EP1326484A2 - Betriebsgerät für Gasentladungslampen - Google Patents

Betriebsgerät für Gasentladungslampen Download PDF

Info

Publication number
EP1326484A2
EP1326484A2 EP02027137A EP02027137A EP1326484A2 EP 1326484 A2 EP1326484 A2 EP 1326484A2 EP 02027137 A EP02027137 A EP 02027137A EP 02027137 A EP02027137 A EP 02027137A EP 1326484 A2 EP1326484 A2 EP 1326484A2
Authority
EP
European Patent Office
Prior art keywords
voltage
diode
operating device
bridge
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02027137A
Other languages
English (en)
French (fr)
Other versions
EP1326484A3 (de
EP1326484B1 (de
Inventor
Bernd Rudolph
Arwed Storm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of EP1326484A2 publication Critical patent/EP1326484A2/de
Publication of EP1326484A3 publication Critical patent/EP1326484A3/de
Application granted granted Critical
Publication of EP1326484B1 publication Critical patent/EP1326484B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • H05B41/2825Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a bridge converter in the final stage
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S315/00Electric lamp and discharge devices: systems
    • Y10S315/07Starting and control circuits for gas discharge lamp using transistors

Definitions

  • the invention relates to an operating device for gas discharge lamps according to the preamble of claim 1. It is in particular an improvement of the half-bridge inverter contained in the control gear and its Control. Furthermore, the invention deals with the simplification of a shutdown device of the control gear and an inexpensive power factor correction of the electricity consumed by the grid.
  • This control gear contains one self-oscillating half-bridge inverter, which consists of a DC voltage high frequency AC voltage is generated by an upper and a lower in series switched half-bridge transistors can be switched on and off alternately.
  • the DC voltage is mostly with the help of a bridge rectifier consisting of four Rectifier diodes, generated from the mains voltage.
  • Self-swinging means in this connection that the control of the half-bridge transistors from one Load circuit is gained and no independently oscillating oscillator circuit is provided to generate said control. The is preferred said control obtained with the help of a current transformer.
  • a Primary winding of the current transformer is arranged in the load circuit and is from flowed through a load current, which are essentially equated to the current Flowed through the load current, which can essentially be equated to the current, which the half-bridge inverter delivers.
  • One secondary winding each of the current transformer is arranged in two control circuits, each with a signal generate, which is supplied to the control electrodes of the half-bridge transistors.
  • the Load circuit is connected at the junction of the half-bridge transistors.
  • the main component of the load circuit is a lamp choke, to which via terminal connections Gas discharge lamps can be connected in series. It is also possible to connect several load circuits in parallel; the primary winding should then be arranged that the sum of all load circuits flows through it.
  • a feedback signal is generated which corresponds to the Load current is substantially proportional.
  • the secondary windings ideally short-circuited, in practice low-impedance. Otherwise, either appear in the current transformer, or the primary winding has an undesirably large influence on the load circuit.
  • bipolar transistors are used for the half-bridge transistors used, which get their control from the secondary windings.
  • the base connection of the bipolar transistors, which is used as the control electrode is of course low-impedance enough to Avoid effects.
  • the voltage drop at the secondary windings represents under the above conditions is a measure of the load current and forms feedback signals in the prior art. These are each fed to a timer, which in the simplest case comes from the series connection a time capacitor and a time resistor. Is the respective one Time capacitor charged to an integration value that is sufficient to one To control the turn-off transistor, the respective half-bridge transistor is turned off.
  • the amplitude of the load current is limited in the prior art. This happens via a first voltage threshold switch, which is parallel to the respective time resistor is switched. If the load current rises above a predetermined one Dimension, the respective feedback signal reaches a value that corresponds to the respective can break through the first voltage threshold switch and thus to the immediate Turning off the respective half-bridge transistor leads.
  • MOSFET MOS field effect transistors
  • the problem underlying this problem essentially includes the provision of a control signal for the semiconductor switches, that is proportional to the load current.
  • bipolar transistors are increasingly being controlled by voltage Semiconductor switches such as MOSFET and IGBT replaced.
  • the control circuits each have a second voltage threshold switch equipped, which has a second voltage threshold and in a parallel connection to the secondary winding comes to rest.
  • the second voltage threshold switch consists of the series connection of a Zener diode and a current measuring resistor, the zener diode having a zener voltage has, which corresponds to the second voltage threshold. The tension increases on the secondary winding starting at zero, so is the second voltage threshold switch initially ineffective.
  • the zener diode When the second voltage threshold is reached the zener diode begins to conduct and closes the secondary winding as required from low resistance.
  • the value of the second voltage threshold must be lower be as a threshold voltage which is the voltage controlled semiconductor switch required at least as control.
  • the current measuring resistor When dimensioning the current measuring resistor there are two conditions to be met. On the one hand, the value of the Current measurement resistance to be small enough for a low-resistance termination of the Secondary winding is guaranteed. On the other hand, the value of the current measuring resistor be large enough so that the voltage on the secondary winding continues up can rise to the first voltage threshold.
  • the voltage across the current measuring resistor is natural a measure of the load current.
  • the voltage at the current measuring resistor can thereby be used according to the invention for the detection of an error.
  • she is supplied to a shutdown device.
  • the time average of the voltage across the current measuring resistor educated. If this exceeds a given limit value, the shutdown device stops another oscillation of the half-bridge inverter. this happens in particular by suppressing the control signal of one of the two Half-bridge transistors.
  • the operating devices in question generally have two mains voltage terminals, which can be connected to a mains voltage, whereby a mains current flows can.
  • Relevant standards e.g. IEC 1000-3-2
  • PFC circuits Power Factor Correction
  • An inexpensive Realization of these PFC circuits are so-called pump circuits, as they e.g. B. in EP 253 224 (cultivation bar) or EP 1 028 606 (Rudolph) are.
  • Dependent said operating frequency is within the current value of the mains voltage a frequency band that has a bandwidth of over 10 kHz.
  • the energy is a disturbed Device hits, advantageously low.
  • the effort for interference suppression of an operating device according to the invention can be kept low.
  • a start capacitor is usually used to start the half-bridge inverter to charge and a part when reaching a trigger voltage at the charging capacitor the charge stored in the charging capacitor via a trigger element on the control electrode to discharge a half-bridge capacitor. Doing the problem occur that the charge pulse generated in this way to the control electrode in question is short and too low and there is no sustained oscillation of the half-bridge inverter is triggered. According to the invention, part of the stored charge of the Charging capacitor via a diode to the current measuring resistor according to the invention fed. This enables the half-bridge inverter to start up safely to reach.
  • resistors are represented by the letter R, transistors by the Letter T, diodes through letter D, capacitors through letter C and terminals by the letter J each followed by a number designated.
  • FIG. 1 the basic circuit of an operating device according to the invention is shown.
  • the control gear can be connected to a mains voltage via the connection terminals J1, J2 be connected.
  • the mains voltage is fed to a block FR.
  • It contains well-known filter and rectifier devices.
  • the Filter devices have the task of suppressing interference.
  • the rectifier device usually consists of a bridge rectifier consisting of four diodes. With the help of the rectifier device becomes a half-bridge inverter HB supplied a DC voltage.
  • the half-bridge inverter contains essentially the series connection of an upper semiconductor switch T1 and a lower semiconductor switch T2, which are voltage-controlled according to the invention.
