EP1327108B1 - Pierre de protection thermique pour garnir une paroi de chambre de combustion, chambre de combustion et turbine a gaz - Google Patents

Pierre de protection thermique pour garnir une paroi de chambre de combustion, chambre de combustion et turbine a gaz Download PDF

Info

Publication number
EP1327108B1
EP1327108B1 EP01982399A EP01982399A EP1327108B1 EP 1327108 B1 EP1327108 B1 EP 1327108B1 EP 01982399 A EP01982399 A EP 01982399A EP 01982399 A EP01982399 A EP 01982399A EP 1327108 B1 EP1327108 B1 EP 1327108B1
Authority
EP
European Patent Office
Prior art keywords
heat shield
side region
hot
wall
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01982399A
Other languages
German (de)
English (en)
Other versions
EP1327108A1 (fr
Inventor
Christine Taut
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP01982399A priority Critical patent/EP1327108B1/fr
Publication of EP1327108A1 publication Critical patent/EP1327108A1/fr
Application granted granted Critical
Publication of EP1327108B1 publication Critical patent/EP1327108B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/007Continuous combustion chambers using liquid or gaseous fuel constructed mainly of ceramic components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M2900/00Special features of, or arrangements for combustion chambers
    • F23M2900/05004Special materials for walls or lining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12458All metal or with adjacent metals having composition, density, or hardness gradient

