EP1323829B1 - Method for the preparation of protected, enantiomerically enriched cyanohydrines by in-situ derivatisation - Google Patents

Method for the preparation of protected, enantiomerically enriched cyanohydrines by in-situ derivatisation Download PDF

Info

Publication number
EP1323829B1
EP1323829B1 EP02026849A EP02026849A EP1323829B1 EP 1323829 B1 EP1323829 B1 EP 1323829B1 EP 02026849 A EP02026849 A EP 02026849A EP 02026849 A EP02026849 A EP 02026849A EP 1323829 B1 EP1323829 B1 EP 1323829B1
Authority
EP
European Patent Office
Prior art keywords
alkyl
formula
process according
unsubstituted
radical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02026849A
Other languages
German (de)
French (fr)
Other versions
EP1323829A2 (en
EP1323829A3 (en
Inventor
Wolfgang Skranc
Peter Pöchlauer
Irma Wirth
Rudolf Neuhofer
Herbert Mayrhofer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Patheon Austria GmbH and Co KG
Original Assignee
DSM Fine Chemicals Austria Nfg GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DSM Fine Chemicals Austria Nfg GmbH and Co KG filed Critical DSM Fine Chemicals Austria Nfg GmbH and Co KG
Priority to AT02026849T priority Critical patent/ATE328105T1/en
Publication of EP1323829A2 publication Critical patent/EP1323829A2/en
Publication of EP1323829A3 publication Critical patent/EP1323829A3/en
Application granted granted Critical
Publication of EP1323829B1 publication Critical patent/EP1323829B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/002Nitriles (-CN)
    • C12P13/004Cyanohydrins

