EP1315524A2 - Coated implant - Google Patents

Coated implant

Info

Publication number
EP1315524A2
EP1315524A2 EP01976155A EP01976155A EP1315524A2 EP 1315524 A2 EP1315524 A2 EP 1315524A2 EP 01976155 A EP01976155 A EP 01976155A EP 01976155 A EP01976155 A EP 01976155A EP 1315524 A2 EP1315524 A2 EP 1315524A2
Authority
EP
European Patent Office
Prior art keywords
layer
coated implant
coating
coated
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01976155A
Other languages
German (de)
French (fr)
Inventor
Anton MÖSLANG
Andreas Przykutta
Eric Walch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Karlsruhe GmbH
Original Assignee
Forschungszentrum Karlsruhe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Karlsruhe GmbH filed Critical Forschungszentrum Karlsruhe GmbH
Publication of EP1315524A2 publication Critical patent/EP1315524A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/12Preparations containing radioactive substances for use in therapy or testing in vivo characterised by a special physical form, e.g. emulsion, microcapsules, liposomes, characterized by a special physical form, e.g. emulsions, dispersions, microcapsules
    • A61K51/1282Devices used in vivo and carrying the radioactive therapeutic or diagnostic agent, therapeutic or in vivo diagnostic kits, stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1001X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
    • A61N2005/1019Sources therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1001X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
    • A61N5/1002Intraluminal radiation therapy

Definitions

  • the invention relates to a coated implant in which the coating consists at least of a noble metal and a metal which contains at least one radioactive isotope.
  • Vascular supports (stents) to prevent vein narrowing (restenosis), e.g. B. in coronary and pereferyeral vessels have been used frequently in recent years. In some patients, tissue growth re-narrowing occurred despite stent implantation. These restenoses were seen in approximately 25% of all cases.
  • radioactive stent From DE 197 24 230 a radioactive stent is known in which the radioactive isotopes are fixed on the surface with the help of an organic adhesion promoter.
  • a stent is known from DE 197 24 223 in which the radioactive isotope is galvanically deposited directly on the surface.
  • the object of the invention is to provide a coated implant with a low washout rate.
  • Radioactive isotopes rarely emit photons or particles of a single energy.
  • photons gamma and X-ray quanta
  • / or particles e.g. He nuclei, electrons and positrons
  • a selection of these would be an advantage.
  • Radiation is partially or completely absorbed as it passes through matter, depending on the thickness of the coating and the type of coating materials. By choosing suitable layer thicknesses and materials, radiation can be selectively partially or completely absorbed.
  • a particular advantage of the invention is the use of X-rays. They have a shorter range than the gamma rays generated by activation, but a larger one than electrons.
  • X-ray emitting isotopes are, for example, 131 Cs and 103 Pd. They emit little or no gamma radiation. From today's perspective, their half-lives are in the ideal range of 10 to 17 days.
  • the implant according to the invention has the following advantages:
  • Galvanic deposition is an inexpensive, quick and relatively simple process for applying layers.
  • the radioactive material must be elementary or as a detachable complex. This breaks open by dissolving in the electrolyte or by applying a voltage.
  • the radioactive isotope is thus present as an ion in the electrolyte.
  • the gradient of an electric field now forces the charged isotope in the direction of the oppositely charged electrode. It can separate here.
  • the correct choice of the substrate and the electric field ensures a firm deposit on the electrode material.
  • the following processes can be supplemented with a metallic or non-metallic (eg by electrophoresis) cover coating. The invention is explained in more detail below on the basis of exemplary embodiments.
  • stainless steel and nickel-titanium compounds can be used as the material for the uncoated implants (substrate).
  • Stainless steel can be easily coated with various materials to improve adhesion. They can be layers of Ag, Au, Pd or Fe for the adhesive deposition of active palladium.
  • Ni-Ti compounds can be coated with various materials to improve adhesion. They can be layers of Ag, Au, Pd or Fe for the adhesive deposition of active palladium.
  • the active isotope is bonded extremely firmly in the matrix of the deposited inactive material.
  • the choice of temperature and duration depend on the layer composition and may need to be optimized for each coating method.
  • the material must be completely degreased for successful deposition.
  • the substrate is subjected to ultrasonic cleaning in acetone. This is followed by electrolytic degreasing (e.g. Emphax, W. Canning GmbH).
