EP1334234B1 - Bodenverdichtungsvorrichtung mit schwingungserreger und verfahren zum regeln des schwingungserregers - Google Patents

Bodenverdichtungsvorrichtung mit schwingungserreger und verfahren zum regeln des schwingungserregers Download PDF

Info

Publication number
EP1334234B1
EP1334234B1 EP01985279A EP01985279A EP1334234B1 EP 1334234 B1 EP1334234 B1 EP 1334234B1 EP 01985279 A EP01985279 A EP 01985279A EP 01985279 A EP01985279 A EP 01985279A EP 1334234 B1 EP1334234 B1 EP 1334234B1
Authority
EP
European Patent Office
Prior art keywords
oscillation
amplitude
drive
exciter
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01985279A
Other languages
English (en)
French (fr)
Other versions
EP1334234A1 (de
Inventor
Wolfgang Fervers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wacker Construction Equipment AG
Original Assignee
Wacker Construction Equipment AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacker Construction Equipment AG filed Critical Wacker Construction Equipment AG
Publication of EP1334234A1 publication Critical patent/EP1334234A1/de
Application granted granted Critical
Publication of EP1334234B1 publication Critical patent/EP1334234B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/22Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for consolidating or finishing laid-down unset materials
    • E01C19/23Rollers therefor; Such rollers usable also for compacting soil
    • E01C19/28Vibrated rollers or rollers subjected to impacts, e.g. hammering blows
    • E01C19/288Vibrated rollers or rollers subjected to impacts, e.g. hammering blows adapted for monitoring characteristics of the material being compacted, e.g. indicating resonant frequency, measuring degree of compaction, by measuring values, detectable on the roller; using detected values to control operation of the roller, e.g. automatic adjustment of vibration responsive to such measurements

Definitions

  • the invention relates to a soil compaction device with a ground contact element acting vibrator and a method for controlling the vibration exciter.
  • They are soil compacting devices, for example vibrating plates or rollers, in which a ground-compacting ground contact element, like a plate or a roll bandage, by one of a Vibration generator generated vibration can be applied.
  • the compaction of the soil is done by one or more times driving over with the soil compacting device, which increases the strength of the soil and thus also changes its vibration behavior.
  • the soil compacting device begin to "jump" by the ground contact plate or drum bandage lift off the ground after each contact with the ground. This poses not just a waste of energy, but is for those already occurred compaction disadvantageous, since it leads to local soil loosening can come. Jumping of the soil compaction device also results to a considerable load of the device leading operator.
  • WO-A-98-17865 and WO-A-95-10664 are vibratory compactors known in which on the operating state of jumping through change the vibration generated by the vibration generator automatically reacts becomes.
  • the frequency of the vibration exciter to the previously determined Adapted soil properties.
  • the soil condition by elaborate evaluation of various Measured signals determined.
  • this requires the movement the ground contact element, which is part of a vibrating lower mass is to determine.
  • the set frequency and the exact position of the vibration exciter can be measured.
  • FIG. 3 shows a known vibration plate serving as a soil compaction device, which can be guided on a drawbar 1 by an operator.
  • One to an upper mass belonging drive 2 drives one to a lower mass belonging to vibration exciter 3, which is a ground contact plate. 4 generates acting vibration.
  • the vibration generator 3 acts It is usually a single- or two-wave exciter, in which corresponding to one or two waves one or more imbalance masses are distributed.
  • the structure of such a vibration plate is known, so that a further description is unnecessary.
  • the invention is based on the object, a soil compacting device with a vibration exciter and a method for regulating the Specify vibration exciter, in which an optimal utilization of the ensured by the drive power is guaranteed.
  • the object is achieved by a soil compacting device according to claim 1 and by a method according to claim 11.
  • the idea underlying the invention consists in each case one Control of the amplitude and frequency of the by the vibration exciter provide vibration generated and realized by simple means. Above all, in the interaction of the two regulations, it is possible the available drive power, for example a drive motor, optimally exploit, without that the unwanted "jumping" the Soil compaction device occurs.
  • the regulation of the amplitude is based on the fact that whenever a Jumping a ground contact element is detected, the amplitude is reduced becomes.
  • the check whether the ground contact element jumps, takes place continuously or regularly during a given timetable. After a Changing the amplitude thus takes place again determining the Vibration state of the ground contact element.
  • the amplitude will not be about kept constant at the existing value, but again - but with lower gradient - increased. Consequently, the amplitude changes constantly, namely either by a significant reduction when jumping has been detected, or by a slight increase if no Jumping has been found. This ensures that the soil compacting device always in the border area between jumping and non-jumping is moved.
  • the change in vibration amplitude can be continuous and continuous be carried out, wherein preferably the reduction of Vibration amplitude with a stronger gradient occurs as the enlargement.
  • the clock can also be set so short that a quasi-continuous Change the oscillation amplitude sets.
  • the inventive control of the oscillation frequency is based on the Thoughts, the given, for example, delivered by a drive motor Drive power for soil compaction always optimal, that is maximum exploit.
  • the delivered to the vibration exciter Drive power determined by a power determination device and with a setpoint, namely the predetermined value for an optimal drive power compared, wherein the frequency control device the determined actual drive power in the range of the predetermined value by maintaining the frequency generated by the vibration exciter adapts.
  • Figure 1 shows a block diagram of the structure of a control according to the invention for the vibration exciter of a soil compaction device.
  • the Control consists essentially of two mutually parallel Components, namely an amplitude control device 5 and a Frequency control device 6.
