EP1331986B1 - Procede et dispositif servant a produire des microconvections - Google Patents

Procede et dispositif servant a produire des microconvections Download PDF

Info

Publication number
EP1331986B1
EP1331986B1 EP01993505A EP01993505A EP1331986B1 EP 1331986 B1 EP1331986 B1 EP 1331986B1 EP 01993505 A EP01993505 A EP 01993505A EP 01993505 A EP01993505 A EP 01993505A EP 1331986 B1 EP1331986 B1 EP 1331986B1
Authority
EP
European Patent Office
Prior art keywords
radiation
compartment
microsystem
liquid
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01993505A
Other languages
German (de)
English (en)
Other versions
EP1331986A1 (fr
Inventor
Thomas Schnelle
Torsten Müller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PerkinElmer Cellular Technologies Germany GmbH
Original Assignee
Evotec Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evotec Technologies GmbH filed Critical Evotec Technologies GmbH
Publication of EP1331986A1 publication Critical patent/EP1331986A1/fr
Application granted granted Critical
Publication of EP1331986B1 publication Critical patent/EP1331986B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/3031Micromixers using electro-hydrodynamic [EHD] or electro-kinetic [EKI] phenomena to mix or move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/05Mixers using radiation, e.g. magnetic fields or microwaves to mix the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/05Mixers using radiation, e.g. magnetic fields or microwaves to mix the material
    • B01F33/053Mixers using radiation, e.g. magnetic fields or microwaves to mix the material the energy being magnetic or electromagnetic energy, radiation working on the ingredients or compositions for or during mixing them
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/05Mixers using radiation, e.g. magnetic fields or microwaves to mix the material
    • B01F33/055Mixers using radiation, e.g. magnetic fields or microwaves to mix the material the energy being particle radiation working on the ingredients or compositions for or during mixing them
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/3032Micromixers using magneto-hydrodynamic [MHD] phenomena to mix or move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C5/00Separating dispersed particles from liquids by electrostatic effect
    • B03C5/02Separators
    • B03C5/022Non-uniform field separators
    • B03C5/028Non-uniform field separators using travelling electric fields, i.e. travelling wave dielectrophoresis [TWD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/56Mixing liquids with solids by introducing solids in liquids, e.g. dispersing or dissolving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0867Multiple inlets and one sample wells, e.g. mixing, dilution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0442Moving fluids with specific forces or mechanical means specific forces thermal energy, e.g. vaporisation, bubble jet