Definitions

  • FGM Functional Gradient Material
  • the object of the invention is to provide an improved heat shield brick, in particular for lining a combustion chamber wall.
  • the heat shield brick is intended, in particular with regard to the different requirements on hot medium, e.g. a hot gas, exposable hot side and the opposite side of the hot side, be configured.
  • Another object of the invention is to provide a combustion chamber with an inner combustion liner and a gas turbine.
  • the invention is based on the observation that the requirements for heat shield bricks on the hot side and the hot side opposite wall side are different.
  • the heat shield stones become used for example in combustion chambers of stationary gas turbines and serve the thermal insulation of the usually metallic combustion chamber wall.
  • a heat shield brick is fastened with its wall side adjacent to a support structure on the combustion chamber wall.
  • the hot side is exposed to a hot medium, for example the hot combustion gas. Due to the conditions of use are therefore placed on the hot side of the heat shield bricks substantially different requirements than the contrast, much colder wall side.
  • the hot side of the heat shield bricks is subjected to high stress by fast flowing, corrosive, hot gases with typical temperatures of about 1500 ° C.
  • by loading and unloading operations of the gas turbine often abrupt temperature changes of up to 1000 ° C must be endured.
  • the lifetimes of the stones, which are aimed at under these conditions, are around 50,000 operating hours.
  • the relevant critical areas namely the hot side area adjoining the hot side and the wall side area of the heat shield block adjoining the wall side, are specifically adapted to the respective requirements with respect to their structure.
  • the particle size distribution in the hot side region and in the wall side region is adapted to the respective thermomechanical load in a region-specific manner.
  • the grain size is set in the wall side region and in the hot side region, wherein on average the particle size in the wall side region is smaller than in the hot side region.
  • the invention is thus characterized by a high degree of flexibility, since the relevant parameter, namely the particle size distribution or the arithmetic mean thereof, is a structural parameter which can be influenced a priori independently of the chemical composition and thus adjustable with respect to the abovementioned requirements ,
  • the particle size in the wall-side region is preferably smaller by about a factor of 0.4 to 0.9, in particular a factor of 0.6 to 0.8, than in the hot-side region.
  • the grain size in the hot side region and in the wall side region is adjustable relative to each other, so that one is largely independent of absolute dimensions of the heat shield stone and the relevant load areas (hot side area, wall side area).
  • the grain size in the wall side region is between about 0.6 mm and 1.4 mm. In particular, on average, the grain size in the wall side region is smaller than about 1.2 mm.
  • the number of layers is preferably about 5 to 30, in particular about 10 to 20.
  • the production of such a heat shield block with a grain size adjusted structure gradients can be such that a powder with a base material for the heat shield stone, such as a ceramic or other refractory material, one above the other is poured into layers to form a bed, and that correspond to the bed subsequently is sintered and sintered to the heat gradient stone having a structure gradient, wherein on average the grain size in the wall side region is smaller than in the hot side region and according to the number of layers, a gradual adjustment of the grain size takes place.
  • a powder with a base material for the heat shield stone such as a ceramic or other refractory material
  • the grain size changes substantially continuously.
  • a continuous change in the grain size is particularly advantageous because it virtually prevents any abrupt changes in the relevant material properties in the transition from the wall side region to the hot side region. By a correspondingly high number of layers, a quasi-continuous adjustment can be achieved.
  • a continuous or quasi-continuous transition of the particle size distribution (mean value of the grain size diameter distribution) can take place, for example, in a linear function.
  • higher-order polynomials or other continuous or continuously differentiable functions can also achieve this transition.
  • the choice is suitably made depending on load case and load history from the hot side to the wall side of the heat shield block and apply corresponding functions for the adaptation of the transition.
  • the heat shield brick is composed of at least two substances, with a first substance and with a second substance different therefrom.
  • heat shield bricks which consist at least of a two-substance mixture, can advantageously also be designed according to the concept of the invention with a range-specific grain size adaptation.
  • heat shield stones which are composed of more than two chemical compounds structurable in terms of their particle size distribution.
  • the concentration of the first substance in the wall side region is preferably greater than in the hot side region.
  • the advantages of a structural adjustment of the grain size in the hot side region and in the wall side region are advantageously combined with a chemical adaptation with regard to the concentration of the first substance in the wall side region and in the hot side region.
  • the structural gradation occurs in dual-substance mixtures a chemical grading, which is like the structural also gradual with a layer system or substantially continuously feasible from the hot side region in the wall side region.
  • the first material with the higher concentration in the wall side region than in the hot side region, advantageously has properties that increase the strength in the wall side region compared to the strength in the hot side region, because of the requirements, for example, when using the heat shield stone in the combustion chamber of a gas turbine, the wall side area Strength requires.