  • Part of the amplitude control device 5 is a detection device 8, with which it can be determined whether the ground contact element 4 is jumping, that means lifting off the ground or not.
  • This operating state of "jumping” can be prepared, for example, by known methods as described in WO-A-98-17865 or WO-A-95-10664.
  • a detection device in the one with respect to the ground contact element elastically movable Detection mass is provided, wherein the movement of the detection mass is measured by a measuring device. If the movement, in particular the oscillation amplitude of the detection mass a predetermined Value exceeds, this may be due to jumping of the ground contact element excessive impact energy are interpreted.
  • the information as to whether or not the ground contact element 4 bounces is given by the detection device 8 is delivered to a control unit 9.
  • the control unit 9 evaluates the jump information from the detection device 8 and controls an adjusting device 10 for adjusting the oscillation amplitude at the vibration generator 3 according to predetermined rules at.
  • the control algorithm comprises two control measures. According to a first The regular measure is the oscillation amplitude incrementally by a first Amplitude difference k1 reduced when the detection device 8 a Special vibration state, namely a jumping of the ground contact element 4 has detected.
  • control unit 9 For timing of these control measures is in or on the control unit 9 provides a timer for generating a timing clock.
  • a time clock for example, amount to a fraction of a second can, is the control unit 9, the signal of the detection device. 8 evaluated and a corresponding action by driving the actuator 10 causes. This process is repeated in the next time cycle.
  • the result of this control algorithm is that the oscillation amplitude permanently, that is changed in every bar. If the oscillation amplitude is reduced by the first amplitude difference k1 is and then still a jumping is detected, is a causes a further reduction by the first amplitude difference k1. kick on the other hand, no more jumping, the amplitude is not diminished, but the second smaller compared to the first amplitude difference k1 Amplitude difference k2 increases, so that an interplay of reduction and increasing the amplitude. This will achieve that the soil compaction device always in the border area between Jumping and not jumping is being moved.
  • FIG. 2 shows in a diagram the oscillation amplitude over the time course.
  • a maximum amplitude is set. In the present case is detected immediately after starting, that the ground contact element 4 has started to jump, so that the oscillation amplitude around the Value k1 (first amplitude difference) is reduced. Subsequently, will determined that the ground contact element 4 is no longer jumping, so that subsequently in several steps (in Figure 2 in three steps) the amplitude is increased by the second amplitude difference k2, until again a jumping is detected, etc.
  • the soil compacting device passes over obviously a soil that has only limited impact energy can record.
  • the oscillation amplitude must be twice be diminished and finally takes only a comparatively small Value. Thereafter, a recovery with associated increase takes place the oscillation amplitude instead.
  • the amplitude control according to the invention makes it possible for the soil compacting device the ground each with the greatest possible amplitude compacted, wherein the amplitude control device 5 is compared to the State of the art has a considerably simplified structure.
  • the underlying idea of the frequency control device is that always the existing or predetermined drive power completely for Soil compaction is to be exploited.
  • a component of the frequency control device 6 is a power determination device 11, with that of the drive 2 to the vibration exciter 3 delivered power can be measured.
  • a control unit 12 the measured actual drive power with a predetermined setpoint compared.
  • the frequency of the vibration generator 3 via an adjusting device 13 increases or reduced in the opposite case.
  • the power determination device 11 can be constructed in various ways be. Assuming that it is the drive 2 to a Engine, for example, the engine speed and the engine torque be measured. If, on the other hand, the drive 2 is one Hydraulic unit and the vibration generator 3 is hydraulically driven, can also determine the torque in the hydraulic line prevailing pressure to be used. As far as the vibration generator of an electric motor is driven, is also a measurement of electrical Characteristics possible.
  • the performance curve of the engine that is, the relationship between the engine power and the engine speed to determine the delivered Power, ie the actual drive power for the vibration exciter 3 used.
  • the performance characteristic of the engine is generally known and makes a clear connection between a given Engine power and a motor speed. Thus, the from the Motor delivered to the vibration generator 3 drive power alone with Help determine the relatively easy to measure speed of the drive motor 2.
  • a regulation of the frequency of the vibration generator 3 for constant maintenance the drive power can then be compared by a comparison measured engine speed and the predetermined target drive power perform assigned target engine speed.
  • the Frequency of the vibrator 3 that is, the speed of the in the Vibration generator 3 provided imbalance waves reduced, so that the Engine is relieved and increase its speed to the predetermined value can. If, however, the actual engine speed is greater than the desired speed, This means that the engine is loaded too weak, so the speed the imbalance waves in the vibration exciter 3 is increased to the fully exploitable by the engine available drive power.
  • the adjustment of the frequency of the vibrator 3, that is the change the speed of the vibration generator 3 arranged unbalance shafts is performed by the adjusting device 13.
  • the adjusting device 13 can be used on known construction elements become.
  • a variable or a variable speed hydraulic motor. at mechanical power transmission are bevel gearboxes, such as Example Heynau transmission or PIV transmission possible, where either torque is transferred via a friction ring or via push chains as well as friction gear (PK gearbox).
  • the amplitude control device 5 and the frequency device 6 reach taken separately, each already a better utilization of the available standing drive power. Insofar as they work together in parallel, the efficiency is increased again.
  • the control devices 5, 6 are characterized by simple construction, low Measuring effort and by the control devices 5, 6 caused efficient Soil compaction with maximum power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Road Paving Machines (AREA)

