EP1341946B1 - Wear protection layer for piston rings, containing wolfram carbide and chromium carbide - Google Patents

Wear protection layer for piston rings, containing wolfram carbide and chromium carbide Download PDF

Info

Publication number
EP1341946B1
EP1341946B1 EP01270182A EP01270182A EP1341946B1 EP 1341946 B1 EP1341946 B1 EP 1341946B1 EP 01270182 A EP01270182 A EP 01270182A EP 01270182 A EP01270182 A EP 01270182A EP 1341946 B1 EP1341946 B1 EP 1341946B1
Authority
EP
European Patent Office
Prior art keywords
chromium
carbides
piston ring
carbide
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01270182A
Other languages
German (de)
French (fr)
Other versions
EP1341946A1 (en
Inventor
Christian Herbst-Dederichs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Federal Mogul Burscheid GmbH
Original Assignee
Federal Mogul Burscheid GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Federal Mogul Burscheid GmbH filed Critical Federal Mogul Burscheid GmbH
Publication of EP1341946A1 publication Critical patent/EP1341946A1/en
Application granted granted Critical
Publication of EP1341946B1 publication Critical patent/EP1341946B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12181Composite powder [e.g., coated, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12486Laterally noncoextensive components [e.g., embedded, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component
    • Y10T428/12826Group VIB metal-base component
    • Y10T428/1284W-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component
    • Y10T428/12826Group VIB metal-base component
    • Y10T428/12847Cr-base component

Definitions

  • the present invention relates to a piston ring for internal combustion engines at least one peripheral surface of the piston ring by means of thermal spraying applied wear protection layer, essentially consisting of chrome carbides, Tungsten carbide, chrome and nickel.
  • the running surfaces of piston rings in internal combustion engines are subject to wear during use.
  • a protective layer is applied to the running surfaces of the piston rings to minimize wear.
  • the coating material which is in the form of a powder, is melted by means of an oxygen / fuel spray gun and sprayed onto the piston ring.
  • EP 0 960 954 A2 discloses a corresponding powder for producing these wear protection layers. This powder contains nickel, chromium and carbon, whereby the chromium can be present as chromium carbide and as a nickel-chromium alloy.
  • the carbides are present in an already decomposed form, so that the matrix becomes brittle and the carbides lose hardness due to conversion from Cr3C2 to Cr7C3 or even to Cr23C6.
  • DE 197 20 627 A1 mixes 20 to 80% by volume of molybdenum with the wettable powder. Molybdenum has a relatively high toughness and can therefore stop crack growth.
  • the patent application discloses preferred coatings of sintered chromium carbide and nickel chromium powders with up to 100% by weight of molybdenum.
  • phase of molybdenum are formed in the resulting layer, which are approximately the size of the starting powder and generally have a diameter of 5 to 50 ⁇ m.
  • the relatively low abrasion resistance of the molybdenum has a negative effect, the molybdenum phases are preferably worn out and consequently the wear resistance of the protective layer decreases.
  • tungsten carbides are also embedded in the matrix of the wear protection layer.
  • European patent EP 0 512 805 B1 describes the formation of a surface protection with chromium and tungsten carbides, the embedded tungsten-chromium carbides having a particle size in the range from 25 to 100 ⁇ m.
  • Tungsten carbides are harder than chrome carbides and have a very high resistance to pressure and wear.
  • the extraordinarily hard tungsten carbides also show a clear disadvantage when processing the surface produced. The surface can no longer be processed with conventional grinding wheels, processing is only possible with very high quality and at the same time expensive grinding wheels.
  • EP -A- 0657237 discloses a thermal wettable powder consisting of Tungsten carbide particles which are connected by metallic cobalt are.
  • a second type of grains consisting of chrome carbide particles connected to each other via a Ni-Cr alloy.
  • the protective layer is for High pressure valves, petrochemical lines, seats in pumps etc. are used. A Application for piston rings is not mentioned.
  • a coating for piston rings can be found in US-A-3606359 different microstructure than in the present application. There will be two various powders sprayed from previously sintered particles; an indication of the The size of the particles for the carbides is not mentioned.
  • the invention is based on the object belonging to the prior art To overcome disadvantages and to produce a piston ring for internal combustion engines, which has a wear protection layer on the tread that is almost crack-free and a has high wear resistance.
  • the wear protection layer according to the invention for the running surface of the piston ring is formed from a powder mixture in which the first powder as agglomerated and sintered powder consists at least of the alloy components chromium carbide, chromium and nickel, which does not have any subsequent embrittling heat treatment such as, for. B.
  • the carbides in the powder having an average diameter which is less than 3 microns and a second powder, which is also present as an agglomerated and sintered powder and contains tungsten carbide as an essential feature and by thermal spraying on at least a circumferential surface of the piston rings is applied, so that two distinguishable layer regions are produced in the wear protection layer, a first region which is primarily rich in chromium carbide and a second region which is mainly rich in tungsten carbide.
  • the use of a powder with a carbide size of less than 3 ⁇ m is a significant difference to the conventionally used powders, whose average carbide size is over 5 ⁇ m, but mostly even over 10 ⁇ m.
  • the carbide breakout is reduced, the risk of cracks is minimized and at the same time the residual stresses in the carbide are reduced, which in turn reduces the tendency to carbide breakdown.
  • Another essential difference is the use of primary carbides in the starting powder, which are mainly in the form of blocky Cr3C2 and Cr7C3 carbides.
  • the powders obtained via conventional melt atomization on the other hand, mostly have dendritic carbides and mostly dissolved carbides such as Cr23C6, which are much softer.
  • two distinguishable layer areas form as the basis in the wear protection layer.
  • the layer structure is disordered.
  • the first layer area forms, for example, a matrix of nickel, chromium and molybdenum, in which chromium carbides and phases rich in molybdenum are embedded homogeneously and finely distributed.
  • the molybdenum phases are only of a size of not larger than 5 ⁇ m, so that there are no wear-increasing phases in the matrix.
  • tungsten and chromium carbides are clearly embedded in the nickel matrix.
  • the average tungsten carbide has a diameter that is not larger than 1.5 ⁇ m and the chrome carbide has a diameter that is smaller than 3 ⁇ m, which supports machining.
  • a ratio corresponding to this layer structure could, for example, consist of 2 parts of areas rich in tungsten carbide and 8 parts of areas rich in chromium carbide.
  • Tests in real internal combustion engines have shown that a wear protection layer on the piston rings designed according to this example showed complete freedom from cracks and a wear behavior comparable to that of electroplated layers.
  • a resultant advantage is that processing with complete absence of cracks is possible without problems with conventional grinding wheels, that is, finishing is not more expensive than with a conventional wear protection layer produced by means of today's plasma spraying techniques.
  • the cobalt components in the alloy serve in particular as binders in the areas rich in tungsten carbide.
  • the hard material phases chrome carbide and tungsten carbide are the carriers of hardness and determine, among other things, the wear properties, while the binder metal gives the wear protection layer the toughness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