Definitions

  • the invention relates to a method for generating a convective Fluid movement in a fluidic microsystem, in particular a method for mixing or vortexing Solutions or particle suspensions in a fluidic microsystem with simultaneous training electrical and thermal Field gradients, and a fluidic microsystem used for Implementation of the procedure is set up.
  • Fluidic microsystems have numerous applications in the Biochemistry, medicine and biology, in particular for analysis and Manipulation of dissolved substances or suspended particles. Through the miniaturization and massive parallelization which result in processes occurring in microsystems (or: microchips) particular advantages for the analysis and synthesis of in high combinatorial biodiversity present Macromolecules (see G.H.W. Sanders et al., Trends in Analytical Chemistry ", Vol. 19/6, 2000, page 364 et seq., W. Ehrfeld in "Topics in Current Chemistry", Ed. A. Manz et al., Vol 194, Springer-Verlag, 1998, page 233 ff). Applications of fluidic Microsystems are particularly evident in basic research, z.
  • a general problem of fluidic microsystems is that due to the small dimensions of the microchip formed in the Compartments (eg channels, reservoirs, etc.) in the submillimeter range hydrodynamic fluid flows small Reynolds numbers have. Liquids pass through fluidic microsystems as laminar flows. Intended to be in the microsystem By mixing liquids, this would be done with adjacent ones laminar flows are based only on diffusion. Despite the small dimensions of the microsystem, the diffusion would For example, of biological macromolecules relatively slow take place and thus the throughput of the microsystem greatly limited become.
  • FIG. 4 is a conventional convective fluid movement system schematically illustrated, as for example from WO 00/37165 is known.
  • a Turbulence of the liquid done. This is on the ground 11 'an electrode assembly 20' is provided, which is for generating an electric field gradient transverse to the flow direction A. is set up.
  • the liquid is heated in the compartment 10 '. The heating creates a thermal gradient.
  • the generation of a convective fluid movement illustrated in FIG has several disadvantages.
  • the generation of the local Heating the liquid sets a suitable radiation absorption in advance in the liquid.
  • Another disadvantage is in that suspended particles optionally with lasers (optical traps) manipulated in the microsystem or optically to be detected. It can cause mutual interference different irradiations come.
  • the reproducibility limited to field- and radiation-induced convection, as the focus is on generating local warming in the liquid is positioned only with limited reproducibility can be.
  • the object of the invention is to provide an improved method for Generation of a convective fluid movement in a fluidic Microsystem provide, with the disadvantages of conventional Techniques for mixing or vortexing liquids be overcome.
  • the method is intended in particular a have extended usefulness in that the convective Fluid movement independent of the absorption behavior or other properties of the liquid in the microsystem and adjustable with high reproducibility.
  • the task It is also an object of the invention to provide an improved microsystem for To provide implementation of this method.
  • the basic idea of the invention is to use the conventional technique for convective fluid movement through simultaneous exercise of electrical and thermal gradient to evolve to that in each relevant compartment of the microsystem simultaneously time-varying electric fields and by irradiation solid radiation absorber, which in the compartment are arranged, at least one thermal gradient generated become.
  • the provision of radiation absorbers in the microsystem has the advantage that when exposed to external radiation local heating takes place and a defined thermal gradient regardless of the properties of the liquid with reproducible geometric properties and without disturbing others optical measurements or manipulations generated in the microsystem becomes.
  • the local heating takes place in the microsystem by irradiation of radiation absorbers.
  • the warming will generated with an irradiation source, directed by the energy (focused) and contactless on the radiation absorber is transmitted. There is no direct mechanical contact between the radiation absorbers and the source of the radiation field.
  • the radiation source and radiation absorber are rather spaced apart.
  • the heating of the radiation absorber For example, by focusing at least one Laser beam on radiation absorber or targeted heating by high-frequency radiation (microwave radiation).
  • the radiation absorbers are preferably on wall surfaces of the compartment or electrodes in the compartment.
  • Particularly advantageous is the training of at least one Electrode or electrode parts (eg partial layers, surface structures) as a radiation absorber. This will be a direct Heating the electrodes allows.
  • the thermal gradient is automatically in the same fluid area as the electrical Gradient generated.