Description

Die Erfindung betrifft eine Bodenverdichtungsvorrichtung mit einem ein Bodenkontaktelement beaufschlagenden Schwingungserreger sowie ein Verfahren zum Regeln des Schwingungserregers.
Es sind Bodenverdichtungsvorrichtungen, zum Beispiel Vibrationsplatten oder -walzen bekannt, bei denen ein den Boden verdichtendes Bodenkontaktelement, wie eine Platte oder eine Walzenbandage, durch eine von einem Schwingungserreger erzeugte Schwingung beaufschlagt werden.
Die Verdichtung des Bodens erfolgt durch ein- oder mehrmaliges Überfahren mit der Bodenverdichtungsvorrichtung, wodurch sich die Festigkeit des Bodens und damit auch sein Schwingungsverhalten ändert. Wenn der Boden bereits stark verdichtet ist und die von der Bodenverdichtungsvorrichtung abgegebene Verdichtungsleistung groß ist, kann die Bodenverdichtungsvorrichtung beginnen zu "springen", indem die Bodenkontaktplatte bzw. -walzenbandage nach jedem Bodenkontakt wieder vom Boden abhebt. Dies stellt nicht nur eine Energieverschwendung dar, sondern ist auch für die bereits erfolgte Verdichtung nachteilig, da es zu lokalen Auflockerungen des Bodens kommen kann. Ein Springen der Bodenverdichtungsvorrichtung führt außerdem zu einer erheblichen Belastung des die Vorrichtung führenden Bedieners.
Aus der WO-A-98-17865 und der WO-A-95-10664 sind Vibrationsverdichter bekannt, bei denen auf den Betriebszustand des Springens durch Veränderung der vom Schwingungserreger erzeugten Schwingung automatisch reagiert wird.
Bei den aus dem Stand der Technik bekannten Geräten bzw. Verfahren wird üblicherweise die Frequenz des Schwingungserregers an die vorher ermittelten Bodeneigenschaften angepaßt. Hierfür wird zum Beispiel bei der WO-A-98-17865 der Bodenzustand durch aufwendige Auswertung verschiedener Messsignale ermittelt. Im besonderen ist es hierfür erforderlich, die Bewegung des Bodenkontaktelements, das Bestandteil einer schwingenden Untermasse ist, zu bestimmen. Weiterhin müssen die eingestellte Frequenz und die genaue Stellung des Schwingungserregers gemessen werden.
Darüber hinaus sind Bodenverdichtungsvorrichtungen bekannt, bei denen die Amplitude der vom Schwingungserreger erzeugten Schwingung derart verkleinert wird, dass kein Springen der Bodenverdichtungsvorrichtung mehr auftreten kann. Durch die Begrenzung der Amplitude bei vorgegebener Frequenz kann allerdings nicht mehr die gesamte zur Verfügung stehende Antriebsleistung, für die der Schwingungserreger ausgelegt ist, zur Verdichtung des Bodens genutzt werden. Eine entsprechend geringere Arbeitseffizienz ist die Folge.
Figur 3 zeigt eine bekannte als Bodenverdichtungsvorrichtung dienende Vibrationsplatte, die an einer Deichsel 1 von einem Bediener führbar ist. Ein zu einer Obermasse gehörender Antrieb 2 treibt einen zu einer Untermasse gehörenden Schwingungserreger 3 an, der eine eine Bodenkontaktplatte 4 beaufschlagende Schwingung erzeugt. Bei dem Schwingungserreger 3 handelt es sich üblicherweise um einen Ein- oder Zweiwellenerreger, bei dem entsprechend auf einer oder zwei Wellen eine oder mehrere Unwuchtmassen verteilt sind. Der Aufbau einer derartigen Vibrationsplatte ist bekannt, so dass sich eine weitere Beschreibung erübrigt.
In ähnlicher, bekannter Weise sind auch als Bodenverdichtungsvorrichtungen dienende Vibrationswalzen aufgebaut.
Der Erfindung liegt die Aufgabe zugrunde, eine Bodenverdichtungsvorrichtung mit einem Schwingungserreger sowie ein Verfahren zum Regeln des Schwingungserregers anzugeben, bei denen eine optimale Ausnutzung der vom Antrieb bereitgestellten Leistung gewährleistet ist.
Erfindungsgemäß wird die Aufgabe durch eine Bodenverdichtungsvorrichtung gemäß Anspruch 1 sowie durch ein Verfahren gemäß Anspruch 11 gelöst.
Vorteilhafte Weiterentwicklungen der Erfindung sind in den abhängigen Ansprüchen definiert.
Der der Erfindung zugrunde liegende Gedanke besteht darin, jeweils eine Regelung für die Amplitude und die Frequenz der durch den Schwingungserreger erzeugten Schwingung vorzusehen und mit einfachen Mitteln zu realisieren. Vor allem im Zusammenspiel der beiden Regelungen ist es möglich, die zur Verfügung stehende Antriebsleistung, zum Beispiel eines Antriebsmotors, optimal auszunutzen, ohne dass das unerwünschte "Springen" der Bodenverdichtungsvorrichtung eintritt.
Bei der erfindungsgemäßen Kombination von Amplituden- und Frequenzregelung wird dies dadurch ermöglicht, daß die Schwingungsamplitude stets im Grenzbereich zum Springen gehalten wird. Ändert sich dieser Grenzbereich und macht es zum Beispiel erforderlich, daß die Schwingungsamplitude vermindert werden muß, führt die Frequenzregelung die Schwingungsfrequenz nach, indem sie sie entsprechend erhöht, um die durch die Verminderung der Schwingungsamplitude freiwerdende Antriebsenergie in Form einer höheren Frequenz zu nutzen. Dadurch kann die Antriebsenergie weitgehend vollständig zur Bodenverdichtung genutzt werden, ohne dass die Bodenverdichtungsvorrichtung beginnt zu springen.
Die Regelung der Amplitude beruht darauf, dass immer dann, wenn ein Springen eines Bodenkontaktelements erkannt wird, die Amplitude reduziert wird. Die Überprüfung, ob das Bodenkontaktelement springt, erfolgt kontinuierlich oder regelmäßig im Rahmen eines vorgegebenen Zeittakts. Nach einer Änderung der Amplitude erfolgt somit ein erneutes Bestimmen des Schwingungszustandes des Bodenkontaktelements. Wenn das Bodenkontaktelement immer noch springt, erfolgt eine weitere Reduzierung der Amplitude. Wenn jedoch kein Springen erkannt wird, wird die Amplitude nicht etwa auf dem bestehenden Wert konstant gehalten, sondern wieder - jedoch mit geringerem Gradienten - vergrößert. Folglich ändert sich die Amplitude ständig, nämlich entweder durch eine deutliche Reduzierung, wenn ein Springen festgestellt worden ist, oder durch eine geringfügige Erhöhung, wenn kein Springen festgestellt worden ist. Hierdurch wird erreicht, dass die Bodenverdichtungsvorrichtung stets im Grenzbereich zwischen Springen und Nichtspringen bewegt wird.