The invention relates to a wear protection layer for piston rings in internal combustion engines consisting essentially of chromium carbides, wolfram carbide, chromium and nickel. The wear protection layer is formed from a mixture of powders in which the first powder consists of at least the alloy components chromium carbide, chromium and nickel, in the form of an agglomerated and sintered powder, and which has not been subjected to any secondary heat treatment that would make the powder brittle, such as plasma refinement, the carbides in the powder having an average diameter of essentially not more than 3 mum. A second powder, also in the form of an agglomerated and sintered powder, contains wolfram carbide and is applied to at least one peripheral surface of the piston rings by thermal injection, so that two distinctive coating areas are produced in the wear protection layer. A first area, predominantly rich in chromium, and a second area, mainly rich in wolfram carbide are formed.

Description

Die vorliegende Erfindung betrifft einen Kolbenring für Brennkraftmaschinen mit auf mindestens eine Umfangsfläche des Kolbenringes mittels thermischem Spritzen aufgetragenen Verschleißschutzschicht, im wesentlichen bestehend aus Chrom-Karbiden, Wolfram-Karbid, Chrom und Nickel.The present invention relates to a piston ring for internal combustion engines at least one peripheral surface of the piston ring by means of thermal spraying applied wear protection layer, essentially consisting of chrome carbides, Tungsten carbide, chrome and nickel.