  • the frequency of time-varying electric fields becomes selected depending on application. It preferably corresponds to the mean inverse dielectric relaxation time of the liquid and is at least for aqueous solutions, for example 1 kHz or for oily liquids 1 Hz or less.
  • the subject of the invention is also a microsystem with at least a compartment suitable for the realization of the invention convective fluid movement is set up and this in particular has at least one solid radiation absorber.
  • the microsystem according to the invention has the advantage of a simplified Construction. At any location in the fluidic microsystem can compartments with radiation absorbers for convective Fluid movement by appropriate positioning of the electrodes for generating the electric fields and the radiation absorber be provided.
  • Fig. 1 illustrates in the various implementations of radiation absorbers are illustrated.
  • the implementation of the invention is but not on the simultaneous realization of the different ones Variants limited. Rather, in practice, application-dependent one or more of those shown in Figure 1 Radiation absorber be provided in a microsystem.
  • Fig. 1 shows a compartment 10 of a fluidic microsystem 100.
  • the compartment 10 represents any section of the Microsystem 100, for example, through a channel, a reservoir, a confluence, a branch or another Structure formed in the microsystem.
  • the compartment 10 is for example, from a particle suspension in the direction of arrow A flows through and comprises at least one bottom 11 and side surfaces 12. On the upper side, the compartment 10 can be open or be closed by a top surface 13.
  • the cross-sectional dimensions of the compartment 10 are typically in the submillimeter range. Further details of the fluidic Microsystem 100, in particular its function, its production and its structure are known per se and therefore become not explained in detail here.
  • the flowing in the direction of arrow A (or even a dormant) liquid can be moved convectively.
  • an electrode assembly 20 for training a time-varying electric field provided.
  • the electrode assembly 20 comprises at least one free, but preferably at least two electrodes 21, 22, the at one or more walls of the compartment 10 are arranged.
  • Fig. 1 are exemplary 2 strip-shaped electrodes 21, 22nd illustrated at the bottom 11. Connecting cables for connection with a voltage source (not shown) are known per se Way provided.
  • a radiation absorber is a radiation-absorbing Area in the compartment with a defined spatial Limitation is formed. This can be done by contribution and Structuring of radiation-absorbing materials in the compartment 10 and / or focusing an external radiation field (Arrow B) on solid components of the compartment 10 (z. As electrodes, walls). This means that radiation absorber optionally by wall areas or non-conductive Extensions of the electrodes can be formed.
  • absorber surfaces 31 are at the various Walls of the compartment 10 (floor 11, side surfaces 12, top surface 13) is provided. The absorber surfaces 31 exist from a suitably chosen material, which has the highest possible Has absorption for the external radiation field.
  • the size of the Radiation absorber is application dependent to the dimension of Compartment 10 and optionally the shape of the external radiation field (in particular focusability) is adjusted and is preferably at least equal to half the wavelength of the used Radiation selected.
  • the size is for example in Range 0.5 to 25 ⁇ m.
  • radiation absorbers are used by at least one electrode as a whole (reference numeral 32) or a radiation-absorbing surface structure 33 at least one electrode (see electrode 21) is formed.
  • the electrodes 21, 22 preferably one in the infrared Spectral range "black" material, such.
  • Multilayer electrodes can also be used the z. Example of titanium / platinum or chrome / gold.
  • electrodes made of a conductive, transparent material eg ITO, conductive polymers
  • a vortexing or mixing takes place in the compartment 10
  • Mechanisms, such as T. from the conventional convective Fluid movement are known.
  • education electric fields in inhomogeneous media voltages are induced under whose effect fluid movements occur.
  • Training of the local thermal gradient By local heating
  • the radiation absorber increases its temperature. In the Liquid forms a temperature field with a gradient out.
  • the direct heating of the electrodes takes place 21, 22 with infrared radiation, z. B. with an infrared laser.
  • the radiation absorber arranged according to the invention further allow the vertebrae to be localized and the inertia of the system because of the small to be heated Volumes is particularly low ( ⁇ 0.1 s).
  • Another Advantage arises in fluidic microsystems that are used for dielectrophoretic Set up manipulation of suspended particles are.
  • the electrode assembly 20 may at the same time to the formation of the time-varying electrical Field and the dielectrophoretic manipulation of Particles (eg from biological cells) can be used (see Fig. 3).
