EP1320430B1 - Verfahren zum umformen von strukturen aus aluminium-legierungen - Google Patents
Verfahren zum umformen von strukturen aus aluminium-legierungen Download PDFInfo
- Publication number
- EP1320430B1 EP1320430B1 EP01965216A EP01965216A EP1320430B1 EP 1320430 B1 EP1320430 B1 EP 1320430B1 EP 01965216 A EP01965216 A EP 01965216A EP 01965216 A EP01965216 A EP 01965216A EP 1320430 B1 EP1320430 B1 EP 1320430B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- structural part
- holding device
- shaped
- alloys
- process according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 38
- 238000007493 shaping process Methods 0.000 title claims abstract description 17
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 9
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 31
- 239000000956 alloy Substances 0.000 claims abstract description 31
- 239000000463 material Substances 0.000 claims abstract description 13
- 238000010438 heat treatment Methods 0.000 claims abstract description 12
- 230000009471 action Effects 0.000 claims abstract description 9
- 230000008569 process Effects 0.000 claims description 24
- 238000003780 insertion Methods 0.000 claims description 3
- 230000037431 insertion Effects 0.000 claims description 3
- 239000003566 sealing material Substances 0.000 claims description 3
- 238000007789 sealing Methods 0.000 claims description 2
- 238000001816 cooling Methods 0.000 description 10
- 238000000465 moulding Methods 0.000 description 9
- 230000035882 stress Effects 0.000 description 9
- 230000000694 effects Effects 0.000 description 7
- 238000003466 welding Methods 0.000 description 7
- 230000008901 benefit Effects 0.000 description 4
- 238000010409 ironing Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000010792 warming Methods 0.000 description 2
- 238000000137 annealing Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 239000002655 kraft paper Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D26/00—Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
- B21D26/02—Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
- B21D26/021—Deforming sheet bodies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/02—Stamping using rigid devices or tools
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D26/00—Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
- B21D26/02—Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
- B21D26/053—Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure characterised by the material of the blanks
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/047—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
Definitions
- the present invention relates to a method for reshaping structures
- Aluminum alloys in particular of natural hard AlMg, natural hard AlMgSc, and / or curable AlMgLi alloys.
- Such structures or Moldings capture, for example, wing skin surfaces, cover and tank elements for Spacecraft, aircraft hulls with structural stiffening elements such as stringers and frame.
- structural stiffening elements such as stringers and frame.
- the contour-accurate and drawing fair production of such moldings Aluminum alloys are usually difficult and usually require several Forming steps of the individual components with appropriate intermediate annealing treatments.
- the outer skin panels are converted from sheets of the alloy AA2024 in the solution-annealed condition by means of ironing.
- stretch drawing which can be carried out both in the cold and in the warm state, the structure to be reshaped is known to be formed in one or more steps or phases (see DE 195 04 649 C1).
- the structure to be reshaped can first be pulled in the longitudinal direction and then over a shaped part which has the desired final contour.
- the disadvantage here is that internal stresses due to the molding process in the material caused by overlay of operating loads to the failure of the structure being able to lead. Further, forming into a structure with spherical curvature, i. with curvatures along different spatial directions, difficult and requires appropriately designed machines and dimensionally stable tools. In addition, the structure to be formed by attaching jaws mostly on the outer edges violated, so that these areas e.g. must be removed by contour milling. this leads to not only to a loss of material, but also requires another Processing step, which leads to unnecessary effort and associated loss of time.
- the group of AlMg alloys has a planar anisotropy having a r minimum value in the L direction (rolling direction). This means that the Material flow during ironing takes place for the most part from the sheet thickness and therefore the Form to be reshaped earlier for localized thinning and premature failure inclines. Furthermore, the reduction of the sheet thickness by the extension causes the Reaching a final drawing thickness consistent only with uniform degrees of elongation can be achieved and thus for components with large processing differences only hard to realize.
- a hardening process is also used for forming used, for example, under pressure and temperature in a Autoclave or oven is performed at the same time a curing effect occurs.
- This so-called “age forming” process is used for hardenable Al alloys of 2xxx, 6xxx, 7xxx and 8xxx series used. It is initially under pressure or force an elastic shaping of the structure to be formed. The structure to be reshaped clings to a molding that has a smaller radius of curvature than the finished one Component has to take into account the so-called. "Springback" effect. The structure to be formed is thus first shaped beyond the desired final shape.