Die Laufflächen von Kolbenringen in Verbrennungskraftmaschinen unterliegen während ihres Einsatzes einem Verschleiß. Um den Verschleiß zu minimieren werden die Laufflächen der Kolbenringe mit einer Schutzschicht beaufschlagt. Je nach eingesetztem Fertigungsverfahren gehört es zum allgemeinen Stand der Technik, diese Schichten mittels eines Hochgeschwindigkeits-Flammspritz-Verfahrens zu erzeugen. Bei diesem Verfahren wird das Beschichtungsmaterial, das als Pulver vorliegt, mittels einer Sauerstoff-/Brennstoff-Spritzpistole geschmolzen und auf den Kolbenring aufgespritzt. Die EP 0 960 954 A2 offenbart ein entsprechendes Pulver zur Erzeugung dieser Verschleißschutzschichten. Dieses Pulver enthält Nickel, Chrom und Kohlenstoff, wobei das Chrom als Chrom-Karbid und als Nickel-Chrom-Legierung vorliegen kann. Der Aufsatz: "The Application of Cermet Coating on Piston Ring by HVOF" von H. Fukutome, aus dem Jahre 1995, des japanischen Kolbenringherstellers Teikoku Piston Ring, beschreibt ebenfalls den Einsatz von Chrom-Karbiden und Nickel-Chrom-Legierungen zur Erzeugung von Verschleißschichten mittels Hochgeschwindigkeits-Flammspritzens. Die in beiden Schriften zum Einsatz kommenden Legierungskomponenten bilden eine Nickel-Chrom-Matrix, in die je nach Legierungsanteil Chrom-Karbide eingelagert sind. Nachteilig an diesen Schichten ist, das sie aufgrund ihrer Härte und Sprödigkeit rissanfällig sind, wobei die Rissanfälligkeit sogar der lebensdauerbestimmende Faktor für die Kolbenringe sein kann. Diese Rissanfälligkeit resultiert aus den großen Karbiddurchmessern, was spannungsbedingt zu Karbidausbrüchen und damit zum Ringverschleiß führt. Insbesondere in den plasmabehandelten Pulvern liegen die Karbide in einer bereits zersetzten Form vor, so dass die Matrix versprödet und die Karbide durch Umwandlung vom Cr3C2 zu Cr7C3 oder sogar zu Cr23C6 an Härte verlieren. Um diesem Nachteil entgegenzutreten werden in der DE 197 20 627 A1 dem Spritzpulver 20 bis 80 Vol-% Molybdän zugemischt. Molybdän besitzt eine relativ hohe Zähigkeit und kann somit das Risswachstum stoppen. Die Patentanmeldung offenbart bevorzugte Beschichtungen aus gesinterten Chrom-Karbid- und Nickel-Chrom-Pulvern mit bis zu 100 Gew.-% Molybdän. Durch das Einbringen des Molybdäns in das Pulver entstehen aber in der daraus resultierenden Schicht Phasen aus Molybdän, die annähernd die Größe des Ausgangspulvers besitzen und in der Regel einen Durchmesser von 5 bis 50 µm besitzen. Negativ wirkt sich dabei die relativ niedrige Abriebbeständigkeit des Molybdäns aus, die Molybdänphasen werden bevorzugt verschlissen und folglich nimmt die Verschleißbeständigkeit der Schutzschicht ab.
Neben den Chrom-Karbiden werden auch Wolfram-Karbide in die Matrix der Verschleißschutzschicht mit eingelagert. Die europäische Patentschrift EP 0 512 805 B1 beschreibt die Bildung eines Oberflächenschutzes mit Chrom- und Wolfram-Karbiden, wobei die eingelagerten Wolfram-Chrom-Karbide eine Partikelgröße im Bereich von 25 - 100 µm aufweisen. Wolfram-Karbide sind härter als Chrom-Karbide und besitzen eine sehr hohe Druck- und Verschleißbeständigkeit. Die außergewöhnlich harten Wolfram-Karbide zeigen aber gleichzeitig einen deutlichen Nachteil bei der Bearbeitung der erzeugten Oberfläche. Die Oberfläche kann mit herkömmlichen Schleifscheiben nicht mehr bearbeitet werden, eine Bearbeitung ist lediglich mit sehr hochwertigen und gleichzeitig teuren Schleifscheiben möglich.
The running surfaces of piston rings in internal combustion engines are subject to wear during use. A protective layer is applied to the running surfaces of the piston rings to minimize wear. Depending on the manufacturing process used, it is part of the general state of the art to produce these layers using a high-speed flame spraying process. In this process, the coating material, which is in the form of a powder, is melted by means of an oxygen / fuel spray gun and sprayed onto the piston ring. EP 0 960 954 A2 discloses a corresponding powder for producing these wear protection layers. This powder contains nickel, chromium and carbon, whereby the chromium can be present as chromium carbide and as a nickel-chromium alloy. The article: "The Application of Cermet Coating on Piston Ring by HVOF" by H. Fukutome, from 1995, by the Japanese piston ring manufacturer Teikoku Piston Ring, also describes the use of chrome carbides and nickel-chrome alloys to create wear layers by means of high-speed flame spraying. The alloy components used in both documents form a nickel-chromium matrix in which, depending on the alloy content, chromium carbides are embedded. A disadvantage of these layers is that they are susceptible to cracking due to their hardness and brittleness, and the susceptibility to cracking can even be the life-determining factor for the piston rings. This susceptibility to cracking results from the large carbide diameters, which, due to the stress, leads to carbide breakouts and thus to ring wear. In the plasma-treated powders in particular, the carbides are present in an already decomposed form, so that the matrix becomes brittle and the carbides lose hardness due to conversion from Cr3C2 to Cr7C3 or even to Cr23C6. In order to counter this disadvantage, DE 197 20 627 A1 mixes 20 to 80% by volume of molybdenum with the wettable powder. Molybdenum has a relatively high toughness and can therefore stop crack growth. The patent application discloses preferred coatings of sintered chromium carbide and nickel chromium powders with up to 100% by weight of molybdenum. By introducing the molybdenum into the powder, however, phases of molybdenum are formed in the resulting layer, which are approximately the size of the starting powder and generally have a diameter of 5 to 50 μm. The relatively low abrasion resistance of the molybdenum has a negative effect, the molybdenum phases are preferably worn out and consequently the wear resistance of the protective layer decreases.
In addition to the chrome carbides, tungsten carbides are also embedded in the matrix of the wear protection layer. European patent EP 0 512 805 B1 describes the formation of a surface protection with chromium and tungsten carbides, the embedded tungsten-chromium carbides having a particle size in the range from 25 to 100 μm. Tungsten carbides are harder than chrome carbides and have a very high resistance to pressure and wear. The extraordinarily hard tungsten carbides, however, also show a clear disadvantage when processing the surface produced. The surface can no longer be processed with conventional grinding wheels, processing is only possible with very high quality and at the same time expensive grinding wheels.

