EP1329680A1 - Plate-type heat exchanger - Google Patents

Plate-type heat exchanger Download PDF

Info

Publication number
EP1329680A1
EP1329680A1 EP02009896A EP02009896A EP1329680A1 EP 1329680 A1 EP1329680 A1 EP 1329680A1 EP 02009896 A EP02009896 A EP 02009896A EP 02009896 A EP02009896 A EP 02009896A EP 1329680 A1 EP1329680 A1 EP 1329680A1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
exchanger block
heat
heat exchange
exchange passages
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02009896A
Other languages
German (de)
French (fr)
Other versions
EP1329680B1 (en
Inventor
Horst Corduan
Dietrich Rottmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP1329680A1 publication Critical patent/EP1329680A1/en
Application granted granted Critical
Publication of EP1329680B1 publication Critical patent/EP1329680B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • F25J5/002Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04339Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of air
    • F25J3/04345Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of air and comprising a gas work expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0093Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/50Processes or apparatus involving steps for recycling of process streams the recycled stream being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/32Details on header or distribution passages of heat exchangers, e.g. of reboiler-condenser or plate heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/42Modularity, pre-fabrication of modules, assembling and erection, horizontal layout, i.e. plot plan, and vertical arrangement of parts of the cryogenic unit, e.g. of the cold box

Definitions

  • the invention relates to a plate heat exchanger for indirect heat exchange of several fluid flows with one heat / coolant in one Heat exchanger block that has a variety of heat exchange passages for the Has heat / coolant, a first fluid stream and a second fluid stream.
  • the invention further relates to a method for indirect heat exchange of multiple fluid flows with one heat / coolant in one Heat exchanger block, the heat / cold carrier, a first fluid flow and a second fluid flow through a variety of heat exchange passages.
  • the feed air to be separated When air is decomposed at low temperatures, the feed air to be separated must be on the Process temperature are cooled. This is usually done in Main heat exchanger through indirect heat exchange of the feed air with the recovered gas flows.
  • the main heat exchanger is usually called Plate heat exchanger designed a variety of Has heat exchange passages for the streams to be treated.
  • an air separation plant will have two different air flows Pressure supplied and as gaseous products oxygen, pure nitrogen and impure Recovered nitrogen, five streams must pass through the heat exchanger block become.
  • the heat exchanger block must therefore have ten connecting pieces for this Currents, five for the gas inlet and five for the gas outlet.
  • the gas flows are then assigned from the respective inlet connection to the Heat exchange passages distributed or those from the Heat exchange passages emerging gas flows into the corresponding Outlet connection merged.
  • DE 10021081 therefore proposes for large air separation plants to use split heat exchanger blocks divided by products so that only one fluid flow is passed through each heat exchanger block.
  • fluid flows can be carried out without the aforementioned distribution zones routed directly from the connecting piece into the respective heat exchange passages become.
  • the object of the present invention is therefore to provide a method and an apparatus for to develop indirect heating or cooling of multiple gas flows which the pressure loss in the heat exchanger is as low as possible.
  • a plate heat exchanger solved type mentioned wherein the heat exchanger block a first Has sub-area in which all heat exchange passages for the first fluid flow are arranged, and has a second portion in which all Heat exchange passages for the second fluid flow are arranged, the first and the second partial area do not overlap and the first and the second Part of each extend over the entire height of the heat exchanger block, the height of the heat exchanger block being extended in the direction of the Main flow through the heat exchange passages is.
  • the inventive method for indirect heat exchange of several Fluid flows with a heat / coolant in a heat exchanger block, wherein the heat / cold carrier, a first fluid stream and a second fluid stream through one A large number of heat exchange passages are guided, that the first fluid flow only through a first portion of the Heat exchanger blocks is passed and the second fluid flow through only one second portion of the heat exchanger block is passed, the first and the second section does not overlap and the first and the second Part of each extend over the entire height of the heat exchanger block, the height of the heat exchanger block being extended in the direction of the Main flow through the heat exchange passages is.
  • the depth, height and width of the heat exchanger block are defined as follows: On Heat exchanger block has a plurality of arranged parallel to each other Partition plates on. The expansion of the heat exchanger block in one direction perpendicular to the partition plates is referred to below as depth. Between Partition plates are usually arranged so-called fins that cover the space between Subdivide two separating plates into several heat exchange passages at least over a large part of the heat exchanger block all in the same direction exhibit. The expansion of the heat exchanger block in the direction of flow through the heat exchange passages characterize its height. This direction is in hereinafter referred to simply as vertical. With width, therefore Expansion of the heat exchanger block in the remaining spatial direction perpendicular to the main flow direction in the heat exchange passages in the plane of the dividing plates.
  • a distribution of the fluid flow over the entire cross-sectional area of the Heat exchanger blocks are no longer necessary.
  • An integrated heat exchanger block is advantageously used, through which at least two fluid flows, preferably all fluid flows in the indirect Heat exchange can be carried out with one or more heating media.
  • At least one Part of the heat exchange passages for the fluid flows is in the direction of Width divided into at least two areas. Preferably all are for the The fluid exchange passages provided are divided accordingly. It is but also possible and sensible, such a division only for a part the fluid flow passages.
  • the subdivision is such that the space between two partition plates in which the individual heat exchange passages for the fluid streams run through or Multiple vertical partitions are divided into two or more areas between where no fluid exchange is possible. There are one within a range A large number of heat exchange passages, which are usually caused by vertical, so-called fins are separated from each other. The fins are mainly used for Guide the fluids, however, in contrast to the different areas partition walls, not essential for the insulation of a Heat exchange passage from an adjacent heat exchange passage.
  • the division into individual areas can also be carried out cheaply so that the Areas occupy only part of the depth of the heat exchanger block. So for example, it is possible to split the heat exchanger block into two or more Divide strips that extend across the entire height of the heat exchanger block extend and each take up part of the depth or width of the block. at It is also advantageous to use several streams to adjust the width and width of the heat exchanger block to subdivide the depth and provide, for example, four areas, one of which is everyone is in a corner of the heat exchanger block.
  • those for the respective extend Fluid flow provided heat exchange passages from one face of the block to the opposite end face and run essentially parallel to each other.
  • a collector / distributor attached to the outside of the heat exchanger block, which covers the corresponding area of the end face and a connecting piece for the Has supply or discharge.
  • the heat exchange passages are therefore without Cross-sectional tapering in the inlet and outlet via and the flow deflection in the collector / distributor takes place slowly. The pressure loss in the Heat exchanger block and the associated collectors / distributors minimized.
  • At least one fluid flow is as low as possible Pressure loss should experience through such a partial area of the invention Head of heat exchanger blocks.
  • the invention is advantageous.
  • flow through one of the Subregions of the heat exchanger block according to the invention one or more Heating media with which the fluid flow exchanges its heat.
  • the invention allows pressure drops in the heat exchanger blocks, measured from the inlet to the outlet, achieve about 70 mbar.
  • the conventional heat exchangers in which the Distribution and consolidation of the gas flows between the entry and Outlet connection and the heat exchange passages through a in the Heat exchanger block integrated distribution zone with slanted fins Pressure drop of about 100 mbar when the gas flows with a pressure between 1.2 and 1.8 bar were removed from the low pressure column.
  • the invention achieves a reduction in pressure drop of approximately 30 mbar. This means that the low pressure flows are 30 mbar lower Pressure than can otherwise be gained. To maintain the Heat exchange conditions at the main condenser are sufficient if the air after the air compressor is compressed to about 90 mbar lower pressure.
  • the invention is particularly suitable in processes in which gas streams, one Have pressure of less than 3.5 bar, preferably between 1.1 and 1.8 bar, in hereinafter referred to as low pressure flows, in indirect heat exchange with a Heat or cold carriers are to be brought. According to the invention, this is done by a portion of the heat exchanger block only one of these Low pressure gas flows, i.e. for each of the gas streams that have a pressure of have less than 3.5 bar, a separate section of the Heat exchanger blocks provided.
  • the method according to the invention is preferably used in low-temperature decomposition of application air application.
  • Gas streams withdrawn from the double column rectifier have only a small amount Overpressure of about 0.1 to 0.8 bar above atmospheric pressure, so that a reduction the pressure drop is of great importance. This applies analogously to gaseous Argon product, since the crude argon column also operates under relatively low pressure becomes.
  • the gas flows with the feed air in indirect are particularly preferred Heat exchange brought.
  • the feed air can be divided into several flows through the heat exchanger block at different pressure levels be performed.
  • the air supply can be below Pressure column pressure passed through the heat exchanger block and then into the Pressure column can be fed, on the other hand, the feed air can before Heat exchanger block post-compressed and after cooling for cooling be relaxed while working.
  • the fluid stream is preferably passed through the heat exchanger block in such a way that he suffers a pressure drop of 120 to 300 mbar, preferably 120 to 200 mbar.
  • a pressure drop of 120 to 300 mbar, preferably 120 to 200 mbar.
  • FIG. 1 shows a process scheme known from the prior art Cryogenic air separation plant.
  • Compressed and cleaned feed air 10 is partly directly one Main heat exchanger 1 supplied, in part 20 by means of a compressor 4 post-compressed, cooled in an aftercooler 5 and then in the Main heat exchanger 1 passed.
  • This in the following as turbine air flow 20 designated compressed air is the main heat exchanger 1 at an intermediate point removed, relaxed in an air booster turbine 6 and into the low pressure column 3 one comprising a pressure column 2 and a low pressure column 3 Rectification unit initiated.
  • the feed air 10 cooled in the main heat exchanger becomes the pressure column 2 fed to the rectification unit.
  • the low pressure column 3 become more gaseous Oxygen 50, gaseous nitrogen 30 and gaseous impure nitrogen 40 as Regeneration gas removed at a pressure of about 1.3 bar.
  • pressure nitrogen 60 is drawn off. It is also possible in the Rectification unit to obtain oxygen and nitrogen as liquid products 7, 8.
  • the gas streams 30, 40, 50, 60 are fed into the main heat exchanger 1 and against the feed air flow 10 and the turbine air flow 20 by indirect Heat exchange warmed up.
  • Figures 2 to 4 show the usual construction of the heat exchanger block 9.
  • Figure 2 shows the lamella arrangement in the distribution zones 59 for the Oxygen passages 58, FIG. 3 for the pure nitrogen passages 38 and FIG. 4 correspondingly for the impure nitrogen passages 48.
  • the Fluid flows 30, 40, 50 out against the air flow 10 and the turbine air flow 20.
  • the distribution of the respective gaseous product among the corresponding ones Heat exchange passages 38, 48, 58 are conventionally carried out via distribution zones 39, 49, 59, which have slanted slats to the gas 30, 40, 50 from the To distribute supply lines to the passages 38, 48, 58 or in order to the gas passages 38, 48, 58 into the corresponding exhaust line merge.
  • the distribution zones 39, 49, 59 both lead to a change in the direction of flow as well as cross-sectional changes, which in turn changes the Cause flow velocity. Both have a negative impact on the Block flow and creates an undesirable pressure drop across the Heat exchanger block 9. The pressure drop affects in particular the Gas streams that have a relatively low pressure between 1.1 and 1.8 bar, negative.
  • FIG. 5 shows the structure of the main heat exchanger 1 according to the invention
  • all streams 10, 20, 30, 40, 50, 60 are shared by one Heat exchanger block 9 out, that is, the main heat exchanger 1 is as integrated heat exchanger.
  • the heat exchanger block 9 is off built up a large number of dividing plates parallel to the drawing plane, between which there are a large number of heat exchange passages.
  • the expansion of the heat exchanger block 9 is perpendicular to Plane as its depth, its extension in the direction of the Heat exchange passages, which are indicated by arrows in FIGS. 2 to 4, as its height and its extent in the plane of the drawing perpendicular to Flow direction through the heat exchange passages referred to as its width.
  • the feed air 10, the high pressure air 20 and that taken from the pressure column 2 gaseous pressurized nitrogen 60 are in the collector / distributor 11, 21, 61 in the Heat exchanger block 9 passed. These are in the heat exchanger block 9 Currents 10, 20, 60 in the usual way, each in one in the drawing shown distribution zone, which has sloping slats, over the entire Distributed width of the heat exchanger block 9, further by vertical Passed heat exchange passages and the respective via a further distribution zone Collectors 12, 22, 62 fed.
  • the streams 10, 20, 60 experience pressure losses caused by the Current direction changes and the cross-sectional changes of the individual passages caused.
  • the pressure losses of about 100 mbar are at Feed air 10
  • the high pressure air 20 and the pressure nitrogen product 60 are not relevant, since these flows have a significantly higher absolute pressure of more than 5 bar exhibit.
  • the low-pressure streams 30, 40, 50 one compared to the Atmospheric pressure have only slightly increased pressure, have such Pressure losses, on the other hand, are of great importance.
  • the low-pressure flows 30, 40, 50 are therefore not via the distributed over the entire width of the heat exchanger block 9.
  • the heat exchanger block 9 is divided in its width by dividing plates 70, so-called side bars, into three areas 33, 43, 53 divided. With each of these areas 33, 43, 53 are at the top and bottom End of the heat exchanger block 9 collector / distributor 31, 41, 51 and 32, 42, 52 connected.
  • the collectors / distributors 31, 41, 51 and 32, 42, 52 are semi-cylindrical executed and have a connecting piece for the respective product supply or dissipation.
  • the low-pressure stream 30, 40 introduced into the heat exchanger block 9 50 experiences no change in cross-section and no significant changes Current direction change.
  • the pressure drop across the heat exchanger block 9 is compared to the pressure drop across a conventional block, such as that shown in FIGS to 4 has been reduced by about 30%. Furthermore, the cost of the Heat exchanger block 9 reduced because of the elaborate lamella cuts for the distribution zones 39, 49, 59 can be dispensed with in FIGS. 2 to 4.
  • the new Heat exchanger blocks preferably only have a narrow distribution zone 73 am Entry and exit area of the heat exchange passages 33, 43, 53 are provided.
  • the lamellae in the narrow distribution zone 73 are parallel to the ones underneath or arranged above the fins of the heat exchange passages 33, 43, 53, but have a smaller distance from each other. That in collector 31, 41, 51 entering gas thus builds up easily in front of the distribution zone 73, causing a uniform distribution of the gas to all passages of the distribution zone 73 and thus on all heat exchange passages 33, 43, 53 is reached.
  • FIG. 6 shows a variant of the heat exchanger according to the invention.
  • the heat exchanger block 9 is identical to the block shown in FIG. 5. in the In contrast to FIG. 5, however, there are no individual collectors / distributors 31, 41, 51 or 32, 42, 52 provided, but a the entire end face of the Heat exchanger blocks 9 spanning common collector / distributor 71. Der Space between the end face of the heat exchanger block 9 and the Collector / distributor 71 is corresponding to areas 33, 43, 53 by separating plates 72 divided and each provided with a connecting piece.
  • FIGS. 7 and 8 show further embodiments of the invention.
  • This Heat exchangers are used for example in air separation processes, where the top section of the low pressure column has been omitted, so that no more low-pressure nitrogen 30 is generated in the low-pressure column. The As a result, low-pressure flows are reduced to impure nitrogen 40 and oxygen 50.
  • the main heat exchanger block 9 can thus be made simpler.
  • the Heat exchange passages for the low pressure streams 40, 50 are as in the FIGS. 7 and 8 shown, designed according to the invention, the pressure flows 10, 20, 60 are distributed over the corresponding zones in the usual way Heat exchange passages distributed.
  • the invention applies to all air separation processes in which at least two Low pressure flows occur, can be used with advantage.
  • Air separation process with air circulation or with nitrogen circulation.
  • FIG. 9 shows an example of a low-temperature air separation process with a single-turbine air circuit shown.
  • the feed air 10 is compressed and as High-pressure air flow 90 led into the skin heat exchanger.
  • Part 91 of the High pressure air is drawn from the heat exchanger at an intermediate point, relaxed and partly introduced into the pressure column, the other part 93 through the Heat exchanger 90 returned and added to the feed air 10 again.
  • the rest of the high-pressure air 90 is passed as a high-pressure stream 92 directly into the pressure column.
  • FIG. 10 shows an air separation process with a two-turbine air circuit and FIG. 12 the corresponding design of the main heat exchanger 9.
  • Die Heat exchange passages for the low pressure streams 30, 40, 50 run analogously to 11, the currents 101, 104 which are under higher pressure, 105, 106, as shown in FIG. 12, are passed through the heat exchanger.

