EP1321556B1 - Method and device for regulating the work-transporting means in a sewing or embroidery machine - Google Patents

Method and device for regulating the work-transporting means in a sewing or embroidery machine Download PDF

Info

Publication number
EP1321556B1
EP1321556B1 EP02405896A EP02405896A EP1321556B1 EP 1321556 B1 EP1321556 B1 EP 1321556B1 EP 02405896 A EP02405896 A EP 02405896A EP 02405896 A EP02405896 A EP 02405896A EP 1321556 B1 EP1321556 B1 EP 1321556B1
Authority
EP
European Patent Office
Prior art keywords
sewing
sensor
actual
feed
sensors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02405896A
Other languages
German (de)
French (fr)
Other versions
EP1321556A2 (en
EP1321556A3 (en
Inventor
Manfred Schweizer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fritz Gegauf AG
Original Assignee
Fritz Gegauf AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fritz Gegauf AG filed Critical Fritz Gegauf AG
Publication of EP1321556A2 publication Critical patent/EP1321556A2/en
Publication of EP1321556A3 publication Critical patent/EP1321556A3/en
Application granted granted Critical
Publication of EP1321556B1 publication Critical patent/EP1321556B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D05SEWING; EMBROIDERING; TUFTING
    • D05BSEWING
    • D05B27/00Work-feeding means
    • D05B27/10Work-feeding means with rotary circular feed members
    • D05B27/14Work-feeding means with rotary circular feed members rotating discontinuously
    • DTEXTILES; PAPER
    • D05SEWING; EMBROIDERING; TUFTING
    • D05BSEWING
    • D05B19/00Programme-controlled sewing machines
    • D05B19/02Sewing machines having electronic memory or microprocessor control unit
    • D05B19/12Sewing machines having electronic memory or microprocessor control unit characterised by control of operation of machine
    • D05B19/16Control of workpiece movement, e.g. modulation of travel of feed dog
    • DTEXTILES; PAPER
    • D05SEWING; EMBROIDERING; TUFTING
    • D05BSEWING
    • D05B27/00Work-feeding means
    • D05B27/22Work-feeding means with means for setting length of stitch

Definitions

  • the invention relates to a method for controlling the mass transfer in a sewing or embroidery machine according to the features of claim 1, and an apparatus for performing the method according to claim 6.
  • mass transfer devices In sewing or embroidery machines, the transport of the sewing material or fabric takes place after the execution of a sewing stitch by a mass transfer device.
  • mass transport devices are, for example, arranged below a throat plate feeders or drivable embroidery hoop.
  • Feeders may have one or more horizontal bars, which are formed on their side facing the fabric sawtooth. After the execution of each sewing stitch, that is, after the sewing needle is no longer in contact with the fabric, the feed dog performs one or more cyclic movements, whereby the fabric is transported by one or more pitches in the sewing direction. In this case, the feed dog is raised so far that the bars pass through slot-shaped openings in the throat plate and in contact with the Sewing material arrive. The fabric is pressed by a presser foot against the throat plate or against the passing through the needle plate beam. The feed dog then performs a sliding movement in the sewing direction, whereby the fabric is transported by one step in the sewing direction.
  • the feed dog lowers again so that the bars no longer protrude beyond the throat plate and returns to its original position.
  • the individual partial movements can be combined to form a continuous sequence of movements.
  • the sewing direction can be reversed by reversing the sequence of movements described above so that the new sewing direction runs counter to the original sewing direction.
  • sewing machine models in which the feed dog can perform in an analogous manner in addition to the sewing direction and transport movements vertically to the sewing direction, so that the fabric or the fabric is displaceable in two dimensions or in a predetermined by the surface of the needle plate stitching plane.
  • Such sewing machines can be used for embroidering small patterns.
  • an embroidery hoop can be used to embroider patterns.
  • an embroidery hoop drivable by two stepper motors is used, wherein the fabric or the sewing material in this hoop is clamped.
  • the embroidery frame is moved by means of the two stepper motors so that the new puncture site comes to rest under the sewing needle.
  • specified stitch widths and directions are maintained at the sewing level.
  • the actual stitch widths and directions may differ from those set on the machine or calculated by the machine control.
  • the actual material feed in one or two directions during the individual transport steps or cycles does not correspond to the required default values. Such deviations may be systemic or random.
  • Deviations of the actual actual stitch widths or actual feed widths from the respective desired stitch widths or setpoint feed widths of the mass transfer device can be, for example, from the sewing machine model or from the properties of the sewing material or of the fabric or from force effects on the sewing material during sewing or embroidering depend. In particular, the dependent on the sewing material slip during the transport process or different transport properties during forward and backward transport of the material are important. Deviations of the actual values from the target values can also occur when using Embroidery hoops, for example, when the fabric warps within the hoop.
  • a sewing machine with a device for measuring and controlling the feed size is known.
  • two spaced-apart, aligned with vertical to the sewing direction CCD sensors and each equipped with a light source line scan cameras are arranged.
  • the front in the sewing direction line scan camera is turned on at the beginning of the sewing process and generates a digitized instant image of a surface portion of the fabric. Once this surface section due to the feed speed on the rear in sewing direction Line scan camera should be, this is turned on and scans the fabric surface until the pattern correlates with the previously recorded by the front line camera pattern.
  • a disadvantage of this device is its sensitivity to displacements vertical to the sewing direction and against twists of the sewing material in the sewing plane.
  • the brightness of the light sources must be matched to the basic brightness of the material.
  • the sewing material must be advanced at least by the distance of the two line sensors until a value for the deviation of the actual feed speed of the sewing material from the desired feed speed can be determined.
  • the measuring and control device can detect such deviations only in one feed direction.
  • the actual feed rate must be less than the target feed rate. Both the determination of the feed rate and the material position are subject to measurement errors.
  • actual values of feed or step widths of a sewing material can be detected for each sewing step or each feed cycle. If the sensor used for detecting the feed or step widths has a sufficiently high sampling rate, then actual values of the feed movement or of the displacement of the material to be sewn may also take place during advancement, ie during the execution of sewing steps or feed cycles.
  • the actual step widths of the material to be sewn can be adapted to predetermined values of the desired step widths such that on average via one or more feed cycles the summed value of the actual step sizes coincides with the summed value of the desired step widths.
  • the control of the feed size can be done quickly and sensitively or sluggishly.
  • deviations of the actual feed from the set feed which are detected during the execution of a sewing step or feed cycle, can already occur in the same sewing step or in the subsequent sewing step or Feed cycle can be compensated.
  • the compensation in the following sewing step causes a relatively large difference between two successive step sizes. If the sensor used to detect the feed has a significantly higher sampling rate than the time required for the execution of the sewing step, the feed size can be controlled even during the execution of this sewing step. In this case, the actual values agree with the target values for each sewing step within the accuracy of the control.
  • This variant of the control of the feed size is particularly important in mass transfer systems whose drive is independent of the main drive of the needle bar.
  • the compensation of the deviation detected is distributed over several sewing steps or feed cycles, which results in only small differences between the individual stitch widths on average.
  • the method can be used to control the feed sizes in forward and / or backward movements of the material in one or two dimensions of the sewing plane.
  • deviations of the actual material advance detected in the sewing direction and in a transverse direction perpendicular to the sewing direction can be detected by the sensor.
  • sewing in sewing direction can be detected by the sensor deviations in sewing direction and / or in Transverse direction can be compensated by influencing the feed sizes in sewing direction and / or transverse direction.
  • the method according to the invention and the device according to the invention are suitable for controlling cyclically operating feed means coupled to the main drive for the needle bar.
  • the method and the device can also be used to control the mass transport in sewing direction and / or transverse direction with independent, not coupled to the main drive drives.
  • Such drives can be, for example, the stepper motors of an embroidery frame or electric motor roller drives.
  • FIG. 1 shows an exemplary embodiment of a household sewing machine according to the invention, in short a sewing machine 1, with a machine housing, called housing 3 for short, which comprises a forearm 5, a stand 7 and an upper arm 9 with a head part 11.
  • the housing 3 is partially cut in Figure 1, so that a machine control or controller 13 is partially visible inside.
  • a drive (not shown in Figure 1) drivable needle bar 15 for receiving and moving a sewing needle, also called needle 17, protrudes downwards from the head part 11 out.
  • a throat plate 21 Below the head part 11, an opening or a shaft 19 at the top of the forearm 5 is covered by a throat plate 21.
  • the top sides of the throat plate 21 and the lower arm 5 are arranged flush with each other and define an approximately vertical to the needle bar 15 lying adjacent plane N.
  • the throat plate 21 includes below the needle bar a slot-shaped needle insertion opening 23. On both sides of each is an elongated, approximately rectangular feed gate opening 25 in the Throat plate 21 inserted. The three openings are not connected and have approximately the shape of the big letter "H".
  • the two fabric slide openings 25 define with their longitudinal extent a sewing direction y.
  • the longitudinal extent of the needle insertion opening 23 extends in a direction transverse to the sewing direction y transverse direction x.
  • the sensor opening 31 could also be located in front of or next to the needle insertion opening 23, but it should be arranged in the environment or in the region of the needle insertion opening 23 that it is still within the effective range of the mass transfer device 27. That is, the fabric feed effected by the mass transport device 27 can be detected by a sensor 32 mounted in or below the sensor opening 31 without substantial errors.
  • multiple sensors 32 may be used independently or in combination with each other for this purpose.
  • the sensor opening 31 may be round or have any other shape, for example rectangular or oval. It may also include a plurality of partial openings, for example, mutually parallel slot openings.
  • the sensor or sensors 32 are designed to resolve a measured variable in at least one spatial dimension.
  • the measured variable is preferably an optical pattern or the optical structure of the material to be sewn 28.
  • a sensor 32 for example in the form of a position sensor 33 as parallel to the sewing direction (y) aligned CCD line or as a CCD matrix (50) or as Microcamera with a lens 34 (Fig. 2) and be formed with an image processing unit for detecting and processing a one- or two-dimensional image area.
  • other spatially resolving sensors 32 may be used, for example, use ultrasound, radar waves or other methods for position, position or speed detection of the material 28.
  • the position sensor 33 is inserted into the shaft 19 such that a protective window 36 (FIG. 2) mounted in front of the lens 34 terminates the sensor opening 31 flush.
  • the material to be sewn 28 can optionally be pressed against the needle plate 21 and / or the protective window by a sliding shoe or roller 38 (FIG. 3) in the region of the protective window 36 from the side of the head part 11.
  • the with slight pressure of a spring 40 can be pressed against the fabric 28 sliding shoe or scooter 38, for example, be attached to a support rod of a presser foot 42. It can be brought in this embodiment together with the presser foot 42 for the sewing in contact with the fabric 28 and then raised again.
  • the shoe or scooter 38 ensures that the strokes of the feed dog 29 do not cause any errors in the detection of feed values by the sensor 32.
  • sensors 32 operating with other technology and / or a plurality of sensors 32 may also be inserted into the sensor opening 31, for example Motion sensors or speed sensors.
  • suitable transmission or connection means for transmitting the measured variable or quantities to be detected to the sensor or sensors 32 in the sensor opening 31 on the needle plate 21 may be used, for example a bundle of optical fibers, an optimized lens system and / or an array of mirrors and / or prisms 44 ( Figure 4).
  • a roller pair with at least one electrically drivable first roller 46 (FIG.
  • FIG. 6 shows the sewing machine 1 from FIG. 1 with an attached embroidery module 35.
  • the embroidery module 35 comprises an embroidery frame 37 for clamping and holding the Sewing material 28 and one of two (not shown) stepper motors driven positioning or moving device 39 for moving the embroidery frame 37 in or against the two directions x and y of the sewing plane N.
  • the embroidery frame 37 is fixed to a frame holder 30, which along a first arm 43 of the moving device 39 is movable in the y direction. This first arm 43 in turn is movable along a second arm 45 of the moving device 39 in the x direction.
  • the sewing material 28 is clamped in the embroidery frame 37 so that it rests on the sewing plane N.
  • FIG. 2 shows a longitudinal section through the throat plate 21 in the sewing direction y in the region of the position sensor 33.
  • the protective window 36 is, for example, a scratch-resistant sapphire crystal or made of a hard, transparent plastic.
  • the lens 34 and a substrate 41 arranged thereunder, for example a printed circuit board, as a carrier of a two-dimensional CCD matrix 50 and a light source 52, for example an LED, are held in a sensor housing 47.
  • the position sensor 33, in particular the substrate 41 with the CCD matrix 50 and the light source 52 are connected to a sensor electronics 49, which may include a processor of, for example, more than 10 MHz clock rate and can perform digital image processing algorithms.
  • FIG. 7 shows a plan view of the throat plate 21 with sewing material 28 resting thereon in the sewing direction y during the sewing process.
  • the stitch width or the spacing of the puncture sites 51 of the sewing stitches in the sewing material 28 is equal to a first actual increment ⁇ y B of the fabric feed by the feed dog 29 in the sewing direction y per feed cycle, because after every fabric feed Cycle, one sewing stitch at a time.
  • the actual stock feed or the first actual increment in the sewing direction y is ⁇ y B in each case. It is also possible for the first actual increment ⁇ y B of the fabric feed in the sewing direction y to be changed during the sewing process by the user of the sewing machine 1 or by the controller 13.
  • a material feed both in and out allow y against the direction of sewing the first target increments .DELTA.y A and the first actual step sizes .DELTA.y B can assume both positive and negative values.
  • the input or specification of a default value or a first set increment ⁇ y A for the material feed in the sewing direction y is shown on the controller 13.
  • a default value can be done for example by users of the sewing machine 1 by means of a scale wheel or menu-controlled via a touch screen.
  • the controller 13 may also calculate such default values for first target step sizes ⁇ y A , in particular taking account of user inputs.
  • the first thrust variable ⁇ y T which is also shown symbolically in FIG. 8, corresponds to the advancing movement of the mass transfer device 27 acting on the sewing material 28, in particular the feed dog 29.
  • the first thrust variable ⁇ y T can assume negative or positive values, depending on whether a movement is backwards or done in the forward direction y.
  • the values of the first thrust quantity ⁇ y T and the first actual increment ⁇ y B correspond to the value of the first set increment ⁇ y A.
  • the first thrust variable ⁇ y T is slightly larger than the first set increment ⁇ y A , because a certain slip of the material to be sewn 28 is expected during each transport step got to. It is thereby achieved that the first actual step size ⁇ y B for an average sewing material 28 approximately corresponds to the value of the first set step size ⁇ y A.
  • the fabric transporting device 27 is designed such that the sewing material 28 is movable in addition to the sewing direction y in a transverse direction x oriented in the sewing plane N and oriented vertically to the sewing direction y.
  • FIG. 9 shows a plan view of the needle plate 21 with material to be sewn on it during the sewing process with feed movements in the sewing direction y and in the transverse direction x.
  • the feed dog 29 can also perform a transport movement in the transverse direction x.
  • the feed dog 29 lead due to a second target increment ⁇ x A respectively a transport or Feed cycle with a second thrust size ⁇ x T in the transverse direction x.
  • FIG. 10 shows the cyclical movement of a bar of the presser foot 29 for such a transport cycle.
  • the second thrust quantity ⁇ x T is longer and the dimensions of the beam are shown smaller than they actually are in relation to the lifting movement. Possible positions of the bar during a transport cycle are dotted.
  • the sewing material 28 is in each case moved by a second actual step width ⁇ x B in the transverse direction x.
  • ⁇ x A , ⁇ x T and ⁇ x B can assume positive and negative values, which corresponds to movements in and against the transverse direction x.
  • the relative coordinates in units of the respective first actual step widths ⁇ y B in the sewing direction y and the respective second actual step widths ⁇ x B in the transverse direction x are indicated between the individual punctured sites 51 a - 51 e.
  • the associated individual feed cycles of the feed dog 29 in the sewing direction y and in the transverse direction x can be carried out successively one after the other. Alternatively, a part of the feed cycles to be executed between two puncture sites 51 can also take place simultaneously as a combined movement in the sewing direction y and transverse direction x.
  • the transport of the material 28 is no longer via the feed dog 29, but by means of the stepper motors by the moving device 39.
  • the first thrust variable ⁇ y T minimal the value of the step size of the stepping motor acting in the sewing direction y.
  • the second thrust quantity ⁇ x T minimally has the value of the step size of the stepping motor acting in the transverse direction x. If these step sizes are very small, that is, for example less than 0.1 mm, a multiple of these step sizes can also be defined as the first thrust quantity ⁇ y T or as the second thrust variable ⁇ x T and stored, for example, in a nonvolatile memory of the controller 13 or of the embroidery module 35.
  • the first thrust quantities ⁇ y T and the second thrust magnitudes ⁇ x T can also be redefined for each stitch to be executed, for example as values of the stitch width in the sewing direction y and in the transverse direction x.
  • the actual step sizes ⁇ y B , ⁇ x B may deviate from the associated desired step sizes ⁇ y A , ⁇ x A.
  • Reasons for this for example, different transport properties in Depending on the sewing material 28, the sewing position within the sewing material 28 or the transport direction. Forces which act on the sewing material 28 during the sewing process and wear phenomena on the sewing machine 1 are further possible causes for changing transport properties. As can be seen from the schematic diagram in FIG.
  • the first thrust variable ⁇ y T or the second thrust variable ⁇ x T is determined as a function of the first actual step width ⁇ y B detected by the position sensor 33 of the actual material feed in the sewing direction y or the second actual step size ⁇ x B regulated in the transverse direction x.
  • a region of the sewing material 28 lying over the protective window 36 (FIG. 2) which for example has the dimensions 5 mm ⁇ 5 mm, is illuminated by the light source 52 and imaged onto the CCD matrix 50 via the lens 34.
  • the sensor electronics 49 which includes a digital image processing unit, called IPS (Image Processing System) or DSP (Digital Signal Processor)
  • the position sensor 33 can detect and process 1500 images per second, for example.
  • the position sensor 33 is able to detect the smallest structures or structural differences as well as their position in the captured image detail on the basis of intensity differences within the captured image detail. Due to the change in position characteristic irregularities in the surface structure of the material to be sewn 28 and / or due to the change in position of color samples of the material 28 in directly successive and / or temporally further spaced image captures, the IPS of the position sensor 33 determines relative displacements of the material 28 in the sewing direction y and in the transverse direction x and the corresponding feed rates. By considering a plurality of image recordings with at least one common feature, resolution and accuracy of the position sensor 33 can be further improved.
  • the displacements or changes in position of the material to be sewn 28 by the sensor electronics 49 starting from the x and y coordinates of a zero or start value at the beginning of the sewing process, summed and as absolute x and y coordinates of the position or position values in relation provided to the starting value as an output signal.
  • the controller 13 reads in each case the actual feeding values of the sewing material 28 in the x and y directions with respect to the starting value determined by the IPS and stores them in a memory of the controller 13 Alternatively, if the sensor 32 has a sufficiently high temporal sampling rate, the feed values can also be transmitted and stored to the controller 13 during the material feed, for example, periodically at equal or changing intervals.
  • a sewing step which is characterized by two consecutive pinholes, can therefore be decomposed in any desired manner into individual desired step sizes, for which the actual actual step widths are then determined by the sensor 32.
  • the controller 13 calculates the associated actual material feed, ie the first actual increment ⁇ y B or the second actual increment ⁇ x B.
  • the zero or start value for each sewing step or feed cycle, or a multiple thereof may be redefined again and again.
  • the value transferred by the IPS to the controller 13 is in this case directly the first actual increment ⁇ y B or the second actual increment ⁇ x B, and the subtraction is omitted.
  • the controller 13 now determines the deviation of the associated first setpoint increment ⁇ y A from the determined first actual increment ⁇ y B and stores this value as the first correction value D y .
  • the control of the second thrust variable ⁇ x T is controlled by the second thrust variable ⁇ x T.
  • the controller 13 can correct detected deviations in the first thrust quantities ⁇ y T or the second thrust variables ⁇ x T very quickly within only one advancing or sewing step.
  • the individual desired step sizes within a sewing step can be set arbitrarily, so that a control of the thrust quantities ⁇ y T , ⁇ x T can even take place within a single sewing step.
  • other known control algorithms for controlling the thrust quantities ⁇ y T , ⁇ x T can be used, in which a compensation and a correction of errors over several feed or sewing steps. As a result, larger differences between the stitches of two consecutive stitches as well as unwanted feedback or oscillations of the sewing needle can be avoided.
  • stepper motors The setting or regulation of the thrust quantities ⁇ y T , ⁇ x T via stepper motors.
  • the step motors act directly or indirectly on a (non-shown) actuator for adjusting the respective sizes Dy thrust T, T Ax.
  • the thrust variables ⁇ y T , ⁇ x T of these stepper motors are adapted directly.
  • the sensor 32 can also be used for optical recognition of embroidery frames when its edge is above the sensor 32. This way, an embroidery frame coding can be easily replaced to recognize different frame types and sizes.