  • the strength requirement in the hot side region is of minor importance compared to the thermal shock resistance in the hot side region. Therefore, the concentration of the first substance in the hot side region is preferable to be set lower with respect to the cold side region. Adjustment of concentration, d. H. the concentration gradient of the first substance and / or of the second substance advantageously takes place gradually in corresponding layers or is adapted in a continuous manner.
  • the first substance is an oxide and the second substance is a silicate, in particular a silicate ceramic.
  • the first material is alumina Al 2 O 3 and the second material is aluminum silicate 3Al 2 O 3 • 2SiO 2 .
  • Heat-shielding bricks of a quality which contain aluminum silicate 3Al 2 O 3 .2SiO 2 and aluminum oxide Al 2 O 3 are particularly suitable for use under the conditions described above.
  • the alumina can be introduced as corundum (coarsely crystalline).
  • Aluminum oxide forms a lot hard, colorless crystals and has a high melting point at 2050 ° C. Therefore, it is particularly suitable for high temperature applications as part of a heat shield brick.
  • Aluminum silicate 3Al 2 O 3 • 2SiO 2 also referred to as mullite, is formed, for example, by firing (heating) of molded, moist clay, possibly with additions of quartz sand and feldspar, to sintering or melting.
  • Heat-shielded bricks, which comprise at least aluminum oxide and aluminum silicate, are readily adaptable with regard to the particle size in the hot-side region and in the wall-side region and with regard to the concentration proportions of the two substances.
  • the mullite content may be lower in the wall side area than in the hot side area compared to the aluminum oxide content.
  • the mullite portion in the wall side region may be significantly smaller than the aluminum oxide content.
  • the aluminum oxide content in the wall side region may be the dominant component in the composition of the heat shield brick.
  • the wall-side region may consist predominantly of aluminum oxide, in particular almost exclusively of aluminum oxide.
  • the mullite content is greater than the alumina content.
  • the mullite content is so much greater than the alumina content that, in particular, the mullite content is the dominant constituent of the heat shield stone in the hot side region.
  • the hot side region consists almost exclusively of mullite.
  • a heat shield brick preferably designed with a dominant mullite content in the hot side region and a dominant aluminum oxide content in the wall side region has high strength in the wall side region with simultaneously high thermal shock resistance in the hot side region.
  • the first material is a ceramic and the second material is a metal.
  • the first material is a ceramic and the second material is a metal.
  • the object directed to a combustion chamber is achieved according to the invention by a combustion chamber with an inner combustion chamber lining, which has heat shield stones according to the above statements.
  • the object directed to a gas turbine is achieved according to the invention by a gas turbine with such a heat shield block having combustion chamber.
  • the heat shield brick 1 has a cuboid geometry, with a hot side 3 and a hot side opposite wall side 5. On the hot side 3 is adjacent to a hot side region 7. On the wall side 5 adjoins a wall side region 9. The hot side region 7 and the wall side region 9 respectively extend from the hot side 3 and the wall side 5 into the interior of the cuboid heat shield stone 1.
  • the material of which the heat shield stone 1 is composed is in the wall side region 9 and in the hot side region 7 a respective particle size distribution. In this case, the particle size distribution is set so that on average the particle size D in the wall side region 9 is smaller than in the hot side region 7.
  • This structural design of the heat shield stone 1 this is adapted to the thermomechanical requirements area specific.
  • the heat shield block 1 when used in a combustion chamber, for example a combustion chamber of a gas turbine, the requirements for the heat shield block 1 in the hot side area 7 and the wall side area 9 are different.
  • the partially competing requirements in the hot side region 7 and in the wall side region 9 equally largely met and compared to conventionally designed heat shield bricks 1 significant improvements can be achieved.
  • the heat shield brick 1 is therefore designed for high-temperature applications and for exposure to a corrosive, hot medium, for example a hot gas, with temperatures of up to 1500 ° C.
  • FIGS. 2 and 3 In order to illustrate the different grain sizes in the hot side region 7 and in the cold side region 9, details II and III are shown in enlarged view in FIGS. 2 and 3, respectively.
  • the details X1, X2 are in this case increased by approximately the same factor compared to the representation in FIG. 2 shows the detail II, ie an enlarged section of the hot side region 7 of the heat shield block 1.
  • the hot side region 7 has a grain structure with a plurality of adjacent grains 21, 23.
  • the ensemble of a plurality of grains 21, 23 can be examined with respect to the grain size D, ie, the grain size diameter.
  • the grain size in the hot side region 7 on average has a size D H.
  • the grain structure in the wall side region 9 has a plurality of grains 25, 27 which adjoin one another and form a structure in the wall side region 9.
  • the grain size D W in the wall side region 9 is smaller than the grain size D H in the hot side region 7.
  • FIG. 4 shows a detail of a schematic side view of a heat shield block 1.
  • FIG. 5 shows a better comparison in this context.
  • layers 11A to 11F are provided.
  • the hot side region 7 comprises a layer 11A assigned to the hot side 3