- curable alloys used today e.g., AA2024, AA6013, AA6056
- non-curable Alloys have been developed that in contrast to the established alloys metallurgical reasons can not be solution annealed, as this is a irreversible loss of strength.
- the new materials can not be easily transformed by conventional methods. Because of that, alternatives are required for the production of double curved or spherical skin fields.
- the component without significant springback under Heat is transformed and thereby by the elastic shaping embossed final shape almost maintained.
- the component thus has after forming and subsequent cooling, in principle, the same curvature on as before Heat treatment.
- This has the advantage that those used for elastic molding Moldings or holding devices with sufficient accuracy the same shape as the have theoretical shape of the component and thus a complex simulation for Predicting the "Springback" effect is not required.
- the elastic shaping of the component before the heat treatment, wherein the component already assumes its desired final shape according to a first embodiment such be carried out that after inserting the component to be formed into a Holding device acts an external force on the component, whereupon the component under elastic shaping conforms to the contour of the holding device.
- the external force can be transmitted via a mechanical printing or stamping device, which presses the component in the direction of holding device.
- the elastic shaping be effected by the action of an external pressure, for example, in an evacuated Space is generated.
- an external force acts such that the component elastically deflected in the direction of the holding device, so that between the component and Holding device creates a cavity.
- This cavity is then filled with a Sealed sealing material and then evacuated.
- the advantage is not only that the contour of the holding device of the desired Endform of the component to be formed corresponds, but also in the fact that the Forming by the action of external forces is purely elastic nature. This means, that the component returns to its original shape when no external forces more on the component. Thus, corrections or reloading easily possible.
- the elastic shaping of the component by the action of the external Forces can thus be repeated at any time.
- the component at a heating rate of 20 ° C / s to 10 ° C / h to a maximum temperature above that for creep forming and Stress relaxation of the alloy to heat required temperature and then cool the component at a rate between 200 ° C / s to 10 ° C / h.
- the maximum temperature is between 200 ° C and 450 ° C and is typically held constant for a period of 0 to 72 hours.
- the heating or Cooling rate and the maximum temperature to the alloy used or to the desired physical properties can be adjusted.
- a re-forming of the component take place what with the known method is not or only partially possible.
- Another advantage of the method according to the invention is that both simple curved as well as spherical structures are transformed in one step can.
- the holding device has curvatures which are in extend different spatial directions and the finished final contour of the Correspond to the component to be formed.
- 2D and complex 3D structures where stringer and frame are already attached, in a simple way and Way to be reshaped.
- deformations are caused by Thermal stresses through a previous welding process, through the Balanced forming process according to the invention.
- Fig. 1 shows a schematic representation for explaining the insertion of a to be formed component 1 in a holding device 2.
- the reshaped component 1 can a two-dimensional sheet of hard-rolled, natural-hard material.
- stiffening elements (not shown), so that the to be formed structure has a three-dimensional shape. In this case, that will Sheet so inserted into the holding device 2 that the reinforcing structures of the Keep holding device 2 away.
- any complex, three-dimensional structure are inserted into the holding device for forming, the in particular from a naturally hard, i. non-hardenable aluminum alloys consists.
- These non-hardenable aluminum alloys can be AlMg alloys or in particular AlMgSc alloys. But also curable AlMgLi alloys can be used.
- the holding device 2 in which the component to be formed 1 is inserted has a shape or contour 2a, which corresponds to the desired final shape of the formed component 1
- the final shape of the component 1 is designated by the reference numeral 1a.
- the component 1 is first in its unshaped state in the holding device. 2 inserted. In this case, a cavity 3 is formed between component 1 and holding device 2.
- the unshaped component 1 acts from above, i. from the holding device 2 opposite side of the component 1, a force F a.
- This force F can, for example via a in Fig. 1 only schematically illustrated punch or pressure assembly 4 the component 1 are transmitted.
- Other suitable means for acting on these outer Power is also possible.
- This can e.g. the action of an external pressure P be within an evacuated room in which holding device and component are located.
- a combination of forces F and P is possible.
- the component 1 Due to the action of the external force F and / or P, the component 1 becomes such elastically shaped, that it bends in the direction of holding device 2. As is apparent from Fig. 2 is seen, while the radius of curvature of the elastically deformed component 1 is greater than the holding device 2, so that further a cavity 3 between the component 1 and Holding device 2 is present. However, the volume of the cavity 3 is compared to the initial state shown in Fig. 1 smaller.