Die Änderung der Schwingungsamplitude kann kontinuierlich und fortlaufend durchgeführt werden, wobei vorzugsweise die Verkleinerung der Schwingungsamplitude mit stärkerem Gradienten erfolgt als die VergröJierung. Alternativ dazu kann insbesondere bei einer digitalen Regelung von einem Zeitglied ein Zeittakt vorgegeben werden, währenddem von der Detektionseinrichtung der Schwingungszustand des Bodenkontaktelements bestimmt wird. Wenn der Sonderschwingungszustand erkannt worden ist, läßt sich die Schwingungsamplitude inkremental um eine erste Amplitudendifferenz verkleinern. Wenn in dem Zeittakt jedoch kein Sonderbetriebszustand erkannt worden ist, wird die Schwingungsamplitude inkremental um eine zweite, vorzugsweise geringere Amplitudendifferenz vergrößert. Der Zeittakt kann auch derart kurz eingestellt werden, daß sich eine quasi kontinuierliche Änderung der Schwingungsamplitude einstellt.
Die erfindungsgemäße Regelung der Schwingungsfrequenz beruht auf dem Gedanken, die vorgegebene, zum Beispiel von einem Antriebsmotor abgegebene Antriebsleistung zur Bodenverdichtung stets optimal, das heißt maximal auszunutzen. Zu diesem Zweck wird die an den Schwingungserreger abgegebene Antriebsleistung durch eine Leistungsbestimmungseinrichtung bestimmt und mit einem Sollwert, nämlich dem vorher festgelegten Wert für eine optimale Antriebsleistung verglichen, wobei die Frequenzregeleinrichtung die ermittelte Ist-Antriebsleistung im Bereich des vorgegebenen Werts hält, indem sie die von dem Schwingungserreger erzeugte Frequenz entsprechend anpaßt.
Auch wenn die Amplitudenregelung und die Frequenzregelung jeweils schon alleine für eine deutliche Verbesserung bekannter Regeleinrichtungen und insbesondere für eine Steigerung der Arbeitseffizienz sorgen, ist durch eine Kopplung der beiden Regelungen eine weitere Verbesserung möglich.
Diese und weitere Vorteile und Merkmale der Erfindung werden nachfolgend anhand bevorzugter Ausführungsformen unter Zuhilfenahme der begleitenden Figuren näher erläutert. Es zeigen:
Figur 1
ein Blockdiagramm mit der erfindungsgemäßen Regeleinrichtung für eine Bodenverdichtungsvorrichtung;
Figur 2
ein Beispiel für die Regelungsmaßnahmen der erfindungsgemäßen Amplitudenregelung; und
Figur 3
schematisch den Aufbau einer bekannten, als Bodenverdichtungsvorrichtung dienenden Vibrationsplatte.
Figur 1 zeigt als Blockdiagramm den Aufbau einer erfindungsgemäßen Regelung für den Schwingungserreger einer Bodenverdichtungsvorrichtung. Die Regelung besteht im wesentlichen aus zwei parallel zueinander angeordneten Komponenten, nämlich einer Amplitudenregeleinrichtung 5 und einer Frequenzregeleinrichtung 6.
Beide Regeleinrichtungen 5, 6 beeinflussen einen Betriebszustand 7 der Bodenverdichtungsvorrichtung, der wiederum im wesentlichen durch die - bereits in Zusammenhang mit Figur 3 beschriebenen - Elemente Antrieb 2, Schwingungserreger 3 und Bodenkontaktelement 4 repräsentiert wird.
Im folgenden wird der Aufbau der Amplitudenregeleinrichtung 5 sowie ihr Wirkprinzip erläutert.
Bestandteil der Amplitudenregeleinrichtung 5 ist eine Detektionseinrichtung 8, mit der festgestellt werden kann, ob das Bodenkontaktelement 4 springt, das heißt vom Boden abhebt oder nicht. Dieser Betriebszustand des "Springens" kann zum Beispiel mit Hilfe von bekannten Verfahren, wie in der WO-A-98-17865 oder der WO-A-95-10664 erkannt werden.
Alternativ dazu ist aus der DE-A-100 19 806 eine Detektionseinrichtung bekannt, bei der eine gegenüber dem Bodenkontaktelement elastisch bewegliche Detektionsmasse vorgesehen ist, wobei die Bewegung der Detektionsmasse durch eine Messeinrichtung gemessen wird. Wenn die Bewegung, insbesondere die Schwingungsamplitude der Detektionsmasse einen vorgegebenen Wert übersteigt, kann dies als Springen des Bodenkontaktelements aufgrund überhöhter Schlagenergie interpretiert werden.
Die Information, ob das Bodenkontaktelement 4 springt oder nicht, wird von der Detektionseinrichtung 8 an eine Regeleinheit 9 abgegeben.
Die Regeleinheit 9 wertet die Sprunginformation von der Detektionseinrichtung 8 aus und steuert eine Stelleinrichtung 10 zum Einstellen der Schwingungsamplitude am Schwingungserreger 3 entsprechend vorgegebener Regeln an.
Der Regelalgorithmus umfasst zwei Regelmaßnahmen. Gemäß einer ersten Regelmaßnahme wird die Schwingungsamplitude inkremental um eine erste Amplitudendifferenz k1 verkleinert, wenn die Detektionseinrichtung 8 einen Sonderschwingungszustand, nämlich ein Springen des Bodenkontaktelements 4 erkannt hat.
Wenn dagegen von der Detektiontseinrichtung 8 erkannt worden ist, dass kein Sonderschwingungszustand, also kein Springen vorliegt, wird die Schwingungsamplitude inkremental um eine zweite Amplitudendifferenz k2 vergrößert.
Zur zeitlichen Steuerung dieser Regelmaßnahmen ist in oder an der Regeleinheit 9 ein Zeitglied zum Erzeugen eines Zeittakts vorgesehen. Jeweils in einem Zeittakt, der zum Beispiel den Bruchteil einer Sekunde betragen kann, wird von der Regeleinheit 9 das Signal der Detektionseinrichtung 8 ausgewertet und eine entsprechende Maßnahme durch Ansteuern der Stelleinrichtung 10 veranlaßt. Dieser Prozeß wiederholt sich im nächsten Zeittakt.
Im Ergebnis ergibt sich aus diesem Regelalgorithmus, dass die Schwingungsamplitude permanent, das heißt in jedem Takt geändert wird. Wenn die Schwingungsamplitude um die erste Amplitudendifferenz k1 verkleinert worden ist und danach immer noch ein Springen detektiert wird, wird eine erneute Verminderung um die erste Amplitudendiffernez k1 veranlaßt. Tritt dagegen kein Springen mehr auf, wird die Amplitude nicht mehr vermindert, sondern um die gegenüber der ersten Amplitudendifferenz k1 kleinere zweite Amplitudendifferenz k2 vergrößert, so dass sich ein Wechselspiel von Verkleinerung und Vergrößerung der Amplitude einstellt. Hierdurch wird erreicht, dass die Bodenverdichtungsvorrichtung stets im Grenzbereich zwischen Springen und Nichtspringen bewegt wird.