  • the pretreated substrate is coated using a silver bath containing cyanide.
  • a silver bath containing cyanide This can be done e.g. B. a bath with a silver content of 0.8 - 1.5 g / 1, with 2 g / 1 silver cyanide, 70 g / 1 sodium cyanide and 10 g / 1 sodium carbonate can be used.
  • the silver layer of 50-500 nm generated after about 3 minutes is coated with radioactive palladium as in Example 1.2.
  • the substrate is coated with a thin layer of gold.
  • z. B. a cyanide gold bath.
  • 3 g / 1 potassium cyanoaurate, 1 g / 1 nickel chloride and HC1 are used.
  • the bath is operated with a pH of 0.5 - 1.5 and at room temperature.
  • the anode should be insoluble (e.g. platinum).
  • a current density of 1 - 2 A / dm 2 is set.
  • Coatings are extremely interesting for the medical use of radioactive implants. They enable the implant to be improved or adapted with regard to: Biocompatibility corrosion
  • An additional inactive coating can prevent or minimize this.
  • Radioactive isotopes rarely emit photons or particles of a single energy.
  • photons gamma and X-ray quanta
  • / or particles e.g. He nuclei, electrons and positrons
  • a selection of these would be an advantage. This is possible by choosing a suitable coating. Radiation is partially or completely absorbed as it passes through matter, depending on the thickness of the coating and the type of coating materials. By choosing suitable layer thicknesses and materials, radiation can be selectively partially or completely absorbed. This can play an important role, especially in the vascular application of radioactive implants.
  • coatings can consist of silver, copper or gold.
  • the examples above can be used for this.
  • the material of the first layer can be used as coating material (gold on gold, silver on silver, copper on copper). But you can also exchange the materials (gold on copper, silver on copper, gold on silver, silver on gold, copper on gold, copper on silver).
  • Au 500 nm - 1.5 Hm necessary.
  • Carbon is often used to coat heart valves. It is easy to apply by sputtering or evaporation. Due to its low atomic number, it is unsuitable for selective absorption. Carbon can protect the material from corrosion.
  • Titanium is known to be biocompatible due to its oxidic surface. It protects the material from corrosion and can be used with selective smears. Titanium can be easily sputtered onto the implant surface.
  • Stainless steel :
  • Inactive palladium is well suited for selective absorption. Like the active palladium, it can be applied by sputtering, chemical and electrochemical deposition or vaporization. It is sufficiently biocompatible (material in dental medicine) and has a protective effect against corrosion.
  • Tantalum is biocompatible and is often used in the cardiovascular area. Due to its large atomic number, it has a great ability for selective absorption. It also has a protective effect against corrosion.
  • Polytetrafluoroethylene is biocompatible, corrosion-resistant and can be used with smears such as titanium for selective absorption.
  • Polyethylene terephthalate is biocompatible, corrosion-resistant and can be used with smears for selective absorption.
  • Polymethyl methacrylate is biocompatible and corrosion-resistant, but cannot be used for selective absorption.
  • Layer thicknesses for selective absorption The low-energy X-ray (2.70 keV) and electron beams (2.39 keV and 17.0 keV) should be 90% - 99% absorbed. The remaining photons (20.07 keV, 20.22 keV, 22.70 keV) should penetrate the coating as completely as possible.
  • PET: d 50 - 500 m

Abstract

The invention relates to a coated implant, the coating thereof consisting of at least one noble metal and one metal containing at least one radioactive isotope. The aim of the invention is to provide a coated implant having a low elution rate. In order to achieve this, the coating consists of at least two layers, one layer being made of noble metal and another being made of a metal containing at least one radioactive isotope. Said layers are electrochemically applied to the implant and are then tempered.

Description

Beschichtetes ImplantatCoated implant
Die Erfindung betrifft ein Beschichtetes Implantat, bei dem die Beschichtung mindestens aus einem Edlemetall und einem Metall, welches mindestens ein radioaktives Isotop enthält, besteht.The invention relates to a coated implant in which the coating consists at least of a noble metal and a metal which contains at least one radioactive isotope.
