EP1330422A2 - Method for the hydrogenation of unsubstituted or alkyl substituted aromatics using a catalyst with a structured or monolithic support - Google Patents

Method for the hydrogenation of unsubstituted or alkyl substituted aromatics using a catalyst with a structured or monolithic support

Info

Publication number
EP1330422A2
EP1330422A2 EP01986667A EP01986667A EP1330422A2 EP 1330422 A2 EP1330422 A2 EP 1330422A2 EP 01986667 A EP01986667 A EP 01986667A EP 01986667 A EP01986667 A EP 01986667A EP 1330422 A2 EP1330422 A2 EP 1330422A2
Authority
EP
European Patent Office
Prior art keywords
catalyst
hydrogenation
structured
active metal
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01986667A
Other languages
German (de)
French (fr)
Inventor
Arnd BÖTTCHER
Jochem Henkelmann
Mathias Haake
Gerd Kaibel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1330422A2 publication Critical patent/EP1330422A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/68Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton
    • C07C209/70Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton by reduction of unsaturated amines
    • C07C209/72Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton by reduction of unsaturated amines by reduction of six-membered aromatic rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0225Coating of metal substrates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B35/00Reactions without formation or introduction of functional groups containing hetero atoms, involving a change in the type of bonding between two carbon atoms already directly linked
    • C07B35/02Reduction
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/10Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of aromatic six-membered rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/10Magnesium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/18Carbon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of rare earths
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/30Tungsten
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/46Ruthenium, rhodium, osmium or iridium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Definitions

  • the present invention relates to a process for the hydrogenation of mono- or polynuclear aromatics optionally substituted with at least one alkyl group to give the corresponding cycloaliphatics, in particular benzene to cyclohexane, by contacting the aromatics with a hydrogen-containing gas in the presence of a catalyst which is at least one active metal Metal of the NHL subgroup of the periodic table, applied to a structured or monolithic carrier.
  • the highly exothermic hydrogenation reaction requires careful pressure, temperature and residence time control in order to achieve complete conversion with high selectivity.
  • significant formation of methylcyclopentane which preferably occurs at higher temperatures, must be suppressed.
  • Typical cyclohexane specifications require a residual benzene content ⁇ 100 ppm and a methylcyclopentane content ⁇ 200 ppm.
  • the content of n-paraffins are critical. These undesirable compounds also preferably form at higher hydrogenation temperatures and, like methylcyclopentane, can only be separated from the cyclohexane produced by complex separation operations.
  • the separation can take place, for example, by extraction, rectification or by using molecular sieves, as described in GB 1 341 057.
  • the catalyst used for the hydrogenation also has a strong influence on the extent of the desired formation of methylcyclopentane.
  • Nickel catalysts used for the hydrogenation of benzene have a number of disadvantages.
  • Nickel catalysts are very sensitive to sulfur-containing impurities in benzene, so that either very pure benzene must be used for the hydrogenation or, as described in GB 1 104 275, a platinum catalyst is used in the main reactor that tolerates a higher sulfur content and so the post-reactor that is used is filled with a nickel catalyst.
  • Another possibility is to dope the catalyst with rhenium (GB 1 155 539) or to produce the catalyst using ion exchangers (GB 1 144 499).
  • the hydrogenation can also be carried out on Raney nickel (US Pat. No.
  • Platinum catalysts have fewer disadvantages than nickel catalysts, but are much more expensive to manufacture. Very high hydrogenation temperatures are necessary both when using platinum ice and nickel catalysts, which can lead to a significant formation of undesired by-products.
  • Ru suspension catalysts which are doped with Pd, Pt or Rh are used for the production of cyclohexane from benzene.
  • the catalysts are very expensive due to the use of Pd, Pt or Rh.
  • the work-up and recovery of the catalyst is complicated and expensive in the case of suspension catalysts.
  • a Cr-doped Ru catalyst is used to produce cyclohexane.
  • the active metals are supported on an Ai 2 ⁇ 3 grate.
  • the hydrogenation takes place at temperatures of 160 to 180 ° C. This generates a significant amount of undesirable by-products
  • US Pat. No. 3,917,540 discloses A 2 ⁇ 3 supported catalysts for the preparation of cyclohexane.
  • active metal these contain a noble metal from subgroup VIII of the periodic table, furthermore an alkali metal and technetium or rhenium.
  • the A_ 2 ⁇ 3 carriers are in the form of spheres, granules or the like. The disadvantage of such catalysts is that only a selectivity of 99.5% is achieved.
  • US Pat. No. 3,244,644 describes ⁇ -AkO supported ruthenium hydrogenation catalysts which are also said to be suitable for the hydrogenation of benzene.
  • the catalysts are shaped into particles of a maximum of 1 A inch and have at least 5% active metal; the production of ⁇ -Al 2 O 3 is complex and expensive.
  • the prior art discloses monolithic supported catalysts in the form of ordered packings with catalytically active layers which can be used for hydrogenation reactions.
  • EP 0 564 830 B1 describes a monolithic supported catalyst which can have elements of group VIII of the periodic table as active components.
  • EP 0 803 488 A2 discloses a process for the reaction, for example hydrogenation, of an aromatic compound which carries at least one hydroxyl group or amino group on an aromatic ring in the presence of a catalyst which comprises a homogeneous ruthenium compound which is in situ on a support, for example, a monolith.
  • the hydrogenation is carried out at pressures of more than 50 bar and temperatures of preferably 150 ° C. to 220 ° C.
  • the object of the present invention was to provide an economical process for the hydrogenation of unsubstituted or mononuclear or polynuclear aromatics substituted with at least one alkyl group to give the corresponding cycloaliphatics, in particular from benzene to cyclohexane.
  • Alkyl group substituted mono- or polynuclear aromatics by Bringing the at least one aromatic into contact with a hydrogen-containing gas in the presence of a catalyst which has as active metal at least one metal from subgroup VIII of the Periodic Table, applied to a structured or monolithic support.
  • structured supports are understood to mean those supports which have a regular planar or spatial structure and thereby differ from supports in particle form which are used as loose piles.
  • structured carriers are carriers constructed from threads or wires, usually in the form of carrier webs, such as woven, knitted, crocheted or felted.
  • Structured supports can also be foils or sheets, which can also have cutouts, such as perforated sheets or expanded metals.
  • Such essentially flat structured For the intended use, supports can be shaped into appropriately shaped spatial structures, so-called monoliths or monolithic supports, which in turn can be used, for example, as catalyst packs or column packs. Packs can consist of several monoliths. It is also possible not to build monoliths from flat carrier webs, but to produce them directly without intermediate stages, for example the ceramic monoliths with flow channels known to the person skilled in the art.
  • Flat structured supports can be used as structured supports, for example woven fabrics, knitted fabrics, knitted fabrics, felts, foils, sheets, such as perforated sheets, or expanded metals.
  • essentially spatial structures such as monoliths, can also be used.
  • the structured supports or monoliths can consist of metallic, inorganic, organic or synthetic materials or combinations of such materials.
  • metallic materials are pure metals such as iron, copper, nickel, silver, aluminum and titanium or alloys such as steels such as nickel, chromium and molybdenum steel, brass, phosphor bronze, monell and nickel silver.
  • ceramic materials are aluminum oxide, silicon dioxide, zirconium dioxide, cordierite and steatite. Carbon can also be used.
  • synthetic carrier materials are, for example, plastics, such as polyamides, polyethers, polyvinyls, polyethylene, polypropylene, polytetrafluoroethylene, polyketones, polyether ketones, polyether sulfones, epoxy resins, alkyd resins, urea and melamine-aldehyde resins.
  • plastics such as polyamides, polyethers, polyvinyls, polyethylene, polypropylene, polytetrafluoroethylene, polyketones, polyether ketones, polyether sulfones, epoxy resins, alkyd resins, urea and melamine-aldehyde resins.
  • Glass fibers can also be used. Structured supports in the form of metal fabrics, knits, knits or felts, carbon fiber fabrics or felts or plastic fabrics or knits are preferably used.
  • Monoliths from tissue packs are particularly preferred because they can withstand high cross-sectional loads of gas and liquid and show only minor wear.
  • Metallic, structurized supports or monoliths are particularly preferably used, which consist of stainless steel, which preferably shows a roughening of the surface when tempering in air and then cooling. These properties are particularly evident in stainless steel, in which an alloy component accumulates on the surface above a specific segregation temperature and forms a firmly adhering, rough, oxidic surface layer in the presence of oxygen.
  • Such an alloy component can be, for example, aluminum or chromium, from which a surface layer of AL-O 3 or Cr 2 ⁇ 3 is formed accordingly.
  • Examples of stainless steel are those with the material numbers (according to the German standard DIN 17007) 1.4767, 1.4401, 1.4301, 2.4610, 1.4765, 1.4847 and 1.4571. These steels can preferably be thermally roughened by air tempering at 400 to 1100 ° C for a period of 1 hour to 20 hours and then allowed to cool to room temperature. It can also be roughened mechanically and / or thermally.
  • the stagnated or monolithic supports can optionally be coated with one, two or more oxides. This can be done physically, for example by sputtering.
  • oxides such as Al 2 O 3 are applied to the carrier in an oxidizing atmosphere in a thin layer.
  • the structured supports can be deformed or rolled up either before or after the application of the active metals or promoters, for example by means of a gear shaft, in order to obtain a monolithic catalyst element.
  • all metals of subgroup VIII of the periodic table can be used as active metals.
  • Platinum, rhodium, palladium, cobalt, nickel or ruthenium or a mixture of two or more thereof are preferably used as active metals, ruthenium in particular being used as the active metal.
  • Ruthenium alone is particularly preferably used as the active metal.
  • the catalysts which are used in the context of the present invention can also contain promoters for doping the catalyst, for example alkali and / or alkaline earth metals, such as lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium and barium; Silicon, carbon, titanium, zirconium, tungsten, and the lanthanoids and actinides; Coin metals such as copper, silver and / or gold, zinc, tin, bismuth, antimony, molybdenum, tungsten and / or other promoters such as sulfur and / or selenium.
  • alkali and / or alkaline earth metals such as lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium and barium
  • Silicon carbon, titanium, zirconium, tungsten, and the lanthanoids and actinides
  • Coin metals such as copper, silver and / or gold, zinc, tin, bismuth, antimony, molybdenum, tungsten and
  • the catalysts used according to the invention can be prepared industrially by applying at least one metal from subgroup VIII of the periodic table and, if appropriate, at least one promoter to one of the supports described above.
  • the application of the active metals and optionally promoters to the carriers described above can be done by the active metals in
  • CVD chemical vapor deposition
  • the catalysts prepared in this way can be used directly or can be tempered and / or calcined before they are used, and can be used both in a pre-reduced and in a non-reduced state.
  • the carrier is pretreated before the application of the active metals and optionally promoters.
  • Pretreatment is advantageous, for example, if the adhesion of the active components to the support is to be improved.
  • Examples of a pretreatment are coating the support with adhesion promoters or roughening with mechanical (for example grinding, sandblasting) or thermal processes such as heating, usually in air, plasma etching or glowing.
  • the present invention thus also relates to structured catalyst supports charged with a promoter, the promoter being selected from metals from the group consisting of metals from the L, II. And IV. Main group of the Periodic Table of the Elements, metals from I. to IV. And VI. Sub-group of the periodic table of the elements as well as sulfur, selenium and carbon, preferably stagnated carriers.
  • Particularly preferred promoters are: Si, Ti, Zr, Mg, Ca, C, Yt, La, Ac, Pr, W, and combinations of two or more thereof.
  • the present invention relates to catalysts comprising a support as defined above and — applied thereon — an active metal of subgroup VIII of the periodic table.
  • the catalysts 1 and 2 which are preferably used will be described below; with regard to general features of the catalysts 1 and 2, reference is made to the above statements.