  • the coupling of the radiation field is carried out from the outside at least one transparent wall of the compartment 10 or through an optical fiber.
  • the coupling of the radiation field is preferably in a direction (B), that of the flow direction (A) deviates in the compartment.
  • a wall for example, the top surface 13 or the Bottom 11 of a transparent material (eg plastic, Glass or the like).
  • the irradiation of the compartment 10 can, depending on the design and Absorption properties of the radiation absorber with a widened or a focused beam. There can be or multi-focus lasers are used. When irradiated with expanded beam can be several radiation absorbers simultaneously to be heated. According to the geometric arrangement the radiation absorber gives a certain vortex pattern in the compartment 10. At focused irradiation, at least a focus (see, for example, reference numeral 40) corresponding to at least directed a radiation absorber. The irradiation takes place preferably perpendicular to the bottom, top or side surfaces of the compartment.
  • the electrodes are made of a transparent material.
  • a transparent floor 11 electrodes of an infrared absorbing material or Multi-layer electrodes with bottom-side arranged infrared absorbing Material are arranged.
  • the inventive method is characterized implemented that the external radiation field on the wall of the compartment is focused.
  • the focus is preferably immediately adjacent to the electrodes z. B. on the floor 11th or the top surface 13.
  • the external radiation field can also be caused by high-frequency electromagnetic Radiation are formed, which is an inductive heating the electrode assembly 20 causes. It can also be a warming (Thermal irradiation) of the electrode assembly by in the Wall (eg the bottom 11) of the compartment 10 recessed heating elements be provided.
  • Fig. 2 shows an embodiment of an inventive Microsystem 100 in a schematic plan view.
  • Two channels 15, 16, each bounded by side surfaces 12 are, with flows through different liquids and open into one common channel 17.
  • the electrode assembly 20 includes two dashed lines Electrodes 21, 22, which are arranged at the bottom 12 of the compartment 10 are, and two solid-drawn electrodes 23, 24, opposite to the bottom electrodes at the (not shown) Top surface of the compartment 10 are arranged.
  • the Irradiation of the compartment 10 is perpendicular to the plane of the drawing from the perspective of the viewer.
  • the bottom 11 forms the side facing away from the irradiation.
  • the top surface is that of Irradiation facing side of the compartment 10.
  • the electrodes 21-24 are connected to an external AC source connected. Between the electrodes becomes an electrical Generated alternating field. By the external irradiation takes place Heating up individual or all electrodes. For example, can be provided that only the upper, facing the irradiation Electrodes are heated.
  • the ground and Cover surfaces provided electrodes shaped differently shaped, allowing them to project from the direction of irradiation are not congruent. This allows, optionally only the lower or only the upper electrodes on the ground or the Cover area of the compartment to be irradiated.
  • the asymmetry of Electrodes are illustrated in FIG.
  • the lower electrodes 21, 22 have a longer length, so they go beyond the projection the upper electrodes 23, 24 protrude.
  • Reference numeral 40 only the lower electrodes are heated.
  • Fig. 3 is a further embodiment of the invention in illustrated schematic plan view in which the microsystem 100 also two converging at the compartment 10 channels 15, 16.
  • the electrode assembly 20 formed by an electrode occtol.
  • Electrodes 21-24 shown with large diameters
  • the remaining four electrodes 25-28 are arranged on the (not shown) top surface.
  • the electrode occtol forms when exposed to rotating electrical voltages a field cage, in which in per se known Way, a particle (eg, a biological cell) is suspended can be held.
  • the object of the arrangement illustrated in FIG. 3 is to the particles 50 simultaneously with those from the channels 15 and 16 to treat inflowing liquids.
  • the electrode arrangement 20 becomes simultaneous to the formation of the dielectric field cage and for generating the alternating electric fields for convective Fluid movement used. Since analogous to the representation in 2 shows the lower and upper electrodes in the direction of irradiation are not congruent, the lower electrodes in the Points 40 are focused from the outside irradiated and thus heated.
  • the inflowing liquids are locally in the range of Field cage swirled.
  • Electrodes 21-24 at the bottom 11 includes while on the irradiation facing side no or free (floating) electrodes are provided. However, the mixing takes place with a lower effectiveness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Dispersion Chemistry (AREA)
  • Hematology (AREA)
  • Analytical Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)