Gefäßstützen (Stents) zur Verhinderung von Wiederverengungen von Adern (Restenosen), z. B. in Herzkranz- und Pereferiegefäßen sind in den letzten Jahren häufig zum klinischen Einsatz gekommen. Bei einigen Patienten traten Wiederverengungen durch Ge- webswucherung trotz Stentimplantation auf. Diese Restenosen sah man bei ca. 25 % aller Fälle.Vascular supports (stents) to prevent vein narrowing (restenosis), e.g. B. in coronary and pereferyeral vessels have been used frequently in recent years. In some patients, tissue growth re-narrowing occurred despite stent implantation. These restenoses were seen in approximately 25% of all cases.
Es ist möglich mittels lokaler radioaktiver Bestrahlung, die eine Gefäßstütze emittiert, dieser Wiederverengungen entgegenzuwirken.It is possible to counteract this narrowing by means of local radioactive radiation which emits a stent.
Aus der DE 197 24 230 ist ein radioaktiver Stent bekannt, bei dem die radioaktiven Isotope mit Hilfe eines organischen Haftvermittlers auf der Oberfläche fixiert sind.From DE 197 24 230 a radioactive stent is known in which the radioactive isotopes are fixed on the surface with the help of an organic adhesion promoter.
Des weiteren ist aus der DE 197 24 223 ein Stent bekannt, bei dem das radioaktive Isotop galvanisch direkt auf der Oberfläche abgeschieden wird.Furthermore, a stent is known from DE 197 24 223 in which the radioactive isotope is galvanically deposited directly on the surface.
Diese beiden Stents weisen jedoch eine unerwünschte deutliche Auswaschrate des radioaktiven Isotops auf.However, these two stents have an undesirable marked washout rate of the radioactive isotope.
Aufgabe der Erfindung ist es, ein beschichtetes Implantat mit geringer Auswaschrate bereitzustellen.The object of the invention is to provide a coated implant with a low washout rate.
Gelöst wird diese Aufgabe durch die Merkmale des Patentanspruchs 1. Die ünteransprüche beschreiben vorteilhafte Ausgestaltungen der Erfindung. Radioaktive Isotope emittieren in den seltensten Fällen Photonen oder Teilchen einer einzelnen Energie. Es werden in der Regel Photonen (Gamma- und Röntgenquanten) und/oder Teilchen (z. B. He-Kerne, Elektronen und Positronen) unterschiedlichster Energie mit unterschiedlichen Wahrscheinlichkeiten abgestrahlt. Im Allgemeinen sind nicht alle therapeutisch wirksam oder erwünscht. Eine Selektion dieser wäre von Vorteil. Dies ist durch die Wahl eines geeigneten Coatings möglich. Strahlung wird beim Durchgang durch Materie teilweise bis vollständig absorbiert, je nach der Dicke des Coatings und die Art der Coatingmaterialien. Durch die Wahl geeigneter Schichtdicken und Materialien kann so selektiv Strahlung teilweise oder vollständig absorbiert werden. Speziell im vaskularen Einsatzgebiet von radioaktiven Implantaten kann dies eine wichtige Rolle spielen. Kommt ein Implantat in direkten Kontakt mit dem Blut startet sofort ein lokaler Gerinnungsprozeß. Es entsteht eine Thrombose. Es wird deshalb im klinischen Einsatz von Patienten mehrere Monate hinweg ein Antithrombogenika eingenommen. Danach ist in der Regel die Oberfläche des Implantats mit Endothelgewebe vollständig bewachsen und die Thrombosegefahr gebannt. Sehr kurzreichweitige Strahlung (z.B. niederenergetische Elektronen, niederenergetische Röntgenstrahlung) kann jedoch diesen Heilungsprozeß verzögern oder schlimmstenfalls stoppen. Es wird jedoch energiereichere Strahlung benötigt um Restenoseprozesse zu verhindern. Eine selektive Absorption niederenergetischer Strahlung ist hier empfehlenswert .This object is achieved by the features of claim 1. The sub-claims describe advantageous embodiments of the invention. Radioactive isotopes rarely emit photons or particles of a single energy. As a rule, photons (gamma and X-ray quanta) and / or particles (e.g. He nuclei, electrons and positrons) of different energy are emitted with different probabilities. In general, not all are therapeutically effective or desirable. A selection of these would be an advantage. This is possible by choosing a suitable coating. Radiation is partially or completely absorbed as it passes through matter, depending on the thickness of the coating and the type of coating materials. By choosing suitable layer thicknesses and materials, radiation can be selectively partially or completely absorbed. This can play an important role, especially in the vascular application of radioactive implants. If an implant comes into direct contact with the blood, a local coagulation process starts immediately. Thrombosis develops. An antithrombogenic agent is therefore taken for several months in the clinical use of patients. After that, the surface of the implant is usually completely covered with endothelial tissue and the risk of thrombosis is eliminated. However, very short-range radiation (eg low-energy electrons, low-energy X-rays) can delay this healing process or, in the worst case, stop it. However, higher-energy radiation is required to prevent restenosis processes. Selective absorption of low-energy radiation is recommended here.