Abstract

Traverse (27) of the fabric in the x and y directions on a sewing or embroidery machine is controlled through a fabric movement sensor (32) and arranged so that any deviations from the required movement are corrected over a number of successive sewing steps or conveying cycles. The central control unit (13) uses the sensor signals in step with the conveying cycles and carries out a summation according to a prearranged program. <??>Also claimed is the arrangement of a sensor (32) below the stitch plate (21) to provide data on fabric movement. The sensor can be a CCD matrix or miniature camera with image processing facilities. The sensor operates through a protective window (36) near the needle hole (23) and includes a light source. The fabric is held against the window by a presser foot or roller.

Description

Gegenstand der Erfindung ist ein Verfahren zum Regeln des Stofftransportes bei einer Näh- oder Stickmaschine gemäss den Merkmalen des Patentanspruchs 1, sowie eine Vorrichtung zur Durchführung des Verfahrens gemäss Patentanspruch 6.The invention relates to a method for controlling the mass transfer in a sewing or embroidery machine according to the features of claim 1, and an apparatus for performing the method according to claim 6.

Bei Näh- oder Stickmaschinen erfolgt der Transport des Nähgutes oder Stoffes jeweils nach der Ausführung eines Nähstiches durch eine Stofftransport-Vorrichtung. Solche Stofftransport-Vorrichtungen sind beispielsweise unterhalb einer Stichplatte angeordnete Stoffschieber oder antreibbare Stickrahmen.In sewing or embroidery machines, the transport of the sewing material or fabric takes place after the execution of a sewing stitch by a mass transfer device. Such mass transport devices are, for example, arranged below a throat plate feeders or drivable embroidery hoop.