- the elastic shaping of the Component 1 by the action of external forces also leads to the bearing surface between the component 1 and holding device 2 is larger and thus the cavity 3 below Use of a sealing material 5 can be completed airtight.
- the Sealant 5 is typically a temperature-resistant, modified Silicone material, which is applied to the edge region of the component 1.
- the component 1 is initially in elastically shaped state, so that the shaping is reversible and the process of the new could be performed when external force no longer act on the component would. That is, when no external force is applied to the component to be formed, returns return it back to its unshaped original starting position. Thus, corrections easily possible at any time.
- the component 1 After the component by the above steps under elastic shaping in his End mold 1a was brought, the component 1 is within the closed housing. 7 heat treated while maintaining the vacuum. By the warming becomes that Component 1 under stress relaxation during the elastic molding in the material transformed stresses introduced. After completion of the stress relaxation by Heat, the vacuum can be switched off and a cooling phase closes on. The component almost retains this through the contour of the holding device given final shape 1a, without significant re-springing occurs.
- the heat treatment is carried out according to the schematic T (t) process shown in FIG.
- the component 1 In the evacuated state, that is, the component 1 is completely on the contour 2a of the holding device 2, the component 1 is heated to a maximum temperature T 1 , which is above the temperature required for creep deformation and stress relaxation of the alloy, which is typically greater than or equal 200 ° C is.
- the component is heated at a heating rate between 20 ° C / s and 10 ° C / h within a first time interval At 1 to the desired target temperature T 1 .
- the heating rate may, in contrast to the continuous course shown in FIG. 4, also vary stepwise or in another suitable manner within the interval ⁇ t 1 .
- the maximum temperature T 1 which is typically between 220 ° C and 450 ° C, is reached at time t 1 .
- This temperature is then kept constant for a period ⁇ t 2 , wherein ⁇ t 2 is typically between 0 and 72 h.
- ⁇ t 2 is typically between 0 and 72 h.
- the vacuum can be switched off and a cooling phase at a rate of typically 200 ° C / s to 10 ° C / h follows.
- the cooling can, as shown schematically in Fig. 4, continuously or stepwise.
- the cooling can be done by normal air cooling or other suitable way.
- the holding device 2 predetermined end shape 1a almost retains.
- a significant Springback in a shape with a larger radius of curvature than the holding device occurs not a.
- the holding device with sufficient accuracy with the Dimensions of the desired final shape are produced.
- a complicated simulation the springback effect, as for example in conventional curable Alloys formed by the "age forming" process is the case not mandatory.
- the inventive method also has the advantage that it such bumps almost completely compensated without complicated Aftertreatment process or straightening processes are required.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Fluid Mechanics (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
Abstract
Description
Beim Streckziehen, das sowohl im kalten als auch im warmen Zustand durchgeführt werden kann, wird bekannterweise die umzuformende Struktur in einem oder mehreren Schritten bzw. Phasen (vgl. DE 195 04 649 C1) umgeformt. Dabei kann die umzuformende Struktur zunächst in Längsrichtung und anschließend über ein Formteil gezogen werden, das die gewünschte Endkontur aufweist.
- Fig. 1
- eine schematische Darstellung zum Erläutern des Einlegens eines umzuformenden Bauteils in eine Halteeinrichtung;
- Fig. 2
- eine schematische Darstellung zum Erläutern des Einwirkens einer äußeren Kraft auf das umzuformende Bauteil;
- Fig. 3
- eine schematische Darstellung des erfindungsgemäßen Umformschrittes; und
- Fig. 4
- ein T(t)- Diagramm der für die Umformung des Bauteils erforderlichen Wärmebehandlung.