Die EP -A- 0657237 offenbart ein thermisches Spritzpulver bestehend aus Wolframkarbid- Partikeln welche durch metallisches Kobald miteinander verbunden sind. Darüber hinaus wird eine zweite Art Körner bestehend aus Chromkarbid-Partikeln über eine Ni-Cr- Legierung miteinander verbunden. Die Schutzschicht wird für Hochdruckventile, petrochemische Leitungen, Sitze in Pumpen etc. verwendet. Eine Anwendung für Kolbenringe ist nicht erwähnt. EP -A- 0657237 discloses a thermal wettable powder consisting of Tungsten carbide particles which are connected by metallic cobalt are. In addition, a second type of grains consisting of chrome carbide particles connected to each other via a Ni-Cr alloy. The protective layer is for High pressure valves, petrochemical lines, seats in pumps etc. are used. A Application for piston rings is not mentioned.

Aus der US -A- 3606359 ist eine Beschichtung für Kolbenringe zu entnehmen die eine andere Mikrostruktur als in der vorliegenden Anmeldung aufweist. Es werden zwei verschiedene Pulver aus vorher gesinterten Partikeln aufgespritzt; eine Angabe über die Größe der Partikel für die Karbide wird nicht erwähnt.A coating for piston rings can be found in US-A-3606359 different microstructure than in the present application. There will be two various powders sprayed from previously sintered particles; an indication of the The size of the particles for the carbides is not mentioned.

Der Erfindung liegt die Aufgabe zugrunde, die zum Stand der Technik gehörigen Nachteile zu überwinden, und einen Kolbenring für Brennkraftmaschinen zu erzeugen, der auf der Lauffläche eine Verschleißschutzschicht aufweist, die nahezu rissfrei ist und eine hohe Verschleißbeständigkeit besitzt.The invention is based on the object belonging to the prior art To overcome disadvantages and to produce a piston ring for internal combustion engines, which has a wear protection layer on the tread that is almost crack-free and a has high wear resistance.

Diese Aufgabe wird erfindungsgemäß durch den kennzeichnenden Teil des Patentanspruchs 1 gelöst, vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen dokumentiert.This object is achieved by the characterizing part of the Solved claim 1, advantageous developments of the invention are in the Sub-claims documented.

Die erfindungsgemäße Verschleißschutzschicht für die Lauffläche des Kolbenrings ist aus einem Pulvergemisch gebildet, in dem das erste Pulver als agglomeriertes und gesintertes Pulver mindestens aus den Legierungskomponenten Chrom-Karbid, Chrom und Nickel besteht, das keine nachträgliche versprödende Wärmebehandlung wie z. B. eine Plasmaveredlung erfahren hat, wobei die Karbide im Pulver einen mittleren Durchmesser aufweisen, der weniger als 3 µm ist und einem zweiten Pulver, das ebenfalls als agglomeriertes und gesintertes Pulver vorliegt und als wesentliches Merkmal Wolfram-Karbid enthält und mittels thermischem Spritzens auf mindestens eine Umfangsfläche der Kolbenringe aufgetragen ist, so dass in der Verschleißschutzschicht zwei unterscheidbare Schichtbereiche erzeugt werden, wobei sich ein erster vornehmlich chromkarbidreicher und ein zweiter hauptsächlich wolframkarbidreicher Bereich ausbildet.
Der Einsatz eines Pulvers mit einer Karbidgröße von weniger als 3 µm ist ein wesentlicher Unterschied zu den herkömmlich eingesetzten Pulvern, deren mittlere Karbidgröße bei über 5 µm liegt, meistens jedoch sogar über 10 µm. Durch die Verringerung der Karbidgröße wird der Karbidausbruch verringert, die Rissgefahr wird minimiert und gleichzeitig werden die Eigenspannungen im Karbid reduziert was wiederum die Karbidzerrüttungstendenz verkleinert. Ein weiterer wesentlicher Unterschied ist der Einsatz von Primärkarbiden im Ausgangspulver, die vorwiegend als blockige Cr3C2- und Cr7C3-Karbide vorliegen. Die über die herkömmliche Schmelzverdüsung gewonnen Pulver weisen dagegen meist dendritische Karbide und vorwiegend aufgelöste Karbide wie zum Beispiel Cr23C6 auf, die sehr viel weicher sind.
The wear protection layer according to the invention for the running surface of the piston ring is formed from a powder mixture in which the first powder as agglomerated and sintered powder consists at least of the alloy components chromium carbide, chromium and nickel, which does not have any subsequent embrittling heat treatment such as, for. B. has undergone a plasma refinement, the carbides in the powder having an average diameter which is less than 3 microns and a second powder, which is also present as an agglomerated and sintered powder and contains tungsten carbide as an essential feature and by thermal spraying on at least a circumferential surface of the piston rings is applied, so that two distinguishable layer regions are produced in the wear protection layer, a first region which is primarily rich in chromium carbide and a second region which is mainly rich in tungsten carbide.
The use of a powder with a carbide size of less than 3 µm is a significant difference to the conventionally used powders, whose average carbide size is over 5 µm, but mostly even over 10 µm. By reducing the carbide size, the carbide breakout is reduced, the risk of cracks is minimized and at the same time the residual stresses in the carbide are reduced, which in turn reduces the tendency to carbide breakdown. Another essential difference is the use of primary carbides in the starting powder, which are mainly in the form of blocky Cr3C2 and Cr7C3 carbides. The powders obtained via conventional melt atomization, on the other hand, mostly have dendritic carbides and mostly dissolved carbides such as Cr23C6, which are much softer.