Figur 2 zeigt in einem Diagramm die Schwingungsamplitude aufgetragen über den zeitlichen Verlauf. Beim Starten der Bodenverdichtungsvorrichtung wird zunächst eine maximale Amplitude eingestellt. Im vorliegenden Fall wird unmittelbar nach dem Starten erkannt, dass das Bodenkontaktelement 4 zu springen begonnen hat, so dass die Schwingungsamplitude um den Wert k1 (erste Amplitudendifferenz) vermindert wird. Anschließend wird festgestellt, dass das Bodenkontaktelement 4 nicht mehr springt, so dass nachfolgend in mehreren Schritten (in Figur 2 in drei Schritten) die Amplitude jeweils um die zweite Amplitudendifferenz k2 vergrößert wird, bis erneut ein Springen festgestellt wird, usw.
In dem mit "a" gekennzeichneten Zeitbereich überfährt die Bodenverdichtungsvorrichtung offensichtlich einen Boden, der nur noch bedingt Schlagenergie aufnehmen kann. Dadurch muß die Schwingungsamplitude zweimal vermindert werden und nimmt schließlich nur einen vergleichsweise geringen Wert ein. Danach findet eine Erholung mit damit verbundener Erhöhung der Schwingungsamplitude statt.
Alternativ zu der beschriebenen inkrementalen Änderung der Schwingungsamplitude, welche sich insbesondere für digital aufgebaute Regelungen eignet, sind auch Regelalgorithmen mit einer kontinuierlichen Änderung der Schwingungsamplitude möglich. Entsprechend würde das Diagramm in Figur 2 keinen gestuften Verlauf, sondern einen wellenförmigen Verlauf einnehmen.
Die erfindungsgemäße Amplitudenregelung ermöglicht es, dass die Bodenverdichtungsvorrichtung den Boden jeweils mit größtmöglicher Amplitude verdichtet, wobei die Amplitudenregeleinrichtung 5 einen gegenüber dem Stand der Technik erheblich vereinfachten Aufbau aufweist.
Eine alleinige Regelung der Amplitude würde allerdings weiterhin den Nachteil mit sich bringen, dass die von dem Antrieb 2 zur Verfügung gestellte Antriebsleistung nicht immer voll ausgenutzt würde. Daher umfaßt die in Figur 1 dargestellte erfindungsgemäße Gesamtregelung auch noch die Frequenzregeleinrichtung 6, die einen weiteren Regelkreis zur Anpassung der Frequenz des Schwingungserregers 3 darstellt.
Der der Frequenzregeleinrichtung zugrunde liegende Gedanke besteht darin, dass stets die vorhandene bzw. vorgegebene Antriebsleistung vollständig zur Bodenverdichtung ausgenutzt werden soll.
Dazu ist Bestandteil der Frequenzregeleinrichtung 6 eine Leistungsbestimmungseinrichtung 11, mit der die von dem Antrieb 2 an den Schwingungserreger 3 abgegebene Leistung gemessen werden kann.
In einer Regeleinheit 12 wird die gemessene Ist-Antriebsleistung mit einem vorgegebenen Sollwert verglichen. Wenn die gemessene Antriebsleistung unter dem Sollwert liegt, wird die Frequenz des Schwingungserregers 3 über eine Stelleinrichtung 13 erhöht bzw. im umgekehrten Fall verringert.
Die Leistungsbestimmungseinrichtung 11 kann in verschiedener Weise aufgebaut sein. Geht man davon aus, dass es sich bei dem Antrieb 2 um einen Motor handelt, kann zum Beispiel die Motordrehzahl und das Motordrehmoment gemessen werden. Handelt es sich dagegen bei dem Antrieb 2 um ein Hydraulikaggregat und wird der Schwingungserreger 3 hydraulisch angetrieben, kann zur Drehmomentbestimmung auch der in der Hydraulikleitung herrschende Druck verwendet werden. Soweit der Schwingungserreger von einem Elektromotor angetrieben wird, ist auch eine Messung elektrischer Kenngrößen möglich.
Bei einem besonders vorteilhaften Beispiel für die Ausführung der Erfindung wird die Leistungskennlinie des Motors, das heißt der Zusammenhang zwischen der Motorleistung und der Motordrehzahl zur Bestimmung der abgegebenen Leistung, also der Ist-Antriebsleistung für den Schwingungserreger 3 herangezogen. Die Leistungskennlinie des Motors ist im allgemeinen bekannt und stellt einen eindeutigen Zusammenhang zwischen einer vorgegebenen Motorleistung und einer Motordrehzahl dar. Somit läßt sich die vom Motor an den Schwingungserreger 3 abgegebene Antriebsleistung allein mit Hilfe der relativ einfach zu messenden Drehzahl des Antriebsmotors 2 bestimmen.
Eine Regelung der Frequenz des Schwingungserregers 3 zur Konstanthaltung der Antriebsleistung läßt sich dann durch einen Vergleich zwischen der gemessenen Motordrehzahl und der der vorgegebenen Soll-Antriebsleistung zugeordneten Soll-Motordrehzahl durchführen.
Wenn die Ist-Motordrehzahl kleiner ist als die Soll-Motordrehzahl, wird die Frequenz des Schwingungserregers 3, das heißt die Drehzahl der in dem Schwingungserreger 3 vorgesehenen Unwuchtwellen verringert, so dass der Motor entlastet wird und seine Drehzahl auf den vorgegebenen Wert ansteigen kann. Ist dagegen die Ist-Motordrehzahl größer als die Soll-Drehzahl, bedeutet das, dass der Motor zu schwach belastet wird, so dass die Drehzahl der Unwuchtwellen in dem Schwingungserreger 3 vergrößert wird, um die vom Motor zur Verfügung stellbare Antriebsleistung voll auszunutzen.
Die Verstellung der Frequenz des Schwingungserregers 3, das heißt die Änderung der Drehzahl der im Schwingungserreger 3 angeordneten Unwuchtwellen wird durch die Stelleinrichtung 13 durchgeführt. Bei der Realisierung der Stelleinrichtung 13 kann auf bekannte Konstruktionselemente zurückgegriffen werden. Zum Beispiel kann bei einer hydraulischen Leistungsübertragung vom Antriebsmotor 2 zum Schwingungserreger 3 eine Verstellpumpe oder ein Hydraulikmotor mit verstellbarer Drehzahl eingesetzt werden. Bei mechanischer Leistungsübertragung sind Kegelscheibengetriebe, wie zum Beispiel Heynau-Getriebe oder PIV-Getriebe möglich, bei denen entweder über einen Reibring oder über Schubketten Drehmoment übertragen wird, sowie auch Reibrad-Getriebe (PK-Getriebe).
Soweit eine elektrische Leistungsübertragung an den Schwingungserreger 3 erfolgt, ist eine Drehzahländerung mittels eines regelbaren Frequenzumrichters möglich.
Die Amplitudenregeleinrichtung 5 und die Frequenzeinrichtung 6 erreichen für sich genommen jeweils bereits eine bessere Ausnutzung der zur Verfügung stehenden Antriebsleistung. Soweit sie parallel angeordnet zusammenwirken, wird die Effizienz nochmals erhöht. Gegenüber dem Stand der Technik zeichnen sich die Regeleinrichtungen 5, 6 durch einfachen Aufbau, geringen Meßaufwand und eine durch die Regeleinrichtungen 5, 6 bewirkte effiziente Bodenverdichtung mit maximaler Leistung aus.