Claims (10)
- Verfahren zum Umformen von Strukturen aus Aluminium-Legierungen, insbesondere aus naturharten AlMg-, naturharten AlMgSc-, und/oder aushärtbären AlMgLi- Legierungen gekennzeichnet durch die Schritte:a) elastisches Formen eines umzuformenden Bauteils (1) unter externer Krafteinwirkung (F, P, p), wobei das Bauteil (1) die Kontur (2a) einer Halteeinrichtung (2) einnimmt die der gewünschten Endform (1a) des Bauteils (1) entspricht;b) Erwärmen des elastisch geformten Bauteils (1) auf eine Temperatur (T1) größer als die für eine Kriechumformung und Spannungsrelaxation der Legierung erforderlichen Temperatur, so dass das Bauteil (1) unter Beibehaltung der im Schritt a) durch elastische Formung aufgeprägten Endform (1a) umgeformt wird.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die elastische Formung die folgenden Schritte umfasst:Einlegen des umzuformenden Bauteils (1) in eine Halteeinrichtung (2), die eine Kontur (2a) aufweist, die der gewünschten Endform (1a) des umzuformenden Bauteils (1) entspricht;Einwirken einer externen Kraft (F, P) auf das Bauteil (1), so daß sich das Bauteil (1) in Richtung Halteeinrichtung (2) elastisch durchbiegt;Abdichten des zwischen Bauteil (1) und Halteeinrichtung (2) entstehenden Hohlraumes (3) mit einem Dichtmaterial (5); undEvakuieren des Hohlraumes (3), so daß das Bauteil (2) sich an die Kontur (2a) der Halteeinrichtung (2) anlegt und die gewünschte Endform (1a) einnimmt.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Bauteil (1) mit einer Aufheizgeschwindigkeit von 20°C/s bis 10°C/h auf die Temperatur (T1) aufgeheizt wird, daß die Temperatur (T1) für eine Zeitdauer zwischen 0 und 72 h gehalten wird, und daß anschließend das Bauteil (1) mit einer Rate von 200°C/s bis 10°C/h abkühit wird.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Temperatur (T1) zwischen 200°C und 450°C liegt.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das in die Halteeinrichtung (2) eingelegte Bauteil (1) in ein Bauteil mit einfach und doppelt gekrümmter bzw. sphärischer Kontur umgeformt wird.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß komplexe 2D- oder 3D-Strukturen zur Umformung in die Halteeinrichtung (2) eingelegt werden.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das umzuformende Bauteil (1) aus einer naturharten AlMg- Legierung besteht.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das umzuformende Bauteil (1) aus einer naturharten AlMgSc- Legierung besteht.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das umzuformende Bauteil (1) aus einer aushärtbare AlMgLi- Legierung besteht.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das umzuformende Bauteil (1) aus einer Kombination der Werkstoffe gemäß Anspruch 7 - 9 besteht.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10047491A DE10047491B4 (de) | 2000-09-26 | 2000-09-26 | Verfahren zum Umformen von Strukturen aus Aluminium-Legierungen |
DE10047491 | 2000-09-26 | ||
PCT/EP2001/009821 WO2002026414A1 (de) | 2000-09-26 | 2001-08-25 | Verfahren zum umformen von strukturen aus aluminium-legierungen |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1320430A1 EP1320430A1 (de) | 2003-06-25 |
EP1320430B1 true EP1320430B1 (de) | 2004-10-13 |
Family
ID=7657566
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01965216A Expired - Lifetime EP1320430B1 (de) | 2000-09-26 | 2001-08-25 | Verfahren zum umformen von strukturen aus aluminium-legierungen |
Country Status (9)
Country | Link |
---|---|
US (1) | US7217331B2 (de) |
EP (1) | EP1320430B1 (de) |
JP (1) | JP4776866B2 (de) |
CN (1) | CN1230265C (de) |
CA (1) | CA2423566C (de) |
DE (2) | DE10047491B4 (de) |
ES (1) | ES2228944T3 (de) |
RU (1) | RU2271891C2 (de) |
WO (1) | WO2002026414A1 (de) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10324366A1 (de) * | 2003-05-27 | 2004-12-16 | Feldbinder & Beckmann Fahrzeugbau Gmbh & Co Kg | Verfahren und Vorrichtung zur Herstellung eines Formteiles, sowie Formteil, insbesondere ein Behälterboden |
DE102005001829B4 (de) * | 2005-01-14 | 2009-05-07 | Audi Ag | Verfahren zum Umformen einer Platine |