Definitions

  • Cyanohydrins are for example for the synthesis of alpha-hydroxy acids, alpha-hydroxy ketones, beta-amino alcohols, which are used to obtain biologically active substances, eg. As pharmaceutical agents, vitamins or pyrethroid compounds find use of importance.
  • a cyanohydrin can be carried out by addition of hydrogen cyanide (HCN) to the carbonyl group of an aldehyde or a ketone, resulting in enantiomeric mixtures of asymmetric cyanohydrins.
  • HCN hydrogen cyanide
  • Many methods are based on carrying out the addition of HCN to the carbonyl group in the presence of a chiral catalyst, for example a hydroxynitrile lyase.
  • HCN is a very toxic substance, it is constantly trying to avoid direct use or direct handling.
  • Another cyanide group donor is, for example, trimethylsilyl cyanide, which according to J. Am. Chem. Soc. 2001, 123, 9908-9909 is reacted with sugar derivatives at -40 ° C in an absolute alcohol.
  • cyanohydrins are unstable per se and tend to decompose in reversal of their formation reaction, so they have already been tried by the various additives, in particular of acids such as sulfuric acid, phosphoric acid, HCl, toluenesulfonic acid, acetic acid, propionic acid, etc.
  • the object of the present invention was to find a hydroxynitrile lyyl catalyzed process for the preparation of stable, enantiomerically enriched cyanohydrins in which the direct use of hydrogen cyanide is avoided and which allows a shift in equilibrium to achieve high conversions.
  • this object could be achieved by a method in which carbonic acid nitriles are used as cyanide group donors, whereby an in situ derivatization and thus stabilization of the enantiomerically enriched cyanohydrins occurs.
  • the present invention accordingly provides a process for the preparation of protected, enantiomerically enriched cyanohydrins of the formula in the R 1 and R 2, independently of one another, an optionally mono- or polysubstituted C 1 -C 20 -alkyl, C 5 -C 20 -aryl, C 5 -C 20 -heteroaryl, C 5 -C 20 -alkaryl-C C 5 -C 20 -alkylheteroaryl or C 5 -C 20 -aralkyl radical or an optionally mono- or polysubstituted C 5 -C 20 -heterocycle or C 5 -C 20 -alkyl heterocycle or together an optionally substituted C 4 -C 20 -alkylene radical which may mean one or more heteroatoms in the chain, or one of the radicals Is hydrogen, and R3 may be an optionally substituted C 1 -C 20 alkyl, C 5 -C 20 aryl or C 5 -C 20 heteroary
  • R1 and R2 are each independently an unsubstituted, monosubstituted or polysubstituted C 1 -C 20 alkyl, C 5 -C 20 aryl, C 5 -C 20 -heteroaryl, C 5- C 20 -Alkaryl-, C 5 -C 20 - Alkylheteroaryl- or C 5 -C 20 -Aralkylrest or an optionally mono- or polysubstituted C 5 -C 20 heterocycle or C 5 -C 20 alkylheterocycle.
  • C 1 -C 20 -alkyl saturated or mono- or polyunsaturated, linear, branched or cyclic, primary, secondary or tertiary hydrocarbon radicals.
  • C 1 -C 20 -alkyl radicals such as, for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, butenyl, butynyl, pentyl, cyclopentyl, isopentyl, neopentyl, pentenyl , Pentynyl, hexyl, isohexyl, cyclohexyl, cyclohexylmethyl, 3-methylpentyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, octyl, cyclooctyl, decyl, cyclodecyl, dodecyl, cycl
  • C 1 -C 12 -alkyl radicals and particularly preferably C 1 -C 8 -alkyl radicals.
  • the alkyl group may optionally be monosubstituted or polysubstituted by groups inert under the reaction conditions.
  • Suitable substituents are, for example, optionally substituted aryl or heteroaryl groups, such as phenyl, phenoxy or indolyl groups, halogen, hydroxy, hydroxy-C 1 -C 5 -alkyl, C 1 -C 6 -alkoxy, aryloxy, preferably C C 6 -C 20 -aryloxy, C 1 -C 6 -alkylthio, -amino, alkylamino, preferably C 1 -C 6 -alkylamino, arylamino, preferably C 6 -C 20 -arylamino, ether, Thioethers, carboxylic acid ester, carboxylic acid amide, sulfoxide, sulfonic, sulfonic, sulfonic acid, sulfinic, mercaptan, nitro or azido groups.
  • aryl or heteroaryl groups such as phenyl, phenoxy or indolyl groups,
  • Aryl is preferably C 6 -C 20 -aryl groups, such as phenyl, biphenyl, naphthyl, indenyl, fluorenyl, etc
  • the aryl group may optionally be monosubstituted or polysubstituted. Suitable substituents are in turn optionally substituted aryl or heteroaryl groups such as phenyl, phenoxy or indolyl, halogen, hydroxy, hydroxy-C 1 -C 5 alkyl, C 1 -C 6 alkoxy, aryloxy, preferred C 6 -C 20 -aryloxy, C 1 -C 6 -alkylthio, amino, alkylamino, preferably C 1 -C 6 -alkylamino, arylamino, preferably C 6 -C 20 -arylamino, ether, Thioethers, carboxylic acid ester, carboxylic acid amide, sulfoxide, sulfonic, sulfonic, sulfonic acid, sulfinic, mercaptan, nitro or azido groups.
  • aryl or heteroaryl groups such as phenyl, phenoxy
  • alkaryl or alkylaryl are meant alkyl groups having an aryl substituent.
  • Aralkyl or arylalkyl refers to an aryl group having an alkyl substituent.
  • heteroaryl or heterocycle are meant cyclic radicals containing at least one S, O or N atom in the ring. These are, for example, furyl, Pyridyl, pyrimidyl, thienyl, isothiazolyl, imidazolyl, tetrazolyl, pyrazinyl, benzofuranyl, benzothiophenyl, quinolyl, isoquinolyl, benzothienyl, isobenzofuryl, pyrazolyl, indolyl, isoindolyl, benzoimidazolyl, purinyl, carbazolyl, oxazolyl, thiazolyl, isothiazolyl, 1,2,4- Thiadiazolyl, isoxazolyl, pyrrolyl, quinazolinyl, pyridazinyl, phthalazinyl, morpholinyl, etc Functional O or N groups can be protected if necessary.
  • alkyl heteroaryl or alkyl heterocycle are meant alkyl groups which are substituted by a heteroaryl group or by a heterocycle.
  • R 1 and R 2 preferably denote a saturated, linear or branched C 1 -C 8 -alkyl radical, a benzyl radical or a phenyl radical, where the radicals are optionally mono- or polysubstituted by F, Cl, OH, carboxylic acid derivatives, such as carboxylic acid esters or carboxamides, amino, C 1 -C 6 alkylamino, C 6 -C 20 arylamino, C 1 -C 6 alkoxy, C 6 -C 20 aryloxy, or nitro may be substituted.
  • R 1 and R 2 together may also be an optionally substituted C 4 -C 20 -alkylene radical which contains one or more heteroatoms from the group consisting of O, N or S or an NR 4 R 5 -group, where R 4 and R 5 independently of one another are H or C 1 -C 6 - Alkyl may be included in the chain.
  • the starting materials are cyclic ketones.
  • the alkylene radical can still, in turn, depending on the ring size of the cyclic ketone still have one or two double bonds, which in a 5-membered ring may not be in conjugation to the carbonyl group.
  • the alkylene radical may also be substituted one or more times by the radicals mentioned above.
  • one of the radicals R 1 and R 2 may also be hydrogen.
  • the educts are aldehydes.
  • R3 is an optionally substituted C, C 5- C 20 aryl or C 1 -C 20 alkyl 5 -C 20 -heteroaryl radical.
  • the alkyl radical may be saturated, mono- or polyunsaturated, linear, branched or cyclic.
  • the aryl radicals and heteroaryl radicals are as defined above.
  • R 3 is preferably a C 1 -C 12 -alkyl radical. Suitable substituents are, for example, phenyl, C 1 -C 6 -alkyl, OH, halogen or a sulfoxy group.
  • nitriles of the formula (III) are methyl cyanoformate, ethyl ester, 2,2,2-trichloroethyl ester, tert. butyl ester, benzyl ester, allyl ester, -i-butyl ester, 2-ethylhexyl ester, p-menthyl ester, etc
  • Carbonic acid nitriles of the formula (III) are commercially available or can be prepared, for example, from the corresponding halides and HCN or an alkali metal cyanide, as described, for example, in EP 0 136 145, Tetrahedron Letters No. 2,829,165. 27, p. 2517 or J. Chem. Soc. Perkin Trans. 1, (15), 1729-35, 1993.
  • At least 1 mol, preferably from 1 to 5 mols, particularly preferably from 2 to 4 mols, of carbonitrile are added per mole of aldehyde or keto group used.
  • the reaction according to the invention takes place in the organic, aqueous or 2-phase system or in emulsion in the presence of a hydroxynitrile lyase as catalyst.
  • an aqueous solution or buffer solution containing the corresponding HNL is used in the aqueous system.
  • examples for this are acetate buffer, borate buffer, phthalate buffer, citrate buffer, phosphate buffer, etc, or mixtures of these buffer solutions.
  • the pH of this solution is at pH 2 to 8, preferably at pH 2.5 to 6.5, are.
  • organic diluent water-immiscible or slightly-miscible aliphatic or aromatic hydrocarbons optionally halogenated, alcohols, ethers or esters or mixtures thereof may be used. Preference is given to methyl tert. Butyl ether (MTBE), diisopropyl ether, dibutyl ether and ethyl acetate or mixtures thereof.
  • MTBE methyl tert. Butyl ether
  • diisopropyl ether dibutyl ether and ethyl acetate or mixtures thereof.
  • the reaction can also be carried out in a two-phase system or in emulsion.
  • Suitable HNLs are both native and recombinant (R) and (S) -HNLs, which are present either as such or immobilized.
  • native (S) -hydroxynitrile lyases for example from manioc and Hevea brasiliensis, as well as recombinant (S) -HNL are suitable.
  • Suitable recombinant (S) -HNL is obtained, for example, from genetically modified microorganisms such as Pichia pastoris, E. coli or Saccharomyces cerevisiae.
  • Preference is given to using recombinant (S) -Hnl from Pichia pastoris.
  • (R) -HNL for example, (R) -hydroxynitrile lyases from Prunus amygdalus, Prunus laurocerasus or Prunus serotina, or recombinant (R) -Hnl in question. Preference is given to using (R) -hydroxynitrilase from Prunus amygdalus or a recombinant (R) -HNL.
  • Suitable (R) and (S) -HNLs are described, for example, in WO 97/03204; EP 0 969 095; EP 0 951 561, EP 0 927 766, EP 0 632 130, EP 0547 655, EP 0 326 063, WO 01/44487, etc.
  • hydroxynitrile lyase is added per g of aldehyde or ketone.
  • reaction temperatures are about -5 to + 40 ° C, preferably about 0 to 30 ° C.
  • the reaction according to the invention is carried out in an aqueous system, wherein the corresponding HNL is initially introduced as an aqueous solution, depending on the selected HNL by means of a suitable acid, for example by means of citric acid or with a buffer, such as acetate buffer, borate buffer, phthalate buffer, citrate buffer, phosphate buffer etc, or mixtures of these buffer solutions, to the desired pH.
  • a suitable acid for example by means of citric acid or with a buffer, such as acetate buffer, borate buffer, phthalate buffer, citrate buffer, phosphate buffer etc, or mixtures of these buffer solutions, to the desired pH.
  • a buffer such as acetate buffer, borate buffer, phthalate buffer, citrate buffer, phosphate buffer etc, or mixtures of these buffer solutions
  • HCN evolves under HNL-catalyzed addition with the starting material first to a corresponding enantioenriched cyanohydrin.
  • Residual carbonic acid nitrile reacts with the enantiomerically enriched cyanohydrin to form the stable, O-protected, enantiomerically enriched cyanohydrin of formula (I), again releasing HCN, which in turn is used for cyanohydrin formation.
  • HCN enantiomerically enriched cyanohydrin
  • the process according to the invention makes it possible by the chemical O-derivatization to shift the equilibrium to the side of the desired end product, whereby a significantly higher conversion can be achieved in particular with cyanohydrins having an initially unfavorable equilibrium position, such as acetophenone derivatives, compared to the prior art. At the same time stabilization of the cyanohydrins formed is achieved by the derivatization.
  • a further advantage of the method according to the invention is the in situ generation of HCN and the continuous delivery of HCN, at the same time avoiding the direct onset of HCN. Unexpectedly, the derivatization reagent does not or only insignificantly lowers the activity of the HNL used.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Production of protected enantiomer-enriched cyanohydrins (I) comprises reacting an aldehyde or ketone (II) with a cyanoformate ester (III) in the presence of an (R)- or (S)-hydroxynitrile lyase in an organic, aqueous, 2-phase or emulsion medium at -5 to +40 degrees C. <??>Production of protected enantiomer-enriched cyanohydrins of formula NCC(R1)(R2)OC(O)OR3 (I) comprises reacting an aldehyde or ketone of formula R1C(O)R2 (II) with a cyanoformate ester of formula NCC(O)OR3 (III) in the presence of an (R)- or (S)-hydroxynitrile lyase in an organic, aqueous, 2-phase or emulsion medium at -5 to +40 degrees C. <??>R1, R2 = H or optionally substituted 1-20C alkyl, 5-20C aryl, 5-20C heteroaryl, 5-20C alkaryl, 5-20C alkylheteroaryl or 5-20C aralkyl; or <??>R1+R2 = optionally substituted 4-20C alkylene or heteroalkylene; and <??>R3 = optionally substituted 1-20C alkyl, 5-20C aryl or 5-20C heteroaryl; <??>provided that R1 and R2 are not both H.

Description

Cyanhydrine sind etwa zur Synthese von alpha-Hydroxysäuren, alpha-Hydroxyketonen, beta-Aminoalkoholen, die zur Gewinnung biologisch wirksamer Stoffe, z. B. pharmazeutischer Wirkstoffe, Vitamine oder auch pyrethroider Verbindungen Verwendung finden, von Bedeutung.Cyanohydrins are for example for the synthesis of alpha-hydroxy acids, alpha-hydroxy ketones, beta-amino alcohols, which are used to obtain biologically active substances, eg. As pharmaceutical agents, vitamins or pyrethroid compounds find use of importance.