Claims (18)

  1. Bodenverdichtungsvorrichtung, mit
    einem Bodenkontaktelement (4);
    einem das Bodenkontaktelement (4) beaufschlagenden Schwingungserreger (3);
    einem Antrieb (2) für den Schwingungserreger (3);
    einer Amplitudenregeleinrichtung (5) zum Regeln der Schwingungsamplitude einer durch den Schwingungserreger (3) erzeugten Schwingung;
    wobei die Amplitudenregeleinrichtung (5) aufweist:
    eine Detektionseinrichtung (8) zum Erkennen eines Sonderschwingungszustands des Bodenkontaktelements (4);
    eine Amplitudenstelleinrichtung (10) zum Einstellen der Schwingungsamplitude; und
    eine Amplitudenregeleinheit (9) zum Ansteuern der Amplitudenstelleinrichtung (10) derart, dass in einer ersten Regelmaßnahme die Schwingungsamplitude verkleinerbar ist, wenn die Detektionseinrichtung (8) einen Sonderschwingungszustand erkennt, und in einer zweiten Regelmaßnahme die Schwingungsamplitude vergrößerbar ist, wenn die Detektionseinrichtung (8) keinen Sonderschwingungszustand erkennt; und mit
    einer Frequenzregeleinrichtung (6) zum Regeln der Schwingungsfrequenz der durch den Schwingungserreger (3) erzeugten Schwingung;
    wobei die Frequenzregeleinrichtung (6) aufweist:
    eine Leistungsbestimmungseinrichtung (11) zum Bestimmen einer von dem Antrieb (2) abgegebenen Antriebsleistung für den Schwingungserreger (3);
    eine Frequenzstelleinrichtung (13) zum Einstellen der Schwingungsfrequenz; und
    eine Frequenzregeleinheit (12) zum Ansteuern der Frequenzstelleinrichtung (13) derart, dass die von der Leistungsbestimmungseinrichtung (11) bestimmte Antriebsleistung annähernd auf einem vorgegebenen Wert haltbar ist;
    dadurch gekennzeichnet, dass die Amplitudenregeleinrichtung (5) und die Frequenzregeleinrichtung (6) parallel zueinander angeordnet sind, so dass eine sich aus einer Verkleinerung der Schwingungsamplitude durch die Amplitudenregeleinrichtung (5) ergebende Verminderung der Antriebsleistung für den Schwingungserreger (3) durch eine Erhöhung der Schwingungsfrequenz kompensierbar ist und umgekehrt.
  2. Bodenverdichtungsvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass eine Verkleinerung oder Vergrößerung der Schwingungsamplitude kontinuierlich und fortlaufend derart durchführbar ist, dass sich die Schwingungsamplitude ständig ändert.
  3. Bodenverdichtungsvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass
    die Amplitudenregeleinrichtung (5) ein Zeitglied zum Erzeugen eines Zeittakts aufweist; und dass
    die Amplitudenstelleinrichtung (10) durch die Amplitudenregeleinheit (9) derart ansteuerbar ist, dass in der ersten Regelmaßnahme die Schwingungsamplitude inkremental um eine erste Amplitudendifferenz (k1) verkleinerbar ist, wenn in einem Zeittakt die Detektionseinrichtung (8) den Sonderschwingungszustand erkennt, und in der zweiten Regelmaßnahme die Schwingungsamplitude inkremental um eine zweite Amplitudendifferenz (k2) vergrößerbar ist, wenn in einem Zeittakt die Detektionseinrichtung (8) keinen Sonderschwingungszustand erkennt.
  4. Bodenverdichtungsvorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass in jedem Zeittakt eine Regelmaßnahme durchführbar ist.
  5. Bodenverdichtungsvorrichtung nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass die erste Amplitudendifferenz (k1) größer als die zweite Amplitudendifferenz (k2) ist.
  6. Bodenverdichtungsvorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Sonderschwingungszustand ein Zustand ist, in dem ein Parameter einer Schwingung des Bodenkontaktelements (4) einen vorgegebenen Wert überschreitet.
  7. Bodenverdichtungsvorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Amplitudenregeleinheit (9) derart ausgebildet ist, dass beim Start des Schwingungserregers (3) eine maximale Schwingungsamplitude einstellbar ist.
  8. Bodenverdichtungsvorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der vorgegebene Wert für die Antriebsleistung einer von dem Antrieb (2) maximal dauerhaft abgebbaren Leistung entspricht.
  9. Bodenverdichtungsvorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Antrieb (2) einen Motor aufweist und dass die Leistungsbestimmungseinrichtung (11) eine Drehzahlbestimmungseinrichtung zum Bestimmen der Drehzahl des Motors aufweist.
  10. Bodenverdichtungsvorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Antrieb (2) eine Hydraulikpumpe aufweist und dass die Leistungsbestimmungseinrichtung (11) eine Druckbestimmungseinrichtung zum Bestimmen des von der Hydraulikpumpe erzeugten Hydraulikdrucks aufweist.
  11. Verfahren zum Regeln eines Schwingungserregers (3) für eine Bodenverdichtungsvorrichtung, die ein von dem Schwingungserreger (3) beaufschlagtes Bodenkontaktelement (4) zum Verdichten eines Bodens aufweist, wobei der Schwingungserreger (3) durch einen Antrieb (2) angetrieben wird, mit
    einem Verfahren zum Regeln der Schwingungsamplitude des Schwingungserregers (3), mit den Schritten:
    Bestimmen eines Schwingungszustands des Bodenkontaktelements (4);
    Erkennen eines Sonderschwingungszustands des Bodenkontaktelements (4);
    Ändern der Schwingungsamplitude derart, dass die Schwingungsamplitude verkleinert wird, wenn ein Sonderschwingungszustand erkannt worden ist, und dass die Schwingungsamplitude vergrößert wird, wenn kein Sonderschwingungszustand erkannt worden ist; und mit einem Verfahren zum Regeln der Schwingungsfrequenz des Schwingungserregers (3), mit den Schritten:
    Bestimmen einer von dem Antrieb (2) abgegebenen Antriebsleistung;
    Vergleichen der Antriebsleistung mit einem vorgegebenen Wert;
    Ändern der Schwingungsfrequenz derart, dass die Antriebsleistung annähernd dem vorgegebenen Wert entspricht;
    dadurch gekennzeichnet, dass
    das Verfahren zum Regeln der Schwingungsamplitude des Schwingungserregers (3) und das Verfahren zum Regeln der Schwingungsfrequenz des Schwingungserregers (3) parallel durchgeführt werden.
  12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass das Ändern der Schwingungsamplitude kontinuierlich und fortlaufend derart durchgeführt wird, dass sich die Schwingungsamplitude ständig ändert.
  13. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass das Ändern der Schwingungsamplitude derart durchgeführt wird, dass die Schwingungsamplitude um eine erste Amplitudendifferenz (k1) verkleinert wird, wenn der Sonderschwingungszustand erkannt worden ist, und dass die Schwingungsamplitude um eine zweite Amplitudendifferenz (k2) vergrößert wird, wenn kein Sonderschwingungszustand erkannt worden ist.
  14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass die erste Amplitudendifferenz (k1) größer als die zweite Amplitudendifferenz (k2) ist.
  15. Verfahren nach Anspruch 13 oder 14, dadurch gekennzeichnet, dass eine Durchführung des Verfahrens oder wenigstens das Ändern der Schwingungsamplitude in durch einen Takt vorgegebenen Zeitbereichen erfolgt.
  16. Verfahren nach einem der Ansprüche 11 bis 15, dadurch gekennzeichnet, dass der vorgegebene Wert für die Antriebsleistung einer von dem Antrieb (2) maximal dauerhaft abgebbaren Leistung entspricht.
  17. Verfahren nach einem der Ansprüche 11 bis 16, dadurch gekennzeichnet, dass der Antrieb (2) einen Motor aufweist und dass das Bestimmen der Antriebsleistung durch Messen der Drehzahl des Motors erfolgt.
  18. Verfahren nach einem der Ansprüche 11 bis 16, dadurch gekennzeichnet, dass der Antrieb (2) eine Hydraulikpumpe aufweist und dass das Bestimmen der Antriebsleistung durch Messen des von der Hydraulikpumpe erzeugten Hydraulikdrucks erfolgt.
EP01985279A 2000-09-19 2001-09-19 Bodenverdichtungsvorrichtung mit schwingungserreger und verfahren zum regeln des schwingungserregers Expired - Lifetime EP1334234B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10046336A DE10046336B4 (de) 2000-09-19 2000-09-19 Bodenverdichtungsvorrichtung mit Schwingungserreger und Verfahren zum Regeln des Schwingungserregers
DE10046336 2000-09-19
PCT/EP2001/010818 WO2002025015A1 (de) 2000-09-19 2001-09-19 Bodenverdichtungsvorrichtung mit schwingungserreger und verfahren zum regeln des schwingungserregers