  • the exemplary embodiment in FIG. 1 is realized with an N-channel MOSFET.
  • IGBT IGBT or P-channel MOSFET can also be used.
  • N-channel MOSFET used in Figure 1, it is necessary that the positive Output of the rectifier device via a node 3 to the upper transistor T1 is supplied while the negative output of the rectifier device is connected to the ground potential M.
  • the same polarity applies to standard ones IGBT. The polarity must be reversed when using P-channel MOSFET.
  • a storage capacitor C1 is located between node 3 and ground potential M. switched, which stores energy from the mains voltage before it is connected to a Lamp Lp is released.
  • the half-bridge inverter contains to control the half-bridge transistors T1, T2 HB a drive circuit 1, 2 for each half-bridge transistor T1, T2.
  • the control circuits 1, 2 are each connected via a connection A to the respective one Gate connection and via a connection B to the respective source connection of the relevant half-bridge transistor connected.
  • the control circuit 2 for the lower half-bridge transistor T2 has a third terminal S, on which a shutdown device can be connected.
  • the junction of the half-bridge transistors T1, T2 forms a node 4 to which a load circuit is connected.
  • a second connection of the load circuit is in Figure 1 connected to the ground potential M.
  • the second connection can have the same effect of the load circuit can alternatively be connected to node 3.
  • the load circuit consists essentially of the series connection of a primary winding L2 one Current transformer, a lamp inductor L1, a resonance capacitor C2 and a coupling capacitor C3. Parallel to the resonance capacitor C2 are over the Lamp terminals J3, J4 one or more lamps Lp connected in series can be connected. In the exemplary embodiment, the lamp filaments are not preheated intended.
  • FIG. 2 shows a preferred exemplary embodiment of a control circuit according to the invention shown.
  • a secondary winding L3 of the current transformer is between a node 20 and the connection B known from FIG. 1.
  • a Diode D1 lies with its anode at node 20 and with its cathode at a node 21. Via a resistor R3, the node 21 is connected to that known from FIG Port A connected.
  • An integrator is parallel to the secondary winding L3 switched that as a series connection of a timing resistor R1 and a timing capacitor C4 is executed and has an integration constant that the product from the values of R1 and C4.
  • the junction of R1 and C4 forms a node 22.
  • an integration value is tapped and the Control electrode of a semiconductor switch T3 supplied.
  • the switching path of the semiconductor switch T3 lies between the connections A and B. This can be done in parallel, like In the exemplary embodiment, a resistor R4 is connected to increase the switching reliability become.
  • the semiconductor switch T3 is preferred as a small-signal bipolar transistor executed.
  • first voltage threshold switch switched a first voltage threshold. It is designed as a Zener diode D3. exceeds the voltage fed into the drive circuit by L3 has a value, which leads to the Zener voltage of D3 being exceeded, so becomes the time capacitor C4 not only loaded via the time resistor R1, but also via D3, whereby the integration constant of the integration element is reduced.
  • the node 21 and the connection B there is a second one between the node 21 and the connection B.
  • Voltage threshold switch switched with a second voltage threshold. He is preferred as a series connection of a Zener diode D2 and a current measuring resistor R2 executed.
  • the over Port A controlled the assigned half-bridge transistor.
  • the voltage across R2 rises to become the Zener voltage of D2 exceeded. This results in a current flow through the current measuring resistor R2, which is essentially proportional to the load current in the load circuit. So that will Prevents saturation of the current transformer and load current proportional Charge of the integrator reached. Is the current in the load circuit so great that the Zener voltage of D3 is exceeded, so there is a quick shutdown of the associated half-bridge transistor.
  • connection B a load current can be connected to it proportional voltage can be taken. This can be done as shown below Shutdown device are supplied. Because the voltages in the shutdown device generally refer to the ground potential M, has only that drive circuit assigned to the lower half-bridge transistor has a connection S.
  • module value D2 5.6V D3 22V R1 1,8k ⁇ R2 27 ⁇ R3 220 ⁇ R4 2,2k ⁇ C4 10nF
  • the half-bridge inverter HB according to the invention, as shown in the Figures 1 and 2 is described, realized in an operating device with a pump circuit.
  • the positive output of the rectifier device in block FR not directly connected to node 3, but via two in parallel switched series connections of two diodes each.
  • a first diode series circuit with a first diode connection point form the diodes D5 and D6.
  • Different nodes of the load circuit known from FIG. 1 are connected to the diode connection points via reactance bipoles.
  • the lamp clamp J3 is connected to the first diode connection point via a pump capacitor C6 connected.
  • the lamp clamp J3 stands out from the Lamp clamp J4 characterized by the value of the amplitude of its AC component is greater than the ground potential.
  • the resonance capacitor C2 from Figure 1 is omitted. Its function is taken over by the pump capacitor C6.
  • connection point of the primary winding L2 and the lamp inductor L1 is over the series connection of a pump inductor L4 and a capacitor C7 with the second Diode connection point connected.
  • Pump choke L4 can also be used directly at the node 4 known from FIG. 1, which is the connection point of the half-break transistors T1 and T2 are connected.
  • the capacitor C7 essentially serves to block a direct current component in the current through the pump throttle L4.
  • the node 4 known from FIG. 1 is connected via a second pump capacitor C5 connected to the first diode connection point.
  • FIG. 3 shows a pump circuit structure with 3 so-called pump branches: a Pump branch is represented by the pump capacitor C6, another by the second pump capacitor C5 and a third through the inductor L4.
  • a Pump branch is represented by the pump capacitor C6, another by the second pump capacitor C5 and a third through the inductor L4.
  • everyone Pump branch by itself already has an effect as a PFC circuit, so that is not mandatory all three pump branches must always be present. Rather, any one is Combination of pump branches possible.
  • diodes D5 and D7 Another variation possibility concerns the diodes D5 and D7. These diodes can also perform functions that the rectifier device in the block FR assigned. Corresponding diodes in the rectifier device can then omitted.
  • FIG. 4 shows how the current measuring resistor R2 according to the invention and thus Connected connection S from Figure 2 advantageous for a shutdown and a starting device of the control gear can be used.
  • the shutdown device contains a well-known thyristomach formation from the resistors R42, R43, R44 and R45 and the transistors T41 and T42.
  • the thyristor simulation is via a resistor R41 with node 3 connected from Figure 1.
  • the other end of the thyristor simulation is at ground potential M.
  • connection S is a voltage divider consisting of the resistors R46 and R47 are fed a voltage that is proportional to the load current.
  • the Voltage divider divides the voltage fed in to a value that is normally the control gear is not switched off.
  • a capacitor C40 the is fed by the voltage divider, the time average of the load current is formed and provided in the form of a voltage related to the ground potential.
  • This Voltage is supplied to the control electrode of a semiconductor switch, which acts as a bipolar transistor T43 is executed.
  • a connection G2 is connected via a diode D42 is connected to the control electrode of the lower half-bridge transistor, with the Ground potential M connected. This will result in further oscillation of the half-bridge inverter prevented.
  • the oscillation of the half-bridge inverter is started with the help of a generally known starting capacitor C41, which is made via the resistor R41 Mains voltage is charged.
  • a trigger diode D40 (DIAC) is connected to C41. If the voltage at C41 reaches the trigger voltage of the trigger diode D40, the Control electrode of the lower half-bridge transistor via a diode D41 and A start pulse is applied to connection G2. In practice it happens that this start pulse is too short and the oscillation of the Half-bridge inverter takes place.
  • Port S is therefore advantageously used: According to the invention, the connection S is connected to the trigger diode via a diode D43 D40 connected.
  • the start pulse not only runs via diode D41, but also according to the invention also via the diode D43 and further via the diode D2 and the Resistor R3 from FIG. 2.
  • the starting pulse is lengthened and enlarged which leads to a safe start of the oscillation of the half-bridge inverter.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Inverter Devices (AREA)