  • the structured support or monolith which is used for catalyst 1 is preferably pretreated, for example by the above-described tempering in air (thermal roughening) and subsequent cooling.
  • the carrier is then preferably impregnated with a solution (impregnating medium) containing the active metal. Subsequently, if it is an essentially flat structured support, it can be processed into a monolithic catalyst element.
  • the carrier is metallic, for example made of stainless steel, it is preferably roughened thermally by air tempering at 400 to 1100 ° C. for a period of 1 hour to 20 hours and then cooling to room temperature.
  • the support can be impregnated with the solution by immersion, rinsing or spraying.
  • the impregnation medium preferably has a surface tension of at most 50 mN / m. In a further preferred form, the impregnation medium has a surface tension of at most 40 mN / m. The minimum value of the surface tension is generally freely selectable. In a preferred form, however, the impregnation medium has a surface tension of at least 10 mN / m and in a particularly preferred form of at least 25 mN / m. The surface tension is measured according to the OECD ring method known to the person skilled in the art (ISO 304, cf. Official Journal of the EC No. L 383 of December 29, 1992, pages A 47 - A / 53).
  • the impregnating medium preferably contains a solvent and / or suspending agent, for example water, in which the active metals are preferably dissolved in the form of their metal salts.
  • the impregnation medium can optionally also contain promoters for doping the catalyst.
  • promoters for doping the catalyst In this context, reference is made to the general statements above.
  • a solvent and / or suspending agent contained in the ink medium is selected so that the active components, active metals, promoters or their precursors to be applied therein and / or thus do not show any undesirable reactions.
  • solvents and / or suspending agents for example aromatic or aliphatic hydrocarbons such as benzene, toluene, xylene, cumene, pentane,
  • the organic solvents or suspending agents used can also be substituted, for example with halogens, such as chlorobenzene, or with nitro groups, such as nitrobenzene.
  • the solvents or suspending agents are used individually or in a mixture.
  • the tear medium can also contain auxiliary substances if necessary.
  • the impregnation medium contains acidic or basic compounds or buffers, if this is for stabilization or solubility at least one of its active components or their precursors is necessary or advantageous.
  • Soluble salts of the active components are preferably completely dissolved in a solvent.
  • An aqueous solution of active components is advantageously used.
  • the active composition consists of metals, either an aqueous, nitric acid solution of the nitrates of the metals or an aqueous, ammoniacal solution of amine complexes of the metals is used in a particularly preferred manner. If the active components consist of amorphous metal oxides, an aqueous sol of the oxide, which is optionally stabilized, is preferably used.
  • the surface tension of the impregnation medium can be adjusted using suitable surface-active substances such as anionic or non-anionic surfactants.
  • the impregnated carrier is generally dried after the impregnation at temperatures from 100 to about 120 ° C. and optionally calcined at temperatures from 120 to 650 ° C., preferably from 120 to 400 ° C.
  • An essentially flat-structured support can be deformed after the thermal treatment into a spatial structure shaped according to the intended use.
  • the deformation can take place, for example, by working steps such as cutting, corrugating the webs, arranging or fixing the corrugated webs in the form of a monolith with parallel or crosswise channels.
  • the deformation to the monolith is optionally carried out before impregnation, drying, thermal treatment or chemical treatment. Further details regarding catalyst 1 and its production can be found in DE-A 198 27 385J, the content of which in this regard is fully incorporated into the present application by reference.
  • the structured support or monolith that is used for catalyst 2 is preferably pretreated, for example by air tempering and subsequent cooling.
  • the carrier is then preferably coated with at least one active metal in vacuo. Subsequently, if it is an essentially flat shaped support, it can be processed into a monolithic catalyst element.
  • promoters for doping the catalyst are preferably also applied to the support material in vacuo.
  • possible promoters reference is made to the general statements above.
  • the carrier material preferably consists of metal, particularly preferably stainless steel, more preferably stainless steel of the numbers mentioned above.
  • the support is pretreated preferably by tempering the metal support at temperatures of 600 to 1100 ° C, preferably at 800 to 1000 ° C, 1 to 20, preferably 1 to 10 hours in air. The carrier is then cooled.
  • the active components can be applied to the support by vapor deposition and sputtering.
  • the carrier is vacuumed at a pressure of 10 "3 to 10 " 8 mbar, preferably by means of an evaporation device, for example electron beam vaporization or sputtering device, with the active components simultaneously or in succession discontinuous or continuous driving style coated. Tempering under inert gas or air can be followed to form the catalyst.
  • the active components can be applied in several layers.
  • the catalyst obtained in this way can be processed further to form a monolith.
  • i.a. refer to the comments on catalyst 1.
  • the catalyst is preferably processed by deforming (corrugated, corrugated) the catalyst fabric or the catalyst film using a gear roller and rolling smooth and corrugated fabric into a cylindrical monolith with similar vertical channels.
  • alkyl groups used individually or as mixtures of two or more thereof, preferably individually.
  • the length of the alkyl group is also not subject to any particular restrictions, but in general it is Ci to C 30 , preferably C to C 18 , in particular C to C, alkyl groups.
  • the following aromatics are to be mentioned as educts for the present process: benzene, toluene, xylenes, cumene,
  • the hydrogenation is preferably carried out at a temperature of approximately 50 to 200 ° C., particularly preferably approximately 70 to 160 ° C., in particular between 80 to 100 ° C. The lowest temperatures can be reached, especially when using ruthenium as the active metal.
  • the hydrogenation process according to the invention is preferably carried out at pressures of less than 50 bar, for example 1 to 49 bar, particularly preferably at pressures of 2 to 10 bar and in particular at pressures between 5 and 10 bar.
  • the process according to the invention can be carried out both in the gas phase and in the liquid phase, the latter being preferred.
  • the process according to the invention can be carried out continuously or batchwise, with the continuous process being preferred.
  • the process is preferably carried out in a tubular reactor, for example a column, with product return and cycle gas.
  • a continuous swamp procedure is further preferred.
  • the hydrogenation of the aromatics according to the invention is preferably carried out in such a way that the hydrogen-containing gas is conducted in countercurrent to the liquid aromatics or in a column which is equipped with one of the catalysts described above.
  • the liquid phase can be passed through the column from top to bottom and the gaseous phase from the bottom up.
  • the hydrogenation is preferably carried out continuously, in particular in countercurrent.
  • the hydrogenation is preferably carried out in two or more stages.
  • the catalyst described in this application is used in at least one stage. In a particularly preferred embodiment of the process according to the invention, the hydrogenation is carried out continuously in one or more reactors connected in series.
  • the amount of the compound provided for the hydrogenation is preferably about 0.05 to about 3 kg / 1 catalyst per hour, more preferably about 0.2 to about 2 kg / 1 catalyst per hour.
  • the hydrogenation can be carried out with a low cross-sectional load in trickle mode, preferably in a bottoms mode with a high cross-sectional load.
  • the cross-sectional loads for the liquid and gaseous phases are preferably 150 to 600 m 3 / (m 2 'h), based on the free area of the rector, particularly preferably 200 to 300 m 3 / (m 2 h).
  • the holdup of the gas is preferably 0.5, the holdup of the gas being defined here as the quotient of the volume of gas in the numerator and the sum of the volume of gas and the volume of liquid in the denominator.
  • the pressure loss is preferably 0.1 to 1.0, particularly preferably 0.15 to 0.3 bar, in each case per m of column height.
  • reformer exhaust gases can be used.
  • Pure hydrogen is preferably used as the hydrogenation gas.
  • the hydrogenation according to the invention can be carried out in the absence or presence of a solvent or diluent, ie it is not necessary to carry out the hydrogenation in solution.
  • Any suitable solvent or diluent can be used as the solvent or diluent.
  • the selection is not critical as long as the solvent or diluent used is able to form a homogeneous solution with the aromatics to be hydrogenated.
  • the amount of solvent or diluent used is not particularly limited and can be freely selected as required, but such amounts are preferred which lead to a 10 to 70% strength by weight solution of the aromatic intended for hydrogenation.
  • the product formed in the hydrogenation that is to say the cycloaliphate (s) in question
  • the product formed in the hydrogenation is used as the preferred solvent in the process according to the invention, optionally in addition to other solvents or diluents.
  • part of the product formed in the process can be mixed with the aromatics still to be hydrogenated.
  • the amount of product as a solvent or diluent is added.
  • benzene is preferably reacted at a temperature of 80 to 100 ° C., ruthenium alone being used as the active metal.
  • a particularly preferred embodiment of the present invention provides for the hydrogenation of benzene to cyclohexane in the liquid phase in the bottoms mode with Produl-friicl ulirung and cycle gas with a cross-sectional load of 200 to 300 m 3 / (m 2 h) at temperatures from 50 ° C to 160 ° C and pressures from 1 to 100 bar to perform on a pure ruthenium monolith catalyst.
  • ruthenium alone
  • the present method according to the invention has numerous advantages over the methods of the prior art.
  • the aromatics can be hydrogenated at significantly lower pressures and temperatures than described in the prior art, selectively and with a high space-time yield to the corresponding cycloaliphatics.
  • the catalysts are very active even at low pressures and temperatures.
  • the cycloaliphatics are obtained in highly pure form, which makes complex stripping processes unnecessary.
  • the formation of, for example, undesired methylcyclopentane in the hydrogenation of benzene to cyclohexane or other n-paraffins is almost completely avoided, so that purification of the cycloaliphatics produced is unnecessary.
  • Cycloaliphatics can be obtained with a high space-time yield even at low pressures.
  • the hydrogenation can be carried out with excellent selectivity without the addition of auxiliary chemicals.
  • Fig. 1 is a schematic drawing of a preferred method according to the present invention.
  • a tubular reactor for example a column, with product stirring and cycle gas.
  • Fig. 1 shows a continuous swamp mode of operation using a packed bubble column.
  • a monolithic catalyst 2 as a fixed bed.
  • Feed is put together via feed 3 with circulating liquid via line 4 as a propellant jet into a mixing nozzle 5 in which fresh hydrogen via line 6 and circulating gas via line 7 are mixed.
  • the two-phase gas / liquid mixture 8 emerges at the upper end of the reactor 1 and is separated in a gas liquid separator 9.
  • a partial gas stream 11 is discharged from the gas stream 10.
  • the circulating gas stream 7 is fed back into the mixing nozzle 5 via a compressor 12.
  • This compressor 12 can optionally be omitted if the circulating liquid 4, which is fed via the pump 13, can be provided at a sufficiently high pressure and the mixing nozzle 5 is designed as a propellant jet.
  • a partial stream 14 is taken from the circulating liquid 4 as a product stream.
  • the volume ratio of circulating liquid 5 to product stream 14 is 90: 1 to 500: 1, preferably 150.J to 250.J.
  • the heat exchange is regulated via the heat exchanger 15.
  • the dimensioning of the tube reactor 1 is based on the diameter so that there is an empty tube speed of 100 to 1000 m / h for the liquid.
  • This monolith catalyst was made from a V2A fabric tape coated with 0.455 g Ru / m 2 , material no. 1.4301, which had previously been annealed in air at 800 ° C for 3 hours.
  • This cloth tape was coated with a ruthenium metal salt solution by soaking. The coated fabric was then heated at 200 ° C. for 1 hour.
  • 51 cm of the 20 cm wide catalyst fabric belt were corrugated with a gear roller, module 1.0 mm, and rolled up with a 47 cm long smooth catalyst fabric tape, so that a monolith with vertical channels and a diameter of 2.7 cm was formed (catalyst A ).
  • This monolith catalyst was made from a V2A fabric tape coated with 0.432 g Ru / m, material no. 1.4301 manufactured.
  • the fabric band was air-annealed for 3 hours at 800 ° C. and then steamed with 2000 ⁇ silicon.
  • the siliconized vapor-coated tape was then tempered at 650 ° C.
  • This fabric tape was subsequently coated with a total of 0.432 g Ru / m 2 by impregnation with a ruthenium metal salt solution.
  • the coated fabric tape was then heated at 200 ° C. for 1 hour.
  • the GC analyzes of the reaction product showed a yield of 99.99% with a quantitative conversion of benzene.
  • the space-time yield was 0.802 kg / (l 'h). Methylcyclopentane could not be detected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