Abstract

Plate heat exchanger comprises a heating/cooling agent (10, 20) in a heat exchanger block (9) containing a number of heat exchanger passages for the heating/cooling agent, a first fluid stream (40) and a second fluid stream (30). The heat exchanger block has a first partial region in which all heat exchanger passages for the first fluid stream are arranged, and a second partial region in which all heat exchanger passages for the second fluid stream are arranged. The first and the second partial regions do not overlap. The first and the second partial regions extend over the height of the heat exchanger block. An Independent claim is also included for a process for indirect heat exchange of several fluid streams.

Description

Die Erfindung betrifft einen Plattenwärmeaustauscher zum indirekten Wärmeaustausch von mehreren Fluidströmen mit einem Wärme-/Kälteträger in einem Wärmeaustauscherblock, der eine Vielzahl von Wärmeaustauschpassagen für den Wärme-/Kälteträger, einen ersten Fluidstrom und einen zweiten Fluidstrom besitzt. Die Erfindung bezieht sich ferner auf ein Verfahren zum indirekten Wärmeaustausch von mehreren Fluidströmen mit einem Wärme-/Kälteträger in einem Wärmeaustauscherblock, wobei der Wärme-/Kälteträger, ein erster Fluidstrom und ein zweiter Fluidstrom durch eine Vielzahl von Wärmeaustauschpassagen geleitet werden.The invention relates to a plate heat exchanger for indirect heat exchange of several fluid flows with one heat / coolant in one Heat exchanger block that has a variety of heat exchange passages for the Has heat / coolant, a first fluid stream and a second fluid stream. The The invention further relates to a method for indirect heat exchange of multiple fluid flows with one heat / coolant in one Heat exchanger block, the heat / cold carrier, a first fluid flow and a second fluid flow through a variety of heat exchange passages.

Bei der Tieftemperaturzerlegung von Luft muss die zu zerlegende Einsatzluft auf die Verfahrenstemperatur abgekühlt werden. Dies erfolgt üblicherweise im Hauptwärmeaustauscher durch indirekten Wärmeaustausch der Einsatzluft mit den gewonnenen Gasströmen. Der Hauptwärmeaustauscher ist in der Regel als Plattenwärmeaustauscher ausgebildet, der eine Vielzahl von Wärmeaustauschpassagen für die zu behandelnden Ströme besitzt.When air is decomposed at low temperatures, the feed air to be separated must be on the Process temperature are cooled. This is usually done in Main heat exchanger through indirect heat exchange of the feed air with the recovered gas flows. The main heat exchanger is usually called Plate heat exchanger designed a variety of Has heat exchange passages for the streams to be treated.

Werden einer Luftzerlegungsanlage beispielsweise zwei Luftströme unterschiedlichen Drucks zugeführt und als gasförmige Produkte Sauerstoff, Reinstickstoff und unreiner Stickstoff gewonnen, müssen durch den Wärmeaustauscherblock fünf Ströme geleitet werden. Der Wärmeaustauscherblock muss daher zehn Anschlussstutzen für diese Ströme, je fünf für den Gasein- und fünf für den Gasaustritt, aufweisen. Die Gasströme werden dann von dem jeweiligen Eintrittsstutzen auf die zugeordneten Wärmeaustauschpassagen verteilt beziehungsweise die aus den Wärmeaustauschpassagen austretenden Gasströme in die entsprechenden Austrittsstutzen zusammengeführt.For example, an air separation plant will have two different air flows Pressure supplied and as gaseous products oxygen, pure nitrogen and impure Recovered nitrogen, five streams must pass through the heat exchanger block become. The heat exchanger block must therefore have ten connecting pieces for this Currents, five for the gas inlet and five for the gas outlet. The gas flows are then assigned from the respective inlet connection to the Heat exchange passages distributed or those from the Heat exchange passages emerging gas flows into the corresponding Outlet connection merged.