Stoffschieber können eine oder mehrere horizontal liegende Balken aufweisen, die an ihrer dem Nähgut zugewandten Seite sägezahnförmig ausgebildet sind. Nach der Ausführung jedes Nähstiches, d.h., nachdem die Nähnadel nicht mehr in Kontakt mit dem Nähgut ist, führt der Stoffschieber eine oder mehrere zyklische Bewegungen aus, wodurch das Nähgut um eine oder mehrere Schrittweiten in Nährichtung transportiert wird. Dabei wird der Stoffschieber soweit angehoben, dass die Balken durch schlitzförmige Öffnungen in der Stichplatte hindurchgreifen und in Kontakt mit dem Nähgut gelangen. Das Nähgut wird durch einen Nähfuss gegen die Stichplatte bzw. gegen die durch die Stichplatte hindurchgreifenden Balken gepresst. Der Stoffschieber führt anschliessend eine Schiebebewegung in Nährichtung aus, wodurch das Nähgut um eine Schrittweite in Nährichtung transportiert wird. Danach senkt sich der Stoffschieber wieder, sodass die Balken nicht mehr über die Stichplatte hinausragen, und kehrt in seine ursprüngliche Position zurück. Die einzelnen Teilbewegungen können zu einem kontinuierlichen Bewegungsablauf zusammengefügt sein. Bei den meisten Nähmaschinen kann die Nährichtung durch Umkehr des beschriebenen Bewegungsablaufs umgekehrt werden, sodass die neue Nährichtung entgegen der ursprünglichen Nährichtung verläuft. Es sind auch Nähmaschinenmodelle bekannt, bei denen der Stoffschieber in analoger Weise zusätzlich zur Nährichtung auch Transportbewegungen vertikal zur Nährichtung ausführen kann, sodass der Stoff oder das Nähgut in zwei Dimensionen bzw. in einer durch die Oberfläche der Stichplatte vorgegebenen Nähebene verschiebbar ist. Derartige Nähmaschinen können zum Sticken von kleinen Mustern eingesetzt werden. Alternativ kann zum Sticken von Mustern auch ein Stickrahmen verwendet werden. Anstelle von Stoffschiebern wird zum Bewegen des Nähgutes in der Nähebene ein beispielsweise von zwei Schrittmotoren antreibbarer Stickrahmen eingesetzt, wobei der Stoff oder das Nähgut in diesen Stickrahmen eingespannt ist. Nach der Ausführung eines Nähstiches wird der Stickrahmen mittels der beiden Schrittmotoren derart verschoben, dass die neue Einstichstelle unter die Nähnadel zu liegen kommt. Für gewisse Nähvorgänge und insbesondere für das Sticken von Mustern ist es von grosser Bedeutung, dass vorgegebene Stichweiten und -richtungen in der Nähebene eingehalten werden. Bei herkömmlichen Näh- und Stickmaschinen können die tatsächlichen Stichweiten und -richtungen allerdings von den an der Maschine eingestellten oder von der Maschinensteuerung errechneten Werten abweichen. Der tatsächliche Stoffvorschub in einer oder zwei Richtungen bei den einzelnen Transportschritten oder -zyklen entspricht nicht den geforderten Vorgabewerten. Solche Abweichungen können systembedingt oder zufällig sein. Abweichungen der tatsächlichen Ist-Stichweiten bzw. Ist-Vorschubweiten von den jeweiligen Soll-Stichweiten bzw. Soll-Vorschubweiten der Stofftransport-Vorrichtung können beispielsweise vom Nähmaschinenmodell oder von den Eigenschaften des Nähgutes bzw. des Stoffes oder von Krafteinwirkungen auf das Nähgut beim Nähen oder Sticken abhängen. Insbesondere der vom Nähgut abhängige Schlupf beim Transportvorgang oder unterschiedliche Transporteigenschaften beim Vor- und Rückwärtstransport des Nähgutes sind dabei von Bedeutung. Abweichungen der Ist-Werte von den Soll-Werten können auch bei Verwendung von Stickrahmen auftreten, beispielsweise, wenn sich der Stoff innerhalb des Stickrahmens verzieht.Feeders may have one or more horizontal bars, which are formed on their side facing the fabric sawtooth. After the execution of each sewing stitch, that is, after the sewing needle is no longer in contact with the fabric, the feed dog performs one or more cyclic movements, whereby the fabric is transported by one or more pitches in the sewing direction. In this case, the feed dog is raised so far that the bars pass through slot-shaped openings in the throat plate and in contact with the Sewing material arrive. The fabric is pressed by a presser foot against the throat plate or against the passing through the needle plate beam. The feed dog then performs a sliding movement in the sewing direction, whereby the fabric is transported by one step in the sewing direction. After that, the feed dog lowers again so that the bars no longer protrude beyond the throat plate and returns to its original position. The individual partial movements can be combined to form a continuous sequence of movements. For most sewing machines, the sewing direction can be reversed by reversing the sequence of movements described above so that the new sewing direction runs counter to the original sewing direction. There are also known sewing machine models in which the feed dog can perform in an analogous manner in addition to the sewing direction and transport movements vertically to the sewing direction, so that the fabric or the fabric is displaceable in two dimensions or in a predetermined by the surface of the needle plate stitching plane. Such sewing machines can be used for embroidering small patterns. Alternatively, an embroidery hoop can be used to embroider patterns. Instead of feeders for moving the material in the sewing plane, for example, an embroidery hoop drivable by two stepper motors is used, wherein the fabric or the sewing material in this hoop is clamped. After the execution of a stitch, the embroidery frame is moved by means of the two stepper motors so that the new puncture site comes to rest under the sewing needle. For certain sewing operations, and in particular for embroidering patterns, it is of great importance that specified stitch widths and directions are maintained at the sewing level. In conventional sewing and embroidery machines, however, the actual stitch widths and directions may differ from those set on the machine or calculated by the machine control. The actual material feed in one or two directions during the individual transport steps or cycles does not correspond to the required default values. Such deviations may be systemic or random. Deviations of the actual actual stitch widths or actual feed widths from the respective desired stitch widths or setpoint feed widths of the mass transfer device can be, for example, from the sewing machine model or from the properties of the sewing material or of the fabric or from force effects on the sewing material during sewing or embroidering depend. In particular, the dependent on the sewing material slip during the transport process or different transport properties during forward and backward transport of the material are important. Deviations of the actual values from the target values can also occur when using Embroidery hoops, for example, when the fabric warps within the hoop.

Bei Abweichungen der Ist-Stichweiten bzw. der Ist-Vorschubweiten von den Soll-Stichweiten bzw. Soll-Vorschubweiten können fehlerhafte Nahtlängen oder unerwünschte Versatze bei Stickmustern auftreten. Herkömmlichen Nähmaschinen ist es nicht möglich, das Nähgut durch Vorwärts- und anschliessenden Rückwärtstransport mit je einer bestimmten Anzahl Transportzyklen wieder in seine Ausgangslage zurückzubringen. Dasselbe gilt auch für eine zweidimensionale Bewegung in der Nähebene. Falsche Nahtlängen oder sich kumulierende Versatze bei Stickmustern können die Folge sein.If deviations in the actual stitch widths or the actual feed widths from the set stitch widths or setpoint feed widths occur, defective seam lengths or undesired offsets can occur in the case of embroidery patterns. Conventional sewing machines, it is not possible to return the fabric by forward and subsequent backward transport, each with a certain number of transport cycles back to its original position. The same applies to a two-dimensional movement in the plane of proximity. Wrong seam lengths or accumulating offsets in the case of embroidery patterns can be the result.

Aus der DE-C2-3525028 ist eine Nähmaschine mit einer Vorrichtung zum Messen und Regeln der Vorschubgrösse bekannt. Beim dritten Ausführungsbeispiel sind zwei beabstandet zu einander liegende, mit vertikal zur Nährichtung ausgerichteten CCD-Sensoren und je einer Lichtquelle ausgerüstete Zeilenkameras angeordnet. Die in Nährichtung vordere Zeilenkamera wird beim Beginn des Nähvorganges eingeschaltet und erzeugt eine digitalisierte Momentanbildzeile eines Oberflächenabschnittes des Nähgutes. Sobald dieser Oberflächenabschnitt aufgrund der Vorschubgeschwindigkeit über der in Nährichtung hinteren Zeilenkamera liegen sollte, wird diese eingeschaltet und tastet die Nähgutoberfläche solange ab, bis das Muster mit dem zuvor von der vorderen Zeilenkamera aufgezeichneten Muster korreliert. Ein Nachteil dieser Vorrichtung besteht in deren Empfindlichkeit gegenüber Verschiebungen vertikal zur Nährichtung und gegenüber Verdrehungen des Nähgutes in der Nähebene. Schon kleinste Änderungen der Lage des Nähgutes können zu grossen Unterschieden bei der Ermittlung von Korrelationswerten führen. Im weiteren muss die Helligkeit der Lichtquellen auf die Grundhelligkeit des Nähgutes abgestimmt werden. Ausserdem muss das Nähgut mindestens um den Abstand der beiden Zeilensensoren vorgeschoben werden, bis ein Wert für die Abweichung der Ist-Vorschubgeschwindigkeit des Nähgutes von der Soll-Vorschubgeschwindigkeit festgestellt werden kann. Die Mess- und Regelvorrichtung kann solche Abweichungen nur in einer Vorschubrichtung erfassen. Ausserdem muss die tatsächliche Vorschubgeschwindigkeit kleiner sein als die Soll-Vorschubgeschwindigkeit. Sowohl die Ermittlung der Vorschubgeschwindigkeit als auch der Nähgutlage sind mit Messfehlern behaftet.From DE-C2-3525028 a sewing machine with a device for measuring and controlling the feed size is known. In the third embodiment, two spaced-apart, aligned with vertical to the sewing direction CCD sensors and each equipped with a light source line scan cameras are arranged. The front in the sewing direction line scan camera is turned on at the beginning of the sewing process and generates a digitized instant image of a surface portion of the fabric. Once this surface section due to the feed speed on the rear in sewing direction Line scan camera should be, this is turned on and scans the fabric surface until the pattern correlates with the previously recorded by the front line camera pattern. A disadvantage of this device is its sensitivity to displacements vertical to the sewing direction and against twists of the sewing material in the sewing plane. Even the smallest changes in the position of the sewing material can lead to great differences in the determination of correlation values. In addition, the brightness of the light sources must be matched to the basic brightness of the material. In addition, the sewing material must be advanced at least by the distance of the two line sensors until a value for the deviation of the actual feed speed of the sewing material from the desired feed speed can be determined. The measuring and control device can detect such deviations only in one feed direction. In addition, the actual feed rate must be less than the target feed rate. Both the determination of the feed rate and the material position are subject to measurement errors.

Es ist Aufgabe der vorliegenden Erfindung, ein Verfahren und eine Vorrichtung zu schaffen, mit denen Abweichungen der Ist-Vorschubweiten von den Soll-Vorschubweiten schnell und genau ermittelt und kompensiert werden können.It is an object of the present invention to provide a method and a device with which deviations of the actual feed widths from the desired feed widths can be determined and compensated for quickly and accurately.

Diese Aufgabe wird gelöst durch ein Verfahren und eine Vorrichtung zum Regeln des Stofftransportes bei einer Näh-oder Stickmaschine gemäss den Merkmalen der Patentansprüche 1 und 6.This object is achieved by a method and a device for regulating the mass transfer in a sewing or embroidery machine according to the features of patent claims 1 and 6.

Mit dem erfindungsgemässen Verfahren und der erfindungsgemässen Vorrichtung können Ist-Werte von Vorschub- oder Schrittweiten eines Nähgutes für jeden Nähschritt oder jeden Vorschubzyklus erfasst werden. Weist der zur Erfassung der Vorschub- oder Schrittweiten eingesetzte Sensor eine genügend hohe Abtastrate auf, so können Ist-Werte der Vorschubbewegung bzw. der Verschiebung des Nähgutes auch während des Vorschiebens, also während der Ausführung von Nähschritten oder Vorschubzyklen, erfolgen. Durch Regelung der Vorschubgrösse können die Ist-Schrittweiten des Nähgutes derart an vorgegebene Werte der Soll-Schrittweiten angepasst werden, dass im Mittel über einen oder mehrere Vorschubzyklen der aufsummierte Wert der Ist-Schrittweiten mit dem aufsummierten Wert der Soll-Schrittweiten übereinstimmt. Je nach Bedarf kann die Regelung der Vorschubgrösse schnell und empfindlich oder träge erfolgen.
Im ersten Fall können bei der Ausführung eines Nähschrittes oder Vorschubzyklus festgestellte Abweichungen des Ist-Vorschubs vom Soll-Vorschub bereits im selben oder im darauf folgenden Nähschritt oder Vorschubzyklus kompensiert werden. Die Kompensation im folgenden Nähschritt bewirkt einen relativ grossen Unterschied zweier aufeinanderfolgender Schrittweiten. Falls der zur Erfassung des Vorschubs eingesetzte Sensor eine deutlich höhere Abtastrate aufweist, als die für die Ausführung des Nähschrittes benötigte Zeit, kann die Regelung der Vorschubgrösse sogar während der Ausführung dieses Nähschrittes erfolgen. Die Ist-Werte stimmen in diesem Fall im Rahmen der Genauigkeit der Regelung für jeden Nähschritt mit den Soll-Werten überein. Diese Variante der Regelung der Vorschubgrösse ist insbesondere bei Stofftransportsystemen von Bedeutung, deren Antrieb unabhängig vom Hauptantrieb der Nadelstange erfolgt. Im zweiten Fall erfolgt die Kompensation der festgestellten Abweichung verteilt über mehrere Nähschritte oder Vorschubzyklen, wodurch sich im Mittel nur kleine Unterschiede zwischen den einzelnen Stichweiten ergeben.
Das Verfahren kann zur Regelung der Vorschubgrössen bei Vor- und/oder Rückwärtsbewegungen des Nähgutes in einer oder zwei Dimensionen der Nähebene genutzt werden.
In einer bevorzugten Ausgestaltung der Erfindung können vom Sensor festgestellte Abweichungen des tatsächlichen Stoffvorschubes in Nährichtung und in einer vertikal zur Nährichtung stehenden Querrichtung vom Sensor erfasst werden. Beim Nähen in Nährichtung können vom Sensor erfasste Abweichungen in Nährichtung und/oder in Querrichtung durch Beeinflussung der Vorschubgrössen in Nährichtung und/oder Querrichtung ausgeglichen werden. Dasselbe gilt für Nähvorgänge in Querrichtung.
Das erfindungsgemässe Verfahren und die erfindungsgemässe Vorrichtung eignen sich zur Regelung zyklisch arbeitender, mit dem Hauptantrieb für die Nadelstange gekoppelter Vorschubmittel. Das Verfahren und die Vorrichtung können auch zur Regelung des Stofftransportes in Nährichtung und/oder Querrichtung mit unabhängigen, nicht mit dem Hauptantrieb gekoppelten Antrieben eingesetzt werden. Solche Antriebe können beispielsweise die Schrittmotoren eines Stickrahmens oder elektromotorische Walzenantriebe sein.
With the method according to the invention and the device according to the invention, actual values of feed or step widths of a sewing material can be detected for each sewing step or each feed cycle. If the sensor used for detecting the feed or step widths has a sufficiently high sampling rate, then actual values of the feed movement or of the displacement of the material to be sewn may also take place during advancement, ie during the execution of sewing steps or feed cycles. By controlling the feed size, the actual step widths of the material to be sewn can be adapted to predetermined values of the desired step widths such that on average via one or more feed cycles the summed value of the actual step sizes coincides with the summed value of the desired step widths. Depending on requirements, the control of the feed size can be done quickly and sensitively or sluggishly.
In the first case, deviations of the actual feed from the set feed, which are detected during the execution of a sewing step or feed cycle, can already occur in the same sewing step or in the subsequent sewing step or Feed cycle can be compensated. The compensation in the following sewing step causes a relatively large difference between two successive step sizes. If the sensor used to detect the feed has a significantly higher sampling rate than the time required for the execution of the sewing step, the feed size can be controlled even during the execution of this sewing step. In this case, the actual values agree with the target values for each sewing step within the accuracy of the control. This variant of the control of the feed size is particularly important in mass transfer systems whose drive is independent of the main drive of the needle bar. In the second case, the compensation of the deviation detected is distributed over several sewing steps or feed cycles, which results in only small differences between the individual stitch widths on average.
The method can be used to control the feed sizes in forward and / or backward movements of the material in one or two dimensions of the sewing plane.
In a preferred embodiment of the invention, deviations of the actual material advance detected in the sewing direction and in a transverse direction perpendicular to the sewing direction can be detected by the sensor. When sewing in sewing direction can be detected by the sensor deviations in sewing direction and / or in Transverse direction can be compensated by influencing the feed sizes in sewing direction and / or transverse direction. The same applies to sewing operations in the transverse direction.
The method according to the invention and the device according to the invention are suitable for controlling cyclically operating feed means coupled to the main drive for the needle bar. The method and the device can also be used to control the mass transport in sewing direction and / or transverse direction with independent, not coupled to the main drive drives. Such drives can be, for example, the stepper motors of an embroidery frame or electric motor roller drives.