Abstract

Selbstschwingender Halbbrückenwechselrichter (HB), zum Betrieb von Gasentladungslampen mit einem Stromtransformator als Rückkoppeleinrichtung. Die Halbbrückentransistoren (T1, T2) sind im wesentlichen spannungsgesteuerte Transistoren (MOSFET). Die Ansteuerschaltungen (1, 2) für die Halbbrückentransistoren (T1, T2) enthalten einen Spannungsschwellwertschalter (D2, R2), der bei Erreichen seiner Spannungsschwelle im wesentlichen einen Strom führt, der dem Laststrom des Halbbrückenwechselrichter (HB) proportional ist. <IMAGE>

Description

Technisches Gebiet
Die Erfindung geht aus von einem Betriebsgerät für Gasentladungslampen gemäß dem Oberbegriff des Anspruchs 1. Es handelt sich dabei insbesondere um eine Verbesserung des im Betriebsgerät enthaltenen Halbbrückenwechselrichters und dessen Ansteuerung. Des weiteren behandelt die Erfindung die Vereinfachung einer Abschalteinrichtung des Betriebsgeräts und eine kostengünstige Leistungsfaktorkorrektur des vom Netz aufgenommenen Stroms.
Stand der Technik
In der Schrift EP 0 093 469 (De Bijl) ist ein Betriebsgerät für Gasentladungslampen beschrieben, das den Stand der Technik darstellt. Dieses Betriebsgerät enthält einen selbstschwingenden Halbbrückenwechselrichter, der aus einer Gleichspannung eine hochfrequente Wechselspannung erzeugt, indem ein oberer und ein unterer in Serie geschaltete Halbbrückentransistoren abwechselnd ein- und ausgeschaltet werden. Die Gleichspannung wird meist mit Hilfe eines Brückengleichrichters, bestehend aus vier Gleichrichterdioden, aus der Netzspannung erzeugt. Selbstschwingend bedeutet in diesem Zusammenhang, dass die Ansteuerung der Halbbrückentransistoren aus einem Lastkreis gewonnen wird und keine unabhängig schwingende Oszillatorschaltung zur Erzeugung besagter Ansteuerung bereitgestellt wird. Bevorzugt wird die besagte Ansteuerung mit Hilfe eines Stromtransformators gewonnen. Eine Primärwicklung des Stromtransformators ist im Lastkreis angeordnet und wird von einem Laststrom durchflossen, der im wesentlichen dem Strom gleichgesetzt werden Laststrom durchflossen, der im wesentlichen dem Strom gleichgesetzt werden kann, den der Halbbrückenwechselrichter abgibt. Je eine Sekundärwicklung des Stromtransformators ist in zwei Ansteuerschaltungen angeordnet, die jeweils ein Signal erzeugen, das den Steuerelektroden der Halbbrückentransistoren zugeführt wird. Der Lastkreis ist an der Verbindungsstelle der Halbbrückentransistoren angeschlossen. Hauptbestandteil des Lastkreises ist eine Lampendrossel, zu der über Klemmenanschlüsse Gasentladungslampen seriell geschaltet werden können. Es ist auch möglich mehrere Lastkreise parallel zu schalten; die Primärwicklung ist dann so anzuordnen, dass sie von der Summe aller Lastkreise durchflossen wird.
In den Ansteuerschaltungen wird jeweils ein Rückkoppelsignal erzeugt, das dem Laststrom im wesentlichen proportional ist. Dazu müssen die Sekundärwicklungen im Idealfall kurzgeschlossen, in der Praxis niederohmig abgeschlossen werden. Anderenfalls treten entweder im Stromtransformator Sättigungserscheinungen auf, oder die Primärwicklung übt einen unerwünscht großen Einfluss auf den Lastkreis aus. Nach dem Stand der Technik werden für die Halbbrückentransistoren Bipolartransistoren eingesetzt, welche ihre Ansteuerung aus den Sekundärwicklungen beziehen. Der Basisanschluss der Bipolartransistoren, welcher als Steuerelektrode verwendet wird ist naturgemäß niederohmig genug, um o. g. Effekte zu vermeiden.
Der Spannungsabfall an den Sekundärwicklungen, stellt unter den o.g. Bedingungen ein Maß für den Laststrom dar und bildet im Stand der Technik Rückkoppelsignale. Diese werden jeweils einem Zeitglied zugeführt, das im einfachsten Fall aus der Serienschaltung eines Zeitkondensators und eines Zeitwiderstandes besteht. Ist der jeweilige Zeitkondensator auf einen Integrationswert aufgeladen, der genügt, um einen Ausschalttransistor anzusteuern, wird der jeweilige Halbbrückentransistor ausgeschaltet.
Insbesondere zur Zündung der Gasentladungslampen ist seriell zur Lampendrossel und parallel zu einer Gasentladungslampe wirkend ein Resonanzkondensator geschaltet, der mit der Lampendrossel einen Resonanzkreis bildet. Dieser wird zur Zündung nahe seiner Resonanz betrieben, wodurch sich am Resonanzkondensator eine zur Zündung einer Gasentladungslampe genügend hohe Spannung ausbildet.
Dementsprechend bildet sich in der Lampendrossel und damit in den Halbbrückentransistoren ein hoher Strom aus. Um eine Überlastung von Bauelementen zu Vermeiden, wird im Stand der Technik die Amplitude des Laststroms begrenzt. Dies geschieht über jeweils einen ersten Spannungsschwellwertschalter, der parallel zum jeweiligen Zeitwiderstand geschaltet ist. Steigt der Laststrom über ein vorgegebenes Maß, so erreicht das jeweilige Rückkoppelsignal, einen Wert, der den jeweiligen ersten Spannungsschwellwertschalter durchbrechen lässt und somit zum sofortigen Ausschalten des jeweiligen Halbbrückentransistors führt.
Darstellung der Erfindung
Es ist Aufgabe der vorliegenden Erfindung, ein Betriebsgerät für Gasentladungslampen gemäß dem Oberbegriff des Anspruchs 1 bereitzustellen, das die im Stand der Technik dargestellte Topologie nicht nur für Halbbrücken mit Bipolartransistoren, die naturgemäß einen Ansteuerstrom benötigen, realisierbar macht, sondern auch spannungsgesteuerte Halbleiterschalter wie MOS-Feldeffekttransistoren (MOSFET) eingesetzt werden können. Die diesem Problem zugrunde liegende Aufgabenstellung beinhaltet im wesentlichen in der Bereitstellung eines Ansteuersignals für die Halbleiterschalter, das proportional zum Laststrom ist.
Diese Aufgabe wird durch ein Betriebsgerät für Gasentladungslampen mit den Merkmalen des Oberbegriffs des Anspruchs 1 durch die Merkmale des kennzeichnenden Teils des Anspruchs 1 gelöst. Besonders vorteilhafte Ausgestaltungen finden sich in den abhängigen Ansprüchen.