Ein besonderer Vorteil der Erfindung besteht im Einsatz von Röntgenstrahlen. Sie besitzen eine geringere Reichweite als die mittels Aktivierung erzeugten Gammastrahlen, jedoch eine größere als Elektronen. Röntgenstrahlung emittierende Isotope sind zum Beispiel 131Cs und 103Pd. Sie emittieren keine oder nur wenig Gammastrahlung. Ihre Halbwertszeiten liegen aus heutiger Sicht im idealen Bereich von 10 bis 17 Tagen. Das erfindungsgemäße Implantat hat folgende Vorteile:A particular advantage of the invention is the use of X-rays. They have a shorter range than the gamma rays generated by activation, but a larger one than electrons. X-ray emitting isotopes are, for example, 131 Cs and 103 Pd. They emit little or no gamma radiation. From today's perspective, their half-lives are in the ideal range of 10 to 17 days. The implant according to the invention has the following advantages:
Deutlich geringerer radioaktiver Auswasch als bei herkömmlichen Aktivierungsarten,Significantly less radioactive leaching than with conventional types of activation,
Kostengünstig bezüglich Betriebsmittel, da hohe Effizienz bei Abscheidung erreichbar,Cost-effective in terms of equipment, because high efficiency can be achieved with separation,
Kostengünstig, da nur geringe Investitionsmittel nötig, Relativ einfach durchführbare Methoden,Cost-effective, since only a small amount of investment is required, relatively easy to implement methods,
Prinzipiell keine Begrenzung der abgeschiedenen Aktivität, Nutzbarkeit von vielen biokompatiblen Werkstoffen zur Beschichtung der Kontaktfläche Implantat/Blut,In principle, there is no limitation on the separated activity, usability of many biocompatible materials for coating the contact surface implant / blood,
Vielseitig verwendbare Verfahren, mit denen eine große Produktvielfalt beschichtet werden kann undVersatile processes that can be used to coat a wide range of products
Therapeutisch wirksamere Reichweitenverteilung als herkömmliche elektronen- und gamma-strahlenden Implantate.Therapeutically more effective range distribution than conventional electron- and gamma-radiating implants.
Die galvanische Abscheidung ist ein kostengünstiges, schnelles und relativ simples Verfahren Schichten aufzubringen. Das radioaktive Material muß elementar oder als lösbarer Komplex vorliegen. Dieser bricht durch Lösen im Elektrolyt oder durch Anlegen einer Spannung auf. Das radioaktive Isotop liegt so als Ion im Elektrolyt vor. Der Gradient eines elektrischen Feldes zwingt nun das geladene Isotop in Richtung der entgegengesetzt geladenen Elektrode. Hier kann es sich abscheiden. Die richtige Wahl des Untergrundes und des elektrischen Feldes sorgt für eine haftfeste Abscheidung auf dem Elektrodenmaterial. Folgende Verfahren können mit einem metallischen oder nichtmetallischen (z.B. durch Elektrophorese) Deckcoating ergänzt werden. Die Erfindung wird im Folgenden anhand von Ausführungsbeispielen näher erläutert.Galvanic deposition is an inexpensive, quick and relatively simple process for applying layers. The radioactive material must be elementary or as a detachable complex. This breaks open by dissolving in the electrolyte or by applying a voltage. The radioactive isotope is thus present as an ion in the electrolyte. The gradient of an electric field now forces the charged isotope in the direction of the oppositely charged electrode. It can separate here. The correct choice of the substrate and the electric field ensures a firm deposit on the electrode material. The following processes can be supplemented with a metallic or non-metallic (eg by electrophoresis) cover coating. The invention is explained in more detail below on the basis of exemplary embodiments.