Erfindungsgemäß bilden sich zwei unterscheidbare Schichtbereiche als Basis in der Verschleißschutzschicht aus. Dabei ist der Schichtaufbau ungeordnet. Den ersten Schichtbereich bildet beispielsweise eine Matrix aus Nickel, Chrom und Molybdän aus, in der homogen und fein verteilt Chrom-Karbide und molybdänreiche Phasen eingelagert sind. Die Molybdänphasen liegen im Gegensatz zu den aus dem Stand der Technik bekannten 5 bis 50 µm großen Molybdänphasen lediglich in einer Größe von nicht größer als 5µm vor, so dass keine verschleißerhöhenden Phasen in der Matrix vorliegen.
Im zweiten sichtlich unterscheidbaren Schichtbereich sind in die Nickel-Matrix vernehmlich Wolfram- und Chrom-Karbide eingelagert. Dabei haben die Wolfram-Karbide im Mittel einen Durchmesser, der nicht größer als 1,5 µm ist und die Chrom-Karbide einen Durchmesser, der kleiner als 3 µm ist, wodurch die spanende Bearbeitung unterstützt wird. Ein diesem Schichtaufbau entsprechendes Verhältnis könnte beispielhaft aus 2-Teilen wolframkarbidreichen Bereichen und 8 Teilen chromkarbidreichen Bereichen bestehen. Versuche in realen Verbrennungsmotoren haben gezeigt, dass eine nach diesem Beispiel ausgebildete Verschleißschutzschicht auf den Kolbenringen eine völlige Rissfreiheit und ein annähernd mit galvanisch erzeugten Schichten vergleichbares Verschleißverhalten aufwies.
Durch die Überlagerung der beiden Schichtwerkstoffe in einer Verschleißschutzschicht ist es nun möglich, die relativ gute Bearbeitbarkeit der Chrom-Karbide mit der sehr hohen Verschleißbeständigkeit des Wolfram-Karbids kombinativ zu vereinen. Ein sich hieraus ergebender Vorteil ist, dass eine Bearbeitung bei völliger Rissfreiheit mit herkömmlichen Schleifscheiben problemlos möglich ist, dass heißt, eine Fertigbearbeitung ist nicht kostenintensiver als bei einer herkömmlichen, mittels heutiger Plasmaspritztechniken erzeugten Verschleißschutzschicht.
Die Cobaltanteile in der Legierung dienen insbesondere als Bindemittel in den wolframkarbidreichen Bereichen. Die Hartstoffphasen Chrom-Karbid und Wolfram-Karbid sind die Träger der Härte und bestimmen unter anderem die Verschleißeigenschaften, während das Bindemetall der Verschleißschutzschicht die Zähigkeit verleiht.
According to the invention, two distinguishable layer areas form as the basis in the wear protection layer. The layer structure is disordered. The first layer area forms, for example, a matrix of nickel, chromium and molybdenum, in which chromium carbides and phases rich in molybdenum are embedded homogeneously and finely distributed. In contrast to the 5 to 50 μm large molybdenum phases known from the prior art, the molybdenum phases are only of a size of not larger than 5 μm, so that there are no wear-increasing phases in the matrix.
In the second, clearly distinguishable layer area, tungsten and chromium carbides are clearly embedded in the nickel matrix. The average tungsten carbide has a diameter that is not larger than 1.5 µm and the chrome carbide has a diameter that is smaller than 3 µm, which supports machining. A ratio corresponding to this layer structure could, for example, consist of 2 parts of areas rich in tungsten carbide and 8 parts of areas rich in chromium carbide. Tests in real internal combustion engines have shown that a wear protection layer on the piston rings designed according to this example showed complete freedom from cracks and a wear behavior comparable to that of electroplated layers.
By superimposing the two layer materials in a wear protection layer, it is now possible to combine the relatively good machinability of the chromium carbide with the very high wear resistance of the tungsten carbide. A resultant advantage is that processing with complete absence of cracks is possible without problems with conventional grinding wheels, that is, finishing is not more expensive than with a conventional wear protection layer produced by means of today's plasma spraying techniques.
The cobalt components in the alloy serve in particular as binders in the areas rich in tungsten carbide. The hard material phases chrome carbide and tungsten carbide are the carriers of hardness and determine, among other things, the wear properties, while the binder metal gives the wear protection layer the toughness.