The invention relates to a method for the hydrogenation of unsubstituted or at least monoalkyl substituted uni- or poly-nuclear aromatics by means of bringing the above at least one aromatic into contact with a gas containing hydrogen, in the presence of a catalyst comprising at least one metal of sub-group VIII of the periodic system as active metal, supported on a structured or monolithic support.

Description

Verfahren zur Hydrierung von unsubstituierten oder alkylsubstituierten Aromaten unter Verwendung eines Katalysators mit einem strukturierten oder monolithischen Träger Process for the hydrogenation of unsubstituted or alkyl-substituted aromatics using a catalyst with a structured or monolithic support
Die vorliegende Erfindung betrifft ein Verfahren zur Hydrierung von gegebenenfalls mit mindestens einer Alkylgruppe substituierten ein- oder mehrkernigen Aromaten zu den entsprechenden Cycloaliphaten, insbesondere von Benzol zu Cyclohexan, durch Inkontaktbringen des Aromaten mit einem Wasserstoff enthaltenden Gas in Gegenwart eines Katalysators, der als Aktivmetall mindestens ein Metall der NHL Νebengruppe des Periodensystems, aufgebracht auf einen strulcturierten oder monolithischen Träger, aufweist.The present invention relates to a process for the hydrogenation of mono- or polynuclear aromatics optionally substituted with at least one alkyl group to give the corresponding cycloaliphatics, in particular benzene to cyclohexane, by contacting the aromatics with a hydrogen-containing gas in the presence of a catalyst which is at least one active metal Metal of the NHL subgroup of the periodic table, applied to a structured or monolithic carrier.
Es existieren zahlreiche Verfahren zur Hydrierung von beispielsweise Benzol zu Cyclohexan. Diese Hydrierungen werden überwiegend an partikelförmigen Nickel- und Platinkatalysatoren in der Gas- oder Flüssigphase durchgeführt (s.u.a. US 3 597 489 bzw. GB 1 444 499 bzw. GB 992 104). Typischerweise wird dabei zunächst in einem Hauptreaktor der größte Teil des Benzols zu Cyclohexan hydriert und anschließend in einem oder mehreren Nachreaktoren die Umsetzung zu Cyclohexan komplettiert.There are numerous processes for the hydrogenation of, for example, benzene to cyclohexane. These hydrogenations are predominantly carried out on particulate nickel and platinum catalysts in the gas or liquid phase (see, for example, US Pat. No. 3,597,489 or GB 1,444,499 or GB 992 104). Typically, most of the benzene is first hydrogenated to cyclohexane in a main reactor and then the reaction to cyclohexane is completed in one or more post-reactors.
Die stark exotherme Hydrierreaktion erfordert eine sorgfältige Druck-, Temperatur- und Verweilzeitkontrolle, um einen vollständigen Umsatz bei einer hohen Selektivität zu erreichen. Insbesondere muß eine signifikante Bildung von Methylcyclopentan unterdrückt werden, die bevorzugt bei höheren Temperaturen abläuft. Typische Cyclohexan-Spezifikationen fordern einen Benzol-Restgehalt < 100 ppm und einen Methylcyclopentan-Gehalt < 200 ppm. Auch der Gehalt an n-Paraffinen (n-Hexan, n-Pentan u.a.) ist kritisch. Diese unerwünschten Verbindungen entstehen ebenfalls bevorzugt bei höheren Hydriertemperaturen und lassen sich ebenso wie Methylcyclopentan nur durch aufwendige Trennoperationen vom produzierten Cyclohexan abtrennen. Die Trennung kann beispielsweise durch Extraktion, Rektifikation oder durch Verwendung von Molekularsieben, wie in der GB 1 341 057 beschrieben, erfolgen. Auch der zur Hydrierung eingesetzte Katalysator hat einen starken Einfluß auf das Ausmaß der wierw nschten Methylcyclopentan - Bildung.The highly exothermic hydrogenation reaction requires careful pressure, temperature and residence time control in order to achieve complete conversion with high selectivity. In particular, significant formation of methylcyclopentane, which preferably occurs at higher temperatures, must be suppressed. Typical cyclohexane specifications require a residual benzene content <100 ppm and a methylcyclopentane content <200 ppm. The content of n-paraffins (n-hexane, n-pentane, etc.) are critical. These undesirable compounds also preferably form at higher hydrogenation temperatures and, like methylcyclopentane, can only be separated from the cyclohexane produced by complex separation operations. The separation can take place, for example, by extraction, rectification or by using molecular sieves, as described in GB 1 341 057. The catalyst used for the hydrogenation also has a strong influence on the extent of the desired formation of methylcyclopentane.
Vor diesem Hintergrund ist es erstrebenswert, die Hydrierung möglichst bei geringen Temperaturen durchzuführen. Dies ist jedoch dadurch limitiert, daß in Abhängigkeit von der Art des verwendeten Hydrierkatalysators erst ab höheren Temperaturen eine genügend hohe Hydrieraktivität des Katalysators erreicht wird, die ausreicht, wirtschaftliche Raum- Zeit- Ausbeuten zu erhalten.Against this background, it is desirable to carry out the hydrogenation at low temperatures if possible. However, this is limited in that, depending on the type of hydrogenation catalyst used, a sufficiently high hydrogenation activity of the catalyst, which is sufficient to obtain economical space-time yields, is only achieved from higher temperatures.
Die für die Benzolhydrierung eingesetzten Nickel- und Platinkatalysatoren weisen eine Reihe von Nachteilen auf. Nickelkatalysatoren sind sehr empfindlich gegenüber schwefelhaltigen Verunreinigungen im Benzol, so daß man entweder sehr reines Benzol zur Hydrierung einsetzen muß oder, wie in der GB 1 104 275 beschrieben, im Hauptreaktor einen Platinkatalysator einsetzt, der einen höheren Schwefelgehalt toleriert und so den Nachreaktor, der mit einem Nickelkatalysator gefüllt ist, schützt. Eine andere Möglichkeit besteht in der Dotierung des Katalysators mit Rhenium (GB 1 155 539) oder in der Herstellung des Katalysators unter Verwendung von Ionenaustauschern (GB 1 144 499). Die Herstellung derartiger Katalysatoren ist jedoch aufwendig und teuer. Auch an Raney-Nickel kann die Hydrierung durchgeführt werden (US 3 202 723); von Nachteil ist jedoch die leichte Brennbarkeit dieses Katalysators. Auch homogene Nickelkatalysatoren können zur Hydrierung eingesetzt werden (EP 0 668 257). Diese Katalysatoren sind jedoch sehr wasserempfindlich, so daß das eingesetzte Benzol vor der Hydrierung zunächst in einer Trocknungskolonne auf einen Restwassergehalt < 1 ppm getrocknet werden muß. Ein weiterer Nachteil des Homogen-Katalysators ist, daß dieser nicht regeneriert werden kann.The nickel and platinum catalysts used for the hydrogenation of benzene have a number of disadvantages. Nickel catalysts are very sensitive to sulfur-containing impurities in benzene, so that either very pure benzene must be used for the hydrogenation or, as described in GB 1 104 275, a platinum catalyst is used in the main reactor that tolerates a higher sulfur content and so the post-reactor that is used is filled with a nickel catalyst. Another possibility is to dope the catalyst with rhenium (GB 1 155 539) or to produce the catalyst using ion exchangers (GB 1 144 499). However, the production of such catalysts is complex and expensive. The hydrogenation can also be carried out on Raney nickel (US Pat. No. 3,202,723); however, the flammability of this catalyst is a disadvantage. Homogeneous nickel catalysts can also be used for the hydrogenation (EP 0 668 257). However, these catalysts are very sensitive to water, so that the benzene used is first in a drying column before the hydrogenation Residual water content <1 ppm must be dried. Another disadvantage of the homogeneous catalyst is that it cannot be regenerated.
Platinkatalysatoren weisen weniger Nachteile als Nickelkatalysatoren auf, sind jedoch viel teurer in ihrer Herstellung. Sowohl bei der Verwendung von Platinais auch von Nickelkatalysatoren sind sehr hohe Hydriertemperaturen notwendig, was zu einer signifikanten Bildung unerwünschter Nebenprodukte fuhren kann.Platinum catalysts have fewer disadvantages than nickel catalysts, but are much more expensive to manufacture. Very high hydrogenation temperatures are necessary both when using platinum ice and nickel catalysts, which can lead to a significant formation of undesired by-products.
An Ruthenium-Katalysatoren wird die Hydrierung von Benzol zu Cyclohexan technisch nicht ausgeübt, in der Patentliteratur finden sich jedoch Hinweise auf die Verwendung von rutheniumhaltigen Katalysatoren für diese Anwendung.The hydrogenation of benzene to cyclohexane is not carried out industrially on ruthenium catalysts, but there are references in the patent literature to the use of ruthenium-containing catalysts for this application.
Gemäß SU 319 582 werden Ru-Suspensionskatalysatoren, die mit Pd, Pt oder Rh dotiert sind, zur Herstellung von Cyclohexan aus Benzol eingesetzt. Die Katalysatoren sind jedoch durch die Verwendung von Pd, Pt oder Rh sehr teuer. Ferner ist bei Suspensionskatalysatoren die Aufarbeitung und Wiedergewinnung des Katalysators aufwendig und teuer.According to SU 319 582, Ru suspension catalysts which are doped with Pd, Pt or Rh are used for the production of cyclohexane from benzene. However, the catalysts are very expensive due to the use of Pd, Pt or Rh. Furthermore, the work-up and recovery of the catalyst is complicated and expensive in the case of suspension catalysts.
Gemäß SU 403 658 wird ein Cr dotierter Ru-Katalysator zur Herstellung von Cyclohexan eingesetzt. Die Aktivmetalle sind auf einem Ai2θ3-Gra ulat geträgert. Die Hydrierung erfolgt bei Temperaturen von 160 bis 180 °C. Hierbei wird eine signifikante Menge unerwünschter Nebenprodukte generiertAccording to SU 403 658, a Cr-doped Ru catalyst is used to produce cyclohexane. The active metals are supported on an Ai 2 θ 3 grate. The hydrogenation takes place at temperatures of 160 to 180 ° C. This generates a significant amount of undesirable by-products
In der US 3 917 540 werden A_2θ3-geträgerte Katalysatoren zur Herstellung von Cyclohexan offenbart. Diese enthalten als Aktivmetall ein Edelmetall aus der VIII. Nebengruppe des Periodensystems, weiterhin ein Alkalimetall sowie Technetium oder Rhenium. Die A_2θ3-Träger liegen in Form von Kugeln, Granulaten oder ähnlichem vor. Nachteil derartiger Katalysatoren ist, daß lediglich eine Selektivität von 99,5 % erreicht wird. In der US 3 244 644 werden schließlich auf η-AkO-, geträgerte Ruthenium- Hydrierkatalysatoren beschrieben, die sich auch zur Hydrierung von Benzol eignen sollen. Die Katalysatoren sind in Partikeln von maximal lA inch geformt und weisen mindestens 5 % Aktivmetall auf; die Herstellung von η-Al2O3 ist aufwendig und teuer.US Pat. No. 3,917,540 discloses A 2 θ 3 supported catalysts for the preparation of cyclohexane. As active metal, these contain a noble metal from subgroup VIII of the periodic table, furthermore an alkali metal and technetium or rhenium. The A_ 2 θ 3 carriers are in the form of spheres, granules or the like. The disadvantage of such catalysts is that only a selectivity of 99.5% is achieved. Finally, US Pat. No. 3,244,644 describes η-AkO supported ruthenium hydrogenation catalysts which are also said to be suitable for the hydrogenation of benzene. The catalysts are shaped into particles of a maximum of 1 A inch and have at least 5% active metal; the production of η-Al 2 O 3 is complex and expensive.
Im Stand der Technik sind neben den vorstehend beschriebenen partikelförmigen Katalysatoren oder Suspensions-Katalysatoren monolithische Trägerkatalysatoren in Form von geordneten Packungen mit katalytisch aktiven Schichten bekannt, die für Hydrierreaktionen eingesetzt werden können.In addition to the particulate catalysts or suspension catalysts described above, the prior art discloses monolithic supported catalysts in the form of ordered packings with catalytically active layers which can be used for hydrogenation reactions.
In der EP 0 564 830 Bl wird beispielsweise ein monolithischer Trägerkatalysator beschrieben, der als Aktivkomponenten Elemente der VIII. Gruppe des Periodensystems aufweisen kann.EP 0 564 830 B1, for example, describes a monolithic supported catalyst which can have elements of group VIII of the periodic table as active components.
Die EP 0 803 488 A2 offenbart ein Verfahren zur Umsetzung, beispielsweise Hydrierung, einer aromatischen Verbindung, die mindestens eine Hydroxylgruppe oder Aminogruppe an einem aromatischen Ring trägt, in Gegenwart eines Katalysators, der eine homogene Rutheniumverbindung umfaßt, die sich in situ auf einem Träger, beispielsweise einem Monolithen, abgeschieden hat. Die Hydrierung wird bei Drücken von mehr als 50 bar und Temperaturen von vorzugsweise 150°C bis 220°C durchgeführt.EP 0 803 488 A2 discloses a process for the reaction, for example hydrogenation, of an aromatic compound which carries at least one hydroxyl group or amino group on an aromatic ring in the presence of a catalyst which comprises a homogeneous ruthenium compound which is in situ on a support, for example, a monolith. The hydrogenation is carried out at pressures of more than 50 bar and temperatures of preferably 150 ° C. to 220 ° C.
Der vorliegenden Erfindung lag die Aufgabe zugrunde, ein wirtschaftliches Verfahren zur Hydrierung von unsubstituierten oder mit mindestens einer Al- kylgruppe substituierten ein- oder mehrkernigen Aromaten zu den entsprechenden Cycloaliphaten, insbesondere von Benzol zu Cyclohexan, bereitzustellen.The object of the present invention was to provide an economical process for the hydrogenation of unsubstituted or mononuclear or polynuclear aromatics substituted with at least one alkyl group to give the corresponding cycloaliphatics, in particular from benzene to cyclohexane.
Diese Aufgabe wird gelöst durch das erfindungsgemäße Verfahren zur Hydrierung mindestens eines unsubstituierten oder mit mindestens einerThis object is achieved by the process according to the invention for hydrogenating at least one unsubstituted or with at least one