Dies wird bisher durch in den Wärmeaustauscherblock integrierte Verteilzonen realisiert. In diesen Verteilzonen sind zumindest ein Teil der Lamellen, die die einzelnen Wärmeaustauschpassagen voneinander abgrenzen, schräg angeordnet, so dass das über den Eintrittsstutzen einströmende Gas in die Wärmeaustauschpassagen geführt wird bzw. dass die aus den Wärmeaustauschpassagen austretende Gasströmung zu dem Austrittsstutzen umgelenkt wird.So far, this has been achieved through distribution zones integrated in the heat exchanger block realized. In these distribution zones there are at least some of the lamellae that form the delimit individual heat exchange passages from one another, arranged obliquely, see above that the gas flowing in via the inlet connection into the heat exchange passages or that the exiting from the heat exchange passages Gas flow is diverted to the outlet port.

Die Strömungsbedingungen werden allerdings in den Verteilzonen stark geändert. Zum einen tritt durch die schräge Ausrichtung der Lamellen eine Änderung der Stromrichtung auf, zum anderen sind die Querschnitte der Wärmeaustauschpassagen in dem Verteilbereich deutlich verringert, wodurch Geschwindigkeitswechsel des durchströmenden Gases verursacht werden. Beide Effekte erzeugen einen unerwünschten Druckabfall in den Wärmeaustauscherblöcken.However, the flow conditions in the distribution zones are changed significantly. To the a change occurs due to the oblique alignment of the slats Current direction on the other are the cross sections of the heat exchange passages significantly reduced in the distribution area, which means that the speed change of the flowing gas are caused. Both effects create one undesirable pressure drop in the heat exchanger blocks.

In der DE 10021081 wird daher vorgeschlagen, bei großen Luftzerlegungsanlagen gesplittete, nach Produkten aufgeteilte Wärmeaustauscherblöcke einzusetzen, so dass durch jeden Wärmeaustauscherblock jeweils nur ein Fluidstrom geführt wird. Die Fluidströme können bei einer derartigen Ausführung ohne die genannten Verteilzonen direkt von den Anschlussstutzen in die jeweiligen Wärmeaustauschpassagen geleitet werden.DE 10021081 therefore proposes for large air separation plants to use split heat exchanger blocks divided by products so that only one fluid flow is passed through each heat exchanger block. The In such an embodiment, fluid flows can be carried out without the aforementioned distribution zones routed directly from the connecting piece into the respective heat exchange passages become.

Dieses Prinzip lässt sich aber nur bei großen Luftzerlegungsanlagen anwenden, bei denen ohnehin mehrere Wärmeaustauscherblöcke benötigt werden. Bei kleineren Luftzerlegungsanlagen, die nur über einen oder zwei Wärmeaustauscherblöcke verfügen, ist der Einsatz von solchen gesplitteten Wärmeaustauscherblöcken nicht sinnvoll.However, this principle can only be applied to large air separation plants where several heat exchanger blocks are needed anyway. With smaller ones Air separation plants that only have one or two heat exchanger blocks have, the use of such split heat exchanger blocks is not meaningful.

Aufgabe vorliegender Erfindung ist es daher, ein Verfahren und eine Vorrichtung zur indirekten Erwärmung oder Abkühlung von mehreren Gasströmen zu entwickeln, bei dem der Druckverlust in dem Wärmeaustauscher möglichst gering ist.The object of the present invention is therefore to provide a method and an apparatus for to develop indirect heating or cooling of multiple gas flows which the pressure loss in the heat exchanger is as low as possible.

Diese Aufgabe wird erfindungsgemäß durch einen Plattenwärmeaustauscher der eingangs genannten Art gelöst, wobei der Wärmeaustauscherblock einen ersten Teilbereich aufweist, in dem alle Wärmeaustauschpassagen für den ersten Fluidstrom angeordnet sind, und einen zweiten Teilbereich aufweist, in dem alle Wärmeaustauschpassagen für den zweiten Fluidstrom angeordnet sind, wobei sich der erste und der zweite Teilbereich nicht überschneiden und sich der erste und der zweite Teilbereich jeweils über die gesamte Höhe des Wärmeaustauscherblocks erstrecken, wobei die Höhe des Wärmeaustauscherblocks dessen Ausdehnung in Richtung der Hauptströmung durch die Wärmeaustauschpassagen ist.This object is achieved by a plate heat exchanger solved type mentioned, wherein the heat exchanger block a first Has sub-area in which all heat exchange passages for the first fluid flow are arranged, and has a second portion in which all Heat exchange passages for the second fluid flow are arranged, the the first and the second partial area do not overlap and the first and the second Part of each extend over the entire height of the heat exchanger block, the height of the heat exchanger block being extended in the direction of the Main flow through the heat exchange passages is.

Das erfindungsgemäße Verfahren zum indirekten Wärmeaustausch von mehreren Fluidströmen mit einem Wärme-/Kälteträger in einem Wärmeaustauscherblock, wobei der Wärme-/Kälteträger, ein erster Fluidstrom und ein zweiter Fluidstrom durch eine Vielzahl von Wärmeaustauschpassagen geleitet werden, zeichnet sich dadurch aus, dass der erste Fluidstrom nur durch einen ersten Teilbereich des Wärmeaustauscherblocks geleitet wird und der zweite Fluidstrom nur durch einen zweiten Teilbereich des Wärmeaustauscherblocks geleitet wird, wobei sich der erste und der zweite Teilbereich nicht überschneiden und sich der erste und der zweite Teilbereich jeweils über die gesamte Höhe des Wärmeaustauscherblocks erstrecken, wobei die Höhe des Wärmeaustauscherblocks dessen Ausdehnung in Richtung der Hauptströmung durch die Wärmeaustauschpassagen ist.The inventive method for indirect heat exchange of several Fluid flows with a heat / coolant in a heat exchanger block, wherein the heat / cold carrier, a first fluid stream and a second fluid stream through one A large number of heat exchange passages are guided, that the first fluid flow only through a first portion of the Heat exchanger blocks is passed and the second fluid flow through only one second portion of the heat exchanger block is passed, the first and the second section does not overlap and the first and the second Part of each extend over the entire height of the heat exchanger block, the height of the heat exchanger block being extended in the direction of the Main flow through the heat exchange passages is.

Tiefe, Höhe und Breite des Wärmeaustauscherblocks sind dabei wie folgt definiert: Ein Wärmeaustauscherblock weist eine Vielzahl von parallel zueinander angeordneten Trennplatten auf. Die Ausdehnung des Wärmeaustauscherblocks in einer Richtung senkrecht zu den Trennplatten wird im Folgenden als Tiefe bezeichnet. Zwischen den Trennplatten sind üblicherweise sogenannte Fins angeordnet, die den Raum zwischen jeweils zwei Trennplatten in mehrere Wärmeaustauschpassagen unterteilen, die zumindest über einen Großteil des Wärmeaustauscherblocks alle dieselbe Richtung aufweisen. Die Ausdehnung des Wärmeaustauscherblocks in Strömungsrichtung durch die Wärmeaustauschpassagen kennzeichnet dessen Höhe. Diese Richtung wird im folgenden der Einfachheit halber als Vertikale bezeichnet. Mit Breite wird folglich die Ausdehnung des Wärmeaustauscherblocks in der verbleibenden Raumrichtung senkrecht zur Hauptströmungsrichtung in den Wärmeaustauschpassagen in der Ebene der Trennplatten bezeichnet.The depth, height and width of the heat exchanger block are defined as follows: On Heat exchanger block has a plurality of arranged parallel to each other Partition plates on. The expansion of the heat exchanger block in one direction perpendicular to the partition plates is referred to below as depth. Between Partition plates are usually arranged so-called fins that cover the space between Subdivide two separating plates into several heat exchange passages at least over a large part of the heat exchanger block all in the same direction exhibit. The expansion of the heat exchanger block in the direction of flow through the heat exchange passages characterize its height. This direction is in hereinafter referred to simply as vertical. With width, therefore Expansion of the heat exchanger block in the remaining spatial direction perpendicular to the main flow direction in the heat exchange passages in the plane of the dividing plates.

Durch die erfindungsgemäße Aufteilung in einzelne Bereiche ist es möglich, auf einen Teil der Verteilzonen zu verzichten. Bestimmte Fluidstrompassagen enden nämlich in einem definierten Bereich der Stirnflächen des Wärmeaustauscherblocks, d.h. der durch die Breite und die Tiefe gekennzeichneten Flächen des Blocks, in dem keine weiteren Fluidstrompassagen enden. Der Anschlussstutzen für diesen Fluidstrom muss daher nur noch mit dem entsprechenden Bereich der Stirnfläche verbunden werden. The division into individual areas according to the invention makes it possible to use one To dispense with part of the distribution zones. Certain fluid flow passages end in a defined area of the end faces of the heat exchanger block, i.e. the areas of the block characterized by the width and depth in which none further fluid flow passages end. The connector for this fluid flow must therefore only be connected to the corresponding area of the end face.

Eine Verteilung des Fluidstromes über die gesamte Querschnittsfläche des Wärmeaustauscherblocks ist nicht mehr notwendig.A distribution of the fluid flow over the entire cross-sectional area of the Heat exchanger blocks are no longer necessary.