Anhand einiger Figuren wird die Erfindung im folgenden näher beschrieben. Dabei zeigen

Figur 1
eine perspektivische Ansicht einer Nähmaschine mit partiell aufgeschnittenem Gehäuse und mit einem in die Stichplatte eingebauten Bildsensor,
Figur 2
einen Längsschnitt durch die Stichplatte im Bereich des Positionssensors,
Figur 3
einen Querschnitt durch den Unterarm und durch einen das Nähgut an ein Schutzfenster andrückenden, am Nähfuss befestigten Roller,
Figur 4
einen Querschnitt der Stichplatte mit darunter angeordneten Verbindungsmitteln zum Sensor,
Figur 5
eine Seitenansicht eines Teils der Nähmaschine in Querrichtung mit zwei aufgeschnittenen Walzenpaaren für den Transport des Nähgutes in Nährichtung.
Figur 6
die in Figur 1 dargestellte Nähmaschine mit angebautem Stickrahmen,
Figur 7
eine Aufsicht auf die Stichplatte mit darauf aufliegendem Nähgut während des Nähvorgangs in Nährichtung,
Figur 8
eine schematisch dargestellte Ermittlung der Schubgrösse ΔyT durch die Steuerung 13,
Figur 9
eine Aufsicht auf die Stichplatte mit darauf aufliegendem Nähgut während des Näh- oder Stickvorgangs in Näh- und Querrichtung,
Figur 10
ein schematisch dargestellter zyklischer Bewegungsablauf eines Stoffschiebers mit einer Schubgrösse ΔxT in Querrichtung,
Figur 11
ein Prinzipschema der Regelung von Schubgrössen anhand von Messgrössen des Positionssensors,
Based on some figures, the invention will be described in more detail below. Show
FIG. 1
a perspective view of a sewing machine with partially cut housing and with a built-in needle plate image sensor,
FIG. 2
a longitudinal section through the needle plate in the region of the position sensor,
FIG. 3
a cross section through the forearm and by the fabric to a protective window pressing, attached to the presser foot scooter,
FIG. 4
a cross section of the needle plate with arranged below connecting means to the sensor,
FIG. 5
a side view of a portion of the sewing machine in the transverse direction with two cut pairs of rollers for the transport of the sewing material in sewing direction.
FIG. 6
the sewing machine shown in Figure 1 with attached hoop,
FIG. 7
a view of the throat plate with material lying thereon during sewing in the sewing direction,
FIG. 8
a schematically illustrated determination of the thrust quantity Δy T by the controller 13,
FIG. 9
a view of the throat plate with material lying thereon during the sewing or embroidering process in the sewing and transverse direction,
FIG. 10
a schematically illustrated cyclic movement of a feed dog with a shear size Δx T in the transverse direction,
FIG. 11
a schematic diagram of the control of thrust variables on the basis of measured variables of the position sensor,