Als Material für die unbeschichteten Implantate (Substrat) können beispielsweise Edelstahle und Nickel-Titan-Verbindungen verwendet werden.For example, stainless steel and nickel-titanium compounds can be used as the material for the uncoated implants (substrate).
Edelstahle lassen sich einfach mit verschiedenen Materialien zur Haftverbesserung beschichten. Es kann sich um Schichten aus Ag, Au, Pd oder Fe zur haftfesten Abscheidung von aktivem Palladium handeln.Stainless steel can be easily coated with various materials to improve adhesion. They can be layers of Ag, Au, Pd or Fe for the adhesive deposition of active palladium.
Ni-Ti-Verbindungen lassen sich mit verschiedenen Materialien zur Haftverbesserung beschichten. Es kann sich um Schichten aus Ag, Au, Pd oder Fe zur haftfesten Abscheidung von aktivem Palladium handeln.Ni-Ti compounds can be coated with various materials to improve adhesion. They can be layers of Ag, Au, Pd or Fe for the adhesive deposition of active palladium.
Bei geeigneter Wahl der Materialien kann eine anschließende Wärmebehandlung zur Legierungsbildung genutzt werden. Hierdurch wird das aktive Isotop äußerst haftfest in der Matrix des abgeschiedenen inaktiven Materials gebunden. Die Wahl der Temperatur und der Dauer hängen von der Schichtzusammensetzung ab und müssen gegebenenfalls für jede Beschichtungsmethode optimiert werden.With a suitable choice of materials, a subsequent heat treatment can be used to form alloys. As a result, the active isotope is bonded extremely firmly in the matrix of the deposited inactive material. The choice of temperature and duration depend on the layer composition and may need to be optimized for each coating method.
Zur erfolgreichen Abscheidung muß das Material vollständig entfettet sein. Hierzu wird das Substrat in Aceton einer Ultraschallsäuberung unterzogen. Eine elektrolytische Entfettung (z. B. Emphax, W. Canning GmbH) schließt an.The material must be completely degreased for successful deposition. For this purpose, the substrate is subjected to ultrasonic cleaning in acetone. This is followed by electrolytic degreasing (e.g. Emphax, W. Canning GmbH).
Beispiel 1:Example 1:
Das vorbehandelte Substratmaterial wird z. B. mittels eines kommerziellen alkalischen stromlosen Kupferbades (z.B. Doduco DDP 540) beschichtet. Nach drei Minuten entsteht eine Schicht von 100 - 1000 nm Dicke. Das Palladinieren mittels galvanische Abscheidung aus einer radioaktiven 103PdCl2 Lösung (pH= 1 - 3) mit einer Stromdichte von 0,1 - 2 A/dm2 folgt. Es wird hierzu eine unlösliche platinierte Titan-Ringnetzanode verwendet. Die anschließende thermische Behandlung durch das 30 minütige Auslagern der Probe in einem Ofen unter einem Druckbereich von p= 10~4 - 10"5 mbar bei T= 380 - 480 °C soll die Schicht legieren lassen. Eine anschließende Untersuchung zeigte dies.The pretreated substrate material is e.g. B. coated with a commercial alkaline electroless copper bath (eg Doduco DDP 540). After three minutes, a layer with a thickness of 100-1000 nm is formed. Palladium plating by means of electrodeposition from a radioactive 103 PdCl 2 solution (pH = 1 - 3) a current density of 0.1 - 2 A / dm 2 follows. An insoluble platinum-coated titanium ring network anode is used for this. The subsequent thermal treatment by storing the sample in an oven for 30 minutes under a pressure range of p = 10 ~ 4 - 10 "5 mbar at T = 380 - 480 ° C should allow the layer to be alloyed. A subsequent investigation showed this.