Meist aus Kostengründen werden Bipolartransistoren zunehmend von spannungsgesteuerten Halbleiterschaltern wie z.B. MOSFET und IGBT abgelöst.
Wird mit einer der oben beschriebenen Sekundärwicklungen anstatt eines Bipolartransistors ein spannungsgesteuerter Halbleiterschalter angesteuert, so ist der Abschluss der Sekundärwicklung nicht mehr niederohmig, sondern hochohmig und die im Abschnitt zum Stand der Technik erwähnten Nachteile stellen sich ein. Erfindungsgemäß werden die Ansteuerschaltungen jeweils mit einem zweiten Spannungsschwellwertschalter ausgestattet, der eine zweite Spannungsschwelle aufweist und in einer Parallelschaltung zur Sekundärwicklung zu liegen kommt. Im einfachsten Fall besteht der zweite Spannungsschwellwertschalter aus der Serienschaltung einer Zenerdiode und einem Strommesswiderstand, wobei die Zenerdiode eine Zenerspannung aufweist, die der zweiten Spannungsschwelle entspricht. Steigt die Spannung an der Sekundärwicklung bei Null beginnend an, so ist der zweite Spannungsschwellwertschalter zunächst unwirksam. Bei Erreichen der zweiten Spannungsschwelle beginnt die Zenerdiode zu leiten und schließt die Sekundärwicklung wunschgemäß niederohmig ab. Der Wert der zweiten Spannungsschwelle muss niedriger sein als eine Thresholdspannung, welche der spannungsgesteuerte Halbleiterschalter mindestens als Ansteuerung benötigt. Bei der Dimensionierung des Strommesswiderstands sind zwei Bedingungen zu erfüllen. Einerseits muss der Wert des Strommesswiderstands klein genug sein, damit ein niederohmiger Abschluss der Sekundärwicklung gewährleistet ist. Andererseits muss der Wert des Strommesswiderstands groß genug sein, damit die Spannung an der Sekundärwicklung weiter bis zur ersten Spannungsschwelle ansteigen kann.
Da im Strommesswiderstand erfindungsgemäß ein dem Laststrom im wesentlichen proportionaler Strom fließt, ist auch die Spannung am Strommesswiderstand naturgemäß ein Maß für den Laststrom. Die Spannung am Strommesswiderstand kann dadurch erfindungsgemäß zur Detektion eines Fehlerfalls herangezogen werden. Sie wird dazu einer Abschalteinrichtung zugeführt. Um Störungen zu unterdrücken, wird in der Abschalteinrichtung das zeitliche Mittel der Spannung am Strommesswiderstand gebildet. Überschreitet dieses einen gegebenen Grenzwert, unterbindet die Abschalteinrichtung eine weitere Oszillation des Halbbrückenwechselrichters. Dies geschieht insbesondere durch Unterdrückung des Ansteuersignals eines der beiden Halbbrückentransistoren.
Die in Rede stehenden Betriebsgeräte besitzen im allgemeinen zwei Netzspannungsklemmen, die mit einer Netzspannung verbindbar sind, wodurch ein Netzstrom fließen kann. Einschlägige Normen (z.B.: IEC 1000-3-2) schreiben maximale Amplituden für die Oberschwingungen des Netzstroms vor. Zur Einhaltung dieser Normen besitzen Betriebsgeräte sog. PFC-Schaltungen (Power-Factor-Correction). Eine kostengünstige Realisierung dieser PFC-Schaltungen stellen sog. Pumpschaltungen dar, wie sie z. B. in EP 253 224 (Zuchtriegel) oder EP 1 028 606 (Rudolph) beschrieben sind. Bei der Kombination einer Pumpschaltung mit einem selbstschwingenden Halbbrückenwechselrichter nach dem Stand der Technik gibt es Probleme bei der Erzeugung der nötigen Zündspannung für die Gasentladungslampen und durch hohe Verlustleistung beim Schalten der Halbbrückentransistoren. Insbesondere bei großer Leistung für die Gasentladungslampen treten die genannten Probleme auf. Eine Ursache dafür sind u. a. Speicherzeiten, die typisch sind für Bipolartransistoren sind und kein exaktes Festlegen des Ausschaltzeitpunkts erlauben. Die vorliegende Erfindung ermöglicht den Einsatz von spannungsgesteuerten Halbleiterschaltern wie MOSFETS, die keine Speicherzeiten aufweisen und deshalb die genannten Probleme vermieden werden können. Das bedeutet, dass der erfindungsgemäße Halbbrückenwechselrichter in Kombination mit einer Pumpschaltung vorteilhaft auch bei einer Last angewendet werden kann, die eine Leistung von über 100W verbraucht.
Ein weiterer Effekt, der beim erfindungsgemäßen Halbbrückenwechselrichters mit Pumpschaltung auftritt, ist die starke Modulation der Betriebsfrequenz durch die Netzspannung, die die Oszillation des Halbbrückenwechselrichters aufweist. Abhängig vom momentanen Wert der Netzspannung liegt besagte Betriebsfrequenz innerhalb eines Frequenzbandes, das eine Bandbreite von über 10kHz aufweist. Damit werden die elektromagnetischen Störungen, die ein erfindungsgemäßes Betriebsgerät verursacht auf ein breites Frequenzband verteilt. Damit ist die Energie, die ein gestörtes Gerät trifft, vorteilhaft gering. Zudem kann der Aufwand für die Entstörung eines erfindungsgemäßen Betriebsgeräts gering gehalten werden.
Eine weitere vorteilhafte Nutzung des erfindungsgemäßen Strommesswiderstandes ist in der Startschaltung des selbstschwingenden Halbbrückenwechselrichters gegeben. Zum Start des Halbbrückenwechselrichters ist es üblich einen Startkondensator zu laden und bei Erreichen einer Triggerspannung am Ladekondensator einen Teil der im Ladekondensator gespeicherten Ladung über ein Triggerelement auf die Steuerelektrode eines Halbbrückenkondensators zu entladen. Dabei kann das Problem auftreten, dass der so erzeugte Ladeimpuls an der betreffenden Steuerelektrode zu kurz und zu niedrig ist und keine anhaltende Oszillation des Halbbrückenwechselrichters ausgelöst wird. Erfindungsgemäß wird ein Teil der gespeicherten Ladung des Ladekondensators über eine Diode dem erfindungsgemäßen Strommesswiderstand zugeführt. Damit lässt sich ein sicheres Anschwingen des Halbbrückenwechselrichters erreichen.
Beschreibung der Zeichnungen
Im folgenden soll die Erfindung anhand von Ausführungsbeispielen näher erläutert werden. Es zeigen:
Figur 1
die Grundschaltung des erfindungsgemäßen Betriebsgeräts
Figur 2
ein Ausführungsbeispiel einer erfindungsgemäßen Ansteuerschaltung