Alkylgruppe substituierten ein- oder mehrkernigen Aromaten durch Inkontaktbringen des mindestens einen Aromaten mit einem Wasserstoff enthaltenden Gas in Gegenwart eines Katalysators, der als Aktivmetall mindestens ein Metall der VIII. Nebengruppe des Periodensystems, aufgebracht auf einen sfrukturierten oder monolithischen Träger, aufweist.Alkyl group substituted mono- or polynuclear aromatics by Bringing the at least one aromatic into contact with a hydrogen-containing gas in the presence of a catalyst which has as active metal at least one metal from subgroup VIII of the Periodic Table, applied to a structured or monolithic support.
Dabei wurde überraschenderweise gefunden, daß sich derartige Aromaten an Katalysatoren, die einen strukturierten oder monolithischen Träger aufweisen, auch bei, verglichen mit den Verfahren des Standes der Technik, deutlich niedrigeren Drücken und Temperaturen selektiv und mit hoher Raum-Zeit- Ausbeute zu den entsprechenden Cycloaliphaten hydrieren lassen. Dies war auch deshalb sehr überraschend, da selbst für die Hydrierung von Aromaten mit polaren Substituenten, wie in der EP 0 803 488 A2 beschrieben, die eine wesentlich höhere Reaktivität aufweisen als unsubstituierte oder mit mindestens einer Alkylgruppe substituierte ein- oder mehrkernige Aromate, sehr hohe Drücke und Temperaturen zur Hydrierung notwendig sind. Von daher war nicht zu erwarten, mit dem erfindungsgemäßen Verfahren derartige Aromate überhaupt in wirtschaftlicher Weise hydrieren zu können. Bei den erfindungsgemäß verwendbaren niedrigen Drücken und Temperaturen unterbleibt die Bildung von unerwünschten Nebenprodukten, wie z.B. Methylcyclopentan oder anderen n-Paraffinen nahezu vollständig, so daß eine aufwendige Aufreinigung des produzierten Cycloaliphaten unnötig wird, was das Verfahren sehr wirtschaftlich gestaltet.It was surprisingly found that aromatics of this type selectively and with a high space-time yield on catalysts which have a structured or monolithic support, compared to the processes of the prior art, significantly lower pressures and temperatures to give the corresponding cycloaliphatics let it hydrate. This was also very surprising, since even for the hydrogenation of aromatics with polar substituents, as described in EP 0 803 488 A2, which have a significantly higher reactivity than unsubstituted or mononuclear or polynuclear aromatics substituted with at least one alkyl group, very high Pressures and temperatures for hydrogenation are necessary. It was therefore not to be expected that the process according to the invention could be used to hydrogenate such aromatics in an economical manner at all. At the low pressures and temperatures which can be used according to the invention, the formation of undesired by-products, e.g. Methylcyclopentane or other n-paraffins almost completely, so that an expensive purification of the cycloaliphate produced is unnecessary, which makes the process very economical.
Unter strukturierten Trägern werden im Zusammenhang mit der vorliegenden Erfindung solche Träger verstanden, die eine regelmäßige flächige oder räumliche Struktur aufweisen und sich dadurch von Trägern in Partikelform, die als loses Haufwerk verwendet werden, unterscheiden. Beispiele für strukturierte Träger sind aus Fäden oder Drähten aufgebaute Träger, meist in Form von Trägerbahnen, wie Gewebe, Gestricke, Gewirke oder Filze. Strukturierte Träger können auch Folien oder Bleche sein, die auch Aussparungen aufweisen können, wie Lochbleche oder Streckmetalle. Solche im wesentlichen flächigen strukturierten Träger können zu dem Einsatzzweck zu entsprechend geformten räumlichen Strukturen, sogenannten Monolithen bzw. monolithischen Trägern, geformt werden, die ihrerseits beispielsweise als Katalysatorpackungen oder Kolonnenpackungen verwendet werden können. Packungen können aus mehreren Monolithen bestehen. Es ist ebenfalls möglich, Monolithe nicht aus flächigen Trägerbahnen aufzubauen, sondern sie ohne Zwischenstufen direkt herzustellen, beispielsweise die dem Fachmann bekannten keramischen Monolithe mit Strömungskanälen.In the context of the present invention, structured supports are understood to mean those supports which have a regular planar or spatial structure and thereby differ from supports in particle form which are used as loose piles. Examples of structured carriers are carriers constructed from threads or wires, usually in the form of carrier webs, such as woven, knitted, crocheted or felted. Structured supports can also be foils or sheets, which can also have cutouts, such as perforated sheets or expanded metals. Such essentially flat structured For the intended use, supports can be shaped into appropriately shaped spatial structures, so-called monoliths or monolithic supports, which in turn can be used, for example, as catalyst packs or column packs. Packs can consist of several monoliths. It is also possible not to build monoliths from flat carrier webs, but to produce them directly without intermediate stages, for example the ceramic monoliths with flow channels known to the person skilled in the art.
Als strukturierte Träger können flächige strukturierte Träger verwendet werden, beispielsweise Gewebe, Gestricke, Gewirke, Filze, Folien, Bleche, wie Lochbleche, oder Streckmetalle. Es können jedoch auch im wesentlichen räumliche Strukturen, wie Monolithe, verwendet werden.Flat structured supports can be used as structured supports, for example woven fabrics, knitted fabrics, knitted fabrics, felts, foils, sheets, such as perforated sheets, or expanded metals. However, essentially spatial structures, such as monoliths, can also be used.
Die strukturierten Träger oder Monolithe können aus metallischen, anorganischen, organischen oder synthetischen Materialien oder Kombinationen solcher Materialien bestehen.The structured supports or monoliths can consist of metallic, inorganic, organic or synthetic materials or combinations of such materials.
Beispiele für metallische Werkstoffe sind Reinmetalle wie Eisen, Kupfer, Nickel, Silber, Aluminium und Titan oder Legierungen wie Stähle, etwa Nickel-, Chrom- und Molybdän-Stahl, Messing, Phosphorbronze, Monell und Neusilber. Beispiele für keramische Werkstoffe sind Aluminiumoxid, Siliciumdioxid, Zirkondioxid, Cordierit und Steatit. Ferner kann Kohlenstoff eingesetzt werden.Examples of metallic materials are pure metals such as iron, copper, nickel, silver, aluminum and titanium or alloys such as steels such as nickel, chromium and molybdenum steel, brass, phosphor bronze, monell and nickel silver. Examples of ceramic materials are aluminum oxide, silicon dioxide, zirconium dioxide, cordierite and steatite. Carbon can also be used.
Beispiele für synthetische Trägermaterialien sind beispielsweise Kunststoffe, wie Polyamide, Polyether, Polyvinyle, Polyethylen, Polypropylen, Polyte- trafluorethylen, Polyketone, Polyetherketone, Polyethersulfone, Epoxidharze, Alkydharze, Harnstoff- und Melamin- Aldehydharze.Examples of synthetic carrier materials are, for example, plastics, such as polyamides, polyethers, polyvinyls, polyethylene, polypropylene, polytetrafluoroethylene, polyketones, polyether ketones, polyether sulfones, epoxy resins, alkyd resins, urea and melamine-aldehyde resins.
Ferner können Glasfasern eingesetzt werden. Vorzugsweise werden strukturierte Träger in Form von Metallgeweben, - gestricken, -gewirken oder -filzen, Kohlefasergeweben oder -filzen oder Kunststoffgeweben oder -gestricken verwendet.Glass fibers can also be used. Structured supports in the form of metal fabrics, knits, knits or felts, carbon fiber fabrics or felts or plastic fabrics or knits are preferably used.
Monolithe aus Gewebepackungen sind besonders bevorzugt, da sie hohe Querschnittsbelastungen von Gas und Flüssigkeit aushalten und dabei einen nur unwesentlichen Abrieb zeigen.Monoliths from tissue packs are particularly preferred because they can withstand high cross-sectional loads of gas and liquid and show only minor wear.
Besonders bevorzugt werden metallische, stπikturierte Träger oder Monolithen verwendet, die aus Edelstahl bestehen, der vorzugsweise beim Tempern unter Luft und anschließendem Abkühlen eine Aufrauhung der Oberfläche zeigt. Diese Eigenschaften zeigen insbesondere Edelstahle, bei denen sich oberhalb einer spezifischen Entmischungstemperatur ein Legierungsbestandteil an der Oberfläche anreichert und in Gegenwart von Sauerstoff durch Oxidation eine fest- haftende rauhe oxidische Oberflächenschicht bildet. Ein solcher Legierungsbestandteil kann beispielsweise Aluminium oder Chrom sein, aus denen sich entsprechend eine Oberflächenschicht aus AL-O3 oder Cr2θ3 bildet. Beispiele für Edelstahle sind die mit den Werkstoff-Nummern (nach der deutschen Norm DIN 17007) 1.4767, 1.4401, 1.4301, 2.4610, 1.4765, 1.4847 und 1.4571. Diese Stähle können vorzugsweise durch Tempern an der Luft bei 400 bis 1100 °C über einen Zeitraum von 1 Stunde bis zu 20 Stunden und anschließendes Abkühlenlassen auf Raumtemperatur thermisch aufgerauht werden. Ferner kann auch mechanisch und/oder thermisch aufgerauht werden.Metallic, structurized supports or monoliths are particularly preferably used, which consist of stainless steel, which preferably shows a roughening of the surface when tempering in air and then cooling. These properties are particularly evident in stainless steel, in which an alloy component accumulates on the surface above a specific segregation temperature and forms a firmly adhering, rough, oxidic surface layer in the presence of oxygen. Such an alloy component can be, for example, aluminum or chromium, from which a surface layer of AL-O 3 or Cr 2 θ 3 is formed accordingly. Examples of stainless steel are those with the material numbers (according to the German standard DIN 17007) 1.4767, 1.4401, 1.4301, 2.4610, 1.4765, 1.4847 and 1.4571. These steels can preferably be thermally roughened by air tempering at 400 to 1100 ° C for a period of 1 hour to 20 hours and then allowed to cool to room temperature. It can also be roughened mechanically and / or thermally.
Vor Aufbringung der Aktivmetalle und gegebenenfalls Promotoren können die stnikturierten oder monolithischen Träger gegebenenfalls mit einem, zwei oder mehreren Oxiden beschichtet werden. Dies kann physikalisch, beispielsweise durch Besputtern, erfolgen. Hierbei werden in oxidierender Atmosphäre in einer dünnen Schicht Oxide wie AI2O3 auf den Träger aufgebracht. Die strukturierten Träger können entweder vor oder nach dem Aufbringen der Aktivmetalle bzw. Promotoren beispielsweise mittels einer Zahnradwelle verformt oder zusammengerollt werden, um ein monolithisches Katalysatorelement zu erhalten.Before application of the active metals and optionally promoters, the stagnated or monolithic supports can optionally be coated with one, two or more oxides. This can be done physically, for example by sputtering. Here, oxides such as Al 2 O 3 are applied to the carrier in an oxidizing atmosphere in a thin layer. The structured supports can be deformed or rolled up either before or after the application of the active metals or promoters, for example by means of a gear shaft, in order to obtain a monolithic catalyst element.
Als Aktivmetalle können prinzipiell alle Metalle der VIII. Nebengruppe des Periodensystems eingesetzt werden. Vorzugsweise werden als Aktivmetalle Platin, Rhodium, Palladium, Cobalt, Nickel oder Ruthenium oder ein Gemisch aus zwei oder mehr davon eingesetzt, wobei insbesondere Ruthenium als Aktivmetall verwendet wird. Besonders bevorzugt wird als Aktivmetall Ruthenium allein eingesetzt. Ein Vorteil der Verwendung des Hydriermetalls Ruthenium ist, daß hierdurch im Vergleich zu den deutlich teureren Hydriermetallen Platin, Palladium oder Rhodium erhebliche Kosten bei der Katalysatorherstellung eingespart werden können.In principle, all metals of subgroup VIII of the periodic table can be used as active metals. Platinum, rhodium, palladium, cobalt, nickel or ruthenium or a mixture of two or more thereof are preferably used as active metals, ruthenium in particular being used as the active metal. Ruthenium alone is particularly preferably used as the active metal. An advantage of using the hydrogenation metal ruthenium is that, compared to the much more expensive hydrogenation metals platinum, palladium or rhodium, this can save considerable costs in the production of the catalyst.
Die Katalysatoren, die im Rahmen der vorliegenden Erfindung eingesetzt werden, können auch Promotoren zur Dotierung des Katalysators enthalten, beispielsweise Alkali- und/oder Erdalkalimetalle, wie Lithium, Natrium, Kalium, Rubidium, Cäsium, Magnesium, Calcium, Strontium und Barium; Silicium, Kohlenstoff, Titan, Zirkonium, Wolfram, sowie die Lanthanoiden und Actinoiden; Münzmetalle wie Kupfer, Silber und/oder Gold, Zink, Zinn, Bismuth, Antimon, Molybdän, Wolfram und/oder andere Promotoren wie Schwefel und/oder Selen.The catalysts which are used in the context of the present invention can also contain promoters for doping the catalyst, for example alkali and / or alkaline earth metals, such as lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium and barium; Silicon, carbon, titanium, zirconium, tungsten, and the lanthanoids and actinides; Coin metals such as copper, silver and / or gold, zinc, tin, bismuth, antimony, molybdenum, tungsten and / or other promoters such as sulfur and / or selenium.
Die erfindungsgemäß verwendeten Katalysatoren können technisch hergestellt werden durch Auftragen mindestens eines Metalls der VIII. Nebengruppe des Periodensystems und gegebenenfalls mindestens eines Promotors auf einen der vorstehend beschriebenen Träger.The catalysts used according to the invention can be prepared industrially by applying at least one metal from subgroup VIII of the periodic table and, if appropriate, at least one promoter to one of the supports described above.