Von Vorteil wird ein integrierter Wärmeaustauscherblock eingesetzt, durch den mindestens zwei Fluidströme, vorzugsweise alle Fluidströme im indirekten Wärmeaustausch mit einem oder mehreren Heizmedien geführt werden. Zumindest ein Teil der Wärmeaustauschpassagen für die Fluidströme wird hierbei in Richtung der Breite in mindestens zwei Bereiche aufgeteilt. Vorzugsweise werden alle für die Fluidströme vorgesehenen Wärmeaustauschpassagen entsprechend aufgeteilt. Es ist aber durchaus auch möglich und sinnvoll, eine derartige Aufteilung nur für einen Teil der Fluidstrompassagen vorzunehmen.An integrated heat exchanger block is advantageously used, through which at least two fluid flows, preferably all fluid flows in the indirect Heat exchange can be carried out with one or more heating media. At least one Part of the heat exchange passages for the fluid flows is in the direction of Width divided into at least two areas. Preferably all are for the The fluid exchange passages provided are divided accordingly. It is but also possible and sensible, such a division only for a part the fluid flow passages.

Die Unterteilung erfolgt so, dass der Raum zwischen zwei Trennplatten, in dem die einzelnen Wärmeaustauschpassagen für die Fluidströme verlaufen, durch eine oder mehrere vertikale Trennwände in zwei oder mehrere Bereiche unterteilt wird, zwischen denen kein Fluidaustausch möglich ist. Innerhalb eines Bereichs befinden sich eine Vielzahl von Wärmeaustauschpassagen, die üblicherweise durch vertikal verlaufende, sogenannte Fins voneinander getrennt sind. Die Fins dienen im wesentlichen zur Führung der Fluide, aber, im Gegensatz zu den unterschiedliche Bereiche abtrennenden Trennwänden, nicht zwingend zur Isolierung einer Wärmeaustauschpassage von einer benachbarten Wärmeaustauschpassage.The subdivision is such that the space between two partition plates in which the individual heat exchange passages for the fluid streams run through or Multiple vertical partitions are divided into two or more areas between where no fluid exchange is possible. There are one within a range A large number of heat exchange passages, which are usually caused by vertical, so-called fins are separated from each other. The fins are mainly used for Guide the fluids, however, in contrast to the different areas partition walls, not essential for the insulation of a Heat exchange passage from an adjacent heat exchange passage.

Die Aufteilung in einzelne Bereiche kann ebenso günstig so erfolgen, dass die Bereiche jeweils nur einen Teil der Tiefe des Wärmeaustauscherblocks einnehmen. So ist es beispielsweise möglich, den Wärmeaustauscherblock in zwei oder mehrere Streifen zu unterteilen, die sich über die gesamte Höhe des Wärmeaustauscherblocks erstrecken und jeweils einen Teil der Tiefe oder der Breite des Blocks einnehmen. Bei mehreren Strömen ist es auch günstig, den Wärmeaustauscherblock in der Breite und der Tiefe zu unterteilen und zum Beispiel vier Bereiche vorzusehen, von denen sich jeder in einem Eck des Wärmeaustauscherblocks befindet.The division into individual areas can also be carried out cheaply so that the Areas occupy only part of the depth of the heat exchanger block. So For example, it is possible to split the heat exchanger block into two or more Divide strips that extend across the entire height of the heat exchanger block extend and each take up part of the depth or width of the block. at It is also advantageous to use several streams to adjust the width and width of the heat exchanger block to subdivide the depth and provide, for example, four areas, one of which is everyone is in a corner of the heat exchanger block.

In den erfindungsgemäßen Teilbereichen erstrecken sich die für den jeweiligen Fluidstrom vorgesehenen Wärmeaustauschpassagen von einer Stirnseite des Blocks zur gegenüberliegenden Stirnseite und verlaufen im wesentlichen parallel zueinander. An den beiden Stirnseiten, an denen die Wärmeaustauschpassagen enden, ist jeweils außen an dem Wärmeaustauscherblock ein Sammler/Verteiler angebracht, der den entsprechenden Bereich der Stimfläche abdeckt und einen Anschlussstutzen für die Zu- bzw. Ableitung aufweist. Die Wärmeaustauschpassagen gehen somit ohne Querschnittsverjüngung in die Zu- bzw. Ableitung über und die Strömungsumlenkung in dem Sammler/Verteiler erfolgt langsam. Der Druckverlust in dem Wärmeaustauscherblock und den zugehörigen Sammler/Verteilern wird dadurch minimiert.In the partial areas according to the invention, those for the respective extend Fluid flow provided heat exchange passages from one face of the block to the opposite end face and run essentially parallel to each other. On each of the two end faces where the heat exchange passages end a collector / distributor attached to the outside of the heat exchanger block, which covers the corresponding area of the end face and a connecting piece for the Has supply or discharge. The heat exchange passages are therefore without Cross-sectional tapering in the inlet and outlet via and the flow deflection in the collector / distributor takes place slowly. The pressure loss in the Heat exchanger block and the associated collectors / distributors minimized.

Erfindungsgemäß wird zumindest ein Fluidstrom, der einen möglichst geringen Druckverlust erfahren soll, durch einen solchen erfindungsgemäßen Teilbereich des Wärmeaustauscherblocks geleitet. Insbesondere bei Fluidströmen, die einen Druck von weniger als 3,5 bar, und ganz besonders einen Druck zwischen 1,1 und 1,8 bar, aufweisen, ist die Erfindung von Vorteil. Selbstverständlich strömen durch einen der erfindungsgemäßen Teilbereiche des Wärmeaustauscherblocks ein oder mehrere Heizmedien, mit denen der Fluidstrom seine Wärme austauscht.According to the invention, at least one fluid flow is as low as possible Pressure loss should experience through such a partial area of the invention Head of heat exchanger blocks. Especially with fluid flows that have a pressure of less than 3.5 bar, and especially a pressure between 1.1 and 1.8 bar, have, the invention is advantageous. Of course, flow through one of the Subregions of the heat exchanger block according to the invention one or more Heating media with which the fluid flow exchanges its heat.

Durch die Erfindung lassen sich Druckabfälle in den Wärmeaustauscherblöcken, gemessen vom Eintrittsstutzen bis zum Austrittsstutzen, von etwa 70 mbar erzielen. Demgegenüber tritt bei den herkömmlichen Wärmeaustauschem, bei denen die Verteilung und Zusammenführung der Gasströme zwischen dem Ein- bzw. Austrittsstutzen und den Wärmeaustauschpassagen durch eine in den Wärmeaustauscherblock integrierte Verteilzone mit schräg angeordneten Lamellen ein Druckabfall von etwa 100 mbar auf, wenn die Gasströme mit einem Druck zwischen 1,2 und 1,8 bar aus der Niederdrucksäule entnommen wurden. Auf der drucklosen Seite erreicht man durch die Erfindung eine Verringerung des Druckabfalls von etwa 30 mbar. Das bedeutet, dass die Niederdruckströme mit einem um 30 mbar niedrigeren Druck als sonst gewonnen werden können. Zur Aufrechterhaltung der Wärmeaustauschverhältnisse am Hauptkondensator reicht es dann aus, wenn die Luft nach dem Luftverdichter auf einen etwa 90 mbar niedrigeren Druck verdichtet wird.The invention allows pressure drops in the heat exchanger blocks, measured from the inlet to the outlet, achieve about 70 mbar. In contrast occurs in the conventional heat exchangers, in which the Distribution and consolidation of the gas flows between the entry and Outlet connection and the heat exchange passages through a in the Heat exchanger block integrated distribution zone with slanted fins Pressure drop of about 100 mbar when the gas flows with a pressure between 1.2 and 1.8 bar were removed from the low pressure column. On the unpressurized On the one hand, the invention achieves a reduction in pressure drop of approximately 30 mbar. This means that the low pressure flows are 30 mbar lower Pressure than can otherwise be gained. To maintain the Heat exchange conditions at the main condenser are sufficient if the air after the air compressor is compressed to about 90 mbar lower pressure.

Besonders geeignet ist die Erfindung bei Verfahren, bei denen Gasströme, die einen Druck von weniger als 3,5 bar, bevorzugt zwischen 1,1 und 1,8 bar, aufweisen, im folgenden als Niederdruckströme bezeichnet, in indirekten Wärmeaustausch mit einem Wärme- oder Kälteträger gebracht werden sollen. Erfindungsgemäß wird hierbei durch einen Teilbereich des Wärmertauscherblocks jeweils nur einer dieser Niederdruckgasströme geführt, d.h. für jeden der Gasströme, die einen Druck von weniger als 3,5 bar aufweisen, wird ein eigener Teilbereich des Wärmeaustauscherblocks vorgesehen.The invention is particularly suitable in processes in which gas streams, one Have pressure of less than 3.5 bar, preferably between 1.1 and 1.8 bar, in hereinafter referred to as low pressure flows, in indirect heat exchange with a Heat or cold carriers are to be brought. According to the invention, this is done by a portion of the heat exchanger block only one of these Low pressure gas flows, i.e. for each of the gas streams that have a pressure of have less than 3.5 bar, a separate section of the Heat exchanger blocks provided.

Bei Gasströmen mit einem Druck von mehr als ca. 4 bar spielt der Druckverlust in dem Wärmeaustauscherblock nur eine untergeordnete Rolle bzw. kann vernachlässigt werden. Es ist daher manchmal vorteilhaft, durch mindestens einen der Teilbereiche des Wärmeaustauscherblocks, durch den einer der Niederdruckgasströme geleitet wird, zusätzlich einen solchen Strom mit erhöhtem Druck zu führen.With gas flows with a pressure of more than approx. 4 bar, the pressure loss plays in the Heat exchanger block only a subordinate role or can be neglected become. It is therefore sometimes advantageous to go through at least one of the sub-areas of the heat exchanger block through which one of the low pressure gas flows is passed will also carry such a stream with increased pressure.