Figur 3
ein Ausführungsbeispiel eines erfindungsgemäßen Betriebsgeräts mit Pumpschaltung
Figur 4
ein Ausführungsbeispiel für eine erfindungsgemäße Abschalteinrichtung
Im folgenden werden Widerstände durch den Buchstaben R, Transistoren durch den Buchstaben T, Dioden durch den Buchstaben D, Kondensatoren durch den Buchstaben C und Anschlussklemmen durch den Buchstaben J jeweils gefolgt von einer Zahl bezeichnet.
In Figur 1 ist die Grundschaltung eines erfindungsgemäßen Betriebsgeräts dargestellt. Über die Anschlussklemmen J1, J2 kann das Betriebsgerät an eine Netzspannung angeschlossen werden. Die Netzspannung wird einem Block FR zugeführt. Darin sind allgemein bekannte Filter- und Gleichrichtereinrichtungen enthalten. Die Filtereinrichtungen haben die Aufgabe Störungen zu unterdrücken. Die Gleichrichtereinrichtung besteht in der Regel aus einem Brückengleichrichter bestehend aus vier Dioden. Mit Hilfe der Gleichrichtereinrichtung wird einem Halbbrückenwechselrichter HB eine Gleichspannung zugeführt. Der Halbbrückenwechselrichter enthält im wesentlichen die Serienschaltung eines oberen Halbleiterschalters T1 und eines unteren Halbleiterschalters T2, die erfindungsgemäß spannungsgesteuert sind. Das Ausführungsbeispiel in Figur 1 ist mit N-Kanal MOSFET realisiert. Es ist jedoch auch der Einsatz von beispielsweise IGBT oder P-Kanal MOSFET möglich. Bei den in Figur 1 eingesetzten N-Kanal MOSFET ist es erforderlich, dass der positive Ausgang der Gleichrichtereinrichtung über einen Knoten 3 dem oberen Transistor T1 zugeführt wird, während der negative Ausgang der Gleichrichtereinrichtung mit dem Massepotenzial M verbunden ist. Die gleiche Polung gilt für handelsübliche IGBT. Umgepolt muss bei der Verwendung von P-Kanal MOSFET werden.
Zwischen den Knoten 3 und das Massepotenzial M ist ein Speicherkondensator C1 geschaltet, der Energie aus der Netzspannung zwischenspeichert, bevor sie an eine Lampe Lp abgegeben wird.
Zur Ansteuerung der Halbbrückentransistoren T1, T2 enthält der Halbbrückenwechselrichter HB für jeden Halbbrückentransistor T1, T2 eine Ansteuerschaltung 1, 2. Die Ansteuerschaltungen 1, 2 sind jeweils über einen Anschluss A mit dem jeweiligen Gate-Anschluss und über einen Anschluss B mit dem jeweiligen Source-Anschluss des betreffenden Halbbrückentransistors verbunden. Die Ansteuerschaltung 2 für den unteren Halbbrückentransistor T2 besitzt einen dritten Anschluss S, an den eine Abschalteinrichtung anschließbar ist.
Die Verbindungsstelle der Halbbrückentransistoren T1, T2 bildet einen Knoten 4, an dem ein Lastkreis angeschlossen ist. Ein zweiter Anschluss des Lastkreises ist in Figur 1 verbunden mit dem Massepotenzial M. Gleichwirkend kann der zweite Anschluss des Lastkreises alternativ mit dem Knoten 3 verbunden werden. Der Lastkreis besteht im wesentlichen aus der Serienschaltung einer Primärwicklung L2 eines Stromtransformators, einer Lampendrossel L1, eines Resonanzkondensators C2 und eines Koppelkondensators C3. Parallel zum Resonanzkondensator C2 sind über die Lampenklemmen J3, J4 eine oder mehrere in Serie geschaltete Lampen Lp anschließbar. Im Ausführungsbeispiel ist eine Vorheizung der Lampenwendeln nicht vorgesehen. Dem Fachmann stehen jedoch allgemein bekannte Einrichtungen zur Wendelheizung zur Verfügung, die er mit dem erfindungsgemäßen Betriebsgerät einsetzen kann. Es ist auch möglich mehrere parallel geschaltete Lastkreise zu betreiben. Die Funktion der einzelnen Elemente des Lastkreises kann dem Stand der Technik entnommen werden.
In Figur 2 ist ein bevorzugtes Ausführungsbeispiel einer erfindungsgemäßen Ansteuerschaltung dargestellt. Eine Sekundärwicklung L3 des Stromtransformators ist zwischen einen Knoten 20 und dem aus Figur 1 bekannten Anschluss B geschaltet. Eine Diode D1 liegt mit ihrer Anode am Knoten 20 und mit ihrer Kathode an einem Knoten 21. Über einen Widerstand R3 ist der Knoten 21 mit dem aus Figur 1 bekannten Anschluss A verbunden. Parallel zur Sekundärwicklung L3 ist ein Integrationsglied geschaltet, das als Serienschaltung eines Zeitwiderstandes R1 und eines Zeitkondensators C4 ausgeführt ist und eine Integrationskonstante aufweist, die dem Produkt aus den Werten von R1 und C4 entspricht. Die Verbindungsstelle von R1 und C4 bildet einen Knoten 22. Parallel zu C4 wird ein Integrationswert abgegriffen und der Steuerelektrode eines Halbleiterschalters T3 zugeführt. Die Schaltstrecke des Halbleiterschalters T3 liegt zwischen den Anschlüssen A und B. Dazu parallel kann, wie im Ausführungsbeispiel, zur Erhöhnung der Schaltsicherheit ein Widerstand R4 geschaltet werden. Bevorzugt wird der Halbleiterschalter T3 als Kleinsignal-Bipolartransistor ausgeführt.
Zwischen Knoten 21 und Knoten 22 ist ein erster Spannungsschwellwertschalter mit einer ersten Spannungsschwelle geschaltet. Er ist als Zenerdiode D3 ausgeführt. Überschreitet die von L3 in die Ansteuerschaltung eingespeiste Spannung einen Wert, der zur Überschreitung der Zenerspannung von D3 führt, so wird der Zeitkondensator C4 nicht nur über den Zeitwiderstand R1, sondern auch über D3 geladen, wodurch die Integrationskonstante des Integrationsglieds reduziert wird.
Zwischen dem Knoten 21 und dem Anschluss B ist erfindungsgemäß ein zweiter Spannungsschwellwertschalter mit einer zweiten Spannungsschwelle geschaltet. Er wird bevorzugt als Serienschaltung einer Zenerdiode D2 und eines Strommesswiderstands R2 ausgeführt. Bei Ansteigen der Spannung an L3 wird zunächst der über Anschluss A der zugeordnete Halbbrückentransistor angesteuert. Nach weiterem Ansteigen der Spannung an R2 wird erfindungsgemäß die Zenerspannung von D2 überschritten. Damit kommt ein Stromfluss über den Strommesswiderstand R2 zustande, der im wesentlichen proportional zum Laststrom im Lastkreis ist. Damit wird eine Sättigung des Stromtransformators verhindert und eine laststrom-proportionale Ladung des Integrationsglieds erreicht. Wird der Strom im Lastkreis so groß, dass die Zenerspannung von D3 überschritten wird, so kommt es zu einem schnellen abschalten des zugeordneten Halbbrückentransistors.