  • the wall side region 9 comprises a the wall side 5 associated layer 11F comprises.
  • the heat shield brick 1 is in this case composed of at least two substances 17, 19, wherein a first substance 17 and one of which different second substance 19 is incorporated in the heat shield brick 1.
  • FIG. 5 shows a diagram which graphically illustrates the mean grain size D along the direction 13 from the hot side 3 to the wall side 7 (vertical axis).
  • the layer sequence of the layers 11A to 11F is illustrated along the direction axis 13.
  • the grain size D is plotted along the axis 15 (horizontal axis).
  • the heat-shielding brick 1 In the heat-side region 7 comprising the layer 11A, the heat-shielding brick 1 has a particle size D H.
  • the heat shield brick 1 In the wall side region 9 comprising the layer 11F, the heat shield brick 1 has a mean grain size D W.
  • the grain size D W is smaller than the grain size D H.
  • a respective grain size D is set.
  • the grain size D decreases in layers from the hot side 3 to the wall side 5.
  • a gradual, in particular step-shaped, adaptation of the grain size D is achieved, as a result of which the relevant material properties of the heat shield block 1, eg strength, thermal conductivity, ductility, etc. are also affected. are gradually matched to each other.
  • the relevant material properties of the heat shield block 1, eg strength, thermal conductivity, ductility, etc. are also affected. are gradually matched to each other.
  • abrupt changes in properties are avoided and the resilience and efficiency of the heat shield stone 1 forming material significantly increased.
  • FIG. 5 shows in simplified form possible variants for the course of the grain size D as a function of the layer sequence 11A to 11F.
  • the curve T 1 in this case provides an image of a gradual, in particular stepped, adaptation of the grain size D from the smaller grain size D W to the larger grain size D H , as they are set in the areas 7, 9 respectively.
  • layers 11A to 11F it is also possible to change the adaptation of the grain size D along a direction 13 from the hot side 3 to the wall side 9 by a continuous, but at least a quasi-continuous function.
  • a further curve T 2 is shown in the diagram of FIG.
  • the curve T 2 represents a linear adjustment along the direction axis 13.
  • the grain size D is changed from the hot side region 7 to the wall side region 9 along the direction axis 13 linearly from D H to D W.
  • the curves T 1 and T 2 but other adjustments of the grain size D along the direction axis 13 are possible.
  • adjustments by means of polynomials of higher order or optionally other continuous or continuously differentiable functions are possible. This is load-dependent and depending on the thermo-mechanical requirements for the heat shield stone 1 each adaptable.
  • an adjustment of the concentrations of the chemical constituents, namely the first substance 17 and the second substance 19 in the heat shield stone 1 can be adjusted.
  • a high thermal shock resistance in the hot side region 7 with a high strength in the wall side region 9 can be achieved.
  • Alumina Al 2 O 3 for example, is used as the first substance 17, while mullite 19 is used as the second substance.
  • the concentration of the first substance 17 and / or of the second substance 19 along the direction axis 13 can change from the wall side 3 to the hot side 5 in a manner adapted to the load.
  • the hot side 3 When used in a gas turbine, for example, the hot side 3 is exposed to a hot aggressive medium, the hot gas, and the concentration of the first material 17, for example alumina Al 2 O 3 , set in the wall side region 9 greater than in the hot side region 7.
  • the concentration of the second material 19, for example, mullite is the Concentration of the second material 19, for example, mullite, greater than the concentration of the first substance 17 (eg alumina Al 2 O 3 ).
  • the concentration of the first substance 17, for example aluminum oxide Al 2 O 3 in the wall side region 9 can be almost 100%, while in the hot side region 7 the concentration of the second material 19, eg mullite, is almost 100%.
  • FIG. 6 shows in highly schematic form and simplified in a longitudinal section a gas turbine 31.
  • a turbine axis 33 are arranged successively: a compressor 35, a combustion chamber 37 and a turbine part 39.
  • the combustion chamber 37 is lined with a combustion chamber lining 41.
  • the combustion chamber 37 has a combustion chamber wall 43. Through the combustion chamber wall 43, a support structure 45 is formed.
  • the combustion chamber 37 has heat shield stones 1, 1A, 1B according to the above explanations. In this case, the heat shield bricks 1, 1A, 1B with their wall side 5 of the support structure 45 facing to the support structure 45 by means of suitable fasteners, not shown, fastened.
  • the heat shield bricks 1, 1A, 1B are acted upon at least with their respective hot side 3 by a hot medium M, the hot gas of the gas turbine.
  • significant vibrations may occur, for example due to combustion chamber hum.
  • jerky acoustic combustion chamber vibrations with large vibration amplitudes can occur.
  • These vibrations lead to a considerable stress on the combustion chamber lining 41.
  • Both the support structure 45 and the heat shield bricks 1, 1A, 1B are affected.
  • shocks, especially the heat shield stones 1A, 1B are at risk, especially because of the risk of breakage.
  • the heat shields 1, 1A, 1B are particularly highly thermally stressed, in particular on the acted upon with the hot gas M hot side 3.
  • the design of the heat shields 1, 1A, 1B with a range specific load adjustment of the grain size D preferably also in addition
  • a heat shield brick 1, 1A, 1B adapted to the requirements is installed in the combustion chamber 37. This results in a particularly high insensitivity of the combustion chamber lining 41 against impacts or vibrations or temperature load, in particular thermal cycling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