Die Aufbringung der Aktivmetalle und gegebenenfalls Promotoren auf den vorstehend beschriebenen Trägern kann erfolgen, indem man die Aktivmetalle imThe application of the active metals and optionally promoters to the carriers described above can be done by the active metals in
Vakuum verdampft und kontinuierlich auf den Träger kondensiert. Eine andere Möglichkeit besteht darin, die Aktivmetalle durch Tränken mit Lösungen, welche die Aktivmetalle und gegebenenfalls Promotoren enthalten, auf den Trägern aufzubringen. Eine weitere Möglichkeit besteht darin, die Aktivmetalle und gegebenenfalls Promotoren durch chemische Methoden, wie der Chemical Vapour Deposition (CVD) auf den Trägern aufzubringen.Vacuum evaporates and condenses continuously on the carrier. Another It is possible to apply the active metals to the supports by impregnating them with solutions which contain the active metals and optionally promoters. Another possibility is to apply the active metals and, if appropriate, promoters to the supports by chemical methods such as chemical vapor deposition (CVD).
Die so hergestellten Katalysatoren können direkt eingesetzt werden oder vor ihrem Einsatz getempert und/oder calciniert werden, und können sowohl vorreduziert als auch im nicht-reduzierten Zustand eingesetzt werden.The catalysts prepared in this way can be used directly or can be tempered and / or calcined before they are used, and can be used both in a pre-reduced and in a non-reduced state.
Wahlweise wird der Träger vor der Aufbringung der Aktivmetalle und gegebenenfalls Promotoren vorbehandelt. Eine Vorbehandlung ist beispielsweise vorteilhaft, wenn die Haftung der Aktivkomponenten auf dem Träger verbessert werden soll. Beispiele für eine Vorbehandlung sind die Beschichtung des Trägers mit Haftvermittlern oder eine Aufrauhung mit mechanischen (etwa Schleifen, Sandstrahlen) oder thermischen Verfahren wie Erhitzen, in der Regel an Luft, Plasmaätzen oder Glimmen.Optionally, the carrier is pretreated before the application of the active metals and optionally promoters. Pretreatment is advantageous, for example, if the adhesion of the active components to the support is to be improved. Examples of a pretreatment are coating the support with adhesion promoters or roughening with mechanical (for example grinding, sandblasting) or thermal processes such as heating, usually in air, plasma etching or glowing.
Somit betrifft die vorliegende Erfindung auch strukturierte mit einem Promotor beaufschlagte Katalysatorträger, wobei der Promotor ausgewählt wird aus Metallen der Gruppe bestehend aus Metallen der L, II. und IV. Hauptgruppe des Periodensystems der Elemente, Metallen der I. bis IV. und VI. Nebengruppe des Periodensystems der Elemente sowie Schwefel, Selen und Kohlenstoff, vorzugsweise stnikturierte Träger. Insbesondere bevorzugte Promotoren sind: Si, Ti, Zr, Mg, Ca, C, Yt, La, Ac, Pr, W, sowie Kombinationen aus zwei oder mehr davon.The present invention thus also relates to structured catalyst supports charged with a promoter, the promoter being selected from metals from the group consisting of metals from the L, II. And IV. Main group of the Periodic Table of the Elements, metals from I. to IV. And VI. Sub-group of the periodic table of the elements as well as sulfur, selenium and carbon, preferably stagnated carriers. Particularly preferred promoters are: Si, Ti, Zr, Mg, Ca, C, Yt, La, Ac, Pr, W, and combinations of two or more thereof.
Ferner betrifft die vorliegende Erfindung Katalysatoren, umfassend einen Träger wie oben definiert, sowie - darauf aufgebracht - ein Aktivmetall der VIII. Nebengruppe des Periodensystems. Im folgenden sollen die vorzugsweise verwendeten Katalysatoren 1 und 2 beschrieben werden; bezüglich allgemeiner Merkmale der Katalysatoren 1 und 2 wird auf die vorstehenden Ausführungen verwiesen.Furthermore, the present invention relates to catalysts comprising a support as defined above and — applied thereon — an active metal of subgroup VIII of the periodic table. The catalysts 1 and 2 which are preferably used will be described below; with regard to general features of the catalysts 1 and 2, reference is made to the above statements.
Katalysator 1Catalyst 1
Bevorzugt wird der strukturierte Träger oder Monolith, der für Katalysator 1 eingesetzt wird, vorbehandelt, beispielsweise durch vorstehend beschriebenes Tempern an der Luft (thermisches Aufrauhen) und anschließende Abkühlung. Daraufhin wird der Träger vorzugsweise mit einer das Aktivmetall enthaltenden Lösung (Tränkmedium) getränkt. Nachfolgend kann, wenn es sich um einen im wesentlichen flächigen strukturierten Träger handelt, dieser zu einem monolithischen Katalysatorelement verarbeitet werden.The structured support or monolith which is used for catalyst 1 is preferably pretreated, for example by the above-described tempering in air (thermal roughening) and subsequent cooling. The carrier is then preferably impregnated with a solution (impregnating medium) containing the active metal. Subsequently, if it is an essentially flat structured support, it can be processed into a monolithic catalyst element.
Wenn der Träger metallisch ist, beispielsweise aus Edelstahl besteht, wird dieser vorzugsweise durch Tempern an der Luft bei 400 bis 1100 °C für einen Zeitraum von 1 Stunde bis 20 Stunden und anschließendem Abkühlen auf Raumtemperatur thermisch aufgerauht.If the carrier is metallic, for example made of stainless steel, it is preferably roughened thermally by air tempering at 400 to 1100 ° C. for a period of 1 hour to 20 hours and then cooling to room temperature.
Das Tränken des Trägers mit der Lösung kann durch Eintauchen, Spülen oder Besprühen erfolgen.The support can be impregnated with the solution by immersion, rinsing or spraying.
Das Tränkmedium weist vorzugsweise eine Oberflächenspannung von höchstens 50 mN/m auf. In weiter bevorzugter Form hat das Tränkmedium eine Oberflächenspannung von höchstens 40 mN/m. Der Minimalwert der Oberflächenspannung ist im allgemeinen frei wählbar. In bevorzugter Form hat das Tränkmedium jedoch eine Oberflächenspannung von mindestens 10 mN/m und in besonders bevorzugter Form von mindestens 25 mN/m. Die Oberflächenspannung wird nach der dem Fachmann bekannten OECD-Ring- Methode (ISO 304, vgl. Amtsblatt der EG Nr. L 383 vom 29.12.1992, Seiten A 47 - A/53) gemessen. Das Tränkmedium enthält vorzugsweise ein Lösungs- und/oder Suspensionsmittel, beispielsweise Wasser, in welchem die Aktivmetalle vorzugsweise in Form ihrer Metallsalze gelöst sind.The impregnation medium preferably has a surface tension of at most 50 mN / m. In a further preferred form, the impregnation medium has a surface tension of at most 40 mN / m. The minimum value of the surface tension is generally freely selectable. In a preferred form, however, the impregnation medium has a surface tension of at least 10 mN / m and in a particularly preferred form of at least 25 mN / m. The surface tension is measured according to the OECD ring method known to the person skilled in the art (ISO 304, cf. Official Journal of the EC No. L 383 of December 29, 1992, pages A 47 - A / 53). The impregnating medium preferably contains a solvent and / or suspending agent, for example water, in which the active metals are preferably dissolved in the form of their metal salts.
Das Tränkmedium kann wahlweise auch Promotoren zur Dotierung des Katalysators enthalten. In diesem Zusammenhang wird auf vorstehende allgemeine AusfuJirungen verwiesen.The impregnation medium can optionally also contain promoters for doping the catalyst. In this context, reference is made to the general statements above.
Ein im Tr-inkmedium enthaltenes Lösungs- und/oder Suspensionsmittel wird so gewählt, daß die aufzubringenden Aktivkomponenten, Aktivmetalle, Promotoren oder ihre Vorläufer darin und/oder damit keine unerwünschten Reaktionen zeigen.A solvent and / or suspending agent contained in the ink medium is selected so that the active components, active metals, promoters or their precursors to be applied therein and / or thus do not show any undesirable reactions.
Als Lösungs- und/oder Suspensionsmittel können die bekannten und technisch gängigen Lösungsmittel verwendet werden, beispielsweise aromatische oder aliphatische Kohlenwasserstoffe wie Benzol, Toluol, Xylol, Cumol, Pentan,The known and commercially available solvents can be used as solvents and / or suspending agents, for example aromatic or aliphatic hydrocarbons such as benzene, toluene, xylene, cumene, pentane,
Hexan, Heptan, Kohlenwasserstoffschnitte wie Benzin, Ligroin, Weißöl,Hexane, heptane, hydrocarbon cuts such as gasoline, ligroin, white oil,
Alkohole, Diole, Polyole wie Methanol, Ethanol, die beiden Propanolisomeren, die vier Butanolisomeren, Glykol, Glycerin, Ether wie Diethylether, Di-n- butylether, Methyl-tert. -butylether, Ethyl-tert. -butylether, Methyl-tert.-amylether,Alcohols, diols, polyols such as methanol, ethanol, the two propanol isomers, the four butanol isomers, glycol, glycerin, ethers such as diethyl ether, di-n-butyl ether, methyl tert. -butyl ether, ethyl tert. butyl ether, methyl tert-amyl ether,
Ethyl-tert.-amylether, Diphenylether, Ethylenglykoldimethy lether,Ethyl tert-amyl ether, diphenyl ether, ethylene glycol dimethyl ether,
Diethylenglykoldimethylether, Triethylenglykoldimethylether, oder Wasser. Die verwendeten organischen Lösungs- oder Suspensionsmittel können auch substituiert sein, beispielsweise mit Halogenen, wie Chlorbenzol, oder mit Nitrogruppen, wie Nitrobenzol. Die Lösungs- oder Suspensionsmittel werden einzeln oder im Gemisch verwendet.Diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, or water. The organic solvents or suspending agents used can also be substituted, for example with halogens, such as chlorobenzene, or with nitro groups, such as nitrobenzene. The solvents or suspending agents are used individually or in a mixture.
Das Trän-αnedium kann darüber hinaus, falls nötig, Hilfsstoffe enthalten.The tear medium can also contain auxiliary substances if necessary.
Beispielsweise enthält das Tränkmedium sauer oder basisch reagierende Verbindungen oder Puffer, wenn dies zur Stabilisierung oder Löslichkeit mindestens einer ihrer Aktivkomponenten oder deren Vorläufer erforderlich oder vorteilhaft ist.For example, the impregnation medium contains acidic or basic compounds or buffers, if this is for stabilization or solubility at least one of its active components or their precursors is necessary or advantageous.
Bevorzugt werden lösliche Salz der Aktivkomponenten in einem Lösungsmittel vollständig gelöst. Vorteilhafterweise wird eine wäßrige Lösung von Aktivkomponenten verwendet.Soluble salts of the active components are preferably completely dissolved in a solvent. An aqueous solution of active components is advantageously used.
Wenn die Aktivmasse aus Metallen besteht, wird in besonders bevorzugter Weise entweder eine wäßrige, salpetersaure Lösung der Nitrate der Metalle oder eine wäßrige, ammoniakalische Lösung von Aminkomplexen der Metalle verwendet. Wenn die Aktivkomponenten aus amorphen Metalloxiden bestehen, wird in bevorzugter Weise ein wäßriges Sol des Oxids, das wahlweise stabilisiert ist, verwendet.If the active composition consists of metals, either an aqueous, nitric acid solution of the nitrates of the metals or an aqueous, ammoniacal solution of amine complexes of the metals is used in a particularly preferred manner. If the active components consist of amorphous metal oxides, an aqueous sol of the oxide, which is optionally stabilized, is preferably used.
Die Oberflächenspannung des Tränkmediums kann durch geeignete oberflächenaktive Stoffe wie anionische oder nichtanionische Tenside eingestellt werden. Der getränkte Träger wird im Regelfall nach der Tränkung bei Temperaturen von 100 bis etwa 120 °C getrocknet und wahlweise bei Temperaturen von 120 bis 650 °C, vorzugsweise von 120 bis 400 °C calciniert.The surface tension of the impregnation medium can be adjusted using suitable surface-active substances such as anionic or non-anionic surfactants. The impregnated carrier is generally dried after the impregnation at temperatures from 100 to about 120 ° C. and optionally calcined at temperatures from 120 to 650 ° C., preferably from 120 to 400 ° C.
Ein im wesentlichen flächig stnikturierter Träger kann nach der thermischen Behandlung zu einem dem Einsatzzweck entsprechend geformten räumlichen Gebilde verformt werden. Die Verformung kann beispielsweise durch Arbeitsschritte wie Zuschneiden, Wellen der Bahnen, Anordnen oder Fixieren der gewellten Bahnen in Form eines Monolithen mit parallelen oder kreuzweisen Kanälen erfolgen. Die Verformung zum Monolithen wird wahlweise vor der Tränkung, der Trocknung, der thermischen Behandlung oder der chemischen Behandlung durchgeführt. Weitere Details bezüglich Katalysator 1 und seiner Herstellung sind der DE-A 198 27 385J zu entnehmen, deren diesbezüglicher Inhalt durch Bezugnahme vollständig in die vorliegende Anmeldung einbezogen wird.An essentially flat-structured support can be deformed after the thermal treatment into a spatial structure shaped according to the intended use. The deformation can take place, for example, by working steps such as cutting, corrugating the webs, arranging or fixing the corrugated webs in the form of a monolith with parallel or crosswise channels. The deformation to the monolith is optionally carried out before impregnation, drying, thermal treatment or chemical treatment. Further details regarding catalyst 1 and its production can be found in DE-A 198 27 385J, the content of which in this regard is fully incorporated into the present application by reference.
Katalysator 2Catalyst 2
