types of phosphor, said device comprising means for calculating at least one intermediate image placed between two successive images and means for displaying on one of the types of phosphor the intermediate image and on the other type of phosphor one of the successive images.

L'invention sera mieux comprise, et d'autres particularités et avantages apparaîtront à la lecture de la description qui va suivre, la description faisant référence aux dessins annexés parmi lesquels :

  • la figure 1 représente des chronogrammes de réponse des luminophores,
  • les figures 2 et 3 illustre le principe d'image intermédiaire calculée selon l'invention,
  • la figure 4 illustre un mode préféré de réalisation d'un dispositif de visualisation à luminophores selon l'invention, et
  • la figure 5 illustre une variante du mode préféré de réalisation de l'invention.
The invention will be better understood, and other features and advantages will appear on reading the description which follows, the description referring to the appended drawings among which:
  • the figure 1 represents chronograms of phosphor response,
  • the Figures 2 and 3 illustrates the intermediate image principle calculated according to the invention,
  • the figure 4 illustrates a preferred embodiment of a phosphor display device according to the invention, and
  • the figure 5 illustrates a variant of the preferred embodiment of the invention.

Après avoir constaté les disparités entre les types de luminophore', il convient tout d'abord d'étudier les solutions envisageables. Il est apparu que pour réduire le défaut au maximum, il était préférable de décaler l'émission lumineuse pour les trois types de luminophore. Malheureusement, d'autres contraintes matérielles ne permettent pas de dissocier l'allumage correspondant à chaque type de luminophore. Pour un CRT, les trois faisceaux d'électron correspondant à chacune des couleurs sont pilotés simultanément. Pour ce qui est des PDP, les cellules sont adressées ligne par ligne et chaque ligne comporte les trois types de luminophore.Having noted the disparities between the types of phosphor, it is first necessary to study the possible solutions. It was found that to minimize the defect, it was preferable to shift the light emission for the three types of phosphor. Unfortunately, other material constraints do not allow to separate the ignition corresponding to each type of phosphor. For a CRT, the three electron beams corresponding to each of the colors are driven simultaneously. For PDPs, the cells are addressed line by line and each line has the three types of phosphors.

Selon l'invention on effectue un décalage de l'information à visualiser. Comme on l'a vu précédemment, les luminophores de type bleu disposent d'un temps de rémanence très inférieur aux luminophores de type rouge ou vert, et les luminophores de type rouge disposent d'un temps de rémanence inférieur aux luminophores de type vert. On va donc visualiser sur le bleu et sur le rouge des images dites intermédiaires à la place d'une image courante, notée Image 1 sur la figure 2. Ainsi pendant la visualisation de l'image I, l'information visuelle affichée correspond à l'image I pour la couleur verte et à deux images intermédiaires pour les couleurs bleue et rouge.According to the invention, the information to be displayed is shifted. As we have seen previously, blue phosphors have a much lower remanence time than red or green type phosphors, and red type phosphors have a lower remanence time than green type phosphors. We will thus display on the blue and on the red intermediate images instead of a current image, noted Image 1 on the figure 2 . Thus during the display of the image I, the visual information displayed corresponds to the image I for the green color and to two intermediate images for the blue and red colors.

Le calcul de l'image intermédiaire peut se faire selon différentes techniques. L'homme du métier peut se reporter aux publications relatives aux calculs d'image mis en oeuvre pour faire du changement de fréquence d'image 50/60Hz ou 50/100Hz.The calculation of the intermediate image can be done according to different techniques. Those skilled in the art can refer to the publications relating to the image calculations implemented to make the change of the image frequency 50 / 60Hz or 50 / 100Hz.

Préférentiellement, on souhaite que l'image intermédiaire soit la plus proche possible de l'image qui devrait être visualisé à cet instant, notamment en ce qui concerne les objets en mouvement. Pour calculer la meilleure image possible, il convient de calculer l'image intermédiaire avec une compensation en mouvement.Preferably, it is desired that the intermediate image is as close as possible to the image that should be viewed at this time, particularly with regard to moving objects. To calculate the best possible image, the intermediate image must be calculated with motion compensation.