L'invention concerne une pierre de protection thermique (1, 1A, 1B) particulièrement destinée à la garniture d'une paroi de chambre de combustion (43). Ladite pierre comporte un côté chaleur (3), pouvant être exposé à un milieu chaud (M), et un côté paroi (5) opposé au côté chaleur (3). Le côté chaleur (3) est contigu avec une zone côté chaleur (7). Le côté paroi (5) est contigu avec une zone côté paroi (9). L'invention est caractérisée en ce que la grosseur moyenne du grain (D) de la zone côté paroi (9) est inférieure à celle de la zone côté chaleur (7).

Claims (14)

  1. Brique (1, 1A, 1B) de bouclier thermique pour le garnissage d'une paroi (43) de chambre de combustion, ayant une face (3) chaude pouvant être soumise à un fluide (M) chaud et une face (5) de paroi opposée à la face (3) chaude et ayant une zone (7) de face chaude voisine de la face (3) chaude, ainsi qu'une zone (9) de face de paroi voisine de la face (5) de paroi,
    caractérisée en ce qu'en moyenne, la granulométrie (D) dans la zone (9) de face de paroi est plus petite que dans la zone (7) de face chaude.
  2. Brique (1, 1A, 1B) de bouclier thermique suivant la revendication 1,
    caractérisée en ce que la granulométrie (D) dans la zone (9) de face de paroi est plus petite d'environ un facteur de 0,4 à 0,9, notamment d'un facteur de 0,6 à 0,8, que dans la zone (7) de face chaude.
  3. Brique (1, 1A, 1B) de bouclier thermique suivant la revendication 1 ou 2,
    caractérisée en ce qu'en moyenne, la granulométrie (D) dans la zone (7) de face chaude est comprise entre environ 1,5 mm et 3,5 mm, en étant plus grande notamment qu'environ 2 mm.
  4. Brique (1, 1A, 1B) de bouclier thermique suivant la revendication 1, 2 ou 3,
    caractérisée en ce qu'en moyenne, la granulométrie (D) dans la zone (9) de face de paroi est comprise entre environ 0,6 mm et 1,4 mm, en étant plus petite notamment qu'environ 1,2 mm.
  5. Brique (1, 1A, 1B) de bouclier thermique suivant l'une des revendications précédentes,
    caractérisée en ce qu'il est prévu des couches (11A, 11B, 11C) de granulométrie (D) décroissante le long d'une direction (13) allant de la face (3) chaude à la face (5) de paroi.
  6. Brique (1, 1A, 1B) de bouclier thermique suivant la revendication 5,
    caractérisée en ce que le nombre des couches (11A, 11B, 11C) est compris entre 5 et 30, et notamment entre environ 10 et 20.
  7. Brique (1, 1A, 1B) de bouclier thermique suivant l'une des revendications 1 à 4,
    caractérisée en ce que la granulométrie (D) se modifie d'une manière sensiblement continue dans une direction (13) allant de la face (3) chaude à la face (5) de paroi.
  8. Brique (1, 1A, 1B) de bouclier thermique suivant l'une des revendications précédentes,
    caractérisée en ce qu'elle est composée d'au moins deux matières (17, 19), en ayant une première matière (17) et une deuxième matière (19) qui en est différente.
  9. Brique (1, 1A, 1B) de bouclier thermique suivant la revendication 8,
    caractérisée en ce que la concentration de la première matière (17) est plus grande dans la zone (9) de face de paroi que dans la zone (7) de face chaude.
  10. Brique (1, 1A, 1B) de bouclier thermique suivant la revendication 8 ou 9,
    caractérisée en ce que la première matière (17) est un oxyde et la deuxième matière (19) est un silicate, notamment une céramique en silicate.
  11. Brique (1, 1A, 1B) de bouclier thermique suivant l'une des revendications 8 à 10,
    caractérisée en ce que la première matière (17) est de l'oxyde d'aluminium Al2O3 et la deuxième matière (19) est du silicate d'aluminium 3Al2O3, 2SiO2.
  12. Brique (1, 1A, 1B) de bouclier thermique suivant la revendication 8 ou 9,
    caractérisée en ce que la première matière (17) est une céramique et la deuxième matière (19) est un métal.
  13. Chambre de combustion (37) ayant un garnissage intérieur de chambre de combustion qui a des briques (1, 1A, 1B) de bouclier thermique suivant l'une des revendications précédentes.
  14. Turbine (31) à gaz ayant une chambre de combustion (37) suivant la revendication 13.
EP01982399A 2000-10-16 2001-10-04 Pierre de protection thermique pour garnir une paroi de chambre de combustion, chambre de combustion et turbine a gaz Expired - Lifetime EP1327108B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP01982399A EP1327108B1 (fr) 2000-10-16 2001-10-04 Pierre de protection thermique pour garnir une paroi de chambre de combustion, chambre de combustion et turbine a gaz