Der strukturierte Träger oder Monolith, der für Katalysator 2 verwendet wird, wird vorzugsweise vorbehandelt, beispielsweise durch Tempern an der Luft und anschließendes Abkühlen. Nachfolgend wird der Träger bevorzugt mit mindestens einem Aktivmetall im Vakuum beschichtet. Anschließend kann, wenn es sich um einen im wesentlichen flächig ausgebildeten stnikturierten Träger handelt, dieser zu einem monolithischen Katalysatorelement verarbeitet werden.The structured support or monolith that is used for catalyst 2 is preferably pretreated, for example by air tempering and subsequent cooling. The carrier is then preferably coated with at least one active metal in vacuo. Subsequently, if it is an essentially flat shaped support, it can be processed into a monolithic catalyst element.
Vorzugsweise werden neben dem oder den Aktivmetallen im Vakuum auch Promotoren zur Dotierung des Katalysators auf das Trägermaterial aufgebracht. Bezüglich möglicher Promotoren wird auf die vorstehenden allgemeinen Ausfuhrungen verwiesen.In addition to the active metal or metals, promoters for doping the catalyst are preferably also applied to the support material in vacuo. With regard to possible promoters, reference is made to the general statements above.
Das Trägermaterial besteht vorzugsweise aus Metall, besonders bevorzugt aus Edelstahl, weiter bevorzugt Edelstahle der hierin weiter vorne genannten Nummern. Die Vorbehandlung des Trägers erfolgt bevorzugt durch Tempern des Metallträgers bei Temperaturen von 600 bis 1100 °C, vorzugsweise bei 800 bis 1000 °C, 1 bis 20, vorzugsweise 1 bis 10 Stunden an der Luft. Anschließend wird der Träger abgekühlt.The carrier material preferably consists of metal, particularly preferably stainless steel, more preferably stainless steel of the numbers mentioned above. The support is pretreated preferably by tempering the metal support at temperatures of 600 to 1100 ° C, preferably at 800 to 1000 ° C, 1 to 20, preferably 1 to 10 hours in air. The carrier is then cooled.
Die aktiven Komponenten (Aktivmetalle und Promotoren) können durch Aufdampfen und Aufsputtern auf den Träger aufgebracht werden. Dazu wird der Träger im Vakuum bei einem Druck von 10"3 bis 10"8 mbar, vorzugsweise mittels einer Verd-tmpfiingseinrichtung, z.B. Elekfronensfrahlverdampfung oder Sputtereinrichtung mit den Aktivkomponenten gleichzeitig oder nacheinander in diskontinuierlicher oder kontinuierlicher Fahrweise beschichtet. Zur Formierung des Katalysators kann eine Temperung unter Inertgas oder Luft nachgeschaltet werden.The active components (active metals and promoters) can be applied to the support by vapor deposition and sputtering. For this purpose, the carrier is vacuumed at a pressure of 10 "3 to 10 " 8 mbar, preferably by means of an evaporation device, for example electron beam vaporization or sputtering device, with the active components simultaneously or in succession discontinuous or continuous driving style coated. Tempering under inert gas or air can be followed to form the catalyst.
Das Aufbringen der Aktivkomponenten kann in mehreren Schichten erfolgen. Der so erhaltene Katalysator kann zu einem Monolithen weiterverarbeitet werden. Diesbezüglich wird u.a. auf die Ausführungen zu Katalysator 1 verwiesen. Vorzugsweise wird der Katalysator verarbeitet, indem das Katalysatorgewebe bzw. die Katalysatorfolie mittels einer Zahnradwalze verformt wird (gewellt, gesickt) und glattes und gewelltes Gewebe zu einem zylinderformigen Monolithen mit gleichartigen senkrechten Kanälen zusammengerollt wird.The active components can be applied in several layers. The catalyst obtained in this way can be processed further to form a monolith. In this regard, i.a. refer to the comments on catalyst 1. The catalyst is preferably processed by deforming (corrugated, corrugated) the catalyst fabric or the catalyst film using a gear roller and rolling smooth and corrugated fabric into a cylindrical monolith with similar vertical channels.
Weitere Details bezüglich Katalysator 2 und seiner Herstellung sind der EP 0 564 830 zu entnehmen, deren diesbezüglicher Inhalt durch Bezugnahme vollständig in die vorliegende Anmeldung einbezogen wird.Further details regarding catalyst 2 and its production can be found in EP 0 564 830, the content of which in this regard is fully incorporated into the present application by reference.
Verfal-jensführungVerfal-jens leadership
Innerhalb des erfindungsgemäßen Verfahrens können prinzipiell alle ein- oder mehrkernigen Aromaten, die entweder unsubstituiert sind oder eine oder mehrereIn principle, all mono- or polynuclear aromatics which are either unsubstituted or one or more can be used in the process according to the invention
Alkylgruppen aufweisen, einzeln oder als Gemische aus zwei oder mehr davon, vorzugsweise einzeln eingesetzt werden. Die Länge der Alkylgruppe unterliegt dabei auch keinerlei besonderen Besclir-inkungen, im allgemeinen handelt es sich jedoch um Ci- bis C30-, vorzugsweise - bis C18-, insbesondere C bis C - Alkylgruppen. Im einzelnen sind als Edukte für das vorliegende Verfahren insbesondere die folgenden Aromaten zu nennen: Benzol, Toluol, Xylole, Cumol,Have alkyl groups, used individually or as mixtures of two or more thereof, preferably individually. The length of the alkyl group is also not subject to any particular restrictions, but in general it is Ci to C 30 , preferably C to C 18 , in particular C to C, alkyl groups. In particular, the following aromatics are to be mentioned as educts for the present process: benzene, toluene, xylenes, cumene,
Diphenylmethan, Tri-, Tetra-, Penta- und Hexabenzole, Triphenylmethan, alkylsubstituierte Naphthaline, Naphthalin, alkylsubstituierte Anthracene,Diphenylmethane, tri-, tetra-, penta- and hexabenzenes, triphenylmethane, alkyl-substituted naphthalenes, naphthalene, alkyl-substituted anthracenes,
Anthracen, alkylsubstituierte Tetraline und Tetralin. Vorzugsweise wird im Rahmen der vorliegenden Verfahren Benzol zu Cyclohexan umgesetzt. Im Rahmen des erfindungsgemäßen Verfahrens wird die Hydrierung bevorzugt bei einer Temperatur von ungefähr 50 bis 200 °C, besonders bevorzugt ungefähr 70 bis 160 °C, insbesondere zwischen 80 bis 100 °C durchgeführt. Dabei können die niedrigsten Temperaturen vor allem bei Verwendung von Ruthenium als Aktivmetall gefahren werden. Das erfindungsgemäße Hydrierverfahren wird bevorzugt bei Drücken von kleiner als 50 bar, beispielsweise 1 bis 49 bar besonders bevorzugt bei Drücken von 2 bis 10 bar und insbesondere bei Drücken zwischen 5 und 10 bar durchgeführt. Durch die bei dem erfindungsgemäßen Verfahren verwendbaren niedrigen Drücke und Temperaturen unterbleibt die Bildung von unerwünschten Nebenprodukten, wie z.B. Methylcyclopentan oder anderen n-Paraffinen nahezu vollständig, so daß eine aufwendige Aufreinigung des produzierten Cycloaliphaten unnötig wird, was das Verfahren sehr wirtschaftlich gestaltet. Trotz niedriger Temperaturen und Drücke können die aromatischen Verbindungen in wirtschaftlicher Weise selektiv und mit hoher Raum-Zeit- Ausbeute zu den entsprechenden Cycloaliphaten hydriert werden.Anthracene, alkyl substituted tetralins and tetralin. Benzene is preferably converted to cyclohexane in the context of the present processes. In the process according to the invention, the hydrogenation is preferably carried out at a temperature of approximately 50 to 200 ° C., particularly preferably approximately 70 to 160 ° C., in particular between 80 to 100 ° C. The lowest temperatures can be reached, especially when using ruthenium as the active metal. The hydrogenation process according to the invention is preferably carried out at pressures of less than 50 bar, for example 1 to 49 bar, particularly preferably at pressures of 2 to 10 bar and in particular at pressures between 5 and 10 bar. Due to the low pressures and temperatures that can be used in the process according to the invention, the formation of undesired by-products, such as, for example, methylcyclopentane or other n-paraffins, is almost completely eliminated, so that complex purification of the cycloaliphatene produced is unnecessary, which makes the process very economical. Despite low temperatures and pressures, the aromatic compounds can be hydrogenated economically selectively and with a high space-time yield to the corresponding cycloaliphatics.
Das erfindungsgemäße Verfahren kann sowohl in der Gasphase als auch in der Flüssigphase durchgeführt werden, wobei letzteres bevorzugt ist.The process according to the invention can be carried out both in the gas phase and in the liquid phase, the latter being preferred.
Das erfindungsgemäße Verfahren kann kontinuierlich oder diskontinuierlich durchgeführt werden, wobei die kontinuierliche Verfal-trens- nrung bevorzugt ist.The process according to the invention can be carried out continuously or batchwise, with the continuous process being preferred.
Das Verfahren wird vorzugsweise in einem rohrformigen Reaktor, beispielsweise einer Kolonne, mit Produlrtirückf-ilirung und Kreisgas durchgeführt. Eine kontinuierliche Sumpffahrweise ist weiter bevorzugt.The process is preferably carried out in a tubular reactor, for example a column, with product return and cycle gas. A continuous swamp procedure is further preferred.
Vorzugsweise wird die erfindungsgemäße Hydrierung der Aromaten derart durchgeführt, daß das Wasserstoff enthaltende Gas im Gegenstrom zu dem oder den flüssigen Aromaten in einer Kolonne geführt wird, die mit einem der vorste- hend beschriebenen Katalysatoren bestückt ist. Hierbei kann die flüssige Phase von oben nach unten durch die Kolonne gefuhrt werden und die gasformige Phase von unten nach oben. Im Rahmen der vorliegenden Erfindung wird die Hydrierung vorzugsweise kontinuierlich, insbesondere im Gegenstrom, durchgeführt. Vorzugsweise wird die Hydrierung zwei- oder mehrstufig durchgeführt. Der in dieser Anmeldung beschriebene Katalysator wird hierbei in mindestens einer Stufe eingesetzt. In einer besonders bevorzugten Ausf h-ungsform des erfindungsgemäßen Verfahrens wird die Hydrierung kontinuierlich in einem oder mehreren hintereinander geschalteten Reaktoren durchgeführt.The hydrogenation of the aromatics according to the invention is preferably carried out in such a way that the hydrogen-containing gas is conducted in countercurrent to the liquid aromatics or in a column which is equipped with one of the catalysts described above. The liquid phase can be passed through the column from top to bottom and the gaseous phase from the bottom up. In the context of the present invention, the hydrogenation is preferably carried out continuously, in particular in countercurrent. The hydrogenation is preferably carried out in two or more stages. The catalyst described in this application is used in at least one stage. In a particularly preferred embodiment of the process according to the invention, the hydrogenation is carried out continuously in one or more reactors connected in series.
Bei kontinuierlicher Prozeßfuhrung beträgt die Menge der zur Hydrierung vorgesehenen Verbindung vorzugsweise ungefähr 0,05 bis ungefähr 3 kg/1 Katalysator pro Stunde, weiter bevorzugt ungefähr 0,2 bis ungefähr 2 kg/1 Katalysator pro Stunde.In the case of continuous process control, the amount of the compound provided for the hydrogenation is preferably about 0.05 to about 3 kg / 1 catalyst per hour, more preferably about 0.2 to about 2 kg / 1 catalyst per hour.
Die Hydrierung kann bei geringer Querschnittsbelastung in Rieselfahrweise, vorzugsweise in Sumpffahrweise mit hoher Querschnittsbelastung durchgeführt werden. Die Querschnittsbelastungen für die flüssige und gasförmige Phase liegen vorzugsweise bei 150 bis 600 m3/(m2'h) bezogen auf den freien Re-iktorquerschnitt, besonders bevorzugt bei 200 bis 300 m3/(m2h). Der holdup des Gases beträgt vorzugsweise 0,5, wobei der holdup des Gases hierbei definiert ist als der Quotient aus dem Volumen an Gas im Zähler und der Summe aus Volumen an Gas und Volumen an Flüssigkeit im Nenner. Der Druckverlust beträgt vorzugsweise 0,1 bis 1,0, besonders bevorzugt 0,15 bis 0,3 bar, jeweils pro m Kolonnenhöhe.The hydrogenation can be carried out with a low cross-sectional load in trickle mode, preferably in a bottoms mode with a high cross-sectional load. The cross-sectional loads for the liquid and gaseous phases are preferably 150 to 600 m 3 / (m 2 'h), based on the free area of the rector, particularly preferably 200 to 300 m 3 / (m 2 h). The holdup of the gas is preferably 0.5, the holdup of the gas being defined here as the quotient of the volume of gas in the numerator and the sum of the volume of gas and the volume of liquid in the denominator. The pressure loss is preferably 0.1 to 1.0, particularly preferably 0.15 to 0.3 bar, in each case per m of column height.
Als Hydriergase können beliebige Gase verwendet werden, die freien Wasserstoff enthalten und keine schädlichen Mengen an Katalysatorgiften, wie beispielsweise CO, aufweisen. Beispielsweise können Reformerabgase verwendet werden. Vorzugsweise wird reiner Wasserstoff als Hydriergas verwendet. Die erfindungsgemäße Hydrierung kann in Ab- oder Anwesenheit eines Lösungsoder Verdünnungsmittels durchgeführt werden, d.h. es ist nicht erforderlich, die Hydrierung in Lösung durchzuführen.Any gases which contain free hydrogen and have no harmful amounts of catalyst poisons, such as CO, can be used as hydrogenation gases. For example, reformer exhaust gases can be used. Pure hydrogen is preferably used as the hydrogenation gas. The hydrogenation according to the invention can be carried out in the absence or presence of a solvent or diluent, ie it is not necessary to carry out the hydrogenation in solution.
Als Lösungs- oder Verdünnungsmittel kann jedes geeignete Lösungs- oder Verdünnungsmittel eingesetzt werden. Die Auswahl ist dabei nicht kritisch, solange das eingesetzte Lösungs- oder Verdünnungsmittel in der Lage ist, mit dem zu hydrierenden Aromaten eine homogene Lösung zu bilden.Any suitable solvent or diluent can be used as the solvent or diluent. The selection is not critical as long as the solvent or diluent used is able to form a homogeneous solution with the aromatics to be hydrogenated.