La compensation en mouvement se fait selon une technique connue. Des vecteurs de mouvement 1 sont calculés à partir des images 1 et I-1 de sorte qu'à chaque pixel (composé des trois couleurs) corresponde un vecteur 1, comme représenté sur la figure 3. L'image intermédiaire est calculée en déterminant la valeur de chaque pixel en lui associant la valeur pondérée des pixels 3 et 4 des images I et I-1 pointés par un vecteur extrapolé 2 qui passe par le pixel de l'imagé intermédiaire à calculer. Ce qui est résumé par la formule : pixel intermédiaire = ( pixel 3 ) × ( Tt - Tri ) + ( pixel 4 ) × Tri / Tt ,

Figure imgb0001

avec Tt la durée séparant deux images et Tri la durée séparant l'image courante de l'image intermédiaire.The compensation in motion is done according to a known technique. Motion vectors 1 are calculated from images 1 and I-1 so that each pixel (composed of the three colors) corresponds to one vector 1, as represented on the figure 3 . The intermediate image is calculated by determining the value of each pixel by associating it with the weighted value of the pixels 3 and 4 of the images I and I-1 pointed by an extrapolated vector 2 which passes through the pixel of the intermediate image to be calculated. What is summarized by the formula: intermediate pixel = ( pixel 3 ) × ( tt - Sorting ) + ( pixel 4 ) × Sorting / tt ,
Figure imgb0001

with Tt the time separating two images and Sort the duration separating the current image from the intermediate image.

Le vecteur extrapolé 2 est par exemple le vecteur moyen correspondant aux vecteurs 1 les plus proches. Lorsque le vecteur extrapolé 2 pointe entre plusieurs pixels de l'image 1, alors le pixel correspondant de l'image intermédiaire correspond à la moyenne des pixels les plus proches.The extrapolated vector 2 is for example the mean vector corresponding to the nearest vectors 1. When the extrapolated vector 2 points between several pixels of the image 1, then the corresponding pixel of the intermediate image corresponds to the average of the nearest pixels.

Bien sur, de nombreuses autres techniques d'extrapolation d'image utilisant une compensation de mouvement sont utilisables.Of course, many other image extrapolation techniques using motion compensation are usable.

Afin que la compensation puisse avoir un effet réel, il convient que le temps Tri séparant l'image 1 et l'image intermédiaire soit suffisamment important pour apporter une correction mais pas trop important afin de ne pas inverser le défaut de visualisation. Il apparaît assez difficile de déterminer précisément le temps Tri idéal.So that the compensation can have a real effect, it is appropriate that the time Tri separating the image 1 and the intermediate image is large enough to make a correction but not too important so as not to reverse the visualization fault. It seems quite difficult to precisely determine the ideal time Tri.

Une méthode de calcul simple et donnant un résultat efficace consiste à calculer l'instant correspondant au centre de gravité moyen d'émission lumineuse pour chaque type de luminophore dans son environnement d'utilisation. Le temps Tri correspond à la différence entre l'instant correspondant au centre de gravité du luminophore le plus lent et l'instant correspondant au centre de gravité du luminophore associé à l'image intermédiaire. A titre d'exemple, avec les luminophore cités précédemment, on peut prendre Tr1= 4 ms et TR2= 0,5 ms.A simple calculation method giving an effective result consists in calculating the instant corresponding to the mean center of gravity of light emission for each type of phosphor in its environment of use. The time Tri corresponds to the difference between the instant corresponding to the center of gravity of the slowest phosphor and the instant corresponding to the center of gravity of the phosphor associated with the intermediate image. By way of example, with the phosphors mentioned above, it is possible to take Tr1 = 4 ms and TR2 = 0.5 ms.