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP00122553 2000-10-16
EP00122553A EP1199520A1 (fr) 2000-10-16 2000-10-16 Bouclier thermique pour parois de chambre de combustion, chambre de combustion et turbine à gaz
PCT/EP2001/011471 WO2002033322A1 (fr) 2000-10-16 2001-10-04 Pierre de protection thermique pour garnir une paroi de chambre de combustion, chambre de combustion et turbine a gaz
EP01982399A EP1327108B1 (fr) 2000-10-16 2001-10-04 Pierre de protection thermique pour garnir une paroi de chambre de combustion, chambre de combustion et turbine a gaz

Publications (2)

Publication Number Publication Date
EP1327108A1 EP1327108A1 (fr) 2003-07-16
EP1327108B1 true EP1327108B1 (fr) 2007-05-02

Family

ID=8170106

Family Applications (2)

Application Number Title Priority Date Filing Date
EP00122553A Withdrawn EP1199520A1 (fr) 2000-10-16 2000-10-16 Bouclier thermique pour parois de chambre de combustion, chambre de combustion et turbine à gaz
EP01982399A Expired - Lifetime EP1327108B1 (fr) 2000-10-16 2001-10-04 Pierre de protection thermique pour garnir une paroi de chambre de combustion, chambre de combustion et turbine a gaz

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP00122553A Withdrawn EP1199520A1 (fr) 2000-10-16 2000-10-16 Bouclier thermique pour parois de chambre de combustion, chambre de combustion et turbine à gaz

Country Status (5)

Country Link
US (1) US7540155B2 (fr)
EP (2) EP1199520A1 (fr)
JP (1) JP3999654B2 (fr)
DE (1) DE50112458D1 (fr)
WO (1) WO2002033322A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2559678A1 (fr) * 2011-08-16 2013-02-20 Siemens Aktiengesellschaft Barbotine de coulée sous pression et céramique ignifuge ainsi fabriquée pour installations de turbines à gaz