Die Menge des eingesetzten Lösungs- oder Verdünnungsmittels ist nicht in besonderer Weise beschränkt und kann je nach Bedarf frei gewählt werden, wobei jedoch solche Mengen bevorzugt sind, die zu einer 10 bis 70 gew.-%igen Lösung des zur Hydrierung vorgesehenen Aromaten fuhren.The amount of solvent or diluent used is not particularly limited and can be freely selected as required, but such amounts are preferred which lead to a 10 to 70% strength by weight solution of the aromatic intended for hydrogenation.
Bei Verwendung eines Lösungsmittels wird im Rahmen des erfindungsgemäßen Verfahrens das bei der Hydrierung gebildete Produkt, also der oder die jeweiligen Cycloaliphaten als bevorzugtes Lösungsmittel eingesetzt, gegebenenfalls neben anderen Lösungs- oder Verdünnungsmitteln. In diesem Fall kann ein Teil des im Verfahren gebildeten Produkts dem noch zu hydrierenden Aromaten beigemischt werden. Bezogen auf das Gewicht des zur Hydrierung vorgesehenen Aromaten wird vorzugsweise die 1- bis 30-fache, besonders bevorzugt die 5- bis 20-fache, insbesondere die 5- bis 10-fache Menge an Produkt als Lösungs- oder Verdünnungsmittel zugemischt.If a solvent is used, the product formed in the hydrogenation, that is to say the cycloaliphate (s) in question, is used as the preferred solvent in the process according to the invention, optionally in addition to other solvents or diluents. In this case, part of the product formed in the process can be mixed with the aromatics still to be hydrogenated. Based on the weight of the aromatic intended for hydrogenation, preferably 1 to 30 times, particularly preferably 5 to 20 times, in particular 5 to 10 times, the amount of product as a solvent or diluent is added.
Im Rahmen der vorliegenden Erfindung wird vorzugsweise Benzol bei einer Temperatur von 80 bis 100 °C umgesetzt, wobei als Aktivmetall Ruthenium allein verwendet wird. Eine besonders bevorzugte Ausfuhrungsform der vorliegenden Erfindung, welche sich als besonders vorteilhaft herausstellte, sieht vor, die Hydrierung von Benzol zu Cyclohexan in Flüssigphase in Sumpffahrweise mit Produl-friicl ulirung und Kreisgas mit einer Querschnittsbelastung von 200 bis 300 m3/(m2h) bei Temperaturen von 50°C bis 160°C und Drücken von 1 bis 100 bar an einem reinen Ruthenium-Monolithkatalysator durchzuführen. Zu den bevorzugten Druck- und Temperaturbereichen wird auf vorstehende Ausfiihrungen verwiesen.In the context of the present invention, benzene is preferably reacted at a temperature of 80 to 100 ° C., ruthenium alone being used as the active metal. A particularly preferred embodiment of the present invention, which has been found to be particularly advantageous, provides for the hydrogenation of benzene to cyclohexane in the liquid phase in the bottoms mode with Produl-friicl ulirung and cycle gas with a cross-sectional load of 200 to 300 m 3 / (m 2 h) at temperatures from 50 ° C to 160 ° C and pressures from 1 to 100 bar to perform on a pure ruthenium monolith catalyst. For the preferred pressure and temperature ranges, reference is made to the above explanations.
Das vorliegende, erfindungsgemäße Verfahren weist zahlreiche Vorteile gegenüber den Verfahren des Standes der Technik auf. Die Aromaten können bei deutlich niedrigeren Drücken und Temperaturen als im Stand der Technik beschrieben, selektiv und mit hoher Raum-Zeit- Ausbeute zu den entsprechenden Cycloaliphaten hydriert werden. Selbst bei niedrigen Drücken und Temperaturen weisen die Katalysatoren eine hohe Aktivität auf. Die Cycloaliphaten werden in hochreiner Form erhalten, was aufwendige Abtreimverfahren unnötig macht. Die Bildung von beispielsweise unerwünschtem Methylcyclopentan bei der Hydrierung von Benzol zu Cyclohexan oder anderen n-Paraffinen unterbleibt nahezu vollständig, so daß eine Aufreinigung der produzierten Cycloaliphaten unnötig wird. Es können selbst bei geringen Drücken Cycloaliphaten mit hoher Raum-Zeit-Ausbeute erhalten werden. Die Hydrierung kann des weiteren ohne den Zusatz von Hilfschemikalien mit ausgezeichneter Selektivität durchgeführt werden.The present method according to the invention has numerous advantages over the methods of the prior art. The aromatics can be hydrogenated at significantly lower pressures and temperatures than described in the prior art, selectively and with a high space-time yield to the corresponding cycloaliphatics. The catalysts are very active even at low pressures and temperatures. The cycloaliphatics are obtained in highly pure form, which makes complex stripping processes unnecessary. The formation of, for example, undesired methylcyclopentane in the hydrogenation of benzene to cyclohexane or other n-paraffins is almost completely avoided, so that purification of the cycloaliphatics produced is unnecessary. Cycloaliphatics can be obtained with a high space-time yield even at low pressures. Furthermore, the hydrogenation can be carried out with excellent selectivity without the addition of auxiliary chemicals.
Die Erfindung soll nun anhand der folgenden Beispiele auch unter Bezugnahme auf die beiliegenden Zeichnung näher erläutert werden. Die Zeichnung zeigt inThe invention will now be explained in more detail using the following examples with reference to the accompanying drawings. The drawing shows in
Fig. 1 eine schematische Zeichnung einer bevorzugten Verfahrensführung gemäß der vorliegenden Erfindung.Fig. 1 is a schematic drawing of a preferred method according to the present invention.
Gemäß Fig. 1 kann das erfindungsgemäße Verfahren in einem rohrformigen Reaktor 1, beispielsweise einer Kolonne, mit Produktrücldührung und Kreisgas durchgeführt werden. Fig. 1 zeigt eine kontinuierliche Sumpffahrweise unter Verwendung einer gepackten Blasensäule. In dem Reaktor 1 befindet sich ein monolithischer Katalysator 2 als Festbett. Feed wird über den Zulauf 3 zusammen mit Kreislaufflüssigkeit über die Leitung 4 als Treibstrahl in eine Mischdüse 5 gefahren, in der Frischwasserstoff über die Leitung 6 und Kreisgas über die Leitung 7 zugemischt werden. Am oberen Ende des Reaktors 1 tritt das zweiphasige Gas/Flüssigkeitsgemisch 8 aus, das in einem Gasflüssigkeitabscheider 9 getrennt wird. Aus dem Gasstrom 10 wird ein Teilgasstrom 11 ausgeschleust. Der Kreisgasstrom 7 wird über einen Verdichter 12 in die Mischdüse 5 zurückgeführt. Dieser Verdichter 12 kann gegebenenfalls entfallen, wenn die Kreisflüssigkeit 4, die über die Pumpe 13 geführt wird, mit ausreichend hohem Druck bereitgestellt werden kann und die Mischdüse 5 als Treibstrahl verdicher ausgeführt wird. Aus der Kreisflüssigkeit 4 wird ein Teilstrom 14 als Produktstrom entnommen. Das Volumenverhältnis von Kreislaufflüssigkeit 5 zum Produktstrom 14 beträgt 90:1 bis 500:1, bevorzugt 150.J bis 250.J. Der Wärmeaustausch wird über den Wärmetauscher 15 geregelt. Die Dimensionierung des Rohrreaktors 1 ist bezogen auf den Durchmesser so ausgeführt, daß sich für die Flüssigkeit eine Leerrohrgeschwindigkeit von 100 bis 1000 m/h ergibt.1, the process according to the invention can be carried out in a tubular reactor 1, for example a column, with product stirring and cycle gas. Fig. 1 shows a continuous swamp mode of operation using a packed bubble column. In the reactor 1 there is a monolithic catalyst 2 as a fixed bed. Feed is put together via feed 3 with circulating liquid via line 4 as a propellant jet into a mixing nozzle 5 in which fresh hydrogen via line 6 and circulating gas via line 7 are mixed. The two-phase gas / liquid mixture 8 emerges at the upper end of the reactor 1 and is separated in a gas liquid separator 9. A partial gas stream 11 is discharged from the gas stream 10. The circulating gas stream 7 is fed back into the mixing nozzle 5 via a compressor 12. This compressor 12 can optionally be omitted if the circulating liquid 4, which is fed via the pump 13, can be provided at a sufficiently high pressure and the mixing nozzle 5 is designed as a propellant jet. A partial stream 14 is taken from the circulating liquid 4 as a product stream. The volume ratio of circulating liquid 5 to product stream 14 is 90: 1 to 500: 1, preferably 150.J to 250.J. The heat exchange is regulated via the heat exchanger 15. The dimensioning of the tube reactor 1 is based on the diameter so that there is an empty tube speed of 100 to 1000 m / h for the liquid.
Herstellungsbeispiele für KatalysatorenProduction examples for catalysts
Herstellungsbeispiel 1Production Example 1
Dieser Monolith-Katalysator wurde aus einem mit 0,455 g Ru/m2 beschichteten V2A-Gewebeband, Werkstoff-Nr. 1.4301, welches zuvor 3 Stunden bei 800 °C an der Luft geglüht worden war, hergestellt. Dieses Gewebeband war durch Tränken mit einer Rutheniummetall-Salzlösung beschichtet worden. Anschließend wurde das beschichtete Gewebe 1 Stunde bei 200 °C getempert. Es wurden 51 cm des 20 cm breiten Katalysatorgewebebandes mit einer Zahnradwalze, Modul 1,0 mm, gewellt und mit einem 47 cm langen glatten Katalysatorgewebeband aufgerollt, so daß ein Monolith mit senkrechten Kanälen und einem Durchmesser von 2,7 cm gebildet wurde (Katalysator A). Herstellungsbeispiel 2This monolith catalyst was made from a V2A fabric tape coated with 0.455 g Ru / m 2 , material no. 1.4301, which had previously been annealed in air at 800 ° C for 3 hours. This cloth tape was coated with a ruthenium metal salt solution by soaking. The coated fabric was then heated at 200 ° C. for 1 hour. 51 cm of the 20 cm wide catalyst fabric belt were corrugated with a gear roller, module 1.0 mm, and rolled up with a 47 cm long smooth catalyst fabric tape, so that a monolith with vertical channels and a diameter of 2.7 cm was formed (catalyst A ). Production Example 2
Dieser Monolith-Katalysator wurde aus einem mit 0,432 g Ru/m beschichteten V2A-Gewebeband, Werkstoff-Nr. 1.4301 hergestellt. Das Gewebeband wurde 3 Stunden bei 800 °C an der Luft geglüht und danach mit 2000 Ä Silicium bedampft. Anschließend wurde das mit Silicium bedampfte Gewebeband bei 650 °C getempert. Dieses Gewebeband wurde durch Tränken mit einer Ruthe- mummetall-Salzlösung nachfolgend mit insgesamt 0,432 g Ru/m2 beschichtet. Anschließend wurde das beschichtete Gewebeband 1 Stunde bei 200 °C getempert. Es wurden 51 cm des 20 cm breiten Katalysatorgewebebandes mit einer Zahnradwalze, Modul 1,0 mm, gewellt und mit einem 47 cm langen glatten Katalysatorgewebeband aufgerollt, so daß ein Monolith mit senkrechten Kanälen und einem Durchmesser von 2,7 cm gebildet wurde (Katalysator B).This monolith catalyst was made from a V2A fabric tape coated with 0.432 g Ru / m, material no. 1.4301 manufactured. The fabric band was air-annealed for 3 hours at 800 ° C. and then steamed with 2000 Å silicon. The siliconized vapor-coated tape was then tempered at 650 ° C. This fabric tape was subsequently coated with a total of 0.432 g Ru / m 2 by impregnation with a ruthenium metal salt solution. The coated fabric tape was then heated at 200 ° C. for 1 hour. 51 cm of the 20 cm wide catalyst fabric tape were corrugated with a gear roller, module 1.0 mm, and rolled up with a 47 cm long smooth catalyst fabric tape, so that a monolith with vertical channels and a diameter of 2.7 cm was formed (catalyst B ).
Verfahrensbeispieleprocess examples
Verfahrensbeispiel 1Process example 1
In einem beheizbaren Doppelmantel-Rohrreaktor wurden drei Ruthenium-Monolith-Katalysatoren A mit einem Gesamtvolumen von 343 cm3 eingebaut. Danach wurde die Apparatur mit N2 gespült und dann N2 durch H2 ersetzt und der Katalysator 1 Stunde bei 80 °C reduziert. Anschließend wurde abgekühlt und der Kreislauf der Anlage mit Benzol beschickt. Hydriert wurde bei 100 °C, 8 bar sowie einer Querschnittsbelastung für Flüssigkeit und Gas von 200 m3/(m2 ' h) gemäß der in Fig. 1 gezeigten Verfahrensführung. Die GC-Analysen des Reaktionsprodukts zeigten bei einem quantitativen Umsatz an Benzol eine Ausbeute von 99,99 %. Die Raum-Zeit-Ausbeute betrug 0,928 kg/(l ' h). Methylcyclopentan konnte nicht nachgewiesen werden.Three ruthenium monolith catalysts A with a total volume of 343 cm 3 were installed in a heatable double-jacket tubular reactor. The apparatus was then flushed with N 2 and then N 2 was replaced by H2 and the catalyst was reduced at 80 ° C. for 1 hour. It was then cooled and the system circuit was charged with benzene. Hydrogenation was carried out at 100 ° C., 8 bar and a cross-sectional load for liquid and gas of 200 m 3 / (m 2 'h) in accordance with the procedure shown in FIG. 1. The GC analyzes of the reaction product showed a yield of 99.99% with a quantitative conversion of benzene. The space-time yield was 0.928 kg / (l'h). Methylcyclopentane could not be detected.
Verfahrensbeispiel 2Process example 2
In einem beheizbaren Doppelmantel-Rohrreaktor wurden drei Ruthenium-Monolith-Katalysatoren B mit einem Gesamtvolumen von 343 cm3 eingebaut. Danach wurde die Apparatur mit N_ gespült und der Katalysator nicht vorreduziert. Anschließend wurde der Kreislauf der Anlage mit Benzol beschickt und Wasserstoff aufgepreßt. Hydriert wurde bei 100 °C, 8 bar sowie einer Querschnittsbelastung für Flüssigkeit und Gas von 200 m3/(m2 ' h) gemäß der in Fig. 1 gezeigten Verfahrensfuhrung.Three ruthenium monolith catalysts B with a total volume of 343 cm 3 were installed in a heatable double-jacket tubular reactor. The apparatus was then rinsed with N_ and the catalyst was not reduced beforehand. The system was then charged with benzene and hydrogen was injected. Hydrogenation was carried out at 100 ° C., 8 bar and a cross-sectional load for liquid and gas of 200 m 3 / (m 2 'h) in accordance with the procedure shown in FIG. 1.
Die GC-Analysen des Reaktionsprodukts zeigten bei einem quantitativen Umsatz an Benzol eine Ausbeute von 99,99 %. Die Raum-Zeit-Ausbeute betrug 0,802 kg/(l ' h). Methylcyclopentan konnte nicht nachgewiesen werden. The GC analyzes of the reaction product showed a yield of 99.99% with a quantitative conversion of benzene. The space-time yield was 0.802 kg / (l 'h). Methylcyclopentane could not be detected.