Beispiel 2:Example 2:
Das vorbehandelte Substrat wird mittels eines cyanidhaltigen Silberbades beschichtet. Es kann hierzu z. B. ein Bad mit einem Silbergehalt von 0,8 - 1,5 g/1, mit 2 g/1 Silbercyanid, 70 g/1 Natriumcyanid und 10 g/1 Natriumcarbonat verwendet werden. Man benötigt eine Reinsilberanode. Es wird bei Raumtemperatur mit einer Stromdichte im Bereich von 0,5 - 1,5 A/dm2 und einem pH- Wert von 11 - 12,5 betrieben. Die nach etwa 3 Minuten erzeugte Silberschicht von 50 - 500 nm wird wie in Beispiel 1.2 mit radioaktivem Palladium belegt. Ein anschließendes 30 minütige Legieren bei T= 300 - 400 °C unter p= 10"4 - 10~5 mbar wurde erfolgreich durchgeführt.The pretreated substrate is coated using a silver bath containing cyanide. This can be done e.g. B. a bath with a silver content of 0.8 - 1.5 g / 1, with 2 g / 1 silver cyanide, 70 g / 1 sodium cyanide and 10 g / 1 sodium carbonate can be used. You need a pure silver anode. It is operated at room temperature with a current density in the range from 0.5 to 1.5 A / dm 2 and a pH from 11 to 12.5. The silver layer of 50-500 nm generated after about 3 minutes is coated with radioactive palladium as in Example 1.2. A subsequent 30 minute alloying at T = 300 - 400 ° C under p = 10 "4 - 10 ~ 5 mbar was successfully carried out.
Beispiel 3:Example 3:
Nach der Vorbehandlung wird das Substrat mit einer dünnen Goldschicht belegt. Hierzu eignet sich z. B. ein cyanidisches Goldbad. Hierzu verwendet man 3 g/1 Kaliumcyanoaurat, 1 g/1 Nickelchlorid und HC1. Das Bad wird mit einem pH-Wert von 0,5 - 1,5 und bei Raumtemperatur betrieben. Die Anode sollte unlöslich sein (z. B. Platin). Es wird eine Stromdichte von 1 - 2 A/dm2 eingestellt. Die nach etwa 3 Minuten aufgebrachte 50 - 500 nm dünne Goldschicht wird wie in 1.2 mit aktivem Palladium belegt. Anschließend folgt eine 30 minütige thermische Behandlung unter Vakuum bei T= 300 - 400 °C.After the pretreatment, the substrate is coated with a thin layer of gold. For this, z. B. a cyanide gold bath. For this purpose, 3 g / 1 potassium cyanoaurate, 1 g / 1 nickel chloride and HC1 are used. The bath is operated with a pH of 0.5 - 1.5 and at room temperature. The anode should be insoluble (e.g. platinum). A current density of 1 - 2 A / dm 2 is set. The 50 - 500 nm thin gold layer applied after about 3 minutes is coated with active palladium as in 1.2. This is followed by a thermal treatment under vacuum at T = 300 - 400 ° C for 30 minutes.
Für den medizinischen Gebrauch radioaktiver Implantate sind Deckschichten (Coatings) äußerst interessant. Sie ermöglichen eine Verbesserung oder Anpassung des Implantats hinsichtlich: Biokompatibilität KorrosionCoatings are extremely interesting for the medical use of radioactive implants. They enable the implant to be improved or adapted with regard to: Biocompatibility corrosion
Verringerung des radioaktiven AbwaschesReduction of radioactive washing up
Therapeutischer Wirkung durch selektive Absorption elektromagnetischer und TeilchenstrahlungTherapeutic effect through selective absorption of electromagnetic and particle radiation
Speziell im Blutkreislauf ist es wichtig das keine Radioaktivität aus Implantaten austritt. Ein zusätzliches inaktives Coating kann dies verhindern oder minimieren.Especially in the bloodstream, it is important that no radioactivity escapes from implants. An additional inactive coating can prevent or minimize this.