Die Herstellung eines Cyanhydrins kann durch Anlagerung von Blausäure (HCN) an die Carbonylgruppe eines Aldehyds oder eines Ketons erfolgen, wobei Enantiomerengemische unsymmetrischer Cyanhydrine entstehen.
Viele Verfahren beruhen darauf, die Anlagerung von HCN an die Carbonylgruppe in Gegenwart eines chiralen Katalysators, beispielsweise einer Hydroxynitrillyase durchzuführen.
Da HCN jedoch eine äußerst giftige Substanz ist, wird ständig versucht den direkten Einsatz bzw. das direkte Handling zu vermeiden. Als Alternativen zu HCN wurden bisher beispielsweise Cyanhydrine der allgemeinen Formel RR'C(OH)(CN), wobei R und R' unabhängig voneinander Wasserstoff oder eine unsubstituierte Kohlenwasserstoffgruppe, oder gemeinsam eine Alkylengruppe mit 4 oder 5 C-Atomen, wobei R und R' nicht gleichzeitig Wasserstoff bedeuten, wie etwa Acetocyanhydrin, als Cyanidgruppendonor eingesetzt.
Einen weiteren Cyanidgruppendonor stellt beispielsweise Trimethylsilylcyanid dar, der gemäß J. Am. Chem. Soc. 2001, 123, 9908-9909 mit Zuckerderivaten bei -40°C in einem absoluten Alkohol umgesetzt wird.
The preparation of a cyanohydrin can be carried out by addition of hydrogen cyanide (HCN) to the carbonyl group of an aldehyde or a ketone, resulting in enantiomeric mixtures of asymmetric cyanohydrins.
Many methods are based on carrying out the addition of HCN to the carbonyl group in the presence of a chiral catalyst, for example a hydroxynitrile lyase.
However, since HCN is a very toxic substance, it is constantly trying to avoid direct use or direct handling. Cyanohydrins of the general formula RR'C (OH) (CN), where R and R 'independently of one another are hydrogen or an unsubstituted hydrocarbon group, or together have an alkylene group with 4 or 5 C atoms, where R and R 'not simultaneously hydrogen, such as acetocyanohydrin, used as a cyanide donor.
Another cyanide group donor is, for example, trimethylsilyl cyanide, which according to J. Am. Chem. Soc. 2001, 123, 9908-9909 is reacted with sugar derivatives at -40 ° C in an absolute alcohol.

Ein weiteres Problem in der Herstellung von Cyanhydrinen ist, dass Cyanhydrine an sich unbeständig sind und dazu neigen, sich in Umkehr ihrer Bildungsreaktion zu zersetzen, sodass bereits versucht wurde diese durch die unterschiedlichsten Zusätze, insbesondere von Säuren, wie etwa Schwefelsäure, Phosphorsäure, HCI, Toluolsulfonsäure, Essigsäure, Propionsäure u.s.w. zu stabilisieren.Another problem in the production of cyanohydrins is that cyanohydrins are unstable per se and tend to decompose in reversal of their formation reaction, so they have already been tried by the various additives, in particular of acids such as sulfuric acid, phosphoric acid, HCl, toluenesulfonic acid, acetic acid, propionic acid, etc.

Bei manchen Cyanhydrinen, wie etwa bei Acetophenonderivaten, ist außerdem die Gleichgewichtslage der Reaktion ziemlich ungünstig, wodurch diese Cyanhydrine nur in schlechten Ausbeuten erhalten werden.In addition, for some cyanohydrins, such as acetophenone derivatives, the equilibrium position of the reaction is rather unfavorable, resulting in these cyanohydrins being obtained only in poor yields.

Aufgabe der vorliegenden Erfindung war es, ein Hydroxynitrillyase-katalysiertes Verfahren zur Herstellung von stabilen, enantiomerenangereicherten Cyanhydrinen zu finden, bei welchem der direkte Einsatz von Blausäure vermieden wird und das eine Gleichgewichtsverschiebung zur Erzielung hoher Konversionen ermöglicht.The object of the present invention was to find a hydroxynitrile lyyl catalyzed process for the preparation of stable, enantiomerically enriched cyanohydrins in which the direct use of hydrogen cyanide is avoided and which allows a shift in equilibrium to achieve high conversions.

Unerwarteterweise konnte diese Aufgabe durch ein Verfahren gelöst werden, bei welchem Kohlensäureesternitrile als Cyanidgruppendonoren eingesetzt werden, wodurch eine in-situ-Derivatisierung und somit Stabilisierung der enantiomerenangereicherten Cyanhydrine erfolgt.Unexpectedly, this object could be achieved by a method in which carbonic acid nitriles are used as cyanide group donors, whereby an in situ derivatization and thus stabilization of the enantiomerically enriched cyanohydrins occurs.

Gegenstand der vorliegenden Erfindung ist demnach ein Verfahren zur Herstellung von geschützten, enantiomeren-angereicherten Cyanhydrinen der Formel

Figure imgb0001
in der R1 und R2 unabhängig voneinander einen gegebenenfalls ein- oder mehrfach substituierten C1-C20-Alkyl-, C5-C20-Aryl-, C5-C20-Heteroaryl-, C5-C20-Alkaryl- C5-C20-Alkylheteroaryl- oder C5-C20-Aralkylrest oder einen gegebenenfalls ein- oder mehrfach substituierten C5-C20-Heterocyclus oder C5-C20-Alkylheterocyclus oder gemeinsam einen gegebenenfalls substituierten C4-C20-Alkylenrest, der ein oder mehrere Heteroatome in der Kette enthalten kann bedeuten können, oder einer der Reste Wasserstoff bedeutet, und R3 ein gegebenenfalls substituierter C1-C20-Alkyl-, C5-C20-Aryl- oder C5-C20-Heteroarylrest sein kann, das dadurch gekennzeichnet ist, dass ein Aldehyd oder Keton der Formel
Figure imgb0002
in der R1 und R2 wie oben definiert sind, in Gegenwart einer (R)- oder (S)-Hydroxynitrillyase im organischen, wässrigen oder 2-Phasensystem oder in Emulsion bei einer Temperatur von -5 bis +40°C mit einem Kohlensäureesternitril der Formel
Figure imgb0003
in der R3 wie oben definiert ist,
zu den entsprechenden O-geschützten, enantiomeren-angereicherten Cyanhydrinen der Formel (I) umgesetzt werden.The present invention accordingly provides a process for the preparation of protected, enantiomerically enriched cyanohydrins of the formula
Figure imgb0001
in the R 1 and R 2, independently of one another, an optionally mono- or polysubstituted C 1 -C 20 -alkyl, C 5 -C 20 -aryl, C 5 -C 20 -heteroaryl, C 5 -C 20 -alkaryl-C C 5 -C 20 -alkylheteroaryl or C 5 -C 20 -aralkyl radical or an optionally mono- or polysubstituted C 5 -C 20 -heterocycle or C 5 -C 20 -alkyl heterocycle or together an optionally substituted C 4 -C 20 -alkylene radical which may mean one or more heteroatoms in the chain, or one of the radicals Is hydrogen, and R3 may be an optionally substituted C 1 -C 20 alkyl, C 5 -C 20 aryl or C 5 -C 20 heteroaryl radical, which is characterized in that an aldehyde or ketone of the formula
Figure imgb0002
in which R 1 and R 2 are as defined above, in the presence of an (R) - or (S) -hydroxynitrile lyase in the organic, aqueous or 2-phase system or in emulsion at a temperature of -5 to + 40 ° C with a carbonic acid nitrile of the formula
Figure imgb0003
where R3 is as defined above
to the corresponding O-protected, enantiomerically-enriched cyanohydrins of the formula (I) are reacted.

Bei dem erfindungsgemäßen Verfahren werden Aldehyde oder Ketone der Formel (II) als Edukte verwendet.
In der Formel (II) können R1 und R2 unabhängig voneinander einen gegebenenfalls ein- oder mehrfach substituierten C1-C20-Alkyl-, C5-C20-Aryl-, C5-C20-Heteroaryl-, C5-C20-Alkaryl-, C5-C20- Alkylheteroaryl- oder C5-C20-Aralkylrest oder einen gegebenenfalls ein- oder mehrfach substituierten C5-C20-Heterocyclus oder C5-C20-Alkylheterocyclus bedeuten.
In the process according to the invention, aldehydes or ketones of the formula (II) are used as starting materials.
In the formula (II) R1 and R2 are each independently an unsubstituted, monosubstituted or polysubstituted C 1 -C 20 alkyl, C 5 -C 20 aryl, C 5 -C 20 -heteroaryl, C 5- C 20 -Alkaryl-, C 5 -C 20 - Alkylheteroaryl- or C 5 -C 20 -Aralkylrest or an optionally mono- or polysubstituted C 5 -C 20 heterocycle or C 5 -C 20 alkylheterocycle.