Par centre de gravité d'émission lumineuse, il faut comprendre l'instant après l'excitation du luminophore qui correspond à l'émission de la moitié de l'énergie lumineuse. Par centre de gravité moyen, il faut comprendre la moyenne des centres de gravité correspondant à différentes conditions d'excitation. En effet le centre de gravité varie en fonction de la durée et de l'intensité d'excitation. La moyenne des centres de gravité peut par exemple se faire à partir des cas extrêmes de condition d'utilisation.By center of gravity of light emission, it is necessary to understand the moment after the excitation of the luminophore which corresponds to the emission of half of the luminous energy. By average center of gravity, it is necessary to understand the average of the centers of gravity corresponding to different conditions of excitation. Indeed the center of gravity varies according to the duration and intensity of excitation. The average of the centers of gravity can for example be made from the extreme cases of condition of use.

La figure 4 représente un exemple de réalisation d'un panneau d'affichage au plasma mettant en oeuvre l'invention.The figure 4 represents an exemplary embodiment of a plasma display panel implementing the invention.

Dans l'exemple représenté, le PDP reçoit un signal de type YUV (luminance + 2 composantes de chrominance) par exemple extrait d'un signal vidéo composite. Un estimateur de mouvement 10 reçoit le signal de type YUV et fournit des vecteurs de mouvement calculé à partir du signal reçu et d'une image précédemment mémorisée. Un circuit de conversion de format 11 transforme le signal de type YUV en trois signaux d'image de type R, V et B correspondant respectivement aux images rouge, verte et bleue à superposer pour obtenir une image couleur. Il est représenté trois signaux d'image distincts, mais dans la pratique, il est également possible d'utiliser un bus parallèle ou série pour acheminer ces trois signaux d'image.In the example shown, the PDP receives a signal of YUV type (luminance + 2 chrominance components) for example extracted from a composite video signal. A motion estimator 10 receives the YUV type signal and provides motion vectors calculated from the received signal and a previously stored image. A format converting circuit 11 converts the YUV type signal into three R, G and B type image signals respectively corresponding to the red, green and blue images to be superimposed to obtain a color image. There are three distinct image signals, but in practice it is also possible to use a parallel or serial bus to carry these three image signals.

Un premier circuit de calcul d'image 12 reçoit d'une part le signal d'image bleue et d'autre part les vecteurs de mouvement. Le premier circuit de calcul d'image 12 fonctionne par exemple comme indiqué précédemment ou selon un autre algorithme de calcul d'image avec compensation de mouvement. Le, signal B' fourni par lé circuit de calcul correspond à l'image intermédiaire en avance du temps Tr1 par rapport à l'image courante pour la couleur bleue.A first image calculation circuit 12 receives, on the one hand, the blue image signal and, on the other hand, the motion vectors. The first image calculation circuit 12 operates for example as indicated above or according to another image calculation algorithm with motion compensation. The signal B 'supplied by the calculation circuit corresponds to the intermediate image in advance of the time Tr1 with respect to the current image for the blue color.

Un deuxième circuit de calcul d'image 13 reçoit d'une part le signal d'image rouge et d'autre part les vecteurs de mouvement. Le deuxième circuit de calcul d'image 13 est du même type que le premier circuit de calcul d'image 12 mais en utilisant la durée Tr2 pour l'image intermédiaire. Le signal R' fourni par le circuit de calcul correspond à l'image intermédiaire pour la couleur rouge.A second image calculation circuit 13 receives, on the one hand, the red image signal and, on the other hand, the motion vectors. The second image calculation circuit 13 is of the same type as the first image calculation circuit 12 but using the duration Tr2 for the intermediate image. The signal R 'supplied by the calculation circuit corresponds to the intermediate image for the red color.

Une mémoire d'image 14 reçoit le signal d'image verte pour le mémoriser pendant le calcul des images intermédiaires. La mémoire 14 et les circuits de calcul 12 et 13 peuvent dans la pratique être relié un bus pour recevoir les signaux R, V et B ou fournir les signaux R', V-et B'.An image memory 14 receives the green image signal for storage during the calculation of the intermediate images. The memory 14 and the calculation circuits 12 and 13 can in practice be connected to a bus for receiving the R, G and B signals or to provide the signals R ', V and B'.