Figur 1 zeigt eine beispielhafte Ausführungsform einer erfindungsgemässen Haushaltsnähmaschine, kurz Nähmaschine 1, mit einem Maschinengehäuse, kurz Gehäuse 3 genannt, welches einen Unterarm 5, einen Ständer 7 und einen Oberarm 9 mit einem Kopfteil 11 umfasst. Das Gehäuse 3 ist in Figur 1 teilweise aufgeschnitten, sodass eine Maschinensteuerung oder Steuerung 13 im Inneren teilweise sichtbar ist. Eine von einem Antrieb (in Figur 1 nicht dargestellt) antreibbare Nadelstange 15 zum Aufnehmen und Bewegen einer Nähnadel, auch Nadel 17 genannt, ragt nach unten aus dem Kopfteil 11 heraus. Unterhalb des Kopfteils 11 ist eine Öffnung oder ein Schacht 19 an der Oberseite des Unterarms 5 von einer Stichplatte 21 abgedeckt. Die Oberseiten der Stichplatte 21 und des Unterarmes 5 sind bündig zueinander angeordnet und definieren eine ungefähr vertikal zur Nadelstange 15 liegende Nähebene N. Die Stichplatte 21 umfasst unterhalb der Nadelstange eine schlitzförmige Nadeleinstichöffnung 23. Beidseitig davon ist je eine längliche, ungefähr rechteckige Stoffschieberöffnung 25 in die Stichplatte 21 eingelassen. Die drei Öffnungen sind nicht zusammenhängend und haben ungefähr die Gestalt des grossen Buchstabens "H". Die beiden Stoffschieberöffnungen 25 legen mit ihrer Längsausdehnung eine Nährichtung y fest. Die Längsausdehnung der Nadeleinstichöffnung 23 erstreckt sich in einer vertikal zur Nährichtung y gelegenen Querrichtung x. Eine mindestens teilweise im Schacht 19 angeordnete Stofftransport-Vorrichtung 27 zum schrittweisen Transportieren eines Stoffes bzw. Nähgutes 28 (Fig. 7) umfasst im Bereich der Stoffschieberöffnungen 25 zwei balkenartige, an ihrer Oberseite gezackte oder aufgerauhte Stoffschieber 29. Ausserdem ist in Nährichtung y unmittelbar hinter der Nadeleinstichöffnung 23 eine runde Sensoröffnung 31 in die Stichplatte 21 eingelassen. Selbstverständlich könnte die Sensoröffnung 31 auch vor oder neben der Nadeleinstichöffnung 23 liegen, sie sollte aber so in der Umgebung oder im Bereich der Nadeleinstichöffnung 23 angeordnet sein, dass sie noch im Wirkungsbereich der Stofftransport-Vorrichtung 27 liegt. Das heisst, der durch die Stofftransport-Vorrichtung 27 bewirkte Stoffvorschub kann von einem in oder unterhalb der Sensoröffnung 31 angebrachten Sensor 32 ohne wesentliche Fehler erkannt werden. Selbstverständlich können auch mehrere Sensoren 32 unabhängig voneinander oder in Kombination miteinander für diesen Zweck eingesetzt sein. Die Sensoröffnung 31 kann rund sein oder eine beliebige andere Form haben, beispielsweise rechteckig oder oval. Sie kann auch mehrere Teilöffnungen umfassen, beispielsweise parallel zueinander angeordnete Schlitzöffnungen. Der oder die Sensoren 32 sind zur Auflösung einer Messgrösse in mindestens einer räumlichen Dimension ausgebildet. Die Messgrösse ist vorzugsweise ein optisches Muster oder die optische Struktur des Nähgutes 28. Ein Sensor 32 kann beispielsweise in Gestalt eines Positionssensors 33 als parallel zur Nährichtung (y) ausgerichtete CCD-Zeile oder als CCD-Matrix (50) oder als Mikrokamera mit einer Linse 34 (Fig. 2) und mit einer Bildverarbeitungseinheit zum Erfassen und Verarbeiten eines ein- oder zweidimensionalen Bildbereiches ausgebildet sein. Selbstverständlich können auch andere ortsauflösende Sensoren 32 verwendet werden, die beispielsweise Ultraschall, Radarwellen oder andere Methoden zur Positions-, Lage- oder Geschwindigkeitserfassung des Nähgutes 28 nutzen. Der Positionssensor 33 ist so in den Schacht 19 eingesetzt, dass ein vor der Linse 34 angebrachtes Schutzfenster 36 (Fig. 2) die Sensoröffnung 31 bündig abschliesst. Das Nähgut 28 kann optional durch einen Gleitschuh oder Roller 38 (Fig. 3) im Bereich des Schutzfensters 36 von der Seite des Kopfteils 11 her gegen die Stichplatte 21 und/oder das Schutzfenster gepresst werden. Der mit leichtem Druck einer Feder 40 an das Nähgut 28 anpressbare Gleitschuh oder Roller 38 kann beispielsweise an einer Haltestange eines Nähfusses 42 befestigt sein. Er kann in dieser Ausführung zusammen mit dem Nähfuss 42 für den Nähvorgang in Kontakt mit dem Nähgut 28 gebracht und anschliessend wieder angehoben werden. Der Gleitschuh oder Roller 38 stellt sicher, dass die Hubbewegungen des Stoffschiebers 29 bei der Erfassung von Vorschubwerten durch den Sensor 32 keine Fehler verursachen. Alternativ zum Positionssensor 33 können auch mit anderer Technologie arbeitende Sensoren 32 und/oder mehrere Sensoren 32 in die Sensoröffnung 31 eingesetzt sein, beispielsweise Bewegungssensoren oder Geschwindigkeitssensoren. Anstelle eines Sensors 32 können auch geeignete Übertragungs- oder Verbindungsmittel zum Übertragen der zu erfassenden Messgrösse oder der zu erfassenden Messgrössen an den oder die Sensoren 32 in die Sensoröffnung 31 an der Stichplatte 21 eingesetzt sein, beispielsweise ein Bündel von Lichtleitern, ein optimiertes Linsensystem und/oder eine Anordnung von Spiegeln und/oder Prismen 44 (Fig. 4).
Zum Transportieren des Nähgutes 28 in Nährichtung y kann alternativ zum Stoffschieber 29 auch ein Walzenpaar mit mindestens einer elektrisch antreibbaren ersten Walze 46 (Fig. 5)und einer an diese anpressbaren zweiten Walze 48 eingesetzt sein, wobei das Nähgut 28 zwischen den Walzen 46,48 hindurchgeführt wird. Die Oberfläche der Walzen 46,48 ist beispielsweise aus Gummi oder einem anderen Material gefertigt, das in Bezug auf Textilien gute Hafteigenschaften aufweist. Das Walzenpaar kann in Nährichtung y hinter oder vor der Nadeleinstichöffnung 23 angeordnet sein. Alternativ kann auch je ein Walzenpaar hinter und vor der Nadeleinstichöffnung 23 angeordnet sein. Der Vorteil solcher Walzenantriebe liegt in ihrer Unabhängigkeit vom Hauptantrieb für die Nadelstange 15 und in der Möglichkeit beliebig grosser Stoffvorschübe in und entgegen der Nährichtung y.
In Figur 6 ist die Nähmaschine 1 aus Figur 1 mit einem angebauten Stickmodul 35 dargestellt. Das Stickmodul 35 umfasst einen Stickrahmen 37 zum Einspannen und Halten des Nähgutes 28 und eine von zwei (nicht dargestellten) Schrittmotoren antreibbare Positionier- oder Bewegungsvorrichtung 39 zum Bewegen des Stickrahmens 37 in oder entgegen der zwei Richtungen x und y der Nähebene N. Der Stickrahmen 37 ist an einem Rahmenhalter 30 befestigt, welcher entlang eines ersten Arms 43 der Bewegungsvorrichtung 39 in y-Richtung bewegbar ist. Dieser erste Arm 43 wiederum ist entlang eines zweiten Arms 45 der Bewegungsvorrichtung 39 in x-Richtung bewegbar. Das Nähgut 28 ist im Stickrahmen 37 so eingespannt, dass es auf der Nähebene N aufliegt.
Figur 2 zeigt einen Längsschnitt durch die Stichplatte 21 in Nährichtung y im Bereich des Positionssensors 33. Das Schutzfenster 36 ist beispielsweise ein kratzfestes Saphirglas oder aus einem harten, transparenten Kunststoff gefertigt. Durch die bündige Einpassung in die Sensoröffnung 31 wird die Ablagerung von Staub oder Schmutzpartikeln verhindert. Die Linse 34 und ein darunter angeordnetes Substrat 41, beispielsweise eine Leiterplatte, als Träger einer zweidimensionalen CCD-Matrix 50 und einer Lichtquelle 52, beispielsweise einer LED, sind in einem Sensorgehäuse 47 gehalten. Der Positionssensor 33, insbesondere das Substrat 41 mit der CCD-Matrix 50 und der Lichtquelle 52 sind mit einer Sensorelektronik 49 verbunden, die einen Prozessor von beispielsweise mehr als 10 MHz Taktrate umfassen kann und digitale Bildverarbeitungs-Algorithmenausführen kann.
FIG. 1 shows an exemplary embodiment of a household sewing machine according to the invention, in short a sewing machine 1, with a machine housing, called housing 3 for short, which comprises a forearm 5, a stand 7 and an upper arm 9 with a head part 11. The housing 3 is partially cut in Figure 1, so that a machine control or controller 13 is partially visible inside. One of a drive (not shown in Figure 1) drivable needle bar 15 for receiving and moving a sewing needle, also called needle 17, protrudes downwards from the head part 11 out. Below the head part 11, an opening or a shaft 19 at the top of the forearm 5 is covered by a throat plate 21. The top sides of the throat plate 21 and the lower arm 5 are arranged flush with each other and define an approximately vertical to the needle bar 15 lying adjacent plane N. The throat plate 21 includes below the needle bar a slot-shaped needle insertion opening 23. On both sides of each is an elongated, approximately rectangular feed gate opening 25 in the Throat plate 21 inserted. The three openings are not connected and have approximately the shape of the big letter "H". The two fabric slide openings 25 define with their longitudinal extent a sewing direction y. The longitudinal extent of the needle insertion opening 23 extends in a direction transverse to the sewing direction y transverse direction x. An at least partially arranged in the shaft 19 mass transport device 27 for the stepwise transport of a material or sewing material 28 (FIG. 7) In the sewing direction y, immediately behind the needle insertion opening 23, a circular sensor opening 31 is inserted into the throat plate 21. Of course, the sensor opening 31 could also be located in front of or next to the needle insertion opening 23, but it should be arranged in the environment or in the region of the needle insertion opening 23 that it is still within the effective range of the mass transfer device 27. That is, the fabric feed effected by the mass transport device 27 can be detected by a sensor 32 mounted in or below the sensor opening 31 without substantial errors. Of course, multiple sensors 32 may be used independently or in combination with each other for this purpose. The sensor opening 31 may be round or have any other shape, for example rectangular or oval. It may also include a plurality of partial openings, for example, mutually parallel slot openings. The sensor or sensors 32 are designed to resolve a measured variable in at least one spatial dimension. The measured variable is preferably an optical pattern or the optical structure of the material to be sewn 28. A sensor 32, for example in the form of a position sensor 33 as parallel to the sewing direction (y) aligned CCD line or as a CCD matrix (50) or as Microcamera with a lens 34 (Fig. 2) and be formed with an image processing unit for detecting and processing a one- or two-dimensional image area. Of course, other spatially resolving sensors 32 may be used, for example, use ultrasound, radar waves or other methods for position, position or speed detection of the material 28. The position sensor 33 is inserted into the shaft 19 such that a protective window 36 (FIG. 2) mounted in front of the lens 34 terminates the sensor opening 31 flush. The material to be sewn 28 can optionally be pressed against the needle plate 21 and / or the protective window by a sliding shoe or roller 38 (FIG. 3) in the region of the protective window 36 from the side of the head part 11. The with slight pressure of a spring 40 can be pressed against the fabric 28 sliding shoe or scooter 38, for example, be attached to a support rod of a presser foot 42. It can be brought in this embodiment together with the presser foot 42 for the sewing in contact with the fabric 28 and then raised again. The shoe or scooter 38 ensures that the strokes of the feed dog 29 do not cause any errors in the detection of feed values by the sensor 32. As an alternative to the position sensor 33, sensors 32 operating with other technology and / or a plurality of sensors 32 may also be inserted into the sensor opening 31, for example Motion sensors or speed sensors. Instead of a sensor 32, suitable transmission or connection means for transmitting the measured variable or quantities to be detected to the sensor or sensors 32 in the sensor opening 31 on the needle plate 21 may be used, for example a bundle of optical fibers, an optimized lens system and / or an array of mirrors and / or prisms 44 (Figure 4).
For transporting the sewing material 28 in the sewing direction y, a roller pair with at least one electrically drivable first roller 46 (FIG. 5) and a second roller 48 that can be pressed against it can be used as an alternative to the feed dog 29, whereby the material to be sewn between the rollers 46, 48 is passed. The surface of the rollers 46,48 is made, for example, of rubber or other material which has good adhesive properties with respect to textiles. The pair of rollers can be arranged in the sewing direction y behind or in front of the needle insertion opening 23. Alternatively, one pair of rollers can also be arranged behind and in front of the needle insertion opening 23 each. The advantage of such roller drives is their independence from the main drive for the needle bar 15 and the possibility of arbitrarily large material feeds in and against the sewing direction y.
FIG. 6 shows the sewing machine 1 from FIG. 1 with an attached embroidery module 35. The embroidery module 35 comprises an embroidery frame 37 for clamping and holding the Sewing material 28 and one of two (not shown) stepper motors driven positioning or moving device 39 for moving the embroidery frame 37 in or against the two directions x and y of the sewing plane N. The embroidery frame 37 is fixed to a frame holder 30, which along a first arm 43 of the moving device 39 is movable in the y direction. This first arm 43 in turn is movable along a second arm 45 of the moving device 39 in the x direction. The sewing material 28 is clamped in the embroidery frame 37 so that it rests on the sewing plane N.
FIG. 2 shows a longitudinal section through the throat plate 21 in the sewing direction y in the region of the position sensor 33. The protective window 36 is, for example, a scratch-resistant sapphire crystal or made of a hard, transparent plastic. The flush fit in the sensor opening 31, the deposition of dust or dirt particles is prevented. The lens 34 and a substrate 41 arranged thereunder, for example a printed circuit board, as a carrier of a two-dimensional CCD matrix 50 and a light source 52, for example an LED, are held in a sensor housing 47. The position sensor 33, in particular the substrate 41 with the CCD matrix 50 and the light source 52 are connected to a sensor electronics 49, which may include a processor of, for example, more than 10 MHz clock rate and can perform digital image processing algorithms.

Alternativ können die CCD-Matrix 50 und die Sensorelektronik 49 und in einer weiteren Ausführung auch die LED auf einem gemeinsamen Halbleiter-Substrat integriert sein. Dieses ist dann entweder auf dem Substrat 41 oder direkt vom Sensorgehäuse 47 gehalten. Die LED kann bei weiteren Ausführungsformen auch auf der der CCD-Matrix gegenüberliegenden Seite der Linse 34 oder ausserhalb des Positionssensors 33 angeordnet sein. In Figur 7 ist eine Aufsicht die Stichplatte 21 mit darauf aufliegendem Nähgut 28 während des Nähvorgangs in Nährichtung y dargestellt. Die Stichweite oder der Abstand der Einstichstellen 51 der bereits ausgeführten Nähstiche im Nähgut 28 ist im in Figur 7 dargestellten Beispiel gleich einer ersten Ist-Schrittweite ΔyB des Stoff-Vorschubs durch die Stoffschieber 29 in Nährichtung y pro Vorschub-Zyklus, da nach jedem Stoffschiebe-Zyklus jeweils ein Nähstich ausgeführt wurde. Grundsätzlich können vor der Ausführung von Nähstichen auch mehrere Stoffschiebe-oder Vorschub-Zyklen ausgeführt werden, bei denen der tatsächliche Stoff-Vorschub bzw. die erste Ist-Schrittweite in Nährichtung y jeweils ΔyB beträgt. Es ist auch möglich, dass die erste Ist-Schrittweite ΔyB des Stoff-Vorschubs in Nährichtung y während des Nähvorgangs durch den Benutzer der Nähmaschine 1 oder durch die Steuerung 13 verändert wird. Bei jenen Ausgestaltungen der Nähmaschine 1, die einen Stoffvorschub sowohl in als auch entgegen der Nährichtung y zulassen, können die ersten Soll-Schrittweiten ΔyA und die ersten Ist-Schrittweiten ΔyB sowohl positive als auch negative Werte annehmen. Symbolisch ist in Figur 8 die Eingabe oder Vorgabe eines Vorgabewertes bzw. einer ersten Soll-Schrittweite ΔyA für den Stoffvorschub in Nährichtung y an der Steuerung 13 dargestellt. Ein solcher Vorgabewert kann beispielsweise durch Benutzer der Nähmaschine 1 mittels eines Skalenrades oder menügesteuert über einen Touch-Screen erfolgen. Alternativ oder zusätzlich kann die Steuerung 13 solche Vorgabewerte für erste Soll-Schrittweiten ΔyA auch berechnen, insbesondere unter Berücksichtigung von Benutzereingaben. Die in Figur 8 ebenfalls symbolisch dargestellte erste Schubgrösse ΔyT entspricht der auf das Nähgut 28 in Nährichtung y wirkenden Vorschubbewegung der Stofftransportvorrichtung 27, insbesondere der Stoffschieber 29. Die erste Schubgrösse ΔyT kann negative oder positive Werte annehmen, je nachdem, ob eine Bewegung rückwärts oder vorwärts in Nährichtung y erfolgt. Im Idealfall entsprechen die Werte der ersten Schubgrösse ΔyT und der ersten Ist-Schrittweite ΔyB dem Wert der ersten Soll-Schrittweite ΔyA. In Wirklichkeit ist die erste Schubgrösse ΔyT aber etwas grösser als die erste Soll-Schrittweite ΔyA, weil bei jedem Transportschritt mit einem gewissen Schlupf des Nähgutes 28 gerechnet werden muss. Dadurch wird erreicht, dass die erste Ist-Schrittweite ΔyB bei einem durchschnittlichen Nähgut 28 ungefähr dem Wert der ersten Soll-Schrittweite ΔyA entspricht. Zu diesem Zweck kann beispielsweise in einem nichtflüchtigen Speicher der Steuerung 13 ein Wert für das für ein durchschnittliches Nähgut 28 optimale Verhältnis der ersten Schubgrösse ΔyT zur ersten Soll-Schrittweite ΔyA hinterlegt sein, wobei bei einem Vorschub dieses durchschnittlichen Nähgutes 28 mit dieser ersten Schubgrösse ΔyT ein tatsächlicher Stoffvorschub um eine erste Ist-Schrittweite ΔyB erreicht wird, die dem Wert der ersten Soll-Schrittweite ΔyA entspricht.Alternatively, the CCD matrix 50 and the sensor electronics 49 and in a further embodiment also the LED can be integrated on a common semiconductor substrate. This is then held either on the substrate 41 or directly from the sensor housing 47. In further embodiments, the LED can also be arranged on the side of the lens 34 opposite the CCD matrix or outside the position sensor 33. FIG. 7 shows a plan view of the throat plate 21 with sewing material 28 resting thereon in the sewing direction y during the sewing process. In the example shown in FIG. 7, the stitch width or the spacing of the puncture sites 51 of the sewing stitches in the sewing material 28 is equal to a first actual increment Δy B of the fabric feed by the feed dog 29 in the sewing direction y per feed cycle, because after every fabric feed Cycle, one sewing stitch at a time. In principle, prior to the execution of sewing stitches, it is also possible to carry out several feed or feed cycles in which the actual stock feed or the first actual increment in the sewing direction y is Δy B in each case. It is also possible for the first actual increment Δy B of the fabric feed in the sewing direction y to be changed during the sewing process by the user of the sewing machine 1 or by the controller 13. In those embodiments of the sewing machine 1, a material feed both in and out allow y against the direction of sewing, the first target increments .DELTA.y A and the first actual step sizes .DELTA.y B can assume both positive and negative values. Symbolically, in FIG. 8, the input or specification of a default value or a first set increment Δy A for the material feed in the sewing direction y is shown on the controller 13. Such a default value can be done for example by users of the sewing machine 1 by means of a scale wheel or menu-controlled via a touch screen. Alternatively or additionally, the controller 13 may also calculate such default values for first target step sizes Δy A , in particular taking account of user inputs. The first thrust variable Δy T , which is also shown symbolically in FIG. 8, corresponds to the advancing movement of the mass transfer device 27 acting on the sewing material 28, in particular the feed dog 29. The first thrust variable Δy T can assume negative or positive values, depending on whether a movement is backwards or done in the forward direction y. Ideally, the values of the first thrust quantity Δy T and the first actual increment Δy B correspond to the value of the first set increment Δy A. In reality, however, the first thrust variable Δy T is slightly larger than the first set increment Δy A , because a certain slip of the material to be sewn 28 is expected during each transport step got to. It is thereby achieved that the first actual step size Δy B for an average sewing material 28 approximately corresponds to the value of the first set step size Δy A. For this purpose, for example, in a nonvolatile memory of the controller 13, a value for the optimum for an average sewing material 28 ratio of the first thrust variable .DELTA.y T to the first target increment Δy A be deposited, with a feed of this average material 28 with this first thrust variable Δy T an actual material feed is achieved by a first actual increment Δy B , which corresponds to the value of the first target increment Δy A.