Unter C1-C20-Alkyl sind dabei gesättigte oder ein- oder mehrfach ungesättigte, lineare, verzweigte oder cyclische, primäre, sekundäre oder tertiäre Hydrocarbonreste zu verstehen. Dies sind beispielsweise C1-C20-Alkylreste, wie etwa Methyl, Ethyl, Propyl, iso-Propyl, Butyl, iso-Butyl, t-Butyl, Butenyl, Butinyl, Pentyl, Cyclopentyl, iso-Pentyl, neo-Pentyl, Pentenyl, Pentinyl, Hexyl, iso-Hexyl, Cyclohexyl, Cyclohexylmethyl, 3-Methylpentyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, Octyl, Cyclooctyl, Decyl, Cyclodecyl, Dodecyl, Cyclododecyl u.s.w. Bevorzugt sind dabei C1-C12-Alkylreste und besonders bevorzugt C1-C8-Alkylreste. Die Alkylgruppe kann gegebenenfalls ein- oder mehrfach durch unter den Reaktionsbedingungen inerte Gruppen substituiert sein. Geeignete Substituenten sind beispielsweise gegebenenfalls substituierte Aryl- oder Heteroarylgruppen, wie Phenyl-, Phenoxy- oder Indolylgruppen, Halogen-, Hydroxy-, Hydroxy-C1-C5-Alkyl, C1-C6-Alkoxy-, Aryloxy-, bevorzugt C6-C20-Aryloxy-, C1-C6-Alkylthio-,- Amino-, Alkylamino-, bevorzugt C1-C6-Alkylamino-, Arylamino-, bevorzugt C6-C20-Arylamino-, Ether-, Thioether, Carbonsäureester-, Carbonsäureamid-, Sulfoxid-, Sulfon-, Sulfonsäure, Sulfonsäureester-, Sulfinsäure-,Mercaptan-, Nitro- oder Azidogruppen.By C 1 -C 20 -alkyl are meant saturated or mono- or polyunsaturated, linear, branched or cyclic, primary, secondary or tertiary hydrocarbon radicals. These are, for example, C 1 -C 20 -alkyl radicals, such as, for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, butenyl, butynyl, pentyl, cyclopentyl, isopentyl, neopentyl, pentenyl , Pentynyl, hexyl, isohexyl, cyclohexyl, cyclohexylmethyl, 3-methylpentyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, octyl, cyclooctyl, decyl, cyclodecyl, dodecyl, cyclododecyl, etc. Preferred are C 1 -C 12 -alkyl radicals and particularly preferably C 1 -C 8 -alkyl radicals. The alkyl group may optionally be monosubstituted or polysubstituted by groups inert under the reaction conditions. Suitable substituents are, for example, optionally substituted aryl or heteroaryl groups, such as phenyl, phenoxy or indolyl groups, halogen, hydroxy, hydroxy-C 1 -C 5 -alkyl, C 1 -C 6 -alkoxy, aryloxy, preferably C C 6 -C 20 -aryloxy, C 1 -C 6 -alkylthio, -amino, alkylamino, preferably C 1 -C 6 -alkylamino, arylamino, preferably C 6 -C 20 -arylamino, ether, Thioethers, carboxylic acid ester, carboxylic acid amide, sulfoxide, sulfonic, sulfonic, sulfonic acid, sulfinic, mercaptan, nitro or azido groups.

Unter Aryl sind bevorzugt C6-C20-Arylgruppen zu verstehen, wie etwa Phenyl, Biphenyl, Naphthyl, Indenyl, Fluorenyl u.s.w.Aryl is preferably C 6 -C 20 -aryl groups, such as phenyl, biphenyl, naphthyl, indenyl, fluorenyl, etc

Die Arylgruppe kann dabei gegebenenfalls ein- oder mehrfach substituiert sein. Geeignete Substituenten sind dabei wiederum gegebenenfalls substituierte Aryl- oder Heteroarylgruppen, wie Phenyl-, Phenoxy- oder Indolylgruppen, Halogen-, Hydroxy-, Hydroxy-C1-C5-Alkyl, C1-C6-Alkoxy-, Aryloxy-, bevorzugt C6-C20-Aryloxy-, C1-C6-Alkylthio-, Amino-, Alkylamino-, bevorzugt C1-C6-Alkylamino-, Arylamino-, bevorzugt C6-C20-Arylamino-, Ether-, Thioether, Carbonsäureester-, Carbonsäureamid-, Sulfoxid-, Sulfon-, Sulfonsäure, Sulfonsäureester-, Sulfinsäure-,Mercaptan-, Nitro- oder Azidogruppen.The aryl group may optionally be monosubstituted or polysubstituted. Suitable substituents are in turn optionally substituted aryl or heteroaryl groups such as phenyl, phenoxy or indolyl, halogen, hydroxy, hydroxy-C 1 -C 5 alkyl, C 1 -C 6 alkoxy, aryloxy, preferred C 6 -C 20 -aryloxy, C 1 -C 6 -alkylthio, amino, alkylamino, preferably C 1 -C 6 -alkylamino, arylamino, preferably C 6 -C 20 -arylamino, ether, Thioethers, carboxylic acid ester, carboxylic acid amide, sulfoxide, sulfonic, sulfonic, sulfonic acid, sulfinic, mercaptan, nitro or azido groups.

Unter Alkaryl oder Alkylaryl sind Alkylgruppen zu verstehen, die einen Arylsubstituenten aufweisen.
Aralkyl oder Arylalkyl bezieht sich auf eine Arylgruppe mit einem Alkylsubstituenten.
By alkaryl or alkylaryl are meant alkyl groups having an aryl substituent.
Aralkyl or arylalkyl refers to an aryl group having an alkyl substituent.

Unter Heteroaryl oder Heterocyclus sind cyclische Reste zu verstehen die zumindestens ein S-, O- oder N-Atom im Ring enthalten. Dies sind beispielsweise Furyl, Pyridyl, Pyrimidyl, Thienyl, Isothiazolyl, Imidazolyl, Tetrazolyl, Pyrazinyl, Benzofuranyl, Benzothiophenyl, Chinolyl, Isochinolyl, Benzothienyl, Isobenzofuryl, Pyrazolyl, Indolyl, Isoindolyl, Benzoimidazolyl, Purinyl, Carbazolyl, Oxazolyl, Thiazolyl, Isothiazolyl, 1,2,4-Thiadiazolyl, Isoxazolyl, Pyrrolyl, Chinazolinyl, Pyridazinyl, Phthalazinyl, Morpholinyl, u.s.w.
Funktionelle O- oder N-Gruppen können dabei nötigenfalls geschützt werden.
Die Heteroarylgruppe bzw. der Heterocyclus kann dabei gegebenenfalls ein- oder mehrfach durch die bereits oben angeführten Substituenten substituiert sein.
By heteroaryl or heterocycle are meant cyclic radicals containing at least one S, O or N atom in the ring. These are, for example, furyl, Pyridyl, pyrimidyl, thienyl, isothiazolyl, imidazolyl, tetrazolyl, pyrazinyl, benzofuranyl, benzothiophenyl, quinolyl, isoquinolyl, benzothienyl, isobenzofuryl, pyrazolyl, indolyl, isoindolyl, benzoimidazolyl, purinyl, carbazolyl, oxazolyl, thiazolyl, isothiazolyl, 1,2,4- Thiadiazolyl, isoxazolyl, pyrrolyl, quinazolinyl, pyridazinyl, phthalazinyl, morpholinyl, etc
Functional O or N groups can be protected if necessary.
The heteroaryl group or the heterocycle may optionally be monosubstituted or polysubstituted by the abovementioned substituents.

Unter Alkylheteroaryl bzw. Alkylheterocyclus sind dabei Alkylgruppen zu verstehen, die durch eine Heteroarylgruppe bzw. durch einen Heterocyclus substituiert sind.By alkyl heteroaryl or alkyl heterocycle are meant alkyl groups which are substituted by a heteroaryl group or by a heterocycle.

Bevorzugt bedeuten R1 und R2 einen gesättigten, linearen oder verzweigten C1-C8-Alkylrest, einen Benzyl- oder einen Phenylrest, wobei die Reste gegebenenfalls ein- oder mehrfach durch F, Cl, OH, Carbonsäurederivate, wie Carbonsäureester oder Carbonsäureamide, Amino, C1-C6-Alkylamino, C6-C20-Arylamino, C1-C6-Alkoxy, C6-C20-Aryloxy, oder Nitro substituiert sein können.R 1 and R 2 preferably denote a saturated, linear or branched C 1 -C 8 -alkyl radical, a benzyl radical or a phenyl radical, where the radicals are optionally mono- or polysubstituted by F, Cl, OH, carboxylic acid derivatives, such as carboxylic acid esters or carboxamides, amino, C 1 -C 6 alkylamino, C 6 -C 20 arylamino, C 1 -C 6 alkoxy, C 6 -C 20 aryloxy, or nitro may be substituted.