Eine erfindungsgemäße Verschleißschutzschicht für einen Kolbenring einer Verbrennungskraftmaschine ist anhand eines Ausführungsbeispiels in der Zeichnung dargestellt und wird im weiteren näher erläutert. Es zeigt:

  • Figur 1 einen Längsschnitt durch eine Verschleißschutzschicht auf einem Kolbenring. In Figur 1 ist auf einen Kolbenring 1 eine Verschleißschutzschicht 2 aufgebracht. Die Grenzen 3 in der Verschleißschutzschicht 2 markieren die unterschiedlichen Schichtbereiche 4 und 5. Der Schichtbereich 4 beinhaltet vornehmlich chromkarbidreiche Phasen 6 und Molybdänphasen 7 die Matrix 8 besteht hauptsächlich aus Nickel und Chrom. Der Schichtbereich 5 besitzt in diesem Ausführungsbeispiel ebenfalls eine Nickel-Chrom-Matrix, in die hauptsächlich Wolfram-Karbide 9 und Chrom-Karbide 10 eingelagert sind.
  • A wear protection layer according to the invention for a piston ring of an internal combustion engine is shown in the drawing using an exemplary embodiment and is explained in more detail below. It shows:
  • 1 shows a longitudinal section through a wear protection layer on a piston ring. In FIG. 1, a wear protection layer 2 is applied to a piston ring 1. The boundaries 3 in the wear protection layer 2 mark the different layer regions 4 and 5. The layer region 4 primarily contains phases 6 rich in chromium carbide and molybdenum phases 7. The matrix 8 consists mainly of nickel and chromium. In this exemplary embodiment, the layer region 5 likewise has a nickel-chromium matrix, in which mainly tungsten carbides 9 and chromium carbides 10 are embedded.
  • Claims (14)

    1. Piston ring for internal combustion engines, with a wear protection layer composed of chromium carbides, tungsten carbide, chromium and nickel applied to at least one peripheral surface of the piston ring by means of thermal spray-coating, characterised in that the wear protection layer is formed from a powder mixture, in which the first powder in the form of agglomerated and sintered powder is composed at least of the alloy components chromium carbides, chromium and nickel, and has not been subject to any subsequent embrittling heat treatment such as plasma refining, for example, wherein the carbides in the powder have an average diameter, which is smaller than 3 µm, and a second powder, which is also present in the form of agglomerated and sintered powder and contains tungsten carbide, so that two different layer regions are generated in the wear protection layer, wherein a first region predominantly containing chromium carbide and a second region principally containing tungsten carbide are formed.
    2. Piston ring according to Claim 1, characterised in that the second powder additionally contains chromium, carbon and nickel, so that during the spray-coating regions high in tungsten carbide are formed, in which predominantly tungsten carbides, chromium carbides and nickel are present.
    3. Piston ring according to one of Claims 1 and 2, characterised in that the alloy components in the regions high in tungsten carbide are present with amounts of carbon between 8 and 11%, nickel between 6 and 8%, chromium between 18 and 24% and the rest being tungsten.
    4. Piston ring according to Claim 1, characterised in that the second powder additionally contains nickel, so that during the spray-coating regions high in tungsten carbide are formed, in which predominantly tungsten carbides and nickel are present.
    5. Piston ring according to one of Claims 1 and 4, characterised in that the alloy components are present with amounts of carbon between 4 and 6%, nickel between 11 and 18% and the rest being tungsten.
    6. Piston ring according to Claim 1, characterised in that the second powder additionally contains cobalt and chromium, so that during the spray-coating regions high in tungsten carbide are formed, in which predominantly tungsten carbides in a cobalt-chromium alloy are present.
    7. Piston ring according to one of Claims 1 and 6, characterised in that the alloy components are present with amounts of cobalt between 6 and 18%, chromium between 0.01 and 9% and the rest being tungsten.
    8. Piston ring according to one of Claims 1 to 7, characterised in that the regions high in chromium carbide contain between 7 and 10% carbon, 10 - 20% nickel, 1-10% molybdenum and the rest being chromium.
    9. Piston ring according to Claims 1 to 8, characterised in that the proportion of the regions high in tungsten carbide in the mixture amounts to between 1 and 95% by vol.
    10. Piston ring according to one of Claims 8 to 9, characterised in that the diameters of the phases high in molybdenum in the regions high in chromium carbide are not greater than 5 µm.
    11. Piston ring according to one of Claims 8 to 10, characterised in that the tungsten carbides on average are not more than 1.5 µm.
    12. Piston ring according to one of Claims 1 to 11, characterised in that the tungsten carbides are present in the form of WC carbides.
    13. Piston ring according to one of Claims 1 to 12, characterised in that the chromium carbides are present in the form of Cr3C2 carbides.
    14. Piston ring according to one of Claims 1 to 13, characterised in that the high-velocity flame spray coating (HVOF) is used as thermal spray coating process.
    EP01270182A 2000-12-12 2001-11-17 Wear protection layer for piston rings, containing wolfram carbide and chromium carbide Expired - Lifetime EP1341946B1 (en)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE10061750A DE10061750B4 (en) 2000-12-12 2000-12-12 Tungsten wear protection layer for piston rings
    DE10061750 2000-12-12
    PCT/DE2001/004336 WO2002048422A1 (en) 2000-12-12 2001-11-17 Wear protection layer for piston rings, containing wolfram carbide and chromium carbide

    Publications (2)

    Publication Number Publication Date
    EP1341946A1 EP1341946A1 (en) 2003-09-10
    EP1341946B1 true EP1341946B1 (en) 2004-09-01

    Family

    ID=7666749

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP01270182A Expired - Lifetime EP1341946B1 (en) 2000-12-12 2001-11-17 Wear protection layer for piston rings, containing wolfram carbide and chromium carbide