US8307680B2 (en) | 2006-10-30 | 2012-11-13 | Arcelormittal France | Coated steel strips, methods of making the same, methods of using the same, stamping blanks prepared from the same, stamped products prepared from the same, and articles of manufacture which contain such a stamped product |
DE102011006032A1 (de) | 2011-03-24 | 2012-09-27 | Airbus Operations Gmbh | Verfahren zur Herstellung eines Strukturbauteils sowie Strukturbauteil |
US9773077B2 (en) * | 2012-04-09 | 2017-09-26 | Arcelormittal Investigacion Y Desarrollo, S.L. | System and method for prediction of snap-through buckling of formed steel sheet panels |
EP2727665B1 (de) * | 2012-10-31 | 2018-06-06 | Airbus Defence and Space GmbH | Verfahren zur Herstellung eines Formbauteils und Verwendung des Verfahrens zur Herstellung eines Formbauteils |
US10500629B2 (en) | 2014-10-07 | 2019-12-10 | The Penn State Research Foundation | Method for reducing springback using electrically-assisted manufacturing |
CN104438481B (zh) * | 2014-11-28 | 2016-04-06 | 中南大学 | 一种大曲率铝合金整体壁板构件的制备方法 |
DE102016207172B3 (de) * | 2016-04-27 | 2017-08-24 | Premium Aerotec Gmbh | Vorrichtung und Anordnung zum Formen eines gekrümmt flächigen Bauteils, sowie Verfahren zur Herstellung der Vorrichtung |
CN106862377B (zh) * | 2017-03-14 | 2018-12-28 | 中南大学 | 一种铝合金板的成形方法 |
CN106978578B (zh) * | 2017-05-18 | 2019-01-25 | 中南大学 | 一种铝合金板蠕变时效成形方法 |
DE102017114663A1 (de) | 2017-06-30 | 2019-01-03 | Airbus Operations Gmbh | Verfahren zum Umformen eines Bauteils |
US20220002853A1 (en) * | 2018-11-12 | 2022-01-06 | Airbus Sas | Method of producing a high-energy hydroformed structure from a 7xxx-series alloy |
US20200222967A1 (en) * | 2019-01-11 | 2020-07-16 | Embraer S.A. | Methods for producing creep age formed aircraft components |
CN112207522A (zh) * | 2020-10-26 | 2021-01-12 | 许晨玲 | 一种大型铝合金整体壁板平度控制方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4188811A (en) | 1978-07-26 | 1980-02-19 | Chem-Tronics, Inc. | Metal forming methods |
US5168169A (en) * | 1991-06-10 | 1992-12-01 | Avco Corporation | Method of tool development |
CA2069189C (en) * | 1991-08-12 | 1998-04-14 | Aerostructures Corporation | Method of developing complex tool shapes |
DE4334940C2 (de) | 1992-10-15 | 1996-10-31 | Max Co Ltd | Schlagschraubvorrichtung |
FR2696957B1 (fr) * | 1992-10-21 | 1994-11-25 | Snecma | Procédé de formage de pièces en alliages à base de titane. |
US5597529A (en) * | 1994-05-25 | 1997-01-28 | Ashurst Technology Corporation (Ireland Limited) | Aluminum-scandium alloys |
DE19504649C1 (de) * | 1995-02-13 | 1996-08-22 | Daimler Benz Ag | Verfahren und Ziehwerkzeug zum Streckziehen von Blechen |
CN1489637A (zh) * | 2000-12-21 | 2004-04-14 | �Ƹ��� | 铝合金产品及人工时效方法 |
-
2000
- 2000-09-26 DE DE10047491A patent/DE10047491B4/de not_active Expired - Lifetime
-
2001
- 2001-08-25 CA CA002423566A patent/CA2423566C/en not_active Expired - Lifetime
- 2001-08-25 ES ES01965216T patent/ES2228944T3/es not_active Expired - Lifetime
- 2001-08-25 CN CNB018155340A patent/CN1230265C/zh not_active Expired - Lifetime
- 2001-08-25 US US10/381,476 patent/US7217331B2/en not_active Expired - Lifetime
- 2001-08-25 WO PCT/EP2001/009821 patent/WO2002026414A1/de active IP Right Grant
- 2001-08-25 DE DE2001504142 patent/DE50104142D1/de not_active Expired - Lifetime
- 2001-08-25 EP EP01965216A patent/EP1320430B1/de not_active Expired - Lifetime
- 2001-08-25 JP JP2002530234A patent/JP4776866B2/ja not_active Expired - Lifetime
- 2001-08-25 RU RU2003112217/02A patent/RU2271891C2/ru active
Also Published As
Publication number | Publication date |
---|---|
RU2271891C2 (ru) | 2006-03-20 |
DE50104142D1 (de) | 2004-11-18 |
EP1320430A1 (de) | 2003-06-25 |
JP2004509765A (ja) | 2004-04-02 |
WO2002026414A1 (de) | 2002-04-04 |
CA2423566C (en) | 2010-01-05 |
DE10047491A1 (de) | 2002-04-18 |
CN1230265C (zh) | 2005-12-07 |
US20040050134A1 (en) | 2004-03-18 |
ES2228944T3 (es) | 2005-04-16 |
CN1455711A (zh) | 2003-11-12 |
US7217331B2 (en) | 2007-05-15 |
CA2423566A1 (en) | 2003-03-25 |
JP4776866B2 (ja) | 2011-09-21 |
DE10047491B4 (de) | 2007-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1320430B1 (de) | Verfahren zum umformen von strukturen aus aluminium-legierungen | |