R1 und R2 können aber auch gemeinsam einen gegebenenfalls substituierten C4-C20-Alkylenrest, der ein oder mehrere Heteroatome aus der Gruppe O, N oder S oder eine NR4R5-Gruppe, wobei R4 und R5 unabhängig voneinander H oder C1-C6-Alkylsein können, in der Kette enthalten kann bedeuten. In diesem Fall stellen die Edukte cyclische Ketone dar.
Bevorzugt sind C4-C7-Alkylenreste, die in Abhängigkeit von der Ringgröße des cyclischen Ketons höchstens 2 Heteroatome in der Alkylkette aufweisen. Der Alkylenrest kann weiters noch, wiederum in Abhängigkeit von der Ringgröße des cyclischen Ketons noch ein oder 2 Doppelbindungen aufweisen, wobei bei einem 5er-Ring diese nicht in Konjugation zur Carbonylgruppe stehen darf.
Der Alkylenrest kann zudem ein oder mehrfach durch die oben angeführten Reste substituiert sein.
However, R 1 and R 2 together may also be an optionally substituted C 4 -C 20 -alkylene radical which contains one or more heteroatoms from the group consisting of O, N or S or an NR 4 R 5 -group, where R 4 and R 5 independently of one another are H or C 1 -C 6 - Alkyl may be included in the chain. In this case, the starting materials are cyclic ketones.
Preference is given to C 4 -C 7 -alkylene radicals which, depending on the ring size of the cyclic ketone, have at most 2 heteroatoms in the alkyl chain. The alkylene radical can still, in turn, depending on the ring size of the cyclic ketone still have one or two double bonds, which in a 5-membered ring may not be in conjugation to the carbonyl group.
The alkylene radical may also be substituted one or more times by the radicals mentioned above.

Bei den eingesetzten Edukten kann jedoch auch einer der Reste R1 und R2 Wasserstoff bedeuten. In diesem Fall handelt es sich bei den Edukten um Aldehyde.In the case of the educts used, however, one of the radicals R 1 and R 2 may also be hydrogen. In this case the educts are aldehydes.

Erfindungsgemäß wird das gewünschte Edukt mit einem Kohlensäureesternitril der Formel (III) umgesetzt.
In der Formel (III) bedeutet R3 einen gegebenenfalls substituierten C1-C20-Alkyl-, C5-C20-Aryl- oder C5-C20-Heteroarylrest. Der Alkylrest kann dabei gesättigt, ein- oder mehrfach ungesättigt, linear, verzweigt oder cyclisch sein. Die Arylreste und Heteroarylreste sind dabei wie oben definiert. Bevorzugt bedeutet R3 einen C1-C12-Alkylrest.
Geeignete Substituenten sind beispielsweise Phenyl, C1-C6-Alkyl, OH, Halogen oder eine Sulfoxygruppe.
Beispiele für geeignete Nitrile der Formel (III) sind Cyanameisensäuremethylester, -ethylester, -2,2,2-trichlorethylester, -tert. butylester, -benzylester, -allylester, -i-butylester, -2-ethylhexylester, -p-menthylester, u.s.w.
According to the invention, the desired educt is reacted with a carbonic acid nitrile of the formula (III).
In the formula (III) R3 is an optionally substituted C, C 5- C 20 aryl or C 1 -C 20 alkyl 5 -C 20 -heteroaryl radical. The alkyl radical may be saturated, mono- or polyunsaturated, linear, branched or cyclic. The aryl radicals and heteroaryl radicals are as defined above. R 3 is preferably a C 1 -C 12 -alkyl radical.
Suitable substituents are, for example, phenyl, C 1 -C 6 -alkyl, OH, halogen or a sulfoxy group.
Examples of suitable nitriles of the formula (III) are methyl cyanoformate, ethyl ester, 2,2,2-trichloroethyl ester, tert. butyl ester, benzyl ester, allyl ester, -i-butyl ester, 2-ethylhexyl ester, p-menthyl ester, etc

Kohlensäureesternitrile der Formel (III) sind käuflich erwerbbar oder können beispielsweise aus den entsprechenden Halogeniden und HCN oder einem Alkalicyanid, wie etwa in EP 0 136 145, Tetrahedron Letters No. 27, S.2517 oder J.Chem. Soc. Perkin Trans. 1, (15), 1729-35, beschrieben, 1993 hergestellt werden.Carbonic acid nitriles of the formula (III) are commercially available or can be prepared, for example, from the corresponding halides and HCN or an alkali metal cyanide, as described, for example, in EP 0 136 145, Tetrahedron Letters No. 2,829,165. 27, p. 2517 or J. Chem. Soc. Perkin Trans. 1, (15), 1729-35, 1993.

Pro Mol eingesetzte Aldehyd- oder Ketogruppe werden mindestens 1 Mol, bevorzugt 1 bis 5 Mole, besonders bevorzugt 2 bis 4 Mole, Kohlensäurenitril zugegeben.At least 1 mol, preferably from 1 to 5 mols, particularly preferably from 2 to 4 mols, of carbonitrile are added per mole of aldehyde or keto group used.

Die erfindungsgemäße Reaktion findet im organischen, wässrigen oder 2-Phasensystem oder in Emulsion in Anwesenheit einer Hydroxynitrillyase als Katalysator statt.
Dabei wird bei der enantioselektiven Umsetzung im wässrigen System eine wässrige, die entsprechende HNL enthaltende Lösung oder Pufferlösung verwendet. Beispiele dafür sind Acetatpuffer, Boratpuffer, Phthalatpuffer, Citratpuffer, Phosphatpuffer u.s.w. oder Gemischen dieser Pufferlösungen.
Der pH-Wert dieser Lösung liegt dabei bei pH 2 bis 8, bevorzugt bei pH 2,5 bis 6,5, liegen.
The reaction according to the invention takes place in the organic, aqueous or 2-phase system or in emulsion in the presence of a hydroxynitrile lyase as catalyst.
In the enantioselective reaction, an aqueous solution or buffer solution containing the corresponding HNL is used in the aqueous system. Examples for this are acetate buffer, borate buffer, phthalate buffer, citrate buffer, phosphate buffer, etc, or mixtures of these buffer solutions.
The pH of this solution is at pH 2 to 8, preferably at pH 2.5 to 6.5, are.

Als organisches Verdünnungsmittel können mit Wasser nicht oder geringfügig mischbare aliphatische oder aromatische Kohlenwasserstoffe, die gegebenenfalls halogeniert sind, Alkohole, Ether oder Ester oder Gemische davon verwendet werden. Bevorzugt werden Methyl -tert. Butylether (MTBE), Diisopropylether, Dibutylether und Ethylacetat oder deren Gemische eingesetzt.
Die Umsetzung kann jedoch auch in einem Zweiphasensystem oder in Emulsion mit erfolgen.
As the organic diluent, water-immiscible or slightly-miscible aliphatic or aromatic hydrocarbons optionally halogenated, alcohols, ethers or esters or mixtures thereof may be used. Preference is given to methyl tert. Butyl ether (MTBE), diisopropyl ether, dibutyl ether and ethyl acetate or mixtures thereof.
However, the reaction can also be carried out in a two-phase system or in emulsion.

Als HNLs eignen sich sowohl native als auch rekombinante (R)- und (S)-HNLs, die entweder als solche oder immobilisiert vorliegen.Suitable HNLs are both native and recombinant (R) and (S) -HNLs, which are present either as such or immobilized.

Als (S)-Hydroxynitrillyase (HNL) kommen native (S)-Hydroxynitrillyasen z.B. aus Maniok und Hevea brasiliensis, sowie rekombinante (S)-HNL in Frage. Bevorzugt wird als native HNL HNL aus Hevea brasiliensis verwendet. Geeignete rekombinante (S)-HNL wird beispielsweise aus gentechnisch modifizierten Mikroorganismen, wie etwa Pichia pastoris, E. coli oder Saccharomyces cerevisiae erhalten.
Bevorzugt wird rekombinante (S)-Hnl aus Pichia pastoris eingesetzt.
As (S) -hydroxynitrile lyase (HNL), native (S) -hydroxynitrile lyases, for example from manioc and Hevea brasiliensis, as well as recombinant (S) -HNL are suitable. Preference is given to using native HNL HNL from Hevea brasiliensis. Suitable recombinant (S) -HNL is obtained, for example, from genetically modified microorganisms such as Pichia pastoris, E. coli or Saccharomyces cerevisiae.
Preference is given to using recombinant (S) -Hnl from Pichia pastoris.