Un circuit d'encodage 15 de sous-balayage reçoit le signal V provenant de la mémoire d'image 14, les signaux B' et R' provenant des circuits de calcul d'image 12 et 13 et un signal de synchronisation provenant d'un circuit de synchronisation 16. Le circuit d'encodage 15 fournit des série de bits de commande à un circuit de pilotage de colonne 17 pour effectuer l'adressage colonne de l'écran plasma 18 (également appelé dalle du panneau à plasma). Un circuit de pilotage de ligne 19 permet la sélection par ligne ou par groupe de lignes. Le circuit de synchronisation 16 envoie les signaux de synchronisation aux circuits d'encodage 15, de pilotage de colonne 17 et de pilotage de ligne 19 pour assurer un adressage correct de l'écran 18. L'homme du métier peut se reporter à différents documents de l'état de la technique pour réaliser les circuits 15 à 19.A sub-scan encoding circuit 15 receives the signal V from the image memory 14, the signals B 'and R' from the image calculation circuits 12 and 13 and a synchronization signal from a Synchronization circuit 16. The encoding circuit 15 provides a series of control bits to a column driver 17 for performing column addressing of the plasma panel 18 (also referred to as the plasma panel panel). A line control circuit 19 allows selection by line or group of lines. The synchronization circuit 16 sends the synchronization signals to the encoding circuits 15, column control 17 and line control 19 to ensure correct addressing of 18. The skilled person can refer to various documents of the state of the art to perform the circuits 15 to 19.

Le mode de réalisation peut supporter de nombreuses variantes. A titre d'exemple, la figure 5 représente une variante simplifiée. L'homme du métier peut s'apercevoir que dans l'exemple choisi, les disparités de fonctionnement entre les' luminophores verts et rouges ne sont pas perceptible par l'oeil humain. Dans ce cas particulier, la correction faite sur le rouge n'apporte pas d'effet visible. Il est alors possible de remplacer le deuxième circuit de calcul 13 par une mémoire d'image 20. Cela permet d'avoir un circuit moins complexe et donc moins cher. Toutefois, une telle simplification n'est pas envisageable si les disparités de fonctionnement entre tous les phosphores sont importantes.The embodiment can support many variants. For example, the figure 5 represents a simplified variant. Those skilled in the art may find that in the example chosen, the operating disparities between the green and red phosphors are not perceptible to the human eye. In this particular case, the correction made on the red does not bring any visible effect. It is then possible to replace the second calculation circuit 13 with an image memory 20. This makes it possible to have a circuit that is less complex and therefore less expensive. However, such a simplification is not possible if the operating disparities between all the phosphors are important.

Il est également possible d'utiliser un ensemble de circuit utilisant un microprocesseur et une unique mémoire pour effectuer la conversion de format, le calcul d'image intermédiaire et la mémorisation des images non modifiées. L'architecture représentée sera alors réalisée par programmation.It is also possible to use a circuitry using a microprocessor and a single memory to perform format conversion, intermediate image calculation and storage of unmodified images. The represented architecture will then be realized by programming.

Comme indiqué précédemment, l'invention peut également être utilisée pour un dispositif à CRT. Dans ce cas, les trois canons du CRT reçoivent les signaux R, V et B' par l'intermédiaire de circuits de mise en forme.As indicated above, the invention can also be used for a CRT device. In this case, the three guns of the CRT receive the signals R, G and B 'through shaping circuits.

Dans le mode de réalisation présenté, la (ou les) image(s) intermédiaire(s) se situe(nt) entre l'image courante et l'image précédente. Il est également possible de placer l'image intermédiaire entre l'image courante et l'image suivante. Dans ce cas, l'image courante correspond aux phosphores les plus rapides et l'image intermédiaire la plus avancé correspond aux phosphores les plus lents. Cependant, une telle variante -nécessite de retarder le flux d'image à visualiser d'une image ce qui impose d'avoir des mémoires d'images plus importantes.In the embodiment shown, the intermediate image (s) is (are) between the current image and the previous image. It is also possible to place the intermediate image between the current image and the next image. In this case, the current image corresponds to the fastest phosphors and the most advanced intermediate image corresponds to the slowest phosphors. However, such a variant requires the delay of the image flow to be viewed from an image, which makes it necessary to have larger image memories.