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1191285A1 (fr) * 2000-09-22 2002-03-27 Siemens Aktiengesellschaft Bouclier thérmique , chambre de combustion avec garnissage interne et turbine à gaz
EP1508761A1 (fr) * 2003-08-22 2005-02-23 Siemens Aktiengesellschaft Pierre servant de bouclier thermique pour garnir une paroi de chambre de combustion, chambre de combustion et turbine a gaz correspondantes
US7690207B2 (en) * 2004-08-24 2010-04-06 Pratt & Whitney Canada Corp. Gas turbine floating collar arrangement
US8522559B2 (en) * 2004-12-01 2013-09-03 Siemens Aktiengesellschaft Heat shield element, method and mold for the production thereof, hot-gas lining and combustion chamber
EP1666797A1 (fr) * 2004-12-01 2006-06-07 Siemens Aktiengesellschaft Elément de bouclier thermique, son procédé de fabrication, bouclier thermique et chambre de combustion
WO2008017551A2 (fr) * 2006-08-07 2008-02-14 Alstom Technology Ltd Chambre de combustion d'une installation d'incinération
EP2049840B1 (fr) * 2006-08-07 2018-04-11 Ansaldo Energia IP UK Limited Chambre de combustion d'une installation de combustion
US10451280B2 (en) * 2015-02-16 2019-10-22 United Technologies Corporation Combustor panel having material transition region
DE102018217059A1 (de) * 2018-10-05 2020-04-09 Friedrich-Alexander-Universität Erlangen-Nürnberg Multilayer-Keramik für den Einsatz in Gasturbinen

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH602237A5 (fr) * 1974-12-23 1978-07-31 Bbc Brown Boveri & Cie
DE2550858C3 (de) * 1975-11-12 1978-09-28 8000 Muenchen Verfahren zur Herstellung und/oder Wärmebehandlung von metallischen Form-
US4401480A (en) * 1978-12-15 1983-08-30 Westinghouse Electric Corp. Method of selective grain growth in nickel-base superalloys by controlled boron diffusion
US4321311A (en) 1980-01-07 1982-03-23 United Technologies Corporation Columnar grain ceramic thermal barrier coatings
SE442487B (sv) * 1984-05-24 1986-01-13 Hoeganaes Ab Forfarande for framstellning av en sintrad kompositkropp
US4641588A (en) * 1985-07-08 1987-02-10 Columbia Gas System Service Corp. Heat shield
DE3543802A1 (de) * 1985-12-12 1987-06-19 Bbc Brown Boveri & Cie Hochtemperatur-schutzschicht und verfahren zu ihrer herstellung
US4768445A (en) * 1986-10-17 1988-09-06 Man Gutehoffnungshutte Gmbh Waste incinerator construction
DE3638658C1 (de) * 1986-11-12 1988-04-21 Daimler Benz Ag Waermedaemmende Auskleidung fuer eine Gasturbine
FR2664585B1 (fr) * 1990-07-13 1993-08-06 Europ Propulsion Structures refractaires refroidies et procede pour leur fabrication.
DE59005482D1 (de) * 1990-07-17 1994-05-26 Siemens Ag Rohrstück, insbesondere Flammrohr, mit gekühltem Stützrahmen für eine hitzefeste Auskleidung.
DE4443864A1 (de) * 1994-12-09 1996-06-13 Abb Management Ag Gek}hltes Wandteil
US5625153A (en) * 1994-12-19 1997-04-29 Hitachi, Ltd. Method of non-destructively estimating life of ceramic member
EP0984839B1 (fr) * 1997-05-28 2002-03-20 Siemens Aktiengesellschaft Materiau a gradient d'indice metal-ceramique, produit realise a partir dudit materiau et procede pour produire un materiau a gradient d'indice metal-ceramique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2559678A1 (fr) * 2011-08-16 2013-02-20 Siemens Aktiengesellschaft Barbotine de coulée sous pression et céramique ignifuge ainsi fabriquée pour installations de turbines à gaz
WO2013023913A3 (fr) * 2011-08-16 2013-05-16 Siemens Aktiengesellschaft Barbotine pour coulée sous pression et céramique réfractaire produite à partir de cette dernière et destinée à des systèmes de turbines à gaz
US9221718B2 (en) 2011-08-16 2015-12-29 Siemens Aktiengesellschaft Pressure casting slip and refractory ceramic produced therefrom for gas turbine units