Publications (2)

Publication Number Publication Date
EP1334234A1 EP1334234A1 (de) 2003-08-13
EP1334234B1 true EP1334234B1 (de) 2005-11-23

Family

ID=7656785

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01985279A Expired - Lifetime EP1334234B1 (de) 2000-09-19 2001-09-19 Bodenverdichtungsvorrichtung mit schwingungserreger und verfahren zum regeln des schwingungserregers

Country Status (5)

Country Link
US (1) US6722815B2 (de)
EP (1) EP1334234B1 (de)
JP (1) JP2004510074A (de)
DE (2) DE10046336B4 (de)
WO (1) WO2002025015A1 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10317160A1 (de) 2003-04-14 2004-11-18 Wacker Construction Equipment Ag System und Verfahren zur automatisierten Bodenverdichtung
US20050100417A1 (en) * 2003-11-07 2005-05-12 Geopartner Sp. Z O.O Method of deep soil compacting from a surface
DE102005029432A1 (de) * 2005-06-24 2006-12-28 Wacker Construction Equipment Ag Bodenverdichtungsvorrichtung mit automatischer oder bedienerintuitiver Verstellung des Vorschubvektors
DE102006041784A1 (de) * 2006-09-06 2008-03-27 Wacker Construction Equipment Ag Schwingungserreger
DE102007018743A1 (de) * 2007-04-22 2008-10-23 Bomag Gmbh Verfahren und System zur Steuerung von Verdichtungsmaschinen
DE102007048980A1 (de) * 2007-10-12 2009-04-23 Wacker Construction Equipment Ag Bodenstampfvorrichtung mit adaptiver Antriebsregelung
DE102008011408B4 (de) * 2008-02-27 2018-06-21 manroland sheetfed GmbH Bogendruckmaschine und Verfahren zur Inbetriebnahme einer Bogendruckmaschine
US8142103B2 (en) * 2009-02-20 2012-03-27 Caterpillar Trimble Control Technologies Llc Wireless sensor with kinetic energy power arrangement
CN101649596B (zh) * 2009-09-17 2011-06-01 长安大学 满足横向振动均匀性的摊铺机熨平板
DE102010052243A1 (de) * 2010-11-23 2012-05-24 Wacker Neuson Produktion GmbH & Co. KG Stampfvorrichtung mit Synchronisationseinrichtung und Verfahren dafür
US8965638B2 (en) 2011-06-30 2015-02-24 Caterpillar Paving Products, Inc. Vibratory frequency selection system
SE543161C2 (en) * 2018-09-28 2020-10-13 Dynapac Compaction Equipment Ab Method of controlling operation of a vibratory roller
CN114924012A (zh) * 2022-03-07 2022-08-19 徐州市九州生态园林股份有限公司 一种山体生态修复用土壤检测装置及其使用方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE443591B (sv) * 1981-10-28 1986-03-03 Dynapac Ab Anordning for kontinuerlig omstellning av vibrationsamplituden hos ett roterbart excenterelement
SE432792B (sv) * 1982-04-01 1984-04-16 Dynapac Maskin Ab Forfarande och anordning for att astadkomma optimal packningsgrad vid packning av olika material sasom asfalt, jord etc medelst en vibrerande velt
DE3421824C2 (de) * 1984-06-13 1986-07-17 CASE VIBROMAX GmbH & Co KG, 4000 Düsseldorf Vorrichtung zur Kontrolle der Verdichtung bei Vibrationsverdichtungsgeräten
DE69003530T2 (de) * 1990-05-28 1994-04-28 Caterpillar Paving Prod Einrichtung und Verfahren zur Überwachung der Schwingungsfrequenz einer Verdichtungsmaschine.
DE69003529T2 (de) * 1990-05-28 1994-04-28 Caterpillar Paving Prod Einrichtung und Verfahren zur Überwachung einer Schwingungsvorrichtung.
SE502079C2 (sv) * 1993-10-14 1995-08-07 Thurner Geodynamik Ab Styrning av en packningsmaskin med mätning av underlagets egenskaper
WO1998017865A1 (de) * 1996-10-21 1998-04-30 Ammann Verdichtung Ag Verfahren zur messung mechanischer daten eines bodens sowie zu dessen verdichtung und mess- bzw. bodenverdichtungsvorrichtung
DE19731731A1 (de) * 1997-07-23 1999-02-25 Wacker Werke Kg Bodenverdichtungsvorrichtung mit veränderbaren Schwingungseigenschaften
DE10019806B4 (de) 2000-04-20 2005-10-20 Wacker Construction Equipment Bodenverdichtungsvorrichtung mit Schwingungsdetektion
DE10028949A1 (de) * 2000-06-16 2002-03-07 Bomag Gmbh Verfahren und Vorrichtung zur Bestimmung des Verdichtungsgrades bei der Bodenverdichtung