Als (R)-HNL kommen beispielsweise (R)-Hydroxynitrillyasen aus Prunus amygdalus, Prunus laurocerasus oder Prunus serotina, oder rekombinante (R)-Hnl in Frage. Bevorzugt wird (R)-Hydroxynitrilase aus Prunus amygdalus oder eine rekombinante (R)-HNL verwendet.As (R) -HNL, for example, (R) -hydroxynitrile lyases from Prunus amygdalus, Prunus laurocerasus or Prunus serotina, or recombinant (R) -Hnl in question. Preference is given to using (R) -hydroxynitrilase from Prunus amygdalus or a recombinant (R) -HNL.

Geeignete (R)- und (S)-HNLs sind beispielsweise aus WO 97/03204; EP 0 969 095; EP 0 951 561, EP 0 927 766, EP 0 632 130, EP 0547 655, EP 0 326 063, WO 01/44487 usw. bekannt.Suitable (R) and (S) -HNLs are described, for example, in WO 97/03204; EP 0 969 095; EP 0 951 561, EP 0 927 766, EP 0 632 130, EP 0547 655, EP 0 326 063, WO 01/44487, etc.

Pro g Aldehyd bzw. Keton werden etwa 10 bis 20 000 IU Aktivität, bevorzugt etwa 100 bis 10 000 IU Aktivität, Hydroxynitrillyase zugesetzt.About 10 to 20,000 IU of activity, preferably about 100 to 10,000 IU of activity, hydroxynitrile lyase is added per g of aldehyde or ketone.

Die Reaktionstemperaturen liegt bei etwa -5 bis +40°C, bevorzugt bei etwa 0 bis 30°C.The reaction temperatures are about -5 to + 40 ° C, preferably about 0 to 30 ° C.

Bevorzugt wird die erfindungsgemäße Reaktion im wässrigen System durchgeführt, wobei zuerst die entsprechende HNL als wässrige Lösung vorgelegt, in Abhängigkeit von der gewählten HNL mittels einer geeigneten Säure, beispielsweise mittels Citronensäure oder mit einem Puffer, wie etwa Acetatpuffer, Boratpuffer, Phthalatpuffer, Citratpuffer, Phosphatpuffer u.s.w. oder Gemischen dieser Pufferlösungen, auf den gewünschten pH gestellt wird. Anschließend wird das entsprechende Edukt der Formel (II) zugesetzt und die Reaktion durch Zugabe des Kohlensäureesternitrils der Formel (III) gestartet. Dabei entwickelt sich HCN das unter HNL-katalysierter Addition mit dem eingesetzten Edukt zuerst zu einem korrespondierenden enantiomerenangereicherten Cyanhydrin reagiert. Restliches Kohlensäurenitril reagiert mit dem enantiomerenangereicherten Cyanhydrin zu dem stabilen, O-geschützten, enantiomerenangereicherten Cyanhydrin der Formel (I), wobei wieder HCN frei wird, die wiederum zur Cyanhydrinbildung verwendet wird.
Es kann jedoch auch zuerst das Edukt vorgelegt werden und anschließend die entsprechende HNL als wässrige Lösung zugegeben werden.
Preferably, the reaction according to the invention is carried out in an aqueous system, wherein the corresponding HNL is initially introduced as an aqueous solution, depending on the selected HNL by means of a suitable acid, for example by means of citric acid or with a buffer, such as acetate buffer, borate buffer, phthalate buffer, citrate buffer, phosphate buffer etc, or mixtures of these buffer solutions, to the desired pH. Subsequently, the corresponding starting material of the formula (II) is added and the reaction is started by adding the carbonic acid nitrile of the formula (III). HCN evolves under HNL-catalyzed addition with the starting material first to a corresponding enantioenriched cyanohydrin. Residual carbonic acid nitrile reacts with the enantiomerically enriched cyanohydrin to form the stable, O-protected, enantiomerically enriched cyanohydrin of formula (I), again releasing HCN, which in turn is used for cyanohydrin formation.
However, it is also possible first to introduce the educt and then to add the corresponding HNL as an aqueous solution.

Der Reaktionsverlauf ist aus folgendem Schema ersichtlich:

Figure imgb0004
The course of the reaction is shown in the following scheme:
Figure imgb0004

Das erfindungsgemäße Verfahren ermöglicht dabei durch die chemische O-Derivatisierung eine Gleichgewichtsverschiebung auf die Seite des gewünschten Endproduktes, wodurch insbesondere bei Cyanhydrinen mit ursprünglich ungünstiger Gleichgewichtslage, wie etwa Acetophenonderivate, im Vergleich zum Stand der Technik eine wesentlich höhere Konversion erzielt werden kann. Gleichzeitig wird durch die Derivatisierung eine Stabilisierung der gebildeten Cyanhydrine erreicht. Ein weiterer Vorteil des erfindungsgemäßen Verfahrens ist die in situ Generierung von HCN und die ständige Nachlieferung von HCN, wobei gleichzeitig ein direktes Einsetzen von HCN vermieden wird. Das Derivatisierungsreagens setzt dabei unerwarteterweise die Aktivität der eingesetzten HNL nicht oder nur unbedeutend herab.The process according to the invention makes it possible by the chemical O-derivatization to shift the equilibrium to the side of the desired end product, whereby a significantly higher conversion can be achieved in particular with cyanohydrins having an initially unfavorable equilibrium position, such as acetophenone derivatives, compared to the prior art. At the same time stabilization of the cyanohydrins formed is achieved by the derivatization. A further advantage of the method according to the invention is the in situ generation of HCN and the continuous delivery of HCN, at the same time avoiding the direct onset of HCN. Unexpectedly, the derivatization reagent does not or only insignificantly lowers the activity of the HNL used.

Beispiel 1:Example 1: HNL-katalysierte Reaktion von Cyanameisensäureethylester mit Benzaldehyd:HNL-catalyzed reaction of ethyl cyanoformate with benzaldehyde:

Figure imgb0005
Figure imgb0005

Es wurden 2,5 ml rekombinante R-HNL Lösung (300 iU/ml) mit einer Citronensäurelösung auf pH 3,3 eingestellt und mit 2,5 ml 50 mmol Kaliumphosphat / Citratpuffer pH 3,3 verdünnt. Anschließend wurden 106 mg (1 mmol) Benzaldehyd zugesetzt und die Reaktion durch Zugabe von 297 µl (3 mmol) Cyanameisensäureethylester gestartet. Das Reaktionsgemisch wurde bei 25 °C gerührt und die Bildung von Benzaldehydcyanhydrin und O-Ethoxycarbonyl-cyanhydrin mittels Gaschromatographie an einer chiralen Phase (Cyclodextrinsäule) verfolgt und die entsprechenden Enantiomerenreinheiten errechnet.2.5 ml of recombinant R-HNL solution (300 iU / ml) was adjusted to pH 3.3 with a citric acid solution and diluted with 2.5 ml of 50 mM potassium phosphate / citrate buffer pH 3.3. Subsequently, 106 mg (1 mmol) of benzaldehyde were added and the reaction started by adding 297 μl (3 mmol) of ethyl cyanoformate. The reaction mixture was stirred at 25 ° C and the formation of Benzaldehydcyanhydrin and O-ethoxycarbonyl-cyanohydrin by gas chromatography on a chiral phase (cyclodextrin) followed and calculated the corresponding enantiomeric purities.