Claims (20)

  1. Procédé de production d'un mouvement de convection de liquide dans un microsystème fluide (100), dans lequel un liquide situé dans au moins un compartiment du microsystème est exposé simultanément à un champ électrique et un gradient thermique, sachant que, pour la production du champ électrique, un dispositif d'électrodes (20) est alimenté en tension variable dans le temps, si bien qu'un champ électrique variable dans le temps se forme dans la zone de liquide,
       caractérisé en ce que,
       à des fins de production du gradient thermique, au moins un absorbeur de rayonnement (30-32) qui est disposé dans le compartiment (10), est exposé localement aux rayons d'au moins un champ de rayonnement externe.
  2. Procédé selon la revendication 1, dans lequel le au moins un champ de rayonnement externe est dirigé sur le au moins un absorbeur de rayonnement (30), lequel est formé par une surface d'absorption (31) sur une cloison du compartiment, par une électrode (32) du dispositif d'électrodes (20) ou par une structure de surface (33) absorbant les rayonnements sur une électrode du dispositif d'électrodes (20).
  3. Procédé selon la revendication 1 ou 2, dans lequel il s'agit pour le champ de rayonnement externe d'un rayonnement électromagnétique.
  4. Procédé selon la revendication 3, dans lequel est utilisé en tant que radiation électromagnétique (i) un rayonnement infrarouge ou (ii) un rayonnement haute fréquence, qui permet de chauffer de manière inductive au moins un absorbeur de rayonnement.
  5. Procédé selon la revendication 1 ou 2, dans lequel le au moins un champ de rayonnement externe est formé par un laser à simple foyer ou multiple foyers.
  6. Procédé selon la revendication 5, dans lequel la longueur d'ondes du laser est sélectionnée dans une zone de longueurs d'ondes, dans laquelle le liquide et les particules en suspension dans le liquide ne présentent pas d'absorption, ou une absorption négligeable comparée à l'absorption d'au moins un absorbeur.
  7. Procédé selon l'une des revendications précédentes, dans lequel le champ de rayonnement est couplé dans le compartiment par une cloison transparente du compartiment ou à l'aide d'une fibre optique.
  8. Procédé selon l'une des revendications précédentes, dans lequel plusieurs absorbeurs de rayonnement sont exposés à des rayons simultanément ou en alternance dans le compartiment à des fins de formation du gradient thermique.
  9. Procédé selon l'une des revendications précédentes, dans lequel la modification temporelle des champs électriques est produite par l'alimentation du dispositif d'électrodes en tension alternative dont la fréquence s'élève à au moins 1 kHz.
  10. Procédé selon la revendication 9, dans lequel le dispositif d'électrodes est alimenté en tension alternative dont la fréquence correspond au temps de relaxation diélectrique inverse moyen du liquide.
  11. Procédé selon l'une des revendications précédentes, dans lequel une multitude d'absorbeurs de rayonnement est exposée à des rayons en cascades dans un canal du microsystème (100).
  12. Procédé selon l'une des revendications précédentes, dans lequel les électrodes du dispositif d'électrodes sont alimentées en tension, lesquelles sont ajustées à la fois pour la production des champs électriques variables dans le temps et par des champs alternatifs en vue de la manipulation diélectrique des particules qui se trouvent en suspension dans le liquide.
  13. Microsystème (100) fluide avec au moins un compartiment (10) pour la réception et/ou la circulation d'un liquide et d'un dispositif d'électrodes (20) qui est ajusté dans le compartiment (10) pour la production de champs électriques variables dans le temps,
       caractérisé en ce que,
       est disposé dans le compartiment au moins un absorbeur fixe (30-33) qui forme au moins une zone absorbant les rayonnements avec une délimitation spatiale définie.
  14. Microsystème selon la revendication 13, dans lequel le microsystème comprend en sus une source de rayonnement.
  15. Microsystème selon la revendication 13 ou 14, dans lequel le au moins un absorbeur de rayonnement (30) est formé par au moins une surface d'absorption (31) sur une cloison du compartiment, une électrode (32) du dispositif d'électrodes (20) ou une structure de surface (33) absorbant les rayonnements sur au moins une électrode (22).
  16. Microsystème selon la revendication 13, 14 ou 15, dans lequel la zone absorbant les rayonnements est formée à chaque fois par un matériau absorbant les rayonnements infrarouges.
  17. Microsystème selon la revendication 16, dans lequel la zone absorbant les rayonnements est composée respectivement de titane, platine, tantale et/ou de silice.
  18. Microsystème selon une des revendications 13 à 17, dans lequel au moins une cloison du compartiment (10) est composée d'un matériau transparent.
  19. Microsystème selon une des revendications 13 à 18, dans lequel au moins une électrode est composée de matériau transparent, électriquement conducteur.
  20. Microsystème selon une des revendications 13 à 19, dans lequel les électrodes du dispositif d'électrodes (20) sont disposées de manière spatialement décalée dans le compartiment (10), de sorte qu'un rayonnement direct des électrodes est possible avec une source de rayonnement externe.
EP01993505A 2000-11-10 2001-11-09 Procede et dispositif servant a produire des microconvections Expired - Lifetime EP1331986B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10055921 2000-11-10
DE10055921A DE10055921A1 (de) 2000-11-10 2000-11-10 Verfahren und Vorrichtung zur Erzeugung von Mikrokonvektionen
PCT/EP2001/012995 WO2002038262A1 (fr) 2000-11-10 2001-11-09 Procede et dispositif servant a produire des microconvections