Das erfindungsgemäße Verfahren findet bevorzugt bei der Tieftemperaturzerlegung von Einsatzluft Anwendung. Die als Produkt aus der Niederdrucksäule eines Doppelsäulenrektifikators abgezogenen Gasströme besitzen lediglich einen geringen Überdruck von etwa 0,1 bis 0,8 bar über Atmosphärendruck, sodass eine Verringerung des Druckabfalls von hoher Bedeutung ist. Dies gilt in analoger Weise für gasförmiges Argonprodukt, da die Rohargonsäule ebenfalls unter relativ niedrigem Druck betrieben wird.The method according to the invention is preferably used in low-temperature decomposition of application air application. The as a product from the low pressure column Gas streams withdrawn from the double column rectifier have only a small amount Overpressure of about 0.1 to 0.8 bar above atmospheric pressure, so that a reduction the pressure drop is of great importance. This applies analogously to gaseous Argon product, since the crude argon column also operates under relatively low pressure becomes.

Besonders bevorzugt werden die Gasströme mit der Einsatzluft in indirekten Wärmeaustausch gebracht. Die Einsatzluft kann hierbei in mehreren auf unterschiedlichem Druckniveau liegenden Strömen durch den Wärmeaustauscherblock geführt werden. So kann die Einsatzluft beispielsweise zum einen unter Drucksäulendruck durch den Wärmeaustauscherblock geleitet und anschließend in die Drucksäule eingespeist werden, zum anderen kann die Einsatzluft vor dem Wärmeaustauscherblock nachverdichtet und nach Abkühlung zur Kälteerzeugung arbeitsleistend entspannt werden.The gas flows with the feed air in indirect are particularly preferred Heat exchange brought. The feed air can be divided into several flows through the heat exchanger block at different pressure levels be performed. For example, the air supply can be below Pressure column pressure passed through the heat exchanger block and then into the Pressure column can be fed, on the other hand, the feed air can before Heat exchanger block post-compressed and after cooling for cooling be relaxed while working.

In Ländern mit relativ niedrigen Energiekosten bringt eine Verringerung der Druckabfälle keinen Vorteil, da die mit der Energieeinsparung verbundenen Kosten hoch sind. Bei diesen Anwendungen ist es daher günstiger, nicht die Druckverluste zu minimieren, sondern die Strömungsgeschwindigkeiten zu erhöhen, um höhere Druckabfälle zu erzielen, wodurch letztlich ein kleinerer Wärmeaustauscherblock ausreichend ist. In countries with relatively low energy costs brings a reduction in Pressure drops are not an advantage because of the costs associated with saving energy are high. In these applications, it is therefore cheaper not to lose pressure minimize, but rather increase the flow velocities to higher ones Achieve pressure drops, ultimately resulting in a smaller heat exchanger block is sufficient.

Vorzugsweise wird der Fluidstrom so durch den Wärmeaustauscherblock geleitet, dass er einen Druckabfall von 120 bis 300 mbar, bevorzugt 120 bis 200 mbar, erleidet. Durch Anhebung des Druckabfalls wird eine größere Strömungsgeschwindigkeit als in den herkömmlichen Wärmeaustauschern erreicht, wodurch die Wärmeübergangszahlen verbessert werden, was letztlich dazu führt, dass das Blockvolumen des Wärmeaustauschers verringert werden kann. Bei gleichem Druckabfall im Wärmeaustauscherblock ermöglicht das erfindungsgemäße Verfahren gegenüber den bekannten Verfahren eine Reduktion der Blockvolumina um etwa 15%, woraus eine beträchtliche Kosteneinsparung resultiert.The fluid stream is preferably passed through the heat exchanger block in such a way that he suffers a pressure drop of 120 to 300 mbar, preferably 120 to 200 mbar. By increasing the pressure drop, a greater flow velocity than in reached the conventional heat exchangers, whereby the Heat transfer numbers are improved, which ultimately leads to that Block volume of the heat exchanger can be reduced. With the same The method according to the invention enables pressure drop in the heat exchanger block a reduction of the block volumes by about 15% compared to the known methods, which results in considerable cost savings.

Die Erfindung sowie weitere Einzelheiten der Erfindung werden im Folgenden anhand von in den Zeichnungen dargestellten Ausführungsbeispielen näher erläutert. Hierbei zeigen:

Figur 1
ein Verfahrensschema einer Tieftemperaturluftzerlegungsanlage,
Figuren 2 bis 4
die Anordnung der Verteilpassagen in herkömmlichen Plattenwärmeaustauschem,
Figur 5
die Anordnung der Wärmeaustauschpassagen gemäß der Erfindung,
Figur 6
eine Variante der Ausführung nach Figur 5,
Figuren 7 und 8
die erfindungsgemäße Aufteilung des Wärmeaustauischers in zwei Teilbereiche,
Figur 9
das Verfahrensschema einer Luftzerlegungsanlage mit Ein-Turbinen-Luftkreislauf,
Figur 10
das Verfahrensschema einer Luftzerlegungsanlage mit Zwei-Turbinen-Luftkreislauf,
Figur 11
die erfindungsgemäße Anordnung der Wärmeaustauschpassagen des Hauptwärmeaustauschers bei dem Verfahren nach Figur 9 und
Figur 12
die erfindungsgemäße Anordnung der Wärmeaustauschpassagen des Hauptwärmeaustauschers bei dem Verfahren nach Figur 10.
The invention and further details of the invention are explained in more detail below with reference to exemplary embodiments shown in the drawings. Here show:
Figure 1
a process diagram of a cryogenic air separation plant,
Figures 2 to 4
the arrangement of the distribution passages in conventional plate heat exchangers,
Figure 5
the arrangement of the heat exchange passages according to the invention,
Figure 6
a variant of the embodiment of Figure 5,
Figures 7 and 8
the inventive division of the heat exchanger into two sub-areas,
Figure 9
the process diagram of an air separation plant with a single-turbine air circuit,
Figure 10
the process diagram of an air separation plant with a two-turbine air circuit,
Figure 11
the arrangement according to the invention of the heat exchange passages of the main heat exchanger in the method according to FIGS. 9 and
Figure 12
the arrangement according to the invention of the heat exchange passages of the main heat exchanger in the method according to FIG. 10.

Figur 1 zeigt ein aus dem Stand der Technik bekanntes Verfahrensschema einer Tieftemperaturluftzerlegungsanlage. FIG. 1 shows a process scheme known from the prior art Cryogenic air separation plant.

Verdichtete und gereinigte Einsatzluft 10 wird zum Teil direkt einem Hauptwärmeaustauscher 1 zugeführt, zum Teil 20 mittels eines Verdichters 4 nachverdichtet, in einem Nachkühler 5 gekühlt und dann in den Hauptwärmeaustauscher 1 geleitet. Diese im folgenden als Turbinenluftstrom 20 bezeichnete Druckluft wird an einer Zwischenstelle dem Hauptwärmeaustauscher 1 entnommen, in einer Luftbooster-Turbine 6 entspannt und in die Niederdrucksäule 3 einer eine Drucksäule 2 und eine Niederdrucksäule 3 umfassenden Rektifikationseinheit eingeleitet.Compressed and cleaned feed air 10 is partly directly one Main heat exchanger 1 supplied, in part 20 by means of a compressor 4 post-compressed, cooled in an aftercooler 5 and then in the Main heat exchanger 1 passed. This in the following as turbine air flow 20 designated compressed air is the main heat exchanger 1 at an intermediate point removed, relaxed in an air booster turbine 6 and into the low pressure column 3 one comprising a pressure column 2 and a low pressure column 3 Rectification unit initiated.

Die in dem Hauptwärmeaustauscher abgekühlte Einsatzluft 10 wird der Drucksäule 2 der Rektifikationseinheit zugeführt. Der Niederdrucksäule 3 werden gasförmiger Sauerstoff 50, gasförmiger Stickstoff 30 sowie gasförmiger Unrein-Stickstoff 40 als Regeneriergas mit einem Druck von etwa 1,3 bar entnommen. Am Kopf der Drucksäule 2 wird Druckstickstoff 60 abgezogen. Ferner ist es möglich, in der Rektifikationseinheit Sauerstoff und Stickstoff als flüssige Produkte 7, 8 zu gewinnen. Die Gasströme 30, 40, 50, 60 werden in den Hauptwärmeaustauscher 1 geführt und gegen den Einsatzluftstrom 10 und den Turbinenluftstrom 20 durch indirekten Wärmeaustausch angewärmt.The feed air 10 cooled in the main heat exchanger becomes the pressure column 2 fed to the rectification unit. The low pressure column 3 become more gaseous Oxygen 50, gaseous nitrogen 30 and gaseous impure nitrogen 40 as Regeneration gas removed at a pressure of about 1.3 bar. On the head of the Pressure column 2, pressure nitrogen 60 is drawn off. It is also possible in the Rectification unit to obtain oxygen and nitrogen as liquid products 7, 8. The gas streams 30, 40, 50, 60 are fed into the main heat exchanger 1 and against the feed air flow 10 and the turbine air flow 20 by indirect Heat exchange warmed up.

Die Figuren 2 bis 4 zeigen den bisher üblichen Aufbau des Wärmeaustauscherblocks 9. Figur 2 zeigt die Lamellenanordnung in den Verteilzonen 59 für die Sauerstoffpassagen 58, Figur 3 für die Reinstickstoffpassagen 38 und Figur 4 entsprechend für die Unreinstickstoffpassagen 48.Figures 2 to 4 show the usual construction of the heat exchanger block 9. Figure 2 shows the lamella arrangement in the distribution zones 59 for the Oxygen passages 58, FIG. 3 for the pure nitrogen passages 38 and FIG. 4 correspondingly for the impure nitrogen passages 48.