Reaktionsverlauf:Course of the reaction:

Reaktionszeit (Stunden) Benzaldehyd Benzaldehydcyanhydrin O-Ethoxycarbonyl-cyanhydrin (Area%) (Area%) (%ee) (Area%) (%ee) 1 61 38 99,9 1 99,9 3 15 77 99,5 8 99,9 23 2 65 93,7 33 99,9 44,5 * < 1 34 89,4 66 94,7 *Nach 26 Stunden wurden nochmals 297 µl (3 mmol) Cyanameisensäureethylester zugesetzt. Identifizierung des O-Ethoxycarbonyl-cyanhydrines:
1H-NMR in CDCl3, 300 MHz: δ 1,30-1,32 (t, 3H), 4,21-4,36 (m, 2H), 6,27 (s, 1H) 7,39-7,57 (m, 5H)
Reaction time (hours) benzaldehyde benzaldehyde O-ethoxycarbonyl cyanohydrin (Area%) (Area%) (% Ee) (Area%) (% Ee) 1 61 38 99.9 1 99.9 3 15 77 99.5 8th 99.9 23 2 65 93.7 33 99.9 44.5 * <1 34 89.4 66 94.7 After 26 hours, another 297 μl (3 mmol) of ethyl cyanoformate were added. Identification of O-ethoxycarbonyl cyanohydrin:
1 H-NMR in CDCl 3 , 300 MHz: δ 1.30-1.32 (t, 3H), 4.21-4.36 (m, 2H), 6.27 (s, 1H) 7.39- 7.57 (m, 5H)

Claims (10)

  1. Process for preparing protected, enantiomer-enriched cyanohydrins of the formula
    Figure imgb0009
    where R1 and R2 independently of one another can be an unsubstituted, monosubstituted or polysubstituted C1-C20-alkyl, C5-C20-aryl, C5-C20-heteroaryl, C5-C20-alkaryl, C5-C20-alkylheteroaryl or C5-C20-aralkyl radical or an unsubstituted, monosubstituted or polysubstituted C5-C20-heterocycle, or C5-C20-alkylheterocycle or together can be an unsubstituted or substituted C4-C20-alkylene radical, which can contain one or more heteroatoms in the chain, or one of the radicals is hydrogen, and R3 can be an unsubstituted or substituted C1-C20-alkyl, C5-C20-aryl or C5-C20-heteroaryl radical, which process is characterized in that an aldehyde or ketone of the formula
    Figure imgb0010
    where R1 and R2 are defined as above, is reacted in the presence of an (R)- or (S)-hydroxynitrile lyase in an organic, aqueous or 2-phase system or in emulsion at a temperature of -5 to +40°C with a carbonic ester nitrile of the formula
    Figure imgb0011
    where R3 is defined as above,
    to give the corresponding O-protected, enantiomer-enriched cyanohydrins of the formula (I).
  2. Process according to Claim 1, characterized in that the starting materials used are compounds of the formula (II) where R1 and R2 independently of one another can be a C1-C20-alkyl, C5-C20-aryl, C5-C20-heteroaryl, C5-C20-alkaryl, C5-C20-alkylheteroaryl or C5-C20-aralkyl radical, or an unsubstituted, monosubstituted or polysubstituted C5-C20-heterocycle or C5-C20-alkylheterocycle or together can be an unsubstituted or substituted C4-C20-alkylene radical, which can contain one or more heteroatoms in the chain, where the radicals can be monosubstituted or polysubstituted by unsubstituted or substituted aryl or heteroaryl groups, halogen, hydroxyl, hydroxy-C1-C5-alkyl, C1-C6-alkoxy, C6-C20-aryloxy, C1-C6-alkylthio, amino, C1-C6-alkylamino, C6-C20-arylamino, ether, thioether, carboxylic ester, carboxamide, sulphoxide, sulphone, sulphonic acid, sulphonic ester, sulphinic acid, mercaptan, nitro or azido groups, or one of the radicals is hydrogen.
  3. Process according to Claim 2, characterized in that the starting materials used are compounds of the formula (II) where R1 and R2 independently of one another are a saturated, unbranched or branched C1-C8-alkyl radical, a benzyl radical or a phenyl radical, where the radicals can be unsubstituted, monosubstituted or polysubstituted by F, Cl, OH, carboxylic esters, carboxamides, amino, C1-C6-alkylamino, C6-C20-arylamino, C1-C6-alkoxy, C6-C20-aryloxy, or nitro, or one of the radicals is hydrogen.
  4. Process according to Claim 1, characterized in that the carbononitrile used is a compound of the formula (III) where R3 is a C1-C20-alkyl radical which can be substituted by one or more substituents selected from the group consisting of phenyl, C1-C6-alkyl, OH, halogen or sulphoxy.
  5. Process according to Claim 1, characterized in that, in the case of the enantioselective reaction in an aqueous system, an aqueous solution containing the corresponding hydroxynitrile lyase or an acetate buffer, borate buffer, phthalate buffer, citrate buffer, phosphate buffer solution or a mixture of these buffer solutions is used.
  6. Process according to Claim 5, characterized in that a pH of 2 to 8 is established in the aqueous solution.
  7. Process according to Claim 1, characterized in that, as organic diluent, water-immiscible or only slightly water-miscible aliphatic or aromatic hydrocarbons which may be halogenated, alcohols, ethers or esters or mixtures are used.
  8. Process according to Claim 1, characterized in that the reaction, however, alternatively proceeds in a two-phase system or in emulsion.
  9. Process according to Claim 1, characterized in that the hydroxynitrile lyases used are native or recombinant (R)- and (S)-hydroxynitrile lyases which are present either as such or immobilized.
  10. Process according to Claim 9, characterized in that the hydroxynitrile lyases used are native (S)-hydroxynitrile lyases from manioc and Hevea brasiliensis, recombinant (S)-hydroxynitrile lyase from genetically modified microorganisms from the group Pichia pastoris, E. coli or Saccharomyces cerevisiae, native (R)-hydroxynitrile lyases from Prunus amygdalus, Prunus laurocerasus or Prunus serotina, or recombinant (R)-hydroxynitrile lyases.
EP02026849A 2001-12-28 2002-11-29 Method for the preparation of protected, enantiomerically enriched cyanohydrines by in-situ derivatisation Expired - Lifetime EP1323829B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT02026849T ATE328105T1 (en) 2001-12-28 2002-11-29 METHOD FOR PRODUCING PROTECTED, ENANTIOMER-ENriched CYANHYDRINS BY IN-SITU DERIVATIZATION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT20442001 2001-12-28
AT0204401A AT410792B (en) 2001-12-28 2001-12-28 PROCESS FOR THE PREPARATION OF PROTECTED, ENANTIOMERIC ENRICHED CYANHYDRINES BY IN SITU DERIVATIZATION

Publications (3)

Publication Number Publication Date
EP1323829A2 EP1323829A2 (en) 2003-07-02
EP1323829A3 EP1323829A3 (en) 2003-12-10
EP1323829B1 true EP1323829B1 (en) 2006-05-31

Family

ID=3689713

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02026849A Expired - Lifetime EP1323829B1 (en) 2001-12-28 2002-11-29 Method for the preparation of protected, enantiomerically enriched cyanohydrines by in-situ derivatisation

Country Status (7)