An der Verbindungsstelle zwischen D2 und dem Strommesswiderstand R2 ist ein Anschluss S herausgeführt. An ihm kann bezüglich Anschluss B eine dem Laststrom proportionale Spannung entnommen werden. Diese kann wie unten ausgeführt einer Abschalteinrichtung zugeführt werden. Da die Spannungen in der Abschalteinrichtung im allgemeinen auf das Massepotenzial M bezogen sind, besitzt nur die dem unteren Halbbrückentransistor zugeordnete Ansteuerschaltung einen Anschluss S.
In der folgenden Tabelle sind die bevorzugten Dimensionierungen von in Figur 2 dargestellten Bauelementen zusammengestellt.
Bauelement Wert
D2 5,6V
D3 22V
R1 1,8kΩ
R2 27Ω
R3 220Ω
R4 2,2kΩ
C4 10nF
In Figur 3 ist der erfindungsgemäße Halbbrückenwechselrichter HB, wie er in den Figuren 1 und 2 beschrieben wird, in einem Betriebsgerät mit Pumpschaltung realisiert. Im Gegensatz zu Figur 1 ist der positive Ausgang der Gleichrichtereinrichtung im Block FR nicht direkt mit dem Knoten 3 verbunden, sondern über zwei parallel geschaltete Serienschaltungen von jeweils zwei Dioden. Eine erste Diodenserienschaltung mit einem ersten Diodenverbindungspunkt bilden die Dioden D5 und D6. Eine zweite Diodenserienschaltung mit einem zweiten Diodenverbindungspunkt bilden die Dioden D4 und D7. Verschiedene Knoten des aus Figur 1 bekannten Lastkreises sind über Reaktanzzweipole mit den Diodenverbindungspunkten verbunden.
Die Lampenklemme J3 ist über einen Pumpkondensator C6 mit dem ersten Diodenverbindungspunkt verbunden. Die Lampenklemme J3 zeichnet sich gegenüber der Lampenklemme J4 dadurch aus, dass der Wert der Amplitude ihrer Wechselspannungskomponente gegenüber dem Massepotenzial größer ist. Der Resonanzkondensator C2 aus Figur 1 entfällt. Seine Funktion wird vom Pumpkondensator C6 übernommen.
Der Verbindungspunkt der Primärwicklung L2 und der Lampendrossel L1 ist über die Serienschaltung einer Pumpdrossel L4 und eines Kondensators C7 mit dem zweiten Diodenverbindungspunkt verbunden. Die Pumpdrossel L4 kann aber auch direkt an dem aus Figur 1 bekannten Knoten 4, der den Verbindungspunkt der Halbbrüchentransistoren T1 und T2 darstellt, angeschlossen werden. Der Kondensator C7 dient im wesentlichen zum Abblocken einer Gleichstromkomponente im Strom durch die Pumpdrossel L4.
Der aus Figur 1 bekannte Knoten 4 ist über einen zweiten Pumpkondensator C5 mit dem ersten Diodenverbindungspunkt verbunden.
In Figur 3 ist eine Pumpschaltungsstruktur mit 3 sog. Pumpzweigen dargestellt: Ein Pumpzweig wird durch den Pumpkondensator C6 repräsentiert, ein weiterer durch den zweiten Pumpkondensator C5 und ein dritter durch die Pumpdrossel L4. Jeder Pumpzweig für sich hat bereits eine Wirkung als PFC-Schaltung, so dass nicht zwingend immer alle drei Pumpzweige vorhanden sein müssen. Vielmehr ist jede beliebige Kombination der Pumpzweige möglich.
Eine weitere Variationsmöglichkeit betrifft die Dioden D5 und D7. Diese Dioden können auch Funktionen übernehmen, die der Gleichrichtereinrichtung im Block FR zugeordnet sind. Entsprechende Dioden in der Gleichrichtereinrichtung können dann entfallen.
Figur 4 zeigt, wie der erfindungsgemäße Strommesswiderstand R2 und der damit verbundene Anschluss S aus Figur 2 vorteilhaft für eine Abschalt- und eine Starteinrichtung des Betriebsgeräts verwendet werden kann.
Die Abschalteinrichtung enthält eine allgemein bekannte Thyristomachbildung bestehend aus den Widerständen R42, R43, R44 und R45 und den Transistoren T41 und T42. Die Thyristornachbildung ist über einen Widerstand R41 mit dem Knoten 3 aus Figur 1 verbunden. Das andere Ende der Thyristornachbildung liegt auf Massepotenzial M.
Über den Anschluss S wird in einen Spannungsteiler bestehend aus den Widerständen R46 und R47 eine Spannung eingespeist, die proportional zum Laststrom ist. Der Spannungsteiler teilt die eingespeiste Spannung auf einen Wert, der im Normalfall keine Abschaltung des Betriebsgeräts bewirkt. Durch einen Kondensator C40, der vom Spannungsteiler gespeist wird, wird das zeitliche Mittel des Laststroms gebildet und in Form einer auf das Massepotenzial bezogenen Spannung bereitgesellt. Diese Spannung wird der Steuerelektrode eines Halbleiterschalters zugeführt, der als Bipolartransistor T43 ausgeführt ist. Überschreitet das Mittel des Laststroms im Fehlerfall ein vorgegebenes Maß, so wird über den Kollektoranschluss von T43 die Thyristornachbildung getriggert. Dadurch wird über eine Diode D42 ein Anschluss G2, der mit der Steuerelektrode des unteren Halbbrückentransistors verbunden ist, mit dem Massepotenzial M verbunden. Damit wird eine weitere Oszillation des Halbbrückenwechselrichters unterbunden.
Der Start der Oszillation des Halbbrückenwechselrichters geschieht mit Hilfe eines allgemein bekannten Startkondensators C41, der über den Widerstand R41 aus der Netzspannung geladen wird. Mit C41 verbunden ist eine Triggerdiode D40 (DIAC). Erreicht die Spannung an C41 die Triggerspannung der Triggerdiode D40, wird die Steuerelektrode des unteren Halbbrückentransistors über eine Diode D41 und den Anschluss G2 mit einem Startimpuls beaufschlagt. In der Praxis kommt es vor, dass dieser Startimpuls zu kurz ausfällt und kein sicheres Starten der Oszillation des Halbbrückenwechselrichters erfolgt. Vorteilhaft wird deshalb der Anschluss S verwendet: Über eine Diode D43 ist der Anschluss S erfindungsgemäß mit der Triggerdiode D40 verbunden. Der Startimpuls läuft nicht nur über die Diode D41, sondern erfindungsgemäß auch über die Diode D43 und weiter über die Diode D2 und den Widerstand R3 aus Figur 2. Damit wird der Startimpuls verlängert und vergrößert was zu einem sicheren Start der Oszillation des Halbbrückenwechselrichters führt.