Bei einer weiteren Ausgestaltung der Nähmaschine 1 ist die Stofftransportvorrichtung 27 so ausgebildet, dass das Nähgut 28 zusätzlich zur Nährichtung y auch in einer in der Nähebene N liegenden, vertikal zur Nährichtung y orientierten Querrichtung x bewegbar ist.
In Figur 9 ist eine Aufsicht auf die Stichplatte 21 mit darauf aufliegendem Nähgut 28 während des Nähvorgangs mit Vorschubbewegungen in Nährichtung y und in Querrichtung x dargestellt. In analoger Weise zur Transportbewegung in Nährichtung y können die Stoffschieber 29 zusätzlich auch eine Transportbewegung in Querrichtung x ausführen. Dabei führen die Stoffschieber 29 aufgrund einer zweiten Soll-Schrittweite ΔxA jeweils einen Transport- oder Vorschubzyklus mit einer zweiten Schubgrösse ΔxT in Querrichtung x aus.
In Figur 10 ist die zyklische Bewegung eines Balkens des Nähfusses 29 für einen solchen Transportzyklus dargestellt. Zur besseren Erkennbarkeit ist die zweite Schubgrösse ΔxT länger und sind die Abmessungen des Balkens kleiner dargestellt, als sie im Verhältnis zur Hubbewegung tatsächlich sind. Mögliche Positionen des Balkens während eines Transportzyklus sind gepunktet eingezeichnet.
Das Nähgut 28 wird jeweils um eine zweite Ist-Schrittweite ΔxB in Querrichtung x bewegt. Selbstverständlich können ΔxA, ΔxT und ΔxB positive und negative Werte annehmen, was Bewegungen in und entgegen der Querrichtung x entspricht. Wie aus Figur 9 ersichtlich, sind zwischen den einzelnen, bereits ausgeführten Einstichstellen 51a - 51e die relativen Koordinaten in Einheiten der jeweiligen ersten Ist-Schrittweiten ΔyB in Nährichtung y und der jeweiligen zweiten Ist-Schrittweiten ΔxB in Querrichtung x angegeben. Die zugehörigen einzelnen Vorschubzyklen der Stoffschieber 29 in Nährichtung y und in Querrichtung x können aufeinanderfolgend einer nach dem anderen ausgeführt werden. Alternativ kann auch ein Teil der zwischen zwei Einstichstellen 51 auszuführenden Vorschubzyklen als kombinierte Bewegung gleichzeitig in Nährichtung y und Querrichtung x erfolgen.
In a further embodiment of the sewing machine 1, the fabric transporting device 27 is designed such that the sewing material 28 is movable in addition to the sewing direction y in a transverse direction x oriented in the sewing plane N and oriented vertically to the sewing direction y.
FIG. 9 shows a plan view of the needle plate 21 with material to be sewn on it during the sewing process with feed movements in the sewing direction y and in the transverse direction x. In an analogous manner to the transport movement in sewing direction y, the feed dog 29 can also perform a transport movement in the transverse direction x. The feed dog 29 lead due to a second target increment Δx A respectively a transport or Feed cycle with a second thrust size Δx T in the transverse direction x.
FIG. 10 shows the cyclical movement of a bar of the presser foot 29 for such a transport cycle. For better visibility, the second thrust quantity Δx T is longer and the dimensions of the beam are shown smaller than they actually are in relation to the lifting movement. Possible positions of the bar during a transport cycle are dotted.
The sewing material 28 is in each case moved by a second actual step width Δx B in the transverse direction x. Of course, Δx A , Δx T and Δx B can assume positive and negative values, which corresponds to movements in and against the transverse direction x. As can be seen from FIG. 9, the relative coordinates in units of the respective first actual step widths Δy B in the sewing direction y and the respective second actual step widths Δx B in the transverse direction x are indicated between the individual punctured sites 51 a - 51 e. The associated individual feed cycles of the feed dog 29 in the sewing direction y and in the transverse direction x can be carried out successively one after the other. Alternatively, a part of the feed cycles to be executed between two puncture sites 51 can also take place simultaneously as a combined movement in the sewing direction y and transverse direction x.

Wird, wie in Figur 6 dargestellt, ein Stickmodul 35 an die Nähmaschine 1 angekoppelt, so erfolgt der Transport des Nähgutes 28 nicht mehr über die Stoffschieber 29, sondern mittels der Schrittmotoren durch die Bewegungsvorrichtung 39. In diesem Fall hat die erste Schubgrösse ΔyT minimal den Wert der Schrittweite des in Nährichtung y wirkenden Schrittmotors. Analog hat die zweite Schubgrösse ΔxT minimal den Wert der Schrittweite des in Querrichtung x wirkenden Schrittmotors. Wenn diese Schrittweiten sehr klein sind, also beispielsweise unter 0.1mm liegen, kann auch ein Vielfaches dieser Schrittweiten als erste Schubgrösse ΔyT bzw. als zweite Schubgrösse ΔxT festgelegt und beispielsweise in einem nichtflüchtigen Speicher der Steuerung 13 oder des Stickmoduls 35 gespeichert sein. Alternativ können die ersten Schubgrössen ΔyT bzw. die zweiten Schubgrössen ΔxT auch für jeden auszuführenden Nähstich neu festgelegt werden, beispielsweise als Werte der Stichweite in Nährichtung y und in Querrichtung x.If, as shown in Figure 6, an embroidery module 35 is coupled to the sewing machine 1, the transport of the material 28 is no longer via the feed dog 29, but by means of the stepper motors by the moving device 39. In this case, the first thrust variable Δy T minimal the value of the step size of the stepping motor acting in the sewing direction y. Analogously, the second thrust quantity Δx T minimally has the value of the step size of the stepping motor acting in the transverse direction x. If these step sizes are very small, that is, for example less than 0.1 mm, a multiple of these step sizes can also be defined as the first thrust quantity Δy T or as the second thrust variable Δx T and stored, for example, in a nonvolatile memory of the controller 13 or of the embroidery module 35. Alternatively, the first thrust quantities Δy T and the second thrust magnitudes Δx T can also be redefined for each stitch to be executed, for example as values of the stitch width in the sewing direction y and in the transverse direction x.

Sowohl beim Transport des Nähgutes 28 mittels Stoffschiebern 29 als auch beim Transport mittels der Bewegungsvorrichtung 39 eines Stickmoduls 35 können die Ist-Schrittweiten ΔyB,ΔxB von den zugehörigen Soll-Schrittweiten ΔyA,ΔxA abweichen. Gründe dafür können beispielsweise unterschiedliche Transporteigenschaften in Abhängigkeit des Nähgutes 28, der Nähposition innerhalb des Nähgutes 28 oder der Transportrichtung sein. Kräfte, die während des Nähvorgangs auf das Nähgut 28 wirken und Abnutzungserscheinungen an der Nähmaschine 1 sind weitere mögliche Ursachen für sich ändernde Transporteigenschaften.
Wie aus dem Prinzipschema in Figur 11 erkennbar, wird die erste Schubgrösse ΔyT bzw. die zweite Schubgrösse ΔxT in Abhängigkeit der vom Positionssensor 33 erfassten ersten Ist-Schrittweite ΔyB des tatsächlichen Stoffvorschubs in Nährichtung y bzw. der zweiten Ist-Schrittweite ΔxB in Querrichtung x geregelt. Ein über dem Schutzfenster 36 (Fig. 2) liegender Bereich des Nähgutes 28, der beispielsweise die Abmessungen 5mm x 5mm hat, wird von der Lichtquelle 52 beleuchtet und über die Linse 34 auf die CCD-Matrix 50 abgebildet. In Verbindung mit der Sensorelektronik 49, die eine digitale Bildverarbeitungseinheit, kurz IPS (Image Processing System) oder DSP (Digital Signal Processor) genannt, umfasst, kann der Positionssensor 33 beispielsweise 1500 Bilder pro Sekunde erfassen und verarbeiten. Der Positionssensor 33 ist in der Lage, anhand von Intensitätsunterschieden innerhalb des erfassten Bildausschnittes kleinste Strukturen oder Strukturunterschiede sowie deren Lage im erfassten Bildausschnitt zu erkennen. Aufgrund der Lageänderung charakteristischer Unregelmässigkeiten in der Oberflächenstruktur des Nähgutes 28 und/oder aufgrund der Lageänderung von Farbmustern des Nähgutes 28 in direkt aufeinanderfolgenden und/oder zeitlich weiter auseinanderliegenden Bildaufnahmen ermittelt das IPS des Positionssensors 33 relative Verschiebungen des Nähgutes 28 in der Nährichtung y und in der Querrichtung x bzw. die entsprechenden Vorschubgeschwindigkeiten. Durch Berücksichtigung mehrerer Bildaufnahmen mit mindestens einem gemeinsamen Strukturmerkmal können Auflösung und Genauigkeit des Positionssensors 33 weiter verbessert werden. Vorzugsweise werden die Verschiebungen oder Lageänderungen des Nähgutes 28 durch die Sensorelektronik 49, ausgehend von den x- und y- Koordinaten eines Null-oder Startwertes beim Beginn des Nähvorgangs, aufsummiert und als absolute x- und y- Koordinaten der Lage- oder Positionswerte in Bezug auf den Startwert als Ausgangssignal bereitgestellt.
Wenn das Nähgut 28 nach der Ausführung von Nähstichen oder Vorschubzyklen still steht, liest die Steuerung 13 jeweils die vom IPS ermittelten tatsächlichen Vorschubwerte des Nähgutes 28 in x- und y- Richtung in Bezug auf den Startwert ein und speichert sie in einem Speicher der Steuerung 13. Alternativ, wenn der Sensor 32 eine genügend hohe zeitliche Abtastrate aufweist, können die Vorschubwerte auch während des Stoffvorschubs an die Steuerung 13 übermittelt und gespeichert werden, beispielsweise periodisch in zeitlich gleichen oder ändernden Intervallen. Ein Nähschritt, der durch zwei aufeinanderfolgende Nadelstiche charakterisiert ist, kann demzufolge in beliebiger Weise in einzelne Soll-Schrittweiten zerlegt werden, für die dann die tatsächlichen Ist-Schrittweiten vom Sensor 32 ermittelt werden.
Durch Differenzbildung unmittelbar nacheinander gespeicherter korrespondierender Werte berechnet die Steuerung 13 den zugehörigen tatsächlichen Stoffvorschub, also die erste Ist-Schrittweite ΔyB bzw. die zweite Ist-Schrittweite ΔxB.
Alternativ kann der Null- oder Startwert für jeden Nähschritt oder Vorschubzyklus oder ein Vielfaches davon immer wieder neu festgelegt werden. Der vom IPS an die Steuerung 13 übergebene Wert ist in diesem Fall direkt die erste Ist-Schrittweite ΔyB bzw. die zweite Ist-Schrittweite ΔxB und die Differenzbildung entfällt.
Both during transport of the material to be sewn 28 by means of material slides 29 and during transport by means of the movement device 39 of an embroidery module 35, the actual step sizes Δy B , Δx B may deviate from the associated desired step sizes Δy A , Δx A. Reasons for this, for example, different transport properties in Depending on the sewing material 28, the sewing position within the sewing material 28 or the transport direction. Forces which act on the sewing material 28 during the sewing process and wear phenomena on the sewing machine 1 are further possible causes for changing transport properties.
As can be seen from the schematic diagram in FIG. 11, the first thrust variable Δy T or the second thrust variable Δx T is determined as a function of the first actual step width Δy B detected by the position sensor 33 of the actual material feed in the sewing direction y or the second actual step size Δx B regulated in the transverse direction x. A region of the sewing material 28 lying over the protective window 36 (FIG. 2), which for example has the dimensions 5 mm × 5 mm, is illuminated by the light source 52 and imaged onto the CCD matrix 50 via the lens 34. In conjunction with the sensor electronics 49, which includes a digital image processing unit, called IPS (Image Processing System) or DSP (Digital Signal Processor), the position sensor 33 can detect and process 1500 images per second, for example. The position sensor 33 is able to detect the smallest structures or structural differences as well as their position in the captured image detail on the basis of intensity differences within the captured image detail. Due to the change in position characteristic irregularities in the surface structure of the material to be sewn 28 and / or due to the change in position of color samples of the material 28 in directly successive and / or temporally further spaced image captures, the IPS of the position sensor 33 determines relative displacements of the material 28 in the sewing direction y and in the transverse direction x and the corresponding feed rates. By considering a plurality of image recordings with at least one common feature, resolution and accuracy of the position sensor 33 can be further improved. Preferably, the displacements or changes in position of the material to be sewn 28 by the sensor electronics 49, starting from the x and y coordinates of a zero or start value at the beginning of the sewing process, summed and as absolute x and y coordinates of the position or position values in relation provided to the starting value as an output signal.
If the sewing material 28 is stopped after the execution of sewing stitches or feeding cycles, the controller 13 reads in each case the actual feeding values of the sewing material 28 in the x and y directions with respect to the starting value determined by the IPS and stores them in a memory of the controller 13 Alternatively, if the sensor 32 has a sufficiently high temporal sampling rate, the feed values can also be transmitted and stored to the controller 13 during the material feed, for example, periodically at equal or changing intervals. A sewing step, which is characterized by two consecutive pinholes, can therefore be decomposed in any desired manner into individual desired step sizes, for which the actual actual step widths are then determined by the sensor 32.
By subtraction of immediately corresponding stored corresponding values, the controller 13 calculates the associated actual material feed, ie the first actual increment Δy B or the second actual increment Δx B.
Alternatively, the zero or start value for each sewing step or feed cycle, or a multiple thereof, may be redefined again and again. The value transferred by the IPS to the controller 13 is in this case directly the first actual increment Δy B or the second actual increment Δx B, and the subtraction is omitted.