Publications (2)

Publication Number Publication Date
EP1331986A1 EP1331986A1 (fr) 2003-08-06
EP1331986B1 true EP1331986B1 (fr) 2005-05-04

Family

ID=7662932

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01993505A Expired - Lifetime EP1331986B1 (fr) 2000-11-10 2001-11-09 Procede et dispositif servant a produire des microconvections

Country Status (7)

Country Link
US (1) US7399395B2 (fr)
EP (1) EP1331986B1 (fr)
JP (1) JP2004512944A (fr)
AT (1) ATE294635T1 (fr)
AU (1) AU2002217016A1 (fr)
DE (2) DE10055921A1 (fr)
WO (1) WO2002038262A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005051637A1 (de) * 2005-10-26 2007-05-03 Atotech Deutschland Gmbh Reaktorsystem mit einem mikrostrukturierten Reaktor sowie Verfahren zur Durchführung einer chemischen Reaktion in einem solchen Reaktor

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2266687A3 (fr) 2003-04-10 2011-06-29 The President and Fellows of Harvard College Formation et contrôle d'espèces fluides
DE10320869A1 (de) * 2003-05-09 2004-12-16 Evotec Technologies Gmbh Verfahren und Vorrichtungen zur Flüssigkeitsbehandlung suspendierter Partikel
JP3927968B2 (ja) * 2003-06-13 2007-06-13 キヤノン株式会社 流体制御機構
US7530795B2 (en) 2003-06-13 2009-05-12 Canon Kabushiki Kaisha Fluid control mechanism
US7444817B2 (en) 2003-06-13 2008-11-04 Canon Kabushiki Kaisha Optical micromotor, micropump using same and microvalve using same
EP2662135A3 (fr) 2003-08-27 2013-12-25 President and Fellows of Harvard College Méthode de mélange de gouttelettes dans un microcanal
DE102004023466B4 (de) * 2004-05-12 2008-11-13 Evotec Technologies Gmbh Verfahren und Vorrichtung zur Sammlung von suspendierten Partikeln
DE102005037401B4 (de) * 2005-08-08 2007-09-27 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Bildung einer Emulsion in einem fluidischen Mikrosystem
CA2696372C (fr) * 2007-08-14 2016-09-13 Arcxis Biotechnologies, Inc. Fabrication de biopuces microfluidiques polymeres
USD666305S1 (en) * 2011-08-19 2012-08-28 Life Technologies Corporation Apparatus for docking and charging electrophoresis devices and portable electrophoresis system
CN104511258B (zh) * 2014-12-22 2017-02-22 华中科技大学 施加温度偏场的交流电热微流体混合器及方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE128371C (fr)
CA997708A (en) * 1973-11-30 1976-09-28 Denis B. Mcconnell Dielectrophoretic separation of gaseous isotopes
DD128371A1 (de) * 1976-10-19 1977-11-16 Herbert Haensgen Pumpe ohne bewegte teile
ATE156312T1 (de) * 1992-10-27 1997-08-15 Canon Kk Verfahren zum fördern von flüssigkeiten
US6375899B1 (en) * 1993-11-01 2002-04-23 Nanogen, Inc. Electrophoretic buss for transport of charged materials in a multi-chamber system
US6086243A (en) * 1998-10-01 2000-07-11 Sandia Corporation Electrokinetic micro-fluid mixer
DE19859461A1 (de) * 1998-12-22 2000-06-29 Evotec Biosystems Ag Verfahren und Vorrichtung zur konvektiven Bewegung von Flüssigkeiten in Mikrosystemen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005051637A1 (de) * 2005-10-26 2007-05-03 Atotech Deutschland Gmbh Reaktorsystem mit einem mikrostrukturierten Reaktor sowie Verfahren zur Durchführung einer chemischen Reaktion in einem solchen Reaktor