Bei dem Verfahren gemäß Figur 1 werden in dem Wärmeaustauscherblock 9 die Fluidströme 30, 40, 50 gegen den Luftstrom 10 und den Turbinenluftstrom 20 geführt. Die Verteilung des jeweiligen gasförmigen Produktes auf die entsprechenden Wärmeaustauschpassagen 38, 48, 58 erfolgt herkömmlich über Verteilzonen 39, 49, 59, die schräg angeordnete Lamellen aufweisen, um das Gas 30, 40, 50 aus den Zufuhrleitungen auf die Passagen 38, 48, 58 zu verteilen beziehungsweise um das aus den Passagen 38, 48, 58 austretende Gas in die entsprechende Abzugsleitung zusammenzuführen. In the method according to FIG. 1, the Fluid flows 30, 40, 50 out against the air flow 10 and the turbine air flow 20. The distribution of the respective gaseous product among the corresponding ones Heat exchange passages 38, 48, 58 are conventionally carried out via distribution zones 39, 49, 59, which have slanted slats to the gas 30, 40, 50 from the To distribute supply lines to the passages 38, 48, 58 or in order to the gas passages 38, 48, 58 into the corresponding exhaust line merge.

Die Verteilzonen 39, 49, 59 führen sowohl zu einer Änderung der Strömungsrichtung als auch zu Querschnittsveränderungen, welche wiederum Änderungen der Strömungsgeschwindigkeit verursachen. Beides wirkt sich negativ auf die Blockdurchströmung aus und erzeugt einen unerwünschten Druckabfall über dem Wärmeaustauscherblock 9. Der Druckabfall wirkt sich insbesondere bei den Gasströmen, die einen relativ niedrigen Druck zwischen 1,1 und 1,8 bar besitzen, negativ aus.The distribution zones 39, 49, 59 both lead to a change in the direction of flow as well as cross-sectional changes, which in turn changes the Cause flow velocity. Both have a negative impact on the Block flow and creates an undesirable pressure drop across the Heat exchanger block 9. The pressure drop affects in particular the Gas streams that have a relatively low pressure between 1.1 and 1.8 bar, negative.

Figur 5 zeigt den erfindungsgemäßen Aufbau des Hauptwärmeaustauschers 1. In diesem Fall werden alle Ströme 10, 20, 30, 40, 50, 60 durch einen gemeinsamen Wärmeaustauscherblock 9 geführt, das heißt der Hauptwärmeaustauscher 1 ist als integrierter Wärmeaustauscher ausgeführt. Der Wärmeaustauscherblock 9 ist aus einer Vielzahl von parallel zur Zeichenebene liegenden Trennplatten aufgebaut, zwischen denen sich jeweils eine Vielzahl von Wärmeaustauschpassagen befinden.FIG. 5 shows the structure of the main heat exchanger 1 according to the invention In this case, all streams 10, 20, 30, 40, 50, 60 are shared by one Heat exchanger block 9 out, that is, the main heat exchanger 1 is as integrated heat exchanger. The heat exchanger block 9 is off built up a large number of dividing plates parallel to the drawing plane, between which there are a large number of heat exchange passages.

Im folgenden wird die Ausdehnung des Wärmeaustauscherblocks 9 senkrecht zur Zeichenebene als dessen Tiefe, seine Ausdehnung in Richtung der Wärmeaustauschpassagen, die in den Figuren 2 bis 4 durch Pfeile gekennzeichnet ist, als dessen Höhe und seine Ausdehnung in der Zeichenebene senkrecht zur Strömungsrichtung durch die Wärmeaustauschpassagen als dessen Breite bezeichnet.In the following, the expansion of the heat exchanger block 9 is perpendicular to Plane as its depth, its extension in the direction of the Heat exchange passages, which are indicated by arrows in FIGS. 2 to 4, as its height and its extent in the plane of the drawing perpendicular to Flow direction through the heat exchange passages referred to as its width.

Die Einsatzluft 10, die Hochdruckluft 20 und der der Drucksäule 2 entnommene gasförmige Druckstickstoff 60 werden über die Sammler/Verteiler 11, 21, 61 in den Wärmeaustauscherblock 9 geleitet. Im Wärmeaustauscherblock 9 werden diese Ströme 10, 20, 60 in üblicher Weise jeweils in einer in der Zeichnung nicht dargestellten Verteilzone, die schräg verlaufende Lamellen aufweist, über die gesamte Breite des Wärmeaustauscherblocks 9 verteilt, weiter durch senkrecht verlaufende Wärmeaustauschpassagen geleitet und über eine weitere Verteilzone den jeweiligen Sammlern 12, 22, 62 zugeführt.The feed air 10, the high pressure air 20 and that taken from the pressure column 2 gaseous pressurized nitrogen 60 are in the collector / distributor 11, 21, 61 in the Heat exchanger block 9 passed. These are in the heat exchanger block 9 Currents 10, 20, 60 in the usual way, each in one in the drawing shown distribution zone, which has sloping slats, over the entire Distributed width of the heat exchanger block 9, further by vertical Passed heat exchange passages and the respective via a further distribution zone Collectors 12, 22, 62 fed.

In den Verteilzonen erfahren die Ströme 10, 20, 60 Druckverluste, die durch die Stromrichtungsänderungen und die Querschnittsänderungen der einzelnen Passagen verursacht werden. Die Druckverluste von etwa 100 mbar sind jedoch bei der Einsatzluft 10, der Hochdruckluft 20 und dem Druckstickstoffprodukt 60 nicht relevant, da diese Ströme einen deutlich höheren absoluten Druck von mehr als 5 bar aufweisen. Bei den Niederdruckströmen 30, 40, 50, die einen gegenüber dem Atmosphärendruck nur geringfügig erhöhten Druck besitzen, haben solche Druckverluste dagegen eine hohe Bedeutung.In the distribution zones, the streams 10, 20, 60 experience pressure losses caused by the Current direction changes and the cross-sectional changes of the individual passages caused. However, the pressure losses of about 100 mbar are at Feed air 10, the high pressure air 20 and the pressure nitrogen product 60 are not relevant, since these flows have a significantly higher absolute pressure of more than 5 bar exhibit. In the case of the low-pressure streams 30, 40, 50, one compared to the Atmospheric pressure have only slightly increased pressure, have such Pressure losses, on the other hand, are of great importance.

Erfindungsgemäß werden daher die Niederdruckströme 30, 40, 50 nicht über die gesamte Breite des Wärmeaustauscherblocks 9 verteilt. Der Wärmeaustauscherblock 9 ist in seiner Breite durch Trennbleche 70, sogenannte side bars, in drei Bereiche 33, 43, 53 unterteilt. Mit jedem dieser Bereiche 33, 43, 53 sind am oberen und unteren Ende des Wärmeaustauscherblocks 9 Sammler/Verteiler 31, 41, 51 bzw. 32, 42, 52 verbunden. Die Sammler/Verteiler 31, 41, 51 bzw. 32, 42, 52 sind halbzylindrisch ausgeführt und besitzen einen Anschlussstutzen für die jeweilige Produktzu- bzw. - ableitung. Der in den Wärmeaustauscherblock 9 eingeleitete Niederdruckstrom 30, 40, 50 erfährt keinerlei Querschnittsveränderung und keine wesentliche Stromrichtungsänderung. Der Druckabfall über dem Wärmeaustauscherblock 9 ist gegenüber dem Druckabfall über einem üblichen Block, wie er anhand der Figuren 2 bis 4 erläutert wurde, um etwa 30% verringert. Ferner werden die Kosten für den Wärmeaustauscherblock 9 reduziert, da auf die aufwendigen Lamellenzuschnitte für die Verteilzonen 39, 49, 59 in den Figuren 2 bis 4 verzichtet werden kann.According to the invention, the low-pressure flows 30, 40, 50 are therefore not via the distributed over the entire width of the heat exchanger block 9. The heat exchanger block 9 is divided in its width by dividing plates 70, so-called side bars, into three areas 33, 43, 53 divided. With each of these areas 33, 43, 53 are at the top and bottom End of the heat exchanger block 9 collector / distributor 31, 41, 51 and 32, 42, 52 connected. The collectors / distributors 31, 41, 51 and 32, 42, 52 are semi-cylindrical executed and have a connecting piece for the respective product supply or dissipation. The low-pressure stream 30, 40 introduced into the heat exchanger block 9 50 experiences no change in cross-section and no significant changes Current direction change. The pressure drop across the heat exchanger block 9 is compared to the pressure drop across a conventional block, such as that shown in FIGS to 4 has been reduced by about 30%. Furthermore, the cost of the Heat exchanger block 9 reduced because of the elaborate lamella cuts for the distribution zones 39, 49, 59 can be dispensed with in FIGS. 2 to 4.

Anstelle der aufwendigen Verteilzonen 39, 49, 59 mit schrägen Lamellen in den bekannten Wärmeaustauscherblöcken (siehe Figuren 2 bis 4) ist bei den neuen Wärmeaustauscherblöcken bevorzugt lediglich eine schmale Verteilzone 73 am Eintritts- und Austrittsbereich der Wärmeaustauschpassagen 33, 43, 53 vorgesehen. Die Lamellen in der schmalen Verteilzone 73 sind parallel zu den darunter bzw. darüber liegenden Lamellen der Wärmeaustauschpassagen 33, 43, 53 angeordnet, besitzen jedoch einen geringeren Abstand voneinander. Das in den Sammler 31, 41, 51 eintretende Gas staut sich dadurch leicht vor der Verteilzone 73, wodurch eine gleichmäßige Verteilung des Gases auf alle Passagen der Verteilzone 73 und damit auf alle Wärmeaustauschpassagen 33, 43, 53 erreicht wird.Instead of the complex distribution zones 39, 49, 59 with oblique slats in the known heat exchanger blocks (see Figures 2 to 4) is in the new Heat exchanger blocks preferably only have a narrow distribution zone 73 am Entry and exit area of the heat exchange passages 33, 43, 53 are provided. The lamellae in the narrow distribution zone 73 are parallel to the ones underneath or arranged above the fins of the heat exchange passages 33, 43, 53, but have a smaller distance from each other. That in collector 31, 41, 51 entering gas thus builds up easily in front of the distribution zone 73, causing a uniform distribution of the gas to all passages of the distribution zone 73 and thus on all heat exchange passages 33, 43, 53 is reached.