D'autres adaptations sont à prévoir en fonction des différentes variantes évoquées tout au long de la description.Other adaptations are expected depending on the different variants mentioned throughout the description.

Claims (10)

  1. Method for displaying a sequence of video images on a phosphor device comprising at least two types of phosphors (blue, green, red), characterized in that at least one intermediate image between two successive images (image I, image I-1) is computed, then in that one of the two successive images (image I) is displayed on at least one type of phosphor (green) and the intermediate image is displayed simultaneously on at least one other type of phosphor (blue, red).
  2. Method according to Claim 1, characterized in that the intermediate image is computed with motion compensation.
  3. Method according to either of Claims 1 and 2, characterized in that the two successive images are a current image and a previous image, and in that the intermediate image corresponds to an image delayed from the current image by a defined time period (Tr1, Tr2) as a function of the types of phosphor.
  4. Method according to Claim 3, characterized in that the defined time period (Tr1, Tr2) is computed by taking the difference between the instants corresponding to the mean centres of gravity of light emission of the at least two types of phosphor.
  5. Method according to one of Claims 1 to 4, characterized
    in that three types of phosphor are used, and in that an intermediate image is displayed on at least one type of phosphor.
  6. Device for displaying a video sequence comprising at least two types of phosphor, characterized in that it comprises means (12, 13) adapted for computing at least one intermediate image placed between two successive images and means (14 to 19) adapted for displaying the intermediate image on one of the types of phosphor and one of the successive images on the other type of phosphor.
  7. Device according to Claim 6, characterized in that it comprises a motion estimator (10) adapted for extrapolating motion of the intermediate image.
  8. Device according to either of Claims 6 and 7, characterized in that it comprises three types of phosphors, and such that it is adapted to allow an intermediate image to be displayed on at least one type of phosphor.
  9. Device according to Claim 8, characterized in that the computing means (12 or 13) are adapted for computing the intermediate image only on the colour component which corresponds to the type of phosphor used to display the intermediate image.
  10. Device according to one of Claims 6 to 9, characterized
    in that the device is a plasma display panel.
EP01963101A 2000-08-25 2001-08-16 Display device comprising luminophors Expired - Lifetime EP1342226B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0010922A FR2813425B1 (en) 2000-08-25 2000-08-25 LUMINOPHORE VISUALIZATION DEVICE
FR0010922 2000-08-25
PCT/FR2001/002617 WO2002017288A2 (en) 2000-08-25 2001-08-16 Display device comprising luminophors

Publications (2)

Publication Number Publication Date
EP1342226A2 EP1342226A2 (en) 2003-09-10
EP1342226B1 true EP1342226B1 (en) 2008-05-21

Family

ID=8853723

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01963101A Expired - Lifetime EP1342226B1 (en) 2000-08-25 2001-08-16 Display device comprising luminophors

Country Status (9)

Country Link
US (1) US7064731B2 (en)
EP (1) EP1342226B1 (en)
JP (1) JP4611609B2 (en)
KR (1) KR100767323B1 (en)
CN (1) CN1449555B (en)
AU (1) AU2001284143A1 (en)
DE (1) DE60134171D1 (en)
FR (1) FR2813425B1 (en)
WO (1) WO2002017288A2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1399912B1 (en) * 2001-06-23 2005-03-30 Thomson Licensing S.A. Colour defects in a display panel due to different time response of phosphors
EP1361558A1 (en) * 2002-05-07 2003-11-12 Deutsche Thomson Brandt Reducing image artifacts on a display caused by phosphor time response
CN100437679C (en) * 2003-10-14 2008-11-26 松下电器产业株式会社 Image signal processing method and image signal processing apparatus
KR100714723B1 (en) * 2005-07-15 2007-05-04 삼성전자주식회사 Device and method of compensating for the differences in persistence of the phosphors in a display panel and a display apparatus including the device
KR100898292B1 (en) * 2007-11-02 2009-05-18 삼성에스디아이 주식회사 Display device, and driving method thereof
US9024526B1 (en) 2012-06-11 2015-05-05 Imaging Systems Technology, Inc. Detector element with antenna