Claims (8)

  1. Betriebsgerät zum Betrieb von Gasentladungslampen mit folgenden Merkmalen:
    Selbstschwingender Halbbrückenwechselrichter (HB), der die Serienschaltung von zwei Halbbrückentransistoren (T1, T2) enthält,
    Lastkreis, der an der Verbindungsstelle der Halbbrückentransistoren (4) angeschlossen ist und der eine Primärwicklung (L2) eines Stromtransformators enthält, durch die ein Laststrom fließt, der dem Halbbrückenwechselrichter (HB) entnommen wird,
    jeweils eine Ansteuerschaltung (1, 2) für jeden Halbbrückentransistor (T1, T2), die jeweils folgende Bestandteile enthält:
    eine Sekundärwicklung (L3) des Stromtransformators,
    ein Integrationsglied (R1, C4), das im wesentlichen die Spannung an der Sekundärwicklung (L3) des Stromtransformators integriert und bei Erreichen eines vorgegebenen Integrationswerts den betreffenden Halbbrückentransistor abschaltet,
    einen ersten Spannungsschwellwertschalter (D3), der bei Erreichen einer gegebenen ersten Spannungsschwelle die Integrationskonstante des Integrationsglieds reduziert,
    dadurch gekennzeichnet, dass
    die Halbbrückentransistoren (Tl, T2) im wesentlichen spannungsgesteuerte Transistoren sind und
    mindestens eine Ansteuerschaltung (1,2) einen zweiten Spannungsschwellwertschalter (D2, R2) mit einer zweiten Spannungsschwelle besitzt, die niedriger liegt, als die erste Spannungsschwelle, wobei der zweite Spannungsschwellwertschalter (D2, R2) in einer Parallelschaltung zur Sekundärwicklung (L3) zu liegen kommt.
  2. Betriebsgerät gemäß Anspruch 1, dadurch gekennzeichnet, dass der zweite Spannungsschwellwertschalter die Serienschaltung aus einer Zenerdiode (D2) und einem Strommesswiderstand (R2) enthält.
  3. Betriebsgerät gemäß Anspruch 2, dadurch gekennzeichnet, dass die Spannung am Strommesswiderstand (R2) einer Abschalteinrichtung zugeführt wird, die das zeitliche Mittel oder den Momentanwert dieser Spannung auswertet und bei Überschreitung eines gegebenen Grenzwerts eine weitere Oszillation des Halbbrückenwechselrichters (HB) unterbindet.
  4. Betriebsgerät gemäß Anspruch 1, dadurch gekennzeichnet, dass das Betriebsgerät zwei Netzspannungsklemmen (J1, J2) besitzt, die mit einer Netzspannung verbunden werden können und eine Leistungsfaktorkorrektur eines über die Netzspannungsklemmen (J1, J2) fließenden Netzstroms durch eine Pumpschaltung erreicht wird.
  5. Betriebsgerät gemäß Anspruch 4, dadurch gekennzeichnet, dass die Pumpschaltung folgende Merkmale aufweist:
    ein Teil des Netzstroms fließt über eine erste Pumpdiode (D5), die mit einer zweiten Pumpdiode (D6) eine erste Diodenserienschaltung mit einem ersten Diodenverbindungspunkt bildet, wobei die Dioden so gepolt sind, dass sie einen Stromfluss von den Netzklemmen zum Halbbrückenwechselrichter (HB) zulassen,
    das Betriebsgerät besitzt mindestens zwei Lampenklemmen (J3, J4), die mit Lampenanschlüssen verbindbar sind, wobei eine Lampenklemme (J3) über einen Pumpkondensator (C6) mit dem ersten Diodenverbindungspunkt verbunden ist.
  6. Betriebsgerät gemäß Anspruch 5, dadurch gekennzeichnet, dass der Pumpkondensator (C6) mit derjenigen Lampenklemme (J3) verbunden ist, die gegenüber einem Bezugspotenzial (M) eine Spannung aufweist, die im Vergleich zur Spannung an den anderen Lampenklemmen (J4) den größten Wert für die Wechselspannungskomponente aufweist.
  7. Betriebsgerät gemäß Anspruch 5, gekennzeichnet durch folgende Merkmale
    parallel zur ersten Diodenserienschaltung ist eine zweite Diodenserienserienschaltung von zwei Dioden (D4, D7) geschaltet wodurch ein zweiter Diodenverbindungspunkt entsteht, wobei die Dioden (D4, D7) so gepolt sind, dass sie einen Stromfluss vom Netz zum Halbbrückenwechselrichter (HB) zulassen,
    der zweite Diodenverbindungspunkt ist mindestens über eine Pumpdrossel (L4), mit dem Verbindungspunkt (4) der Halbbrückentransistoren (T1, T2) verbunden.
  8. Betriebsgerät gemäß Anspruch 2, dadurch gekennzeichnet, dass das Betriebsgerät einen Startkondensator (C41) enthält, der über die Serienschaltung einer Triggerdiode (D40) und einer Diode (D43) mit dem Strommesswiderstand (R2) verbunden ist.
EP02027137A 2002-01-02 2002-12-04 Betriebsgerät für Gasentladungslampen Expired - Lifetime EP1326484B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10200049 2002-01-02
DE10200049A DE10200049A1 (de) 2002-01-02 2002-01-02 Betriebsgerät für Gasentladungslampen

Publications (3)

Publication Number Publication Date
EP1326484A2 true EP1326484A2 (de) 2003-07-09
EP1326484A3 EP1326484A3 (de) 2005-01-05
EP1326484B1 EP1326484B1 (de) 2006-08-09

Family

ID=7711453

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02027137A Expired - Lifetime EP1326484B1 (de) 2002-01-02 2002-12-04 Betriebsgerät für Gasentladungslampen

Country Status (6)

Country Link
US (1) US6677716B2 (de)
EP (1) EP1326484B1 (de)
CN (1) CN100438715C (de)
AT (1) ATE336156T1 (de)
CA (1) CA2415510A1 (de)
DE (2) DE10200049A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1530407A3 (de) * 2003-11-05 2007-01-17 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Elektronisches Vorschaltgerät mit bei Lampenausfall weiterzubetreibendem Wandler

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10241327A1 (de) * 2002-09-04 2004-03-18 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Schaltungsanordnung zum Betrieb von Entladungslampen
DE102004001618A1 (de) * 2004-01-09 2005-08-11 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Schaltungsanordnung zum Betrieb von Lichtquellen
ATE424711T1 (de) * 2004-06-21 2009-03-15 Koninkl Philips Electronics Nv Ansteuerverfahren für eine gasentladungslampe
EP2030487A1 (de) * 2006-05-31 2009-03-04 Koninklijke Philips Electronics N.V. Verfahren und system zum betrieb einer gasentladungslampe
EP2145380B1 (de) * 2007-04-27 2016-01-06 Koninklijke Philips N.V. Selbstschwingender schalterstromkreis für einen dc-dc-schaltwandler
JP4816634B2 (ja) * 2007-12-28 2011-11-16 ウシオ電機株式会社 基板加熱装置及び基板加熱方法
US20090200953A1 (en) * 2008-02-08 2009-08-13 Ray James King Methods and apparatus for a high power factor ballast having high efficiency during normal operation and during dimming
US8258712B1 (en) * 2008-07-25 2012-09-04 Universal Lighting Technologies, Inc. Ballast circuit for reducing lamp striations