Country Link
US (1) US6909011B2 (en)
EP (1) EP1323829B1 (en)
JP (1) JP2003210187A (en)
AT (2) AT410792B (en)
CA (1) CA2415190A1 (en)
DE (1) DE50206986D1 (en)
ES (1) ES2262750T3 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT410792B (en) * 2001-12-28 2003-07-25 Dsm Fine Chem Austria Gmbh PROCESS FOR THE PREPARATION OF PROTECTED, ENANTIOMERIC ENRICHED CYANHYDRINES BY IN SITU DERIVATIZATION
DE10219934A1 (en) * 2002-05-03 2003-11-20 Basf Ag New proteins with (R) -hydroxynitrile lyase activity
AT500910B1 (en) * 2004-01-30 2006-11-15 Dsm Fine Chem Austria Gmbh METHOD FOR PRODUCING BETA HYDROXYNITRO COMPOUNDS
EA020659B1 (en) 2008-04-23 2014-12-30 Джилид Сайэнс, Инк. 1'-substituted carba-nucleoside analogs for antiviral treatment
UA112140C2 (en) * 2009-02-10 2016-07-25 Гіліад Сайєнсіз, Інк. NUCLEID OXIDES (OPTIONS), PHARMACEUTICAL COMPOSITION ON THEIR BASES, METHOD OF TREATMENT OF VIRAL INFECTION AND USE OF LOW MEDICINAL PRODUCTS
MX2012003126A (en) 2009-09-21 2012-06-19 Gilead Sciences Inc Processes and intermediates for the preparation of 1'-substituted carba-nucleoside analogs.
AP2013006665A0 (en) 2010-07-19 2013-01-31 Gilead Sciences Inc Methods for the preparation of diasteromerically pure phosphoramidate prodrugs
MX2013000744A (en) 2010-07-22 2013-03-07 Gilead Sciences Inc Methods and compounds for treating paramyxoviridae virus infections.
TWI767201B (en) 2014-10-29 2022-06-11 美商基利科學股份有限公司 Methods for treating filoviridae virus infections
MA42819A (en) 2015-09-16 2018-07-25 Gilead Sciences Inc METHODS FOR THE TREATMENT OF ARENAVIRIDAE AND CORONAVIRIDAE VIRAL INFECTIONS
TW201836615A (en) 2017-03-14 2018-10-16 美商基利科學股份有限公司 Methods of treating feline coronavirus infections
AU2018262501B2 (en) 2017-05-01 2020-12-10 Gilead Sciences, Inc. Crystalline forms of (S) 2 ethylbutyl 2 (((S) (((2R,3S,4R,5R) 5 (4 aminopyrrolo[2,1-f] [1,2,4]triazin-7-yl)-5-cyano-3,4-dihydroxytetrahydrofuran-2 yl)methoxy)(phenoxy) phosphoryl)amino)propanoate
US10675296B2 (en) 2017-07-11 2020-06-09 Gilead Sciences, Inc. Compositions comprising an RNA polymerase inhibitor and cyclodextrin for treating viral infections
TWI789695B (en) 2020-01-27 2023-01-11 美商基利科學股份有限公司 Methods for treating sars cov-2 infections
TWI785528B (en) 2020-03-12 2022-12-01 美商基利科學股份有限公司 Methods of preparing 1’-cyano nucleosides
EP4132651A1 (en) 2020-04-06 2023-02-15 Gilead Sciences, Inc. Inhalation formulations of 1'-cyano substituted carbanucleoside analogs
EP4157272A1 (en) 2020-05-29 2023-04-05 Gilead Sciences, Inc. Remdesivir treatment methods
BR112022026321A2 (en) 2020-06-24 2023-01-17 Gilead Sciences Inc 1'-CYAN NUCLEOSIDE ANALOGS AND USES THEREOF
US11926645B2 (en) 2020-08-27 2024-03-12 Gilead Sciences, Inc. Compounds and methods for treatment of viral infections
TW202400185A (en) 2022-03-02 2024-01-01 美商基利科學股份有限公司 Compounds and methods for treatment of viral infections

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4414218A (en) * 1982-03-03 1983-11-08 The Dow Chemical Company Cyano-(substituted and unsubstituted pyridinyl) methyl and aryl esters of carbonic acid
US5329023A (en) * 1987-12-24 1994-07-12 Duphar International Research B.V. Method of preparing optically active alcohols which consist substantially or entirely of one enantiomer
AT396252B (en) * 1991-10-31 1993-07-26 Chemie Linz Gmbh ENZYMATIC METHOD FOR THE ENANTIOSELECTIVE PRODUCTION OF OPTICALLY ACTIVE CYANHYDRINE
EP0547655A1 (en) * 1991-12-11 1993-06-23 Duphar International Research B.V Method of preparing optically active cyanohydrins
US5241087A (en) * 1992-03-09 1993-08-31 Bend Research, Inc. Enantiomeric enrichment of cyanohydrins
AT406959B (en) * 1997-01-13 2000-11-27 Chemie Linz Gmbh ENANTIOSELECTIVE METHOD FOR PRODUCING (S) -CYANHYDRINES
AT406960B (en) * 1997-03-18 2000-11-27 Chemie Linz Gmbh METHOD FOR SELECTIVE MICROBIAL HYDROXYLATION OF ALDEHYDES AND KETONES
AT406961B (en) * 1997-12-29 2000-11-27 Dsm Fine Chem Austria Gmbh ENZYMATIC PROCESS FOR PRODUCING (S) -CYANHYDRINES
AT411064B (en) * 2001-12-27 2003-09-25 Dsm Fine Chem Austria Gmbh METHOD FOR PRODUCING ENANTIOMER-ENRICHED CYANHYDRINES USING ACETALS OR KETALES AS SUBSTRATES
AT410792B (en) * 2001-12-28 2003-07-25 Dsm Fine Chem Austria Gmbh PROCESS FOR THE PREPARATION OF PROTECTED, ENANTIOMERIC ENRICHED CYANHYDRINES BY IN SITU DERIVATIZATION

Also Published As

Publication number Publication date
AT410792B (en) 2003-07-25
US20030129714A1 (en) 2003-07-10
CA2415190A1 (en) 2003-06-28
DE50206986D1 (en) 2006-07-06
EP1323829A2 (en) 2003-07-02
ATA20442001A (en) 2002-12-15
EP1323829A3 (en) 2003-12-10
ATE328105T1 (en) 2006-06-15
JP2003210187A (en) 2003-07-29
ES2262750T3 (en) 2006-12-01
US6909011B2 (en) 2005-06-21

Similar Documents

Publication Publication Date Title
EP1323829B1 (en) Method for the preparation of protected, enantiomerically enriched cyanohydrines by in-situ derivatisation
EP0326063B1 (en) Process for the preparation of optically active cyanhydrins
EP0276375B1 (en) Process for the preparation of optically active alpha-hydroxynitriles
JP3253150B2 (en) Method for producing optically active cyanohydrins
AT396252B (en) ENZYMATIC METHOD FOR THE ENANTIOSELECTIVE PRODUCTION OF OPTICALLY ACTIVE CYANHYDRINE
EP0927766B1 (en) Enzymatic process for the preparation of (S)-cyanhydrines
AT406959B (en) ENANTIOSELECTIVE METHOD FOR PRODUCING (S) -CYANHYDRINES
EP0632130B1 (en) Enzymatic process for the production of aliphatic S-cyanhydrins
AT411064B (en) METHOD FOR PRODUCING ENANTIOMER-ENRICHED CYANHYDRINES USING ACETALS OR KETALES AS SUBSTRATES
DE60012802T2 (en) Process for the preparation of optically active cyanohydrins
AT408231B (en) METHOD FOR PRODUCING OPTICALLY ACTIVE CYANHYDRINES USING R-OXYNITRILASE
EP1323830B1 (en) Process for the preparation of heterocyclic (R)- et (S)-cyanohydrines
DE10004926A1 (en) Process for the enzymatic resolution of aminomethyl aryl cyclohexanol derivatives
EP1805314B1 (en) Process for the enantioselective opening of 3-substituted oxetan-2-ones employing lipases of candida antarctica or of burkholderia plantarrii
AT413100B (en) Preparation of chiral alpha-hydroxy-amides and carboxylic acids by controlled hydrolysis of corresponding hydroxynitriles with hydrochloric acid in carboxylic acid solvent
DE4322064A1 (en) Enzymatic process for the preparation of aliphatic S-cyanohydrins
AT500910B1 (en) METHOD FOR PRODUCING BETA HYDROXYNITRO COMPOUNDS
DE60224732T2 (en) PROCESS FOR PREPARING THE ENANTIOMER FORMS OF 2- SUBSTITUTED 2- (2,5-DIOXOIMIDAZOLIDIN-1-YL) ACETIC ACID DERIVATIVES
DE60123167T2 (en) Process for the preparation of alpha-hydroxycarboxylic acid
EP1223168A1 (en) Method for the preparation of enantiomerically enriched amino and hydroxyfuranones
DE4139083A1 (en) Optically active cyanohydrin S-enantiomer enantioselective prepn. for vitamin(s) - by reacting aldehyde or unsymmetric ketone in diluent and S-hydroxy nitrile lyase with cyanide gp. donor, and isolating for alpha-hydroxyacid bioactive agents
DE19530204A1 (en) Process for the preparation of optically active 1-aryl-alkylamines
DE10348257A1 (en) Process for the preparation of enantiomeric 2-substituted chroman derivatives

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20040320

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060531

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060531

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG PATENTANWAELTE

REF Corresponds to:

Ref document number: 50206986

Country of ref document: DE

Date of ref document: 20060706

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060831

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061031

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2262750

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061129

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060531

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060531

Ref country code: BG

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20061130

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20081125

Year of fee payment: 7

Ref country code: NL

Payment date: 20081124

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20081103

Year of fee payment: 7

Ref country code: ES

Payment date: 20081126

Year of fee payment: 7

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20081125

Year of fee payment: 7

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081117

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081223

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081128

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20090128

Year of fee payment: 7

BERE Be: lapsed

Owner name: *DSM FINE CHEMICALS AUSTRIA NFG G.M.B.H. & CO. K.G

Effective date: 20091130

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20100601

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20091129

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100601

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20061130

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091129

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20110309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110308

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130