DE69714354T2 (de) | Verfahren zur Herstellung einer hohlen Turbinenschaufel und mehrstufiger Druckofen zur Durchführung des Verfahrens | |
DE112015000385B4 (de) | Halbwarmumformung von kaltverfestigten Blechlegierungen | |
DE3537882A1 (de) | Verfahren zum herstellen eines metallischen gegenstands und nickelsuperlegierungsscheibe fuer ein gasturbinentriebwerk | |
DE102006015666B4 (de) | Verfahren zur Herstellung eines metallischen Formbauteils durch Warmumformen mit simultaner Beschneideoperation | |
DE102007046293A1 (de) | Metallblechumformverfahren | |
EP3455006B1 (de) | Verfahren zur herstellung eines bauteils | |
DE102017117675B4 (de) | Verfahren zur Herstellung eines Kraftfahrzeugbauteils aus einer 6000er Aluminiumlegierung | |
CN110000322B (zh) | 一种大塑性变形制备高性能镁合金装置及制备方法 | |
EP3003599A1 (de) | Verfahren zur herstellung eines federbeindoms | |
DE102014106289B4 (de) | Verfahren und Anlage zum Bearbeiten eines metallischen Gussteils | |
DE69102998T2 (de) | Verfahren zur Entwicklung eines Werkzeuges. | |
EP3177416A1 (de) | Verfahren zur herstellung von warmumgeformten bauteilen | |
DE112009000645B4 (de) | Verfahren zum progressiven Verformen eines polykristallinen Blechwerkstückes sowie eines Verfahren zum progressiven Verformen eines polykristallinen Blechwerkstückes | |
EP2419547A1 (de) | Verfahren zur herstellung eines formteils | |
DE102023113726A1 (de) | Verfahren zur geregelten elektromagnetischen Schlagverbundformung von Schaufeln aus Titanlegierung | |
DE102016111105A1 (de) | Mehrfach-warmumformvorrichtung und warmumformverfahren derselben | |
DE102004040272A1 (de) | Fahrzeugtür | |
DE102015225370A1 (de) | Verfahren und Vorrichtung zur Herstellung eines metallischen Hybridbauteils, sowie hiermit hergestelltes metallisches Hybridbauteil | |
DE102006018809A1 (de) | Verfahren zur Herstellung eines Kraftfahrzeug-Schwenklagers in Schalenbauweise | |
DE102007018281A1 (de) | Werkzeug zum Innenhochdruckformen, sowie Verfahren zum Innenhochdruckformen | |
EP2428589A2 (de) | Verfahren zur Herstellung einer Legeform für die Fertigstellung von Bauteilen | |
DE19806761A1 (de) | Kraftfahrzeugteil und Verfahren zu seiner Herstellung | |
DE102014213196A1 (de) | Formwerkzeug zur Herstellung von warmumgeformten Bauteilen | |
DE102006046305B4 (de) | Vorrichtung zum mindestens partiellen Umformen von Blech über die bekannten Formgebungsgrenzen hinaus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20030308 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: LENCZOWSKI, BLANKA Inventor name: JAMBU, STEPHANE Inventor name: JUHL, KNUT |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: JAMBU, STEPHANE Inventor name: LENCZOWSKI, BLANKA Inventor name: JUHL, KNUT |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: JAMBU, STEPHANE Inventor name: JUHL, KNUT Inventor name: LENCZOWSKI, BLANKA |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 50104142 Country of ref document: DE Date of ref document: 20041118 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20050111 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2228944 Country of ref document: ES Kind code of ref document: T3 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20050714 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20090514 AND 20090520 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Owner name: AIRBUS OPERATIONS GMBH, DE Effective date: 20130417 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20190924 Year of fee payment: 19 Ref country code: FR Payment date: 20190822 Year of fee payment: 19 Ref country code: IT Payment date: 20190829 Year of fee payment: 19 Ref country code: DE Payment date: 20190822 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20190821 Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50104142 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200825 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200831 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210302 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200825 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20211229 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200826 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200825 |