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4525648A (en) * 1982-04-20 1985-06-25 U.S. Philips Corporation DC/AC Converter with voltage dependent timing circuit for discharge lamps
EP0757512A1 (de) * 1995-07-31 1997-02-05 STMicroelectronics S.r.l. Steuerungsschaltung, MOS Transistor mit solch einer Schaltung
EP0781077A2 (de) * 1995-12-22 1997-06-25 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Schaltungsanordnung zum Betrieb einer Lampe
US5982108A (en) * 1996-08-14 1999-11-09 U.S. Philips Corporation DC/AC converter for a discharge lamp having a DC offset at the switching element to reduce power loss
EP1001662A2 (de) * 1998-11-16 2000-05-17 General Electric Company Elektronisches Vorschaltgerät für Entladungslampen mit Ausgangsspannungsbegrenzung
US6346779B1 (en) * 1999-05-21 2002-02-12 Stmicroelectronics S.R.L. Variable frequency self-oscillating half-bridge drive architecture particularly for electric loads

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5173643A (en) * 1990-06-25 1992-12-22 Lutron Electronics Co., Inc. Circuit for dimming compact fluorescent lamps
US5545955A (en) * 1994-03-04 1996-08-13 International Rectifier Corporation MOS gate driver for ballast circuits
JP3484863B2 (ja) * 1995-03-29 2004-01-06 東芝ライテック株式会社 電源装置、放電灯点灯装置および照明装置
US5619106A (en) * 1996-06-24 1997-04-08 General Electric Company Diodeless start circiut for gas discharge lamp having a voltage divider connected across the switching element of the inverter
US6541925B1 (en) * 1998-11-18 2003-04-01 Koninklijke Philips Electronics N.V. Resonant converter circuit with suppression of transients during changes in operating condition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4525648A (en) * 1982-04-20 1985-06-25 U.S. Philips Corporation DC/AC Converter with voltage dependent timing circuit for discharge lamps
EP0757512A1 (de) * 1995-07-31 1997-02-05 STMicroelectronics S.r.l. Steuerungsschaltung, MOS Transistor mit solch einer Schaltung
EP0781077A2 (de) * 1995-12-22 1997-06-25 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Schaltungsanordnung zum Betrieb einer Lampe
US5982108A (en) * 1996-08-14 1999-11-09 U.S. Philips Corporation DC/AC converter for a discharge lamp having a DC offset at the switching element to reduce power loss
EP1001662A2 (de) * 1998-11-16 2000-05-17 General Electric Company Elektronisches Vorschaltgerät für Entladungslampen mit Ausgangsspannungsbegrenzung
US6346779B1 (en) * 1999-05-21 2002-02-12 Stmicroelectronics S.R.L. Variable frequency self-oscillating half-bridge drive architecture particularly for electric loads

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1530407A3 (de) * 2003-11-05 2007-01-17 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Elektronisches Vorschaltgerät mit bei Lampenausfall weiterzubetreibendem Wandler

Also Published As

Publication number Publication date
CN1430460A (zh) 2003-07-16
CN100438715C (zh) 2008-11-26
CA2415510A1 (en) 2003-07-02
US20030122504A1 (en) 2003-07-03
DE50207779D1 (de) 2006-09-21
US6677716B2 (en) 2004-01-13
DE10200049A1 (de) 2003-07-17
EP1326484A3 (de) 2005-01-05
ATE336156T1 (de) 2006-09-15
EP1326484B1 (de) 2006-08-09

Similar Documents

Publication Publication Date Title
DE102005007346A1 (de) Schaltungsanordnung und Verfahren zum Betreiben von Gasentladungslampen
EP1211794B1 (de) Verfahren zur Regulierung des Ausgangsstroms und/oder der Ausgangsspannung eines Schaltnetzteils
DE19612170A1 (de) Schaltungsanordnung zum Betrieb von elektrischen Lampen und Betriebsverfahren für elektrische Lampen
DE3006565A1 (de) Schaltung zur begrenzung des einschaltstromstosses insbesondere fuer gleichrichter und netzgeraete
CH651437A5 (de) Vorschaltanordnung zum betreiben einer entladungslampe.
EP0800335A2 (de) Schaltungsanordnung zum Betrieb elektrischer Lampen
EP0439240B1 (de) Elektronisches Vorschaltgerät
EP1379109A1 (de) Ansteuerung für einen Halbbrücken-Wechselrichter
EP1326484B1 (de) Betriebsgerät für Gasentladungslampen
EP1526622A2 (de) Elektronisches Vorschaltgerät mit Schutzschaltung für Schalttransistors eines Wandlers
DE10062047A1 (de) Elektronischer Transformator mit guter Immunität gegen Hochspannungsimpulse
DE19751063A1 (de) Freischwingende Oszillatorschaltung mit einfacher Anlaufschaltung
DE10241327A1 (de) Schaltungsanordnung zum Betrieb von Entladungslampen
WO2009010098A1 (de) Schaltungsanordnung mit einem spannungswandler und zugehöriges verfahren
DE19909530A1 (de) Schaltungsanordnung zum Betrieb mindestens einer Hochdruckentladungslampe und Betriebsverfahren
EP0389847B1 (de) Schaltungsanordnung
EP1608208B1 (de) Schaltung mit Abschalteinrichtung zum Betrieb von Lichtquellen
EP1658676B1 (de) Schaltung und verfahren zum verarbeiten einer speisespannung mit spannungsspitzen
DE102005028419A1 (de) Abschaltschaltung
EP0871347B1 (de) Elektronisches Vorschaltgerät mit automatischem Wiederanlauf
EP0642295B1 (de) Elektronisches Vorschaltgerät zum Versorgen einer Last, beispielsweise einer Lampe
EP1443808A2 (de) Schaltungsanordnung und Verfahren zum Start und Betrieb von Gasentladungslampen mit heizbaren Elektrodenwendeln
EP1741319A1 (de) Vorrichtung zur erzeugung von elektrischen spannungsimpulsfolgen, insbesondere zum betrieb von kapazitiven entladungslampen
EP1517592B1 (de) Schaltungsanordnung zum Erzeugen von Wechselspannung aus einer Gleichspannung
DE4436465A1 (de) Schaltungsanordnung zum Betreiben von Glühlampen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

17P Request for examination filed

Effective date: 20050120

17Q First examination report despatched

Effective date: 20050620

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060809

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060809

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060809

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060809

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060809

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50207779

Country of ref document: DE

Date of ref document: 20060921

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061109

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061120

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20061113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061231

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070109

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070510

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BERE Be: lapsed

Owner name: PATENT-TREUHAND-GESELLSCHAFT FUR ELEKTRISCHE GLUH

Effective date: 20061231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061204

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060809

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20101110

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20101203

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101229

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50207779

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG, 81543 MUENCHEN, DE

Effective date: 20111128

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20111213

Year of fee payment: 10

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20120701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111204

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 336156

Country of ref document: AT

Kind code of ref document: T

Effective date: 20111204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111204

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120701

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50207779

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM AG, 81543 MUENCHEN, DE

Effective date: 20130205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121205

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50207779

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GMBH, 81543 MUENCHEN, DE

Effective date: 20130822

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20131219

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20131220

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141204

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20161213

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50207779

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180703