In Figur 6 ist eine Variante des erfindungsgemäßen Wärmeaustauschers dargestellt. Der Wärmeaustauscherblock 9 ist identisch zu dem in Figur 5 gezeigten Block. Im Gegensatz zu Figur 5 sind jedoch keine einzelnen Sammler/Verteiler 31, 41, 51 bzw. 32, 42, 52 vorgesehen, sondern ein die gesamte Stirnfläche des Wärmeaustauscherblocks 9 überspannender gemeinsamer Sammler/Verteiler 71. Der Raum zwischen der Stirnfläche des Wärmeaustauscherblocks 9 und dem Sammler/Verteiler 71 ist entsprechend den Bereichen 33, 43, 53 durch Trennbleche 72 unterteilt und jeweils mit einem Anschlussstutzen versehen.FIG. 6 shows a variant of the heat exchanger according to the invention. The heat exchanger block 9 is identical to the block shown in FIG. 5. in the In contrast to FIG. 5, however, there are no individual collectors / distributors 31, 41, 51 or 32, 42, 52 provided, but a the entire end face of the Heat exchanger blocks 9 spanning common collector / distributor 71. Der Space between the end face of the heat exchanger block 9 and the Collector / distributor 71 is corresponding to areas 33, 43, 53 by separating plates 72 divided and each provided with a connecting piece.

Die Figuren 7 und 8 zeigen weitere Ausführungsformen der Erfindung. Diese Wärmeaustauscher kommen beispielsweise bei Luftzerlegungsverfahren zum Einsatz, bei denen bei der Niederdrucksäule auf den obersten Abschnitt verzichtet wurde, so dass in der Niederdrucksäule kein Niederdruckstickstoff 30 mehr erzeugt wird. Die Niederdruckströme reduzieren sich dadurch auf den Unreinstickstoff 40 und Sauerstoff 50. Damit kann der Hauptwärmeaustauscherblock 9 einfacher gestaltet werden. Die Wärmeaustauschpassagen für die Niederdruckströme 40, 50 werden, wie in den Figuren 7 und 8 gezeigt, erfindungsgemäß gestaltet, die Druckströme 10, 20, 60 werden in üblicher Weise über Verteilzonen auf die entsprechenden Wärmeaustauschpassagen verteilt.FIGS. 7 and 8 show further embodiments of the invention. This Heat exchangers are used for example in air separation processes, where the top section of the low pressure column has been omitted, so that no more low-pressure nitrogen 30 is generated in the low-pressure column. The As a result, low-pressure flows are reduced to impure nitrogen 40 and oxygen 50. The main heat exchanger block 9 can thus be made simpler. The Heat exchange passages for the low pressure streams 40, 50 are as in the FIGS. 7 and 8 shown, designed according to the invention, the pressure flows 10, 20, 60 are distributed over the corresponding zones in the usual way Heat exchange passages distributed.

Die Erfindung ist bei allen Luftzerlegungsverfahren, bei denen mindestens zwei Niederdruckströme vorkommen, mit Vorteil einsetzbar. So zum Beispiel bei Luftzerlegunsgverfahren mit Luftkreislauf oder mit Stickstoffkreislauf.The invention applies to all air separation processes in which at least two Low pressure flows occur, can be used with advantage. For example at Air separation process with air circulation or with nitrogen circulation.

In Figur 9 ist beispielhaft ein Tieftemperatur-Luftzerlegungsverfahren mit Ein-Turbinen-Luftkreislauf dargestellt. Die Einsatzluft 10 wird hierbei verdichtet und als Hochdruckluftstrom 90 in den Hautpwärmeaustauscher geführt. Ein Teil 91 der Hochdruckluft wird an einer Zwischenstelle von dem Wärmeaustauscher abgezogen, entspannt und zum Teil in die Drucksäule eingeleitet, zum anderen Teil 93 durch den Wärmeaustauscher 90 zurückgeführt und der Einsatzluft 10 wieder zugegeben. Der Rest der Hochdruckluft 90 wird als Hochdruckstrom 92 direkt in die Drucksäule geleitet.FIG. 9 shows an example of a low-temperature air separation process with a single-turbine air circuit shown. The feed air 10 is compressed and as High-pressure air flow 90 led into the skin heat exchanger. Part 91 of the High pressure air is drawn from the heat exchanger at an intermediate point, relaxed and partly introduced into the pressure column, the other part 93 through the Heat exchanger 90 returned and added to the feed air 10 again. The The rest of the high-pressure air 90 is passed as a high-pressure stream 92 directly into the pressure column.

In Figur 11 ist die erfindungsgemäße Ausführung des Wärmeaustauscherblocks 9 für ein derartiges Verfahren dargestellt. Die Niederdruckströme 30, 40, 50 werden wiederum durch die entsprechenden erfindungsgemäßen Teilbereiche des Blocks 9 geführt, die druckbehafteten Ströme 60, 90, 93 werden in bekannter Weise über Verteilzonen auf die Wärmeaustauschpassagen verteilt.In Figure 11, the inventive design of the heat exchanger block 9 for such a method is shown. The low pressure flows 30, 40, 50 are again through the corresponding partial areas of block 9 according to the invention performed, the pressurized streams 60, 90, 93 are in a known manner Distribution zones distributed over the heat exchange passages.

Figur 10 zeigt ein Luftzerlegungsverfahren mit Zwei-Turbinen-Luftkreislauf und Figur 12 die entsprechende Ausgestaltung des Hauptwärmeaustauschers 9. Die Wärmeaustauschpassagen für die Niederdruckströme 30, 40, 50 verlaufen analog zu der Ausführung gemäß Figur 11, die unter höherem Druck stehenden Ströme 101, 104, 105, 106 werden, wie in Figur 12 dargestellt, durch den Wärmeaustauscher geführt.FIG. 10 shows an air separation process with a two-turbine air circuit and FIG. 12 the corresponding design of the main heat exchanger 9. Die Heat exchange passages for the low pressure streams 30, 40, 50 run analogously to 11, the currents 101, 104 which are under higher pressure, 105, 106, as shown in FIG. 12, are passed through the heat exchanger.

Claims (10)

Plattenwärmeaustauscher zum indirekten Wärmeaustausch von mehreren Fluidströmen mit einem Wärme-/Kälteträger in einem Wärmeaustauscherblock, der eine Vielzahl von Wärmeaustauschpassagen für den Wärme-/Kälteträger, einen ersten Fluidstrom und einen zweiten Fluidstrom besitzt, dadurch gekennzeichnet, dass der Wärmeaustauscherblock (9) einen ersten Teilbereich aufweist, in dem alle Wärmeaustauschpassagen für den ersten Fluidstrom (40) angeordnet sind, und einen zweiten Teilbereich aufweist, in dem alle Wärmeaustauschpassagen für den zweiten Fluidstrom (30) angeordnet sind, wobei sich der erste und der zweite Teilbereich nicht überschneiden und sich der erste und der zweite Teilbereich jeweils über die gesamte Höhe des Wärmeaustauscherblocks (9) erstrecken, wobei die Höhe des Wärmeaustauscherblocks (9) dessen Ausdehnung in Richtung der Hauptströmung durch die Wärmeaustauschpassagen ist.Plate heat exchanger for the indirect heat exchange of several fluid streams with a heat / coolant in a heat exchanger block, which has a plurality of heat exchange passages for the heat / coolant, a first fluid stream and a second fluid stream, characterized in that the heat exchanger block (9) has a first partial area , in which all heat exchange passages for the first fluid flow (40) are arranged, and has a second partial area, in which all heat exchange passages for the second fluid flow (30) are arranged, the first and second partial areas not overlapping and the first and the second partial area each extend over the entire height of the heat exchanger block (9), the height of the heat exchanger block (9) being its extension in the direction of the main flow through the heat exchange passages. Plattenwärmeaustauscher nach Anspruch 1, dadurch gekennzeichnet, dass der Wärmeaustauscherblock (9) mehrere parallel zueinander angeordnete Trennplatten aufweist, zwischen denen sich die Wärmeaustauschpassagen für den Wärme-/Kälteträger (10, 20), den ersten Fluidstrom (30, 40, 50) und den zweiten Fluidstrom (30, 40, 50) befinden, und dass sich der erste und der zweite Teilbereich jeweils über die gesamte Tiefe des Wärmeaustauscherblocks (9) erstrecken, wobei die Tiefe des Wärmeaustauscherblocks (9) dessen Ausdehnung senkrecht zur Ebene der Trennplatten ist.Plate heat exchanger according to claim 1, characterized in that the heat exchanger block (9) has a plurality of separating plates arranged parallel to one another, between which there are the heat exchange passages for the heat / cooling medium (10, 20), the first fluid flow (30, 40, 50) and the second fluid flow (30, 40, 50), and that the first and the second partial area each extend over the entire depth of the heat exchanger block (9), the depth of the heat exchanger block (9) whose extent is perpendicular to the plane of the separating plates. Plattenwärmeaustauscher nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass der Wärmeaustauscherblock mehrere parallel zueinander angeordnete Trennplatten aufweist, zwischen denen sich die Wärmeaustauschpassagen für den Wärme-/Kälteträger, den ersten Fluidstrom und den zweiten Fluidstrom befinden, und dass sich der erste und der zweite Teilbereich jeweils über die gesamte Breite des Wärmeaustauscherblocks erstrecken, wobei die Breite des Wärmeaustauscherblocks dessen Ausdehnung in der Ebene der Trennplatten senkrecht zur Richtung der Strömung durch die Wärmeaustauschpassagen ist. Plate heat exchanger according to one of claims 1 or 2, characterized in that the heat exchanger block has a plurality of partition plates arranged in parallel to one another, between which the heat exchange passages for the heat / cooling medium, the first fluid stream and the second fluid stream are located, and that the first and the second partial area each extend over the entire width of the heat exchanger block, the width of the heat exchanger block being its extent in the plane of the separating plates perpendicular to the direction of flow through the heat exchange passages. Plattenwärmeaustauscher nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Wärmeaustauschpassagen für den Wärme-/Kälteträger (10, 20) im wesentlichen gleichmäßig über den gesamten Wärmeaustauscherblock (9) verteilt sind.Plate heat exchanger according to one of claims 1 to 3, characterized in that the heat exchange passages for the heat / cold medium (10, 20) are distributed substantially uniformly over the entire heat exchanger block (9). Verwendung eines Plattenwärmeaustauschers nach einem der Ansprüche 1 bis 4 als Hauptwärmeaustauscher einer Tieftemperaturluftzerlegungsanlage.Use of a plate heat exchanger according to one of claims 1 to 4 as the main heat exchanger of a cryogenic air separation plant. Verfahren zum indirekten Wärmeaustausch von mehreren Fluidströmen mit einem Wärme-/Kälteträger in einem Wärmeaustauscherblock, wobei der Wärme-/Kälteträger, ein erster Fluidstrom und ein zweiter Fluidstrom durch eine Vielzahl von Wärmeaustauschpassagen geleitet werden, dadurch gekennzeichnet, dass der erste Fluidstrom (30, 40, 50) nur durch einen ersten Teilbereich des Wärmeaustauscherblocks (9) geleitet wird und der zweite Fluidstrom (30, 40, 50) nur durch einen zweiten Teilbereich des Wärmeaustauscherblocks (9) geleitet wird, wobei sich der erste und der zweite Teilbereich nicht überschneiden und sich der erste und der zweite Teilbereich jeweils über die gesamte Höhe des Wärmeaustauscherblocks (9) erstrecken, wobei die Höhe des Wärmeaustauscherblocks (9) dessen Ausdehnung in Richtung der Hauptströmung durch die Wärmeaustauschpassagen ist.A method for the indirect heat exchange of multiple fluid streams with a heat / cold carrier in a heat exchanger block, the heat / cold carrier, a first fluid stream and a second fluid stream being passed through a plurality of heat exchange passages, characterized in that the first fluid stream (30, 40 , 50) is only passed through a first section of the heat exchanger block (9) and the second fluid stream (30, 40, 50) is only passed through a second section of the heat exchanger block (9), the first and second sections not overlapping and the first and the second partial area each extend over the entire height of the heat exchanger block (9), the height of the heat exchanger block (9) being its extension in the direction of the main flow through the heat exchange passages. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass der erste und der zweite Fluidstrom (30, 40, 50) jeweils einen Druck von weniger als 3,5 bar, bevorzugt zwischen 1,1 und 1,8 bar, aufweisen.A method according to claim 6, characterized in that the first and the second fluid stream (30, 40, 50) each have a pressure of less than 3.5 bar, preferably between 1.1 and 1.8 bar. Verfahren nach einem der Ansprüche 6 oder 7, dadurch gekennzeichnet, dass ein weiterer Fluidstrom mit einem Druck von mehr als 4 bar durch den Wärmeaustauscherblock geleitet wird.Method according to one of claims 6 or 7, characterized in that a further fluid stream with a pressure of more than 4 bar is passed through the heat exchanger block. Verfahren nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass die Fluidströme (30, 40, 50) durch Tieftemperaturzerlegung von Einsatzluft gewonnen werden. Method according to one of claims 6 to 8, characterized in that the fluid streams (30, 40, 50) are obtained by low-temperature decomposition of feed air. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die Fluidströme (30, 40, 50) mit der Einsatzluft (10, 20) in indirekten Wärmeaustausch gebracht werden.A method according to claim 9, characterized in that the fluid streams (30, 40, 50) are brought into indirect heat exchange with the feed air (10, 20).
EP02009896A 2002-01-18 2002-05-02 Plate-type heat exchanger Expired - Lifetime EP1329680B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10201832A DE10201832A1 (en) 2002-01-18 2002-01-18 Plate heat exchanger
DE10201832 2002-01-18