Die Steuerung 13 ermittelt nun die Abweichung der zugehörigen ersten Soll-Schrittweite ΔyA von der ermittelten ersten Ist-Schrittweite ΔyB und speichert diesen Wert als ersten Korrekturwert Dy. Die erste Schubgrösse ΔyT wird für den folgenden Nähschritt oder Vorschubzyklus um das Zweifache des ersten Korrekturwertes Dy erhöht, also ΔyT[2] := ΔyT[1] + 2Dy. Dadurch wird die festgestellte Abweichung in nur einem Nähschritt kompensiert. Anschliessend wird der Wert der Schubgrösse ΔyT für den folgenden Nähschritt wieder um Dy reduziert, also ΔyT[3] := ΔyT[2] - Dy, und bleibt für die weiteren Nähschritte auf diesem korrigierten Wert, bis erneut eine Abweichung zwischen Ist- und Sollwert festgestellt wird. In analoger Weise erfolgt die Regelung der zweiten Schubgrösse ΔxT.The controller 13 now determines the deviation of the associated first setpoint increment Δy A from the determined first actual increment Δy B and stores this value as the first correction value D y . The first thrust quantity Δy T is increased by twice the first correction value D y for the following sewing step or feed cycle, ie Δy T [2] : = Δy T [1] + 2D y . This will be the detected deviation compensated in only one sewing step. Subsequently, the value of the thrust quantity Δy T is again reduced by D y for the following sewing step, ie Δy T [3] : = Δy T [2] - D y , and remains at this corrected value for the further sewing steps until again a deviation between actual and setpoint is determined. In an analogous manner, the control of the second thrust variable Δx T.

Mit dem beschriebenen Regelalgorithmus kann die Steuerung 13 erkannte Abweichungen bei den ersten Schubgrössen ΔyT bzw. den zweiten Schubgrössen ΔxT sehr schnell innerhalb nur eines Vorschub- oder Nähschrittes korrigieren. Insbesondere bei vom Hauptantrieb für die Nadelstange 15 unabhängigen Transport-Vorrichtungen 27 lassen sich die einzelnen Soll-Schrittweiten innerhalb eines Nähschrittes beliebig festlegen, sodass eine Regelung der Schubgrössen ΔyT,ΔxT sogar innerhalb eines einzelnen Nähschrittes erfolgen kann.
Alternativ können auch andere bekannte Regelalgorithmen zum Regeln der Schubgrössen ΔyT, ΔxT verwendet werden, bei denen ein Ausgleich und eine Korrektur von Fehlern über mehrere Vorschub- oder Nähschritte erfolgt. Dadurch lassen sich grössere Unterschiede zwischen den Stichweiten zweier aufeinanderfolgender Nähstiche sowie unerwünschte Rückkopplungen oder Oszillationen der Nähnadel vermeiden.
With the control algorithm described, the controller 13 can correct detected deviations in the first thrust quantities Δy T or the second thrust variables Δx T very quickly within only one advancing or sewing step. In particular, in the transport device 27 independent of the main drive for the needle bar 15, the individual desired step sizes within a sewing step can be set arbitrarily, so that a control of the thrust quantities Δy T , Δx T can even take place within a single sewing step.
Alternatively, other known control algorithms for controlling the thrust quantities Δy T , Δx T can be used, in which a compensation and a correction of errors over several feed or sewing steps. As a result, larger differences between the stitches of two consecutive stitches as well as unwanted feedback or oscillations of the sewing needle can be avoided.

Die Einstellung oder Regelung der Schubgrössen ΔyT,ΔxT erfolgt über Schrittmotoren. Bei Transportvorrichtungen 27 mit Stoffschiebern 29 wirken die Schrittmotoren direkt oder indirekt auf eine (nicht dargestellte) Stellvorrichtung zum Einstellen der jeweiligen Schubgrössen ΔyT,ΔxT. Bei Transportvorrichtungen 27 mit antreibenden Schrittmotoren, wie sie in Stickmodulen 35 verwendet werden, werden direkt die Schubgrössen ΔyT, ΔxT dieser Schrittmotoren angepasst.
Der Sensor 32 kann im übrigen auch zur optischen Erkennung von Stickrahmen genutzt werden, wenn sich dessen Rand über dem Sensor 32 befindet. So kann auf einfache Art eine Stickrahmencodierung zur Erkennung unterschiedlicher Rahmenarten und -grössen ersetzt werden.
The setting or regulation of the thrust quantities Δy T , Δx T via stepper motors. For transport devices 27 with knife gate valves 29, the step motors act directly or indirectly on a (non-shown) actuator for adjusting the respective sizes Dy thrust T, T Ax. In transport devices 27 with driving stepper motors, as used in embroidery modules 35, the thrust variables Δy T , Δx T of these stepper motors are adapted directly.
Incidentally, the sensor 32 can also be used for optical recognition of embroidery frames when its edge is above the sensor 32. This way, an embroidery frame coding can be easily replaced to recognize different frame types and sizes.

Claims (11)

  1. Method for controlling the material conveyance in a sewing or embroidery machine (1), having at least one material conveying device (27) for conveying the sewing material (28) in at least one direction by respectively one nominal step size (ΔyA; ΔxA), the nominal step size (ΔyA; ΔxA) being adjustable or calculatable by a control unit (13) and influencing at least one thrust variable (ΔyT; ΔxT) of the material conveying device (27) for conveying the sewing material (28), characterised in that at least one actual step size (ΔyB; ΔxB) is detected by at least one sensor (32) and in that the control unit (13) controls the thrust variable (ΔyT; ΔxT) dependent upon the actual step sizes (ΔyB; ΔxB) in such a manner that the deviations of the actual step sizes (ΔyB; ΔxB) from the respective nominal step sizes (ΔyA; ΔxA) are compensated for on average over one or more successive sewing steps or feed cycles.
  2. Method according to claim 1, wherein the material conveying device (27) is suitable for conveying the sewing material (28) in a sewing direction (y) by respectively first nominal step sizes (ΔyA) and in a transverse direction (x) by respectively second nominal step sizes (ΔxA), and wherein the first nominal step size (ΔyA) and the second nominal step size (ΔxA) are adjustable or calculatable by a control unit (13) and influence a first thrust variable (ΔyT) and a second thrust variable (ΔxT) of the material conveying device (27) for conveying the sewing material (28) in the sewing direction (y) and in the transverse direction (x), characterised in that the first actual step size (ΔyB) and the second actual step size (ΔxB) are detected by the sensor or sensors (32), and in that the control unit (13) controls the first thrust variable (ΔyT) and the second thrust variable (ΔxT) dependent upon first actual step sizes (ΔyB) and upon second actual step sizes (ΔxB) in such a manner that the deviations of the first actual step sizes (ΔyB) and of the second actual step sizes, (ΔxB) from the respective nominal step sizes (ΔyA; ΔxA) are compensated for on average over one or more successive sewing steps or feed cycles.
  3. Method according to one of the claims 1 or 2, characterised in that the control unit (13) reads in the sensor signals periodically or in the rhythm of individual or several feed cycles or sewing steps as data and determines the first actual step size (ΔyB) and/or the second actual step size (ΔxB) or the corresponding feed rates.
  4. Method according to one of the claims 1 to 3, characterised in that first actual step sizes (ΔyB) and/or second actual step sizes (ΔxB) and/or deviations of these actual step sizes (ΔyB; ΔxB) from the respective nominal step sizes (ΔyA; ΔxA) which are detected by the sensor or sensors (32) are stored in a memory or summated.
  5. Method according to one of the claims 1 to 4, characterised in that a random or system-caused deviation, detected by the sensor or sensors (32), of the first actual step size (ΔyB) and/or of the second actual step size (ΔxB) from the respective nominal step size (ΔyA; ΔxA) is compensated for over one or more sewing steps or feed cycles by changing or controlling the associated thrust variables (ΔyT; ΔxT) in such a manner that the deviations cancel each other out on average over one or more sewing steps or feed cycles.
  6. Device for implementing the method according to one of the claims 1 to 5, characterised in that the sensor or sensors (32) for resolution of one measurement variable are configured in at least one spatial dimension.
  7. Device according to claim 6, characterised in that the sensor or sensors (32) comprise a CCD line, orientated parallel to the sewing direction (y), or a CCD matrix (50) or a microcamera with an image processing unit for detecting and processing a one- or two-dimensional image region.
  8. Device according to one of the claims 6 or 7, characterised in that the sensor or sensors (32) or connection means to the sensor or sensors (32) are disposed at least partially in a shaft (19) below an embroidery plate (21) of the sewing or embroidery machine (1).
  9. Device according to one of the claims 6 to 8, characterised in that a sensor opening (33) in the region of a needle insertion opening (23) is recessed in the embroidery plate (21), in that this sensor opening (33) is covered by a protective window (36), and in that the sensor or sensors (32) or the connection means to the sensor or sensors (32) are disposed at least partially under this protective window (36).
  10. Device according to claim 9, characterised in that the sewing material (28) can be pressed in the region of the protective window (36) by a sliding shoe or roller (33) onto the embroidery plate (21) or the protective window (36).
  11. Device according to one of the claims 9 or 10, characterised in that a light source (52) is disposed below the protective window (36).
EP02405896A 2001-12-19 2002-10-21 Method and device for regulating the work-transporting means in a sewing or embroidery machine Expired - Lifetime EP1321556B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH23172001 2001-12-19
CH23172001 2001-12-19