    Country Status (7)

    Country Link
    US (1) US7001670B2 (en)
    EP (1) EP1341946B1 (en)
    JP (1) JP4394349B2 (en)
    AT (1) ATE275212T1 (en)
    BR (1) BR0116079B1 (en)
    DE (2) DE10061750B4 (en)
    WO (1) WO2002048422A1 (en)

    Families Citing this family (14)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    AU2003273015A1 (en) * 2002-10-15 2004-05-04 Kabushiki Kaisha Riken Piston ring and thermal sprayed coating for use therein, and method for manufacture thereof
    DE102004014871A1 (en) * 2004-03-26 2005-10-13 Federal-Mogul Burscheid Gmbh piston ring
    DE102005020999A1 (en) * 2005-05-03 2006-11-09 Alfred Flamang Process for coating components exposed to wear and coated component
    DE102006049756A1 (en) * 2006-10-21 2008-04-24 Federal-Mogul Burscheid Gmbh Wear protection layer for piston rings in combustion engines comprises a layer made from layers of different hardness and metallic phases arranged radially over each other
    JP5113190B2 (en) * 2007-01-09 2013-01-09 フェデラル−モーグル ブルシャイト ゲゼルシャフト ミット ベシュレンクテル ハフツング Piston ring with multilayer coating and process for producing the same
    US20090191416A1 (en) * 2008-01-25 2009-07-30 Kermetico Inc. Method for deposition of cemented carbide coating and related articles
    DE102008014333B4 (en) 2008-03-14 2012-05-03 Federal-Mogul Burscheid Gmbh Wear-resistant component
    ATE544704T1 (en) * 2008-07-14 2012-02-15 Sulzer Metco Coatings Gmbh DIVING POOL ROLL AND METHOD FOR PRODUCING A DIVING POOL ROLL
    DE102009016650B3 (en) * 2009-04-07 2010-07-29 Federal-Mogul Burscheid Gmbh Sliding element with adjustable properties
    US8906130B2 (en) 2010-04-19 2014-12-09 Praxair S.T. Technology, Inc. Coatings and powders, methods of making same, and uses thereof
    DE102010038289A1 (en) * 2010-07-22 2012-01-26 Federal-Mogul Burscheid Gmbh Piston ring with thermal sprayed coating and method of manufacture thereof
    WO2013062045A1 (en) * 2011-10-25 2013-05-02 株式会社Ihi Piston ring
    BR102012016283A2 (en) * 2012-06-29 2014-08-12 Mahle Metal Leve Sa SLIDING ELEMENT AND INTERNAL COMBUSTION ENGINE
    US9890858B2 (en) 2012-06-29 2018-02-13 Mahle Metal Leve S/A Sliding element and internal combustion engine

    Family Cites Families (22)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    GB867455A (en) * 1958-04-24 1961-05-10 Metco Inc Improvements relating to the production of carbide-containing sprayweld coatings
    US3606359A (en) * 1969-08-08 1971-09-20 Ramsey Corp Tungsten carbide coated piston rings
    US3837817A (en) * 1972-10-18 1974-09-24 Nippon Piston Ring Co Ltd Sliding member having a spray-coated layer
    US3814447A (en) * 1972-11-02 1974-06-04 Ramsey Corp Sealing element for use in internal combustion engines
    GB1441961A (en) * 1973-03-21 1976-07-07 Wellworthy Ltd Piston rings
    IT1172891B (en) * 1978-07-04 1987-06-18 Fiat Spa PROCEDURE FOR COATING A METALLIC SURFACE WITH ANTI-WEAR MATERIAL
    US4925626A (en) * 1989-04-13 1990-05-15 Vidhu Anand Method for producing a Wc-Co-Cr alloy suitable for use as a hard non-corrosive coating
    US5141571A (en) * 1991-05-07 1992-08-25 Wall Colmonoy Corporation Hard surfacing alloy with precipitated bi-metallic tungsten chromium metal carbides and process
    JPH06117537A (en) * 1992-10-01 1994-04-26 Hitachi Zosen Corp Piston ring
    US5395221A (en) * 1993-03-18 1995-03-07 Praxair S.T. Technology, Inc. Carbide or boride coated rotor for a positive displacement motor or pump
    US5419976A (en) * 1993-12-08 1995-05-30 Dulin; Bruce E. Thermal spray powder of tungsten carbide and chromium carbide
    JPH08210504A (en) * 1995-01-31 1996-08-20 Nippon Piston Ring Co Ltd Piston ring
    CN1079842C (en) * 1996-03-13 2002-02-27 株式会社日立制作所 Runner, water wheel and method of manufacturing the same
    US5713129A (en) * 1996-05-16 1998-02-03 Cummins Engine Company, Inc. Method of manufacturing coated piston ring
    JP2991977B2 (en) * 1996-10-04 1999-12-20 トーカロ株式会社 Conductor roll for electroplating and method of manufacturing the same
    JPH1150908A (en) * 1997-07-31 1999-02-23 Nippon Piston Ring Co Ltd Abrasion resistant sliding member
    US6071324A (en) * 1998-05-28 2000-06-06 Sulzer Metco (Us) Inc. Powder of chromium carbide and nickel chromium
    JP2001234320A (en) * 2000-02-17 2001-08-31 Fujimi Inc Thermal spraying powder material, and thermal spraying method and sprayed coating film using the same
    DE10046956C2 (en) * 2000-09-21 2002-07-25 Federal Mogul Burscheid Gmbh Thermally applied coating for piston rings made of mechanically alloyed powders
    US6562480B1 (en) * 2001-01-10 2003-05-13 Dana Corporation Wear resistant coating for piston rings
    JP3952252B2 (en) * 2001-01-25 2007-08-01 株式会社フジミインコーポレーテッド Powder for thermal spraying and high-speed flame spraying method using the same
    US6655181B2 (en) * 2001-10-15 2003-12-02 General Motors Corporation Coating for superplastic and quick plastic forming tool and process of using