Publications (2)

Publication Number Publication Date
EP1329680A1 true EP1329680A1 (en) 2003-07-23
EP1329680B1 EP1329680B1 (en) 2011-01-26

Family

ID=7712498

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02009896A Expired - Lifetime EP1329680B1 (en) 2002-01-18 2002-05-02 Plate-type heat exchanger

Country Status (3)

Country Link
EP (1) EP1329680B1 (en)
AT (1) ATE497138T1 (en)
DE (2) DE10201832A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2645038A1 (en) * 2012-03-29 2013-10-02 Linde Aktiengesellschaft Plate heat exchanger with multiple modules connected with profiles
EP2645037A1 (en) * 2012-03-29 2013-10-02 Linde Aktiengesellschaft Plate heat exchanger with multiple modules connected with metal strips
WO2017074544A1 (en) * 2015-10-27 2017-05-04 Praxair Technology, Inc. System and method for providing refrigeration to a cryogenic separation unit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3282334A (en) * 1963-04-29 1966-11-01 Trane Co Heat exchanger
US3759322A (en) * 1970-10-01 1973-09-18 Linde Ag Heat exchanger
US4128410A (en) * 1974-02-25 1978-12-05 Gulf Oil Corporation Natural gas treatment
US5205351A (en) * 1991-04-03 1993-04-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for vaporizing a liquid, heat exchanger therefor, and application thereof to an apparatus for air distillation with a double column
US5979182A (en) * 1997-03-13 1999-11-09 Kabushiki Kaisha Kobe Seiko Sho Method of and apparatus for air separation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3282334A (en) * 1963-04-29 1966-11-01 Trane Co Heat exchanger
US3759322A (en) * 1970-10-01 1973-09-18 Linde Ag Heat exchanger
US4128410A (en) * 1974-02-25 1978-12-05 Gulf Oil Corporation Natural gas treatment
US5205351A (en) * 1991-04-03 1993-04-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for vaporizing a liquid, heat exchanger therefor, and application thereof to an apparatus for air distillation with a double column
US5979182A (en) * 1997-03-13 1999-11-09 Kabushiki Kaisha Kobe Seiko Sho Method of and apparatus for air separation

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2645038A1 (en) * 2012-03-29 2013-10-02 Linde Aktiengesellschaft Plate heat exchanger with multiple modules connected with profiles
EP2645037A1 (en) * 2012-03-29 2013-10-02 Linde Aktiengesellschaft Plate heat exchanger with multiple modules connected with metal strips
CN103363823A (en) * 2012-03-29 2013-10-23 林德股份公司 A plate heat exchanger with multiple modules connected with profiles
US9335102B2 (en) 2012-03-29 2016-05-10 Linde Aktiengesellschaft Plate heat exchanger with several modules connected by sheet-metal strips
CN103363823B (en) * 2012-03-29 2017-03-01 林德股份公司 There is the heat-exchangers of the plate type of the module of multiple section bar connections
US10605536B2 (en) 2012-03-29 2020-03-31 Linde Aktiengesellschaft Plate heat exchanger with several modules connected by sections
WO2017074544A1 (en) * 2015-10-27 2017-05-04 Praxair Technology, Inc. System and method for providing refrigeration to a cryogenic separation unit
US10295252B2 (en) 2015-10-27 2019-05-21 Praxair Technology, Inc. System and method for providing refrigeration to a cryogenic separation unit

Also Published As

Publication number Publication date
DE10201832A1 (en) 2003-07-31
DE50214880D1 (en) 2011-03-10
ATE497138T1 (en) 2011-02-15
EP1329680B1 (en) 2011-01-26

Similar Documents

Publication Publication Date Title
EP1150082A1 (en) Method and apparatus for heat exchange
EP0093448B1 (en) Process and apparatus for obtaining gaseous oxygen at elevated pressure
EP0669509B1 (en) Process and apparatus for obtaining pure argon
DE19605500C1 (en) Liquid oxygen generator process assembly
EP1666823A1 (en) Apparatus for the cryogenic separation of a gaseous mixture in particular of air
EP2859295B1 (en) Heat exchanger
EP1544559A1 (en) Process and device for the cryogenic separation of air
DE69933202T2 (en) Falling Film Evaporator as Condensation Evaporator
DE3107151C2 (en) Plant for liquefying and separating air
EP0768503B1 (en) Triple column air separation process
DE102018000842A1 (en) Process and apparatus for obtaining pressurized nitrogen by cryogenic separation of air
EP1329680B1 (en) Plate-type heat exchanger
WO2016058666A1 (en) Method and device for variably obtaining argon by means of low-temperature separation
EP1495274A1 (en) Method for extracting argon by low-temperature air separation
DE19939294A1 (en) Multi-level circulation condenser
EP0394758B1 (en) Heat exchanger
DE60019198T2 (en) Apparatus and method for air separation by cryogenic rectification
EP1037004A1 (en) Apparatus and process for gas mixture separation at low temperature
EP2865978A1 (en) Method for low-temperature air separation and low temperature air separation plant
DE102011113671A1 (en) Method for cryogenic separation of air in distillation column system for nitrogen-oxygen separation, involves using portion of overhead gas of high pressure column as heating fluid in low pressure column bottom reboiler
DE2518557B2 (en) Process for air separation with liquid generation by cryogenic rectification
DE4118468A1 (en) Separator column for sepg. contents of mixt. by rectification - useful for liq. hydrocarbon(s) of differing b.pt. from gas mixt. with run=off shaft in heat exchanger
EP0875304A2 (en) Method and cooling aggregate for cooling rolling stock at rolling-temperature, especially hot wide strip
DE4406049A1 (en) Fractional distillation system for pure argon from air
WO2023061621A1 (en) Method for the cryogenic separation of air, method for operating a steel plant, and air separation plant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20031210

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE AKTIENGESELLSCHAFT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50214880

Country of ref document: DE

Date of ref document: 20110310

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50214880

Country of ref document: DE

Effective date: 20110310

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110526

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110507

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110126

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110126

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110126

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110126

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110126

BERE Be: lapsed

Owner name: LINDE A.G.

Effective date: 20110531

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20111027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50214880

Country of ref document: DE

Effective date: 20111027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110126

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120502

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120502

Year of fee payment: 11

Ref country code: FR

Payment date: 20120608

Year of fee payment: 11

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 497138

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110126

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131203

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50214880

Country of ref document: DE

Effective date: 20131203

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531