Also Published As

Publication number Publication date
US20040050060A1 (en) 2004-03-18
JP2004511751A (ja) 2004-04-15
US7540155B2 (en) 2009-06-02
EP1199520A1 (fr) 2002-04-24
DE50112458D1 (de) 2007-06-14
WO2002033322A1 (fr) 2002-04-25
EP1327108A1 (fr) 2003-07-16
JP3999654B2 (ja) 2007-10-31

Similar Documents

Publication Publication Date Title
EP0984839B1 (fr) Materiau a gradient d'indice metal-ceramique, produit realise a partir dudit materiau et procede pour produire un materiau a gradient d'indice metal-ceramique
EP2329195B1 (fr) Mélange de matière destiné à la fabrication d'une matière ignifuge, corps ignifuge et son procédé de fabrication
DE60224691T2 (de) Keramisches hybridmaterial aus keramischen isolier- und konstruktionsschichten
EP1708846B1 (fr) Procede pour reparer un composant d'une turbomachine
DE60003233T2 (de) Abrasions- und hochtemperaturbeständige beschichtung und material, das verdichtete geometrische hohlkörper enthält
EP1327108B1 (fr) Pierre de protection thermique pour garnir une paroi de chambre de combustion, chambre de combustion et turbine a gaz
EP1084997A2 (fr) Matériau composite à matrice céramique renforcé par des faisceaux de fibres
WO2010034529A1 (fr) Composition de matière pour réaliser un matériau ignifuge et son utilisation, et corps moulé ignifuge et procédé pour le réaliser
WO2005043058A2 (fr) Element d'ecran thermique destine notamment a la garniture d'une paroi d'une chambre de combustion
DE112007000923B4 (de) Verbundwerkstoff aus Metall und Keramik, Verfahren zu dessen Herstellung, seine Verwendung sowie Energieabsorptionsbauteil
DE4039530A1 (de) Reaktionsgebundener mullit-haltiger keramikformkoerper, seine herstellung und seine verwendung
EP1741980A1 (fr) Elément en céramique avec surface résistante au gaz chauds et procédé de fabrication
EP2999677B1 (fr) Procede de reduction de la dilatation reversible d'un objet refractaire contenant du graphite
EP2057106B1 (fr) Produit refractaire cuit
DE3301913C2 (de) Kolbenring für eine Brennkraftmaschine
DE2707835A1 (de) Keramikgegenstaende und verfahren zu deren herstellung
DE102004056012B4 (de) Verfahren zur Herstellung eines keramischen Formteils mit einer dreidimensionalen Netzstruktur
DE19708249A1 (de) Auf Si/SiC basierendes gesintertes Material mit ausgezeichneter Korrosionsbeständigkeit sowie ein Brennhilfsmittel
WO2014094009A1 (fr) Système de bouclier thermique
DE3427722C2 (fr)
EP1660833A2 (fr) Pierre servant de bouclier thermique pour garnir une paroi de chambre de combustion, chambre de combustion et turbine a gaz correspondantes
DE10122886B4 (de) Bearbeitungskörper mit eingegossenem Hartstoffkörper zum Zerkleinern eines Aufgabeguts
DE102013009902B4 (de) Thermoschockbeständiger Keramikwerkstoff bestehend aus Al203 mit TiO2-Zusätzen
DE2627912B2 (de) Poröser Hochtemperatur-Konstruktionswerkstoff
Petzow Gefügeoptimierung von Hochtechnologie-Keramiken/The Optimisation of the Microstructure of High Technology Ceramics

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030318

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50112458

Country of ref document: DE

Date of ref document: 20070614

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070628

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080205

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20151027

Year of fee payment: 15

Ref country code: GB

Payment date: 20151005

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20151016

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20151218

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50112458

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161004

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170503

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161004

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161004