Also Published As

Publication number Publication date
EP1331986A1 (fr) 2003-08-06
ATE294635T1 (de) 2005-05-15
DE10055921A1 (de) 2002-05-29
WO2002038262A1 (fr) 2002-05-16
DE50106135D1 (de) 2005-06-09
JP2004512944A (ja) 2004-04-30
AU2002217016A1 (en) 2002-05-21
US20040040848A1 (en) 2004-03-04
US7399395B2 (en) 2008-07-15

Similar Documents

Publication Publication Date Title
EP1069955B1 (fr) Procede et dispositif permettant de manipuler des microparticules contenues dans des ecoulements fluidiques
EP1140343B1 (fr) Procede et dispositif pour deplacer des liquides par convection dans des microsystemes
DE60010666T2 (de) Verfahren und vorrichtung zur programmierbaren behandlung von fluiden
EP1331986B1 (fr) Procede et dispositif servant a produire des microconvections
DE60108848T2 (de) Verfahren und vorrichtung zur ortung und konzentration von polaren analyten mittels eines elektrischen wechselfeldes
EP1141264B1 (fr) Microsystemes pour la permeation cellulaire et la fusion cellulaire
EP1603678B1 (fr) Procedes et dispositifs pour separer des particules dans un ecoulement de liquide
EP0946709B1 (fr) Groupement d'electrodes pour cages de champs
DE102006002462A1 (de) Elektrischer Feldkäfig und zugehöriges Betriebsverfahren
EP1089823B1 (fr) Dispositif a electrodes destine a la production de barrieres de champ fonctionnelles dans des microsystemes
DE10059152C2 (de) Mikrosystem zur dielektrischen und optischen Manipulierung von Partikeln
WO2004013614A1 (fr) Mesure d'impedance dans un microsysteme fluidique
EP1042944A1 (fr) Procede et dispositif pour mesurer, etalonner et utiliser des pincettes laser
DE102009005925B4 (de) Vorrichtung und Verfahren zur Handhabung von Biomolekülen
EP1744831B1 (fr) Procedes et dispositif pour recueillir des particules en suspension
DE10320869A1 (de) Verfahren und Vorrichtungen zur Flüssigkeitsbehandlung suspendierter Partikel
DE10136275C1 (de) Verfahren und Vorrichtung zur Probentrennung
DE10213003B4 (de) Mikromischer und Verfahren zum Mischen von mindestens zwei Flüssigkeiten und Verwendung von Mikromischern
DE10355460A1 (de) Mikrofluidsystem
DE10127247A1 (de) Vorrichtung und Verfahren zur elektrischen Behandlung suspendierter biologischer Partikel
DE102007013932A1 (de) Vorrichtung und Verfahren zum Mischen von mindestens zwei Flüssigkeiten und Verwendung der Vorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030514

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EVOTEC TECHNOLOGIES GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050504

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050504

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050504

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050504

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050504

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50106135

Country of ref document: DE

Date of ref document: 20050609

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050804

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050804

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050815

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050822

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: RITSCHER & PARTNER AG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051017

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051109

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051130

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051130

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051130

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060207

EN Fr: translation not filed
BERE Be: lapsed

Owner name: EVOTEC TECHNOLOGIES G.M.B.H.

Effective date: 20051130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: RITSCHER & PARTNER AG;RESIRAIN 1;8125 ZOLLIKERBERG (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050504

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20081125

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081223

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081128

Year of fee payment: 8

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20091109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091109