    Also Published As

    Publication number Publication date
    ATE275212T1 (en) 2004-09-15
    DE10061750B4 (en) 2004-10-21
    WO2002048422A1 (en) 2002-06-20
    JP4394349B2 (en) 2010-01-06
    US7001670B2 (en) 2006-02-21
    BR0116079A (en) 2003-12-16
    DE50103494D1 (en) 2004-10-07
    US20040069141A1 (en) 2004-04-15
    JP2004514795A (en) 2004-05-20
    BR0116079B1 (en) 2011-04-05
    DE10061750A1 (en) 2002-06-20
    EP1341946A1 (en) 2003-09-10

    Similar Documents

    Publication Publication Date Title
    DE10046956C2 (en) Thermally applied coating for piston rings made of mechanically alloyed powders
    EP1341946B1 (en) Wear protection layer for piston rings, containing wolfram carbide and chromium carbide
    DE19700835C2 (en) Composite powder and method for forming a self-lubricating composite layer and self-lubricating components formed thereby
    DE102009016650B3 (en) Sliding element with adjustable properties
    EP2491159B1 (en) Use of a spray powder for the cermet coating of doctor blades
    DE102007019510B3 (en) Process to run-in a large marine two-stroke diesel engine with soft abrasion coating on piston rings
    DE112012001018T5 (en) piston ring
    EP3325685B1 (en) Method for coating a cylinder barrel of a cylinder crankcase, cylinder crankcase with a coated cylinder barrel and engine
    EP0725158A1 (en) Wear- and slip resistant composite coating
    DE3241377C2 (en)
    DE19640789C2 (en) Wear-resistant coated components for internal combustion engines, in particular piston rings and processes for their production
    DE3036206A1 (en) WEAR-RESISTANT COATING, OXIDATION AND CORROSION PROTECTIVE COATING, CORROSION- AND WEAR-RESISTANT COATING ALLOY, ITEM PROVIDED WITH SUCH A COATING AND METHOD FOR PRODUCING SUCH A COATING
    DE102008014945B3 (en) Wear-resistant component
    DE10061749C2 (en) Piston ring for internal combustion engines
    DE102008056720B3 (en) Sliding element for an internal combustion engine, comprises a substrate and a coating obtained by thermal spraying of a powder comprising chromium, nickel, carbon and nitrogen
    DE3049641C2 (en) Sliding element
    DE10061751C1 (en) Antiwear layer, used for piston rings in I.C. engines, made from an agglomerated or sintered powder consisting of chromium carbide, chromium, nickel and molybdenum
    EP3321001B1 (en) Material and use of same
    DE102015013706A1 (en) functional layer
    EP2537959B1 (en) Multiple wear-resistant coating and method for its production
    DE102008001720A1 (en) Coating surface of roller containing steel substrate by thermal injection, comprises smelting and melting spray additive material containing nanomaterials and then disposing on the surface, and applying coating on the preprocessed surface
    DE102009031375B4 (en) Piston ring with adjustable wear characteristics and process for its preparation
    WO2005012590A2 (en) Valve seat rings made of basic co or co/mo alloys, and production thereof
    EP4029966A1 (en) Method for producing a coated grey cast iron brake disc
    DE3704473C2 (en)

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20030521

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    17Q First examination report despatched

    Effective date: 20031208

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040901

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040901

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040901

    Ref country code: TR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040901

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040901

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20040901

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    REF Corresponds to:

    Ref document number: 50103494

    Country of ref document: DE

    Date of ref document: 20041007

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041117

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041117

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041130

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041130

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20041201

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20041201

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20041201

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20041212

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    ET Fr: translation filed
    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    BERE Be: lapsed

    Owner name: FEDERAL-MOGUL BURSCHEID G.M.B.H.

    Effective date: 20041130

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20050602

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20051130

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20051130

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    BERE Be: lapsed

    Owner name: *FEDERAL-MOGUL BURSCHEID G.M.B.H.

    Effective date: 20041130

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050201

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20101022

    Year of fee payment: 10

    Ref country code: IT

    Payment date: 20101119

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20111103

    Year of fee payment: 11

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20121117

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20130731

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20121117

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20121130

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20121117

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20191017

    Year of fee payment: 19

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 50103494

    Country of ref document: DE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20210601