Also Published As

Publication number Publication date
JP2004510074A (ja) 2004-04-02
US20030180093A1 (en) 2003-09-25
WO2002025015A1 (de) 2002-03-28
EP1334234A1 (de) 2003-08-13
DE50108203D1 (de) 2005-12-29
DE10046336B4 (de) 2005-03-31
US6722815B2 (en) 2004-04-20
DE10046336A1 (de) 2002-05-02

Similar Documents

Publication Publication Date Title
EP1334234B1 (de) Bodenverdichtungsvorrichtung mit schwingungserreger und verfahren zum regeln des schwingungserregers
EP0932726B1 (de) Verfahren zur messung mechanischer daten eines bodens sowie zu dessen verdichtung und mess- bzw. bodenverdichtungsvorrichtung
DE3308476C2 (de)
DE10212389B4 (de) Geschwindigkeitssteuersystem für eine Verdichtungsarbeitsmaschine und Verfahren zur Steuerung
EP2928611B1 (de) Verfahren zur antriebsregelung sowie nach dem verfahren arbeitendes antriebssystem
CH615475A5 (de)
DE102011018705C5 (de) Verfahren zur Regelung des Walzenspaltdrucks einer Rollenpresse und Rollenpresse
EP0027512B1 (de) Vorrichtung zur Überwachung des Verdichtungsgrades
EP3861170B1 (de) Verfahren zur steuerung einer bodenverdichtungsmaschine und bodenverdichtungsmaschine
EP1516961A1 (de) Verfahren zur Ermittlung einer Bodensteifigkeit und Bodenverdichtungsvorrichtung
WO2017129215A1 (de) Verfahren zur verdichtung der schotterbettung eines gleises sowie stopfaggregat
EP2627826A1 (de) Verfahren zur ermittlung der steifigkeit und/oder dämpfung eines bereichs einer körperlichkeit
DD252287A3 (de) Verfahren zum anziehen oder loesen schraubbarer verbindungen
DE202013005537U1 (de) Stampfvorrichtung mit elektrodynamischem Stampfwerk
EP3453799B1 (de) Vorrichtung zur bodenverdichtung und überwachungsverfahren
EP1722036A2 (de) Bodenverdichtungsgerät
WO2001081680A1 (de) Bodenverdichtungsvorrichtung mit schwingungsdetektion
EP2212477A1 (de) Bodenstampfvorrichtung mit adaptiver antriebsregelung
EP0632165A1 (de) Verfahren zum Feststellen und Anzeigen der beim Arbeiten mit einem Bodenverdichtungsgerät erreichten Bodendichte
DE102016120471A1 (de) Verdichtungssystem und verfahren zum bestimmen der walzenentkopplung
DE2057279B2 (de) Bodenverdichtungsgerät
EP1064131B1 (de) Betonverdichtungsanordnung mit schwingungssensor und steuerung
DE102007006209A1 (de) Ferngesteuerte Rüttelplatte
DE102010019053A1 (de) Bodenverdichtungsvorrichtung mit Messvorrichtung zum Bestimmen von Bodenkennwerten
WO2021209236A1 (de) Verfahren zur regelung der dämpfung der bewegung einer presswalze einer hochdruckwalzenpresse und korrespondierende hochdruckwalzenpresse

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17P Request for examination filed

Effective date: 20030117

RIN1 Information on inventor provided before grant (corrected)

Inventor name: FERVERS, WOLFGANG

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH CY DE GB LI SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RBV Designated contracting states (corrected)

Designated state(s): CH DE GB LI SE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB LI SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50108203

Country of ref document: DE

Date of ref document: 20051229

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. PATENTANWAELTE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060227

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060824

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: WACKER CONSTRUCTION EQUIPMENT AG

Free format text: WACKER CONSTRUCTION EQUIPMENT AG#PREUSSENSTRASSE 41#80809 MUENCHEN (DE) -TRANSFER TO- WACKER CONSTRUCTION EQUIPMENT AG#PREUSSENSTRASSE 41#80809 MUENCHEN (DE)

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: WACKER NEUSON SE

Free format text: WACKER CONSTRUCTION EQUIPMENT AG#PREUSSENSTRASSE 41#80809 MUENCHEN (DE) -TRANSFER TO- WACKER NEUSON SE#PREUSSENSTRASSE 41#80809 MUENCHEN (DE)

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: WACKER NEUSON PRODUKTION GMBH & CO. KG

Free format text: WACKER NEUSON SE#PREUSSENSTRASSE 41#80809 MUENCHEN (DE) -TRANSFER TO- WACKER NEUSON PRODUKTION GMBH & CO. KG#PREUSSENSTRASSE 41#80809 MUENCHEN (DE)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20110926

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50108203

Country of ref document: DE

Representative=s name: MUELLER - HOFFMANN & PARTNER PATENTANWAELTE, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50108203

Country of ref document: DE

Representative=s name: MUELLER HOFFMANN & PARTNER PATENTANWAELTE MBB, DE

Effective date: 20120326

Ref country code: DE

Ref legal event code: R081

Ref document number: 50108203

Country of ref document: DE

Owner name: WACKER NEUSON PRODUKTION GMBH & CO. KG, DE

Free format text: FORMER OWNER: WACKER NEUSON SE, 80809 MUENCHEN, DE

Effective date: 20120326

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120426 AND 20120502

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20120920

Year of fee payment: 12

Ref country code: GB

Payment date: 20120920

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20121126

Year of fee payment: 12

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130920

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130919

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50108203

Country of ref document: DE

Effective date: 20140401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130919

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140401