Claims

Patentansprüche claims
1. Verfahren zur Hydrierung mindestens eines unsubstituierten oder mit mindestens einer Alkylgruppe substituierten ein- oder mehrkernigen Aromaten durch Inkontaktbringen des mindestens einen Aromaten mit einem Wasserstoff enthaltenden Gas in Gegenwart eines Katalysators, der als Aktivmetall mindestens ein Metall der VIII. Nebengruppe des Periodensystems, aufgebracht auf einen strukturierten oder monolithischen Träger, aufweist.1. Process for the hydrogenation of at least one unsubstituted or mononuclear or polynuclear aromatic substituted with at least one alkyl group by contacting the at least one aromatic with a hydrogen-containing gas in the presence of a catalyst which, as the active metal, applied at least one metal from subgroup VIII of the periodic table has a structured or monolithic support.
2. Verfahren nach Anspruch 1, bei welchem die Hydrierung bei Drücken von kleiner als 50 bar, vorzugsweise bei Drücken zwischen 5 und 10 bar, durchgeführt wird.2. The method according to claim 1, wherein the hydrogenation is carried out at pressures of less than 50 bar, preferably at pressures between 5 and 10 bar.
3. Verfahren nach Anspruch 1 oder 2, bei welchem der strukturierte Träger ausgewählt wird unter Geweben, Gestricken, Gewirken, Filzen, Folien,3. The method according to claim 1 or 2, in which the structured carrier is selected from woven, knitted, knitted, felted, foils,
Blechen oder Streckmetallen.Sheets or expanded metals.
4. Verfahren nach einem der vorhergehenden Ansprüche, bei welchem der Träger aus metallischen, anorganischen, organischen oder synthetischen Materialien oder Kombinationen solcher Materialien besteht.4. The method according to any one of the preceding claims, wherein the carrier consists of metallic, inorganic, organic or synthetic materials or combinations of such materials.
5. Verfahren nach einem der vorhergehenden Ansprüche, bei welchem als Aktivmetall Ruthenium allein verwendet wird.5. The method according to any one of the preceding claims, in which ruthenium is used alone as the active metal.
6. Verfahren nach einem der vorhergehenden Ansprüche, bei welchem ein Trägerkatalysator verwendet wird, der durch Tempern des strukturierten Trägers oder Monolithen an der Luft und Abkühlen, anschließendem Tränken mit einer das mindestens eine Aktivmetall enthaltenden Lösung und gegebenenfalls Verarbeiten zu einem monolithischen Katalysatorelement, erhältlich ist.6. The method according to any one of the preceding claims, in which a supported catalyst is used, which by annealing the structured Carrier or monolith in air and cooling, subsequent impregnation with a solution containing the at least one active metal and optionally processing to a monolithic catalyst element, is available.
7. Verfahren nach einem der Ansprüche 1 bis 5, bei welchem ein Trägerkatalysator verwendet wird, der durch Tempern des strukturierten Trägers oder Monolithen an der Luft und Abkühlen, anschließendem Beschichten desselben mit dem mindestens einen Aktivmetall im Vakuum und gegebenenfalls Verarbeiten zu einem monolithischen7. The method according to any one of claims 1 to 5, in which a supported catalyst is used which by tempering the structured support or monolith in air and cooling, then coating the same with the at least one active metal in vacuo and optionally processing to a monolithic
Katalysatorelement, erhältlich ist.Catalyst element is available.
8. Verfahren nach einem der vorhergehenden Ansprüche, bei welchem Benzol zu Cyclohexan oder Anilin zu Cyclohexylamin hydriert wird.8. The method according to any one of the preceding claims, in which benzene is hydrogenated to cyclohexane or aniline to cyclohexylamine.
9. Verfahren nach einem der vorhergehenden Ansprüche, bei welchem die Hydrierung bei einer Temperatur von 70 bis 160 C durchgeführt wird.9. The method according to any one of the preceding claims, wherein the hydrogenation is carried out at a temperature of 70 to 160 C.
10. Verfahren nach einem der vorhergehenden Ansprüche, bei welchem Benzol bei einer Temperatur von 80 bis 100 C hydriert wird und als10. The method according to any one of the preceding claims, in which benzene is hydrogenated at a temperature of 80 to 100 C and as
Aktivmetall Ruthenium alleine verwendet wird.Active metal ruthenium is used alone.
11. Verfahren nach einem der vorhergehenden Ansprüche, bei welchem die Hydrierung kontinuierlich und im Gegenstrom, durchgeführt wird.11. The method according to any one of the preceding claims, wherein the hydrogenation is carried out continuously and in countercurrent.
12. Strukturierter mit einem Promotor beaufschlagter Katalysatorträger, wobei der Promotor ausgewählt wird aus Metallen der L, II., IV. Hauptgruppe des Periodensystems der Elemente, Metallen der I. bis IV. und VI. Nebengruppe des Periodensystems der Elemente und Schwefel, Selen und Kohlenstoff. 12. Structured catalyst carrier loaded with a promoter, the promoter being selected from metals of the L, II., IV. Main group of the Periodic Table of the Elements, metals of the I. to IV. And VI. Sub-group of the periodic table of elements and sulfur, selenium and carbon.
13. Strukturierter Träger nach Anspruch 12, wobei der Promotor ausgewählt wird aus der Gruppe bestehend aus: Si, Ti, Zr, Mg, Ca, C, Yt, La, Ac, Pr, W, sowie Kombinationen aus zwei oder mehr davon.13. Structured support according to claim 12, wherein the promoter is selected from the group consisting of: Si, Ti, Zr, Mg, Ca, C, Yt, La, Ac, Pr, W, and combinations of two or more thereof.
14. Stnikturierter Träger nach Anspruch 12 oder 13, wobei das Trägermaterial eine durch thermische, chemische oder thermische und chemische Behandlung aufgerauhte Oberfläche aufweist.14. Stnikturierter carrier according to claim 12 or 13, wherein the carrier material has a roughened by thermal, chemical or thermal and chemical treatment surface.
15. Katalysator, umfassend einen Träger nach einem der Ansprüche 12 bis 14 sowie darauf aufgebracht ein Aktivmetall der VIII. Nebengruppe des15. A catalyst comprising a support according to any one of claims 12 to 14 and applied thereto an active metal of subgroup VIII
Periodensystems. Periodic Table.
EP01986667A 2000-10-13 2001-10-09 Method for the hydrogenation of unsubstituted or alkyl substituted aromatics using a catalyst with a structured or monolithic support Withdrawn EP1330422A2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10050709A DE10050709A1 (en) 2000-10-13 2000-10-13 Structured catalyst support, useful for the hydrogenation of aromatic compounds, contains a promoter comprising a Group I, II or IV metal or Group I-IV or VI metal and sulfur, selenium and carbon
DE10050709 2000-10-13
PCT/EP2001/011649 WO2002030851A2 (en) 2000-10-13 2001-10-09 Method for the hydrogenation of unsubstituted or alkyl substituted aromatics

Publications (1)

Publication Number Publication Date
EP1330422A2 true EP1330422A2 (en) 2003-07-30

Family

ID=7659630

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01986667A Withdrawn EP1330422A2 (en) 2000-10-13 2001-10-09 Method for the hydrogenation of unsubstituted or alkyl substituted aromatics using a catalyst with a structured or monolithic support

Country Status (12)

Country Link
US (1) US20040024274A1 (en)
EP (1) EP1330422A2 (en)
JP (1) JP2004529068A (en)
KR (1) KR20030040533A (en)
CN (1) CN1469851A (en)
AU (2) AU2002218222A8 (en)
DE (1) DE10050709A1 (en)
IN (1) IN2003CH00534A (en)
MX (1) MXPA03002847A (en)
PL (1) PL366054A1 (en)
RU (1) RU2003113962A (en)
WO (1) WO2002030851A2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10128242A1 (en) 2001-06-11 2002-12-12 Basf Ag Hydrogenation of organic compounds e.g. aromatic amines or phenols, by using hydrogen in presence of catalyst comprising ruthenium on amorphous silicon dioxide based carrier
US6998507B1 (en) 2004-08-24 2006-02-14 Air Products And Chemicals, Inc. Hydrogenation of methylenedianiline
JP2006130375A (en) * 2004-11-02 2006-05-25 Bridgestone Corp Catalyst structure for storing and generating hydrogen and storage and generation method for hydrogen using it
DE102005001290A1 (en) * 2005-01-11 2006-07-20 Basf Ag Apparatus and method for removing carbon monoxide from a hydrogen-containing gas stream
RU2414300C1 (en) * 2009-08-04 2011-03-20 Инфра Текнолоджиз Лтд. Exothermic process catalyst support and catalyst based on said support
US20150181945A1 (en) 2013-12-31 2015-07-02 Martin Tremblay Electronic vaping device
JP6306370B2 (en) * 2014-02-25 2018-04-04 千代田化工建設株式会社 Aromatic compound hydrogenation system and hydrogenation method
CN106178579B (en) * 2016-09-08 2019-01-15 南京大学 Exhaust gas processing device and technique and hexamethylene process units
JP2019531184A (en) * 2016-09-23 2019-10-31 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Process for providing a catalytically active fixed bed for the hydrogenation of organic compounds
CN109651172B (en) * 2017-10-10 2021-11-30 中国石油化工股份有限公司 Method for preparing cyclohexylamine by aniline hydrogenation
CN109647456B (en) * 2017-10-10 2021-11-30 中国石油化工股份有限公司 Hydrogenation catalyst for synthesizing cyclohexylamine
CN109647455B (en) * 2017-10-10 2022-04-05 中国石油化工股份有限公司 Hydrogenation catalyst for producing cyclohexylamine from aniline
CN109651168B (en) * 2017-10-10 2021-11-30 中国石油化工股份有限公司 Method for synthesizing cyclohexylamine
CN109647451B (en) * 2017-10-10 2021-12-28 中国石油化工股份有限公司 Hydrogenation catalyst for preparing cyclohexylamine
CN109647450B (en) * 2017-10-10 2022-02-01 中国石油化工股份有限公司 Hydrogenation catalyst for synthesizing cyclohexylamine
CN109651169B (en) * 2017-10-10 2021-11-30 中国石油化工股份有限公司 Process for preparing cyclohexylamine
CN109651165B (en) * 2017-10-10 2022-04-05 中国石油化工股份有限公司 Method for producing cyclohexylamine by aniline hydrogenation
CN109647452B (en) * 2017-10-10 2022-04-05 中国石油化工股份有限公司 Hydrogenation catalyst for preparing cyclohexylamine
CN109647453B (en) * 2017-10-10 2022-02-01 中国石油化工股份有限公司 Hydrogenation catalyst for producing cyclohexylamine
CN109651166B (en) * 2017-10-10 2021-11-30 中国石油化工股份有限公司 Method for preparing cyclohexylamine from aniline
CN109647454B (en) * 2017-10-10 2022-02-01 中国石油化工股份有限公司 Hydrogenation catalyst for preparing cyclohexylamine from aniline
DK3556451T3 (en) * 2018-04-20 2020-08-31 Siemens Ag Procedure for operating a reactor plant
CN113747972A (en) * 2019-03-05 2021-12-03 联邦科学和工业研究组织 Ruthenium promoted catalyst composition
CN111889097B (en) * 2020-07-28 2022-07-12 万华化学集团股份有限公司 Aniline hydrogenation catalyst, preparation method and application
KR102475191B1 (en) * 2020-12-09 2022-12-06 희성촉매 주식회사 A method for producing NSR catalysts with Ru composites and an exhaust gas treatment system with NSR catalysts

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1419557A (en) * 1961-09-13 1965-12-03 Inst Francais Du Petrole New process for the catalytic hydrogenation of aromatic hydrocarbons
US3244644A (en) * 1962-02-13 1966-04-05 Du Pont Method of preparing a catalyst composition consisting of ruthenium on etaalumina and the product thereof
FR1592093A (en) * 1968-02-29 1970-05-11
US3917540A (en) * 1970-04-22 1975-11-04 Universal Oil Prod Co Catalyst for hydrogenation and dehydrogenation of hydrocarbons
GB1603101A (en) * 1977-03-28 1981-11-18 Johnson Matthey Co Ltd Catalytic methanation of synthesis gas
EP0053884A1 (en) * 1980-11-27 1982-06-16 Johnson Matthey Public Limited Company Three dimensional interstitial catalyst supports, its manufacture and use
DE3513726A1 (en) * 1985-04-17 1986-10-23 Basf Ag, 6700 Ludwigshafen METHOD FOR PRODUCING CATALYSTS FOR EXHAUST GAS DETECTING
US5326253A (en) * 1990-11-26 1994-07-05 Catalytica, Inc. Partial combustion process and a catalyst structure for use in the process
DE4209631A1 (en) * 1992-03-25 1993-09-30 Basf Ag Monolithic supported catalyst, process for its preparation and its use
FR2716190B1 (en) * 1994-02-17 1996-04-12 Inst Francais Du Petrole Hydrogenation catalyst and process for the hydrogenation of benzene using said catalyst.
CN1087278C (en) * 1996-04-26 2002-07-10 巴斯福股份公司 Process for reacting organic compound in presence of ruthenium catalyst formed in situ
JP3977883B2 (en) * 1996-10-03 2007-09-19 株式会社日立製作所 Exhaust gas purification catalyst for internal combustion engine
DE19714536A1 (en) * 1997-04-09 1998-10-15 Degussa Car exhaust catalytic converter
FR2771309B1 (en) * 1997-11-24 2000-02-11 Messier Bugatti ELABORATION OF ACTIVE CARBON FIBER CATALYST SUPPORT
DE19827385A1 (en) * 1998-06-19 1999-12-23 Basf Ag Impregnation process for applying active material to structured supports or monoliths

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0230851A2 *

Also Published As

Publication number Publication date
AU2002218222A1 (en) 2002-04-22
MXPA03002847A (en) 2003-06-19
AU2002218222A8 (en) 2005-09-15
CN1469851A (en) 2004-01-21
PL366054A1 (en) 2005-01-24
JP2004529068A (en) 2004-09-24
US20040024274A1 (en) 2004-02-05
WO2002030851A3 (en) 2002-10-31
WO2002030851A2 (en) 2002-04-18
IN2003CH00534A (en) 2005-04-15
DE10050709A1 (en) 2002-04-25
RU2003113962A (en) 2004-11-27
KR20030040533A (en) 2003-05-22

Similar Documents

Publication Publication Date Title
EP1330422A2 (en) Method for the hydrogenation of unsubstituted or alkyl substituted aromatics using a catalyst with a structured or monolithic support
EP2155386B1 (en) Method for producing amines
EP1110932B1 (en) Process for the preparation of C10-C30-alkenes by partial hydrogenation of alkynes on fixed-bed palladium-supported catalysts
EP1924355B1 (en) Method for producing amines with a catalyst containing platinum, nickel and an additional metal
EP1412310B1 (en) Method for the hydrogenation of aromatic compounds with hydrogen containing residual gas
DE19510438A1 (en) Process for the preparation of 1,4-butanediol and tetrahydrofuran from furan
EP0490151B1 (en) Process for the preparation of aniline
EP3515594A1 (en) Method for providing a fixed catalyst bed containing a doped structured shaped catalyst body
WO2008107236A1 (en) Method for production of trimethylhexamethylenediamine
EP1080061B1 (en) Method for producing mixtures of 1,4-butanediol, tetrahydrofuran and gamma-butyrolactone
EP1560647B1 (en) Method for regenerating a hydrogenation catalyst
EP1330424B1 (en) Method for the hydrogenation of aromatics by means of reactive distillation
EP0965384A1 (en) Method for applying active masses on structured carriers or monoliths
DE19610545A1 (en) Process for the preparation of a mixture of aminomethylcyclohexanes and diamino-methyl-cyclohexanes
DE2713602C3 (en) Process for the production of nitrosobenzene
EP3328820B1 (en) Method for the preparation of monoethylene glycol
EP0724907B1 (en) Palladium supported catalysts
EP1169285A1 (en) Method for hydrogenating non-substituted or alkyl-substituted aromatic compounds while using a catalyst having macropores
DE19718116A1 (en) Continuous preparation of d,l-menthol by hydrogenation
DE19755347A1 (en) Process for the hydrogenation of alkynols using a macroporous catalyst
DE4407486A1 (en) Process for the preparation of 1,2-butylene oxide
DE19936208A1 (en) Continuous process for the production of 2-phenylethanol comprises hydrogenation of a solution containing styrene oxide with hydrogen in the presence of a monolithic metal supported catalyst.
AT334877B (en) PROCESS FOR PRODUCING AROMATIC AMINES, IN PARTICULAR ANILINE, BY CATALYTIC REDUCTION OF THE CORRESPONDING NITRO COMPOUND
EP4234528A1 (en) Process for the hydrogenation of c13 aldehydes in at least two hydrogenation steps
DE2430478A1 (en) PROCESS FOR MANUFACTURING CYCLOALIPHATIC HYDROCARBONS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030509

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20031117

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20050301