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11109916A (en) * 1997-08-07 1999-04-23 Hitachi Ltd Color picture display device
DE69839542D1 (en) * 1997-08-07 2008-07-10 Hitachi Ltd Color image display device and method
FR2772502B1 (en) * 1997-12-15 2000-01-21 Thomson Multimedia Sa METHOD FOR COMPENSATING FOR DIFFERENCES IN THE REMANENCE OF LUMINOPHORES IN AN IMAGE VIEWING SCREEN
GB9815907D0 (en) * 1998-07-21 1998-09-16 British Broadcasting Corp Improvements in colour displays

Also Published As

Publication number Publication date
CN1449555B (en) 2012-07-04
WO2002017288A3 (en) 2002-04-11
KR100767323B1 (en) 2007-10-17
FR2813425B1 (en) 2002-11-15
US20040008161A1 (en) 2004-01-15
US7064731B2 (en) 2006-06-20
FR2813425A1 (en) 2002-03-01
JP4611609B2 (en) 2011-01-12
EP1342226A2 (en) 2003-09-10
AU2001284143A1 (en) 2002-03-04
DE60134171D1 (en) 2008-07-03
KR20030026344A (en) 2003-03-31
JP2004506951A (en) 2004-03-04
CN1449555A (en) 2003-10-15
WO2002017288A2 (en) 2002-02-28

Similar Documents

Publication Publication Date Title
US20040145599A1 (en) Display apparatus, method and program
EP1342226B1 (en) Display device comprising luminophors
JP2004309750A (en) Image persistence preventive system and image persistence prevention method for display screen
US20040080517A1 (en) Driving method and apparatus of plasma display panel
CN100373429C (en) Method and apparatus for driving a plasma display panel
US7495680B2 (en) Image signal processing apparatus and displaying method
KR100400375B1 (en) Display Apparatus with the pseudo-contour noise detector using skin-color filter and Method of processing an image Thereof
CN100424737C (en) Method and apparatus of driving a plasma display panel
CN1936653A (en) Liquid crystal display and its drive method
EP1600920A2 (en) Plasma display device and image processing method suitable therefor
EP1361558A1 (en) Reducing image artifacts on a display caused by phosphor time response
CN100365685C (en) Method and apparatus for decreasing an afterimage of a plasma display panel
WO2001022395A1 (en) Method of and unit for displaying an image in sub-fields
EP1587054A2 (en) Plasma display apparatus and image processing method thereof
US20050099366A1 (en) Method of displaying a sequence of video images on a plasma display panel
EP1131810B1 (en) Addressing method for plasma display panel based on separate even-numbered and odd-numbered line addressing
US8077173B2 (en) Driving device for driving display panel, driving method and IC chip
US20080106495A1 (en) Plasma display panel and a method of preventing afterimage thereof
EP1410373B1 (en) Method and device for processing images to correct defects of mobile object display
JP2820036B2 (en) Display device gradation correction circuit
EP1361559B1 (en) Reducing image artifacts on display panels caused by phosphor time response
JPH0764502A (en) Pdp driving circuit
JPH09222872A (en) Gradation inversion correcting circuit for display device
JP2004272249A (en) Method and device for driving plasma display panel
JPH07105364A (en) Error spread processing circuit for display device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030214

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DOYEN, DIDIER

Inventor name: KERVEC, JONATHAN

Inventor name: HOELZEMANN, HERBERT

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DOYEN, DIDIER

Inventor name: HOELZEMANN, HERBERT

Inventor name: KERVEC, JONATHAN

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON LICENSING

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60134171

Country of ref document: DE

Date of ref document: 20080703

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090224

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140821

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140826

Year of fee payment: 14

Ref country code: FR

Payment date: 20140821

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60134171

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150816

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160301

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831