Publications (3)

Publication Number Publication Date
EP1321556A2 EP1321556A2 (en) 2003-06-25
EP1321556A3 EP1321556A3 (en) 2004-12-15
EP1321556B1 true EP1321556B1 (en) 2006-01-04

Family

ID=4568548

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02405896A Expired - Lifetime EP1321556B1 (en) 2001-12-19 2002-10-21 Method and device for regulating the work-transporting means in a sewing or embroidery machine

Country Status (4)

Country Link
US (2) US6871606B2 (en)
EP (1) EP1321556B1 (en)
AT (1) ATE315120T1 (en)
DE (1) DE50205513D1 (en)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004008496A (en) * 2002-06-07 2004-01-15 Pentax Corp Goggles
RU2335586C2 (en) * 2003-02-12 2008-10-10 Ральф Дж. КОРНЕР Method and device for stitching
US20040212803A1 (en) * 2003-04-22 2004-10-28 Sultex Ag Measuring device for movements on a weaving machine
US20050145149A1 (en) * 2003-10-26 2005-07-07 David Hooke Electronic Stitch Length Regulator for Home Sewing Machines
EP1738007B1 (en) * 2003-12-15 2012-09-19 BERNINA International AG Method and device for controlling the movement of a needle in a sewing machine
WO2005113876A2 (en) * 2004-05-14 2005-12-01 Koerner Ralph J Quilting method and apparatus using frame with motion detector
CH697501B1 (en) * 2004-05-28 2008-11-14 Bernina Int Ag Apparatus and method for capturing and processing of measured variables in a sewing machine.
US20060112866A1 (en) * 2004-12-01 2006-06-01 Pfeifer Thomas A Stitch regulator for a sewing machine
EP1734166A1 (en) * 2005-06-17 2006-12-20 Fritz Gegauf AG Method and apparatus for the production of sewing data
EP1739222B1 (en) * 2005-06-21 2008-04-02 BERNINA International AG Process and system for the reduction of sewing defaults in sewing machines
GB2431480B (en) * 2005-10-20 2011-08-10 Vsm Group Ab Embroidery data generation
EP1811073A2 (en) * 2006-01-18 2007-07-25 BERNINA International AG Sewing machine and method for detecting movement in sewing machines
JP2007244463A (en) * 2006-03-14 2007-09-27 Brother Ind Ltd Fabric holding frame transfer device for sawing machine
JP4974044B2 (en) * 2006-03-23 2012-07-11 ブラザー工業株式会社 Embroidery sewing machine
CN101501263B (en) * 2006-08-17 2012-07-04 兄弟工业株式会社 Programmable electronic sewing machine and controller for programmable electronic sewing machine
JP4927482B2 (en) * 2006-09-05 2012-05-09 Juki株式会社 sewing machine
JP2008079998A (en) * 2006-09-28 2008-04-10 Brother Ind Ltd Sewing machine
SE529489C2 (en) * 2006-11-28 2007-08-21 Vsm Group Ab Lock stitch type sewing machine for performing wide stitches, has feed motor controlled to advance sewing material correction length in longitudinal direction of seam, and algorithm for controlling feed motor
JP2008212289A (en) * 2007-03-01 2008-09-18 Brother Ind Ltd Sewing machine and sewing machine control program
JP2008228961A (en) * 2007-03-20 2008-10-02 Brother Ind Ltd Sewing machine and sewing machine control program
JP2008295742A (en) * 2007-05-31 2008-12-11 Juki Corp Buttonholing machine
JP2009011478A (en) * 2007-07-03 2009-01-22 Brother Ind Ltd Sewing machine and sewing machine motor control program
DE202007013793U1 (en) 2007-10-02 2009-02-19 Dürkopp Adler AG sewing machine
JP5315705B2 (en) * 2008-01-24 2013-10-16 ブラザー工業株式会社 sewing machine
JP2009174981A (en) * 2008-01-24 2009-08-06 Brother Ind Ltd Sewing machine
JP2009189626A (en) * 2008-02-15 2009-08-27 Brother Ind Ltd Sewing machine
US8780206B2 (en) * 2008-11-25 2014-07-15 De La Rue North America Inc. Sequenced illumination
US8265346B2 (en) 2008-11-25 2012-09-11 De La Rue North America Inc. Determining document fitness using sequenced illumination
EP2391954A1 (en) * 2009-01-27 2011-12-07 Gammill, Inc. Stitch quality monitoring system
US8245656B2 (en) * 2009-02-12 2012-08-21 Brother Kogyo Kabushiki Kaisha Sewing machine, computer readable medium storing thread tension adjustment program for sewing machine, and thread tension evaluation unit
US8749767B2 (en) 2009-09-02 2014-06-10 De La Rue North America Inc. Systems and methods for detecting tape on a document
CN102277696B (en) * 2010-06-09 2015-03-11 Vsm集团股份公司 Feeder movement compensation
JP2012187345A (en) * 2011-03-14 2012-10-04 Brother Ind Ltd Sewing machine
US9115451B2 (en) 2011-06-13 2015-08-25 Handi Quilter, Inc. System and method for controlling stitching using a movable sensor
JP2013188265A (en) * 2012-03-12 2013-09-26 Brother Ind Ltd Sewing machine
JP2013188263A (en) * 2012-03-12 2013-09-26 Brother Ind Ltd Sewing machine
JP2013188262A (en) 2012-03-12 2013-09-26 Brother Ind Ltd Sewing machine
JP5605384B2 (en) * 2012-03-12 2014-10-15 ブラザー工業株式会社 Embroidery device
JP2014008073A (en) * 2012-06-27 2014-01-20 Brother Ind Ltd Sewing machine
US9053596B2 (en) 2012-07-31 2015-06-09 De La Rue North America Inc. Systems and methods for spectral authentication of a feature of a document
US9315933B1 (en) * 2013-03-15 2016-04-19 John D. Martelli Stitch regulation apparatus and method
US9840797B2 (en) * 2014-03-12 2017-12-12 Abm International, Inc. Method, apparatus, and computer-readable medium for stitching
US9951449B2 (en) 2014-08-01 2018-04-24 Universal Instruments Corporation Sewing machine, system and method
US10179961B2 (en) * 2015-06-08 2019-01-15 Conrad Industries, Inc. Embroidery production monitoring system
TR201515464A2 (en) 2015-12-04 2016-06-21 Goekhan Uenlue %10 Electronic control system fitted to sewing machines
JP6727832B2 (en) * 2016-02-10 2020-07-22 Juki株式会社 sewing machine
JP6860294B2 (en) * 2016-04-26 2021-04-14 蛇の目ミシン工業株式会社 Embroidery pattern connection data generation device, embroidery pattern connection data generation method, program and sewing system
US10982365B2 (en) * 2016-06-08 2021-04-20 One Sciences, Inc. Multi-patch multi-view system for stitching along a predetermined path
US11015276B2 (en) 2019-02-04 2021-05-25 Handi Quilter, Inc. Multi-sensor sewing machine with automatic needle speed adjustment

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD160751A3 (en) * 1981-04-06 1984-02-29 Textima Veb K CIRCUIT ARRANGEMENT FOR AUTOMATIC SEAMING
CA1201021A (en) * 1983-06-09 1986-02-25 Peter B.S. Shim Fabric feeder mechanism for sewing machine
JPS625388A (en) * 1985-06-29 1987-01-12 ブラザー工業株式会社 Constant dimension stitching apparatus in sewing machine
DE3525028A1 (en) * 1985-07-13 1987-01-22 Pfaff Ind Masch Sewing machine fabric feed
ES8801002A1 (en) 1985-07-13 1987-12-01 Pfaff Ind Masch Method and apparatus for determining the amount of advance of a plurality of material plies
JPS62189087A (en) * 1986-02-15 1987-08-18 ブラザー工業株式会社 Sewing machine for performing pattern matching sewing
JPS63125292A (en) * 1986-11-15 1988-05-28 ブラザー工業株式会社 Pattern match apparatus of sewing machine
JPH01256997A (en) * 1988-04-06 1989-10-13 Brother Ind Ltd Pattern match sewing machine
JP3170238B2 (en) * 1997-03-24 2001-05-28 洋 古舘 SEWING SYSTEM AND SEWING METHOD
JP2001334094A (en) * 2000-05-26 2001-12-04 Janome Sewing Mach Co Ltd Embroidery sewing machine
RU2335586C2 (en) 2003-02-12 2008-10-10 Ральф Дж. КОРНЕР Method and device for stitching
DE10306775B3 (en) * 2003-02-18 2004-08-05 Sunstar Precision Co., Ltd. Position controlling apparatus for embroidery frame in an embroidery machine, comprises X-axis driver, Y-axis driver, outputting electrical signal sensor, and controller to generate X-axis and Y-axis drive control signals

Also Published As

Publication number Publication date
US6871606B2 (en) 2005-03-29
EP1321556A2 (en) 2003-06-25
DE50205513D1 (en) 2006-03-30
US6994042B2 (en) 2006-02-07
ATE315120T1 (en) 2006-02-15
US20030131773A1 (en) 2003-07-17
EP1321556A3 (en) 2004-12-15
US20050115482A1 (en) 2005-06-02

Similar Documents

Publication Publication Date Title
EP1321556B1 (en) Method and device for regulating the work-transporting means in a sewing or embroidery machine
DE3346163C1 (en) Process for sewing fabric parts according to the pattern
DE3738893C2 (en)
EP0102524B1 (en) Sewing machine driving and controlling device
DE4117008C2 (en) Method for calibrating a measuring device for acquiring an aggregation image
DE2437377C2 (en) Device for sewing two workpieces of equal length
DD160751A3 (en) CIRCUIT ARRANGEMENT FOR AUTOMATIC SEAMING
DE4139712A1 (en) AUTOMATIC SURFACE SCAN
DE4026250A1 (en) Automatic material cutter - has CNC system with edge monitor and synchronised cutting head with fabric movement on two axes
CH673612A5 (en) Key cutting machine allowing automatic key copying - with central processor receiving data obtained from original key to control orthogonal stepping motors
DE4100170C2 (en) Color control desk for quality control on printed sheets
EP0993947A1 (en) Method and means for optically measuring the printing position and/or the register deviation between the several colours in a multicolour printing machine
DE4242702C2 (en) Method and device for processing flat objects
EP0420867A1 (en) Process and sewing machine for stitching layers of fabric together to ensure pattern matching
DE3910870C2 (en)
DE3902467A1 (en) PATTERN-ADJUSTING TRAIN CONNECTION MACHINE
DE3525028A1 (en) Sewing machine fabric feed
DE102018117925A1 (en) sewing machine
DE4118118C2 (en) Sewing machine with a device for measuring the relative position of end edges of the material layer
DE3902474A1 (en) PATTERN-ADJUSTING SEWING MACHINE
DE4000633C2 (en)
DE2826084A1 (en) FABRIC GUIDE DEVICE FOR SEWING MACHINES
DE3622845A1 (en) Method and apparatus for automatically blanking out printed parts from workpiece plates
DE4205070A1 (en) METHOD FOR POSITIONING AND PUSHING A SEWING GOOD
DE3902473A1 (en) PATTERN-ADJUSTING SEWING MACHINE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20050121

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060104

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060104

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060104

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060104

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060104

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: HANS RUDOLF GACHNANG PATENTANWALT

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50205513

Country of ref document: DE

Date of ref document: 20060330

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060404

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060415

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060327

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060605

REG Reference to a national code

Ref country code: SE

Ref legal event code: RPOT

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061005

EN Fr: translation not filed
BERE Be: lapsed

Owner name: FRITZ GEGAUF A.G. BERNINA-NAHMASCHINENFABRIK

Effective date: 20061031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070223

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060104

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061021

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: BERNINA INTERNATIONAL AG

Free format text: FRITZ GEGAUF AG BERNINA-NAEHMASCHINENFABRIK#SEESTRASSE#CH-8266 STECKBORN (CH) -TRANSFER TO- BERNINA INTERNATIONAL AG#SEESTRASSE 161#8266 STECKBORN (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060104

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060104

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20081016

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090904

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20091027

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091021

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101022

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: GACHNANG AG PATENTANWAELTE, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20161025

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170102

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50205513

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180501