Radioaktive Isotope emittieren in den seltensten Fällen Photonen oder Teilchen einer einzelnen Energie. Es werden in der Regel Photonen (Gamma- und Röntgenquanten) und/oder Teilchen (z. B. He-Kerne, Elektronen und Positronen) unterschiedlichster Energie mit unterschiedlichen Wahrscheinlichkeiten abgestrahlt. Im Allgemeinen sind nicht alle therapeutisch wirksam oder erwünscht. Eine Selektion dieser wäre von Vorteil. Dies ist durch die Wahl eines geeigneten Coatings möglich. Strahlung wird beim Durchgang durch Materie teilweise bis vollständig absorbiert, je nach der Dicke des Coatings und die Art der Coatingmaterialien. Durch die Wahl geeigneter Schichtdicken und Materialien kann so selektiv Strahlung teilweise oder vollständig absorbiert werden. Speziell im vaskularen Einsatzgebiet von radioaktiven Implantaten kann dies eine wichtige Rolle spielen. Kommt ein Implantat in direkten Kontakt mit dem Blut startet sofort ein lokaler Gerinnungsprozeß. Es entsteht eine Thrombose. Es wird deshalb im klinischen Einsatz von Patienten mehrere Monate hinweg ein Antithrombogenika eingenommen. Danach ist in der Regel die Oberfläche des Implantats mit Endothelgewebe vollständig bewachsen und die Thrombosegefahr gebannt. Sehr kurzreichweitige Strahlung (z. B. niederenergetische Elektronen, niederenergetische Röntgenstrahlung) kann jedoch diesen Heilungsprozeß verzögern oder schlimmstenfalls stoppen. Es wird jedoch energiereichere Strahlung benötigt um Restenoseprozesse zu verhindern. Eine selektive Absorption niederenergetischer Strahlung ist hier empfehlenswert .Radioactive isotopes rarely emit photons or particles of a single energy. As a rule, photons (gamma and X-ray quanta) and / or particles (e.g. He nuclei, electrons and positrons) of different energy are emitted with different probabilities. In general, not all are therapeutically effective or desirable. A selection of these would be an advantage. This is possible by choosing a suitable coating. Radiation is partially or completely absorbed as it passes through matter, depending on the thickness of the coating and the type of coating materials. By choosing suitable layer thicknesses and materials, radiation can be selectively partially or completely absorbed. This can play an important role, especially in the vascular application of radioactive implants. If an implant comes into direct contact with the blood, a local coagulation process starts immediately. Thrombosis develops. An antithrombogenic agent is therefore taken for several months in the clinical use of patients. After that, the surface of the implant is usually completely covered with endothelial tissue and the risk of thrombosis is eliminated. However, very short-range radiation (e.g. low-energy electrons, low-energy X-rays) can delay this healing process or, in the worst case, stop it. However, higher-energy radiation is required to prevent restenosis processes. Selective absorption of low-energy radiation is recommended here.
Beispiele für die Schicht 3 (Coating) :Examples for layer 3 (coating):
Aufbringen der aktiven Schichten wie in den drei oben beschriebenen Beispielen. Darauffolgende Herstellung eines Coatings zur selektiven Absorption der 2,7keV Röntgenstrahlung des 103Pd. Diese Coatings können aus Silber, Kupfer oder Gold bestehen. Dazu verwendbar sind obige Beispiele. Man kann sowohl als Coa- tingmaterial das Material der ersten Schicht verwenden (Gold auf Gold, Silber auf Silber, Kupfer auf Kupfer) . Man kann aber auch die Materialien austauschen (Gold auf Kupfer, Silber auf Kupfer, Gold auf Silber, Silber auf Gold, Kupfer auf Gold, Kupfer auf Silber). Zur Verminderung der transmittierten 2,7 keV Strahlung auf 90% - 99,9% der ursprünglichen Strahlung an der Oberfläche sind Coatingdicken von Cu: 3 - 10 n, Ag: 4 - 13 Hm. und Au: 500 nm - 1,5 Hm. nötig.Application of the active layers as in the three examples described above. Subsequent production of a coating for the selective absorption of the 2.7keV x-radiation of the 103 Pd. These coatings can consist of silver, copper or gold. The examples above can be used for this. The material of the first layer can be used as coating material (gold on gold, silver on silver, copper on copper). But you can also exchange the materials (gold on copper, silver on copper, gold on silver, silver on gold, copper on gold, copper on silver). To reduce the transmitted 2.7 keV radiation to 90% - 99.9% of the original radiation on the surface, coating thicknesses of Cu: 3 - 10 n, Ag: 4 - 13 Hm. And Au: 500 nm - 1.5 Hm necessary.
Folgende Coating Materialien können ebenfalls verwendet werden. :The following coating materials can also be used. :
Kohlenstoff:Carbon:
Kohlenstoff wird zum Beschichten von Herzklappen häufig verwendet. Er ist einfach durch Sputtering oder Verdampfen aufzubringen. Durch seine geringe Kernladungszahl ist es aber zur selektiven Absorption ungeeignet. Kohlenstoff kann das Material vor Korrosion schützen.Carbon is often used to coat heart valves. It is easy to apply by sputtering or evaporation. Due to its low atomic number, it is unsuitable for selective absorption. Carbon can protect the material from corrosion.
Titan:Titanium:
Der Werkstoff Titan ist wegen seiner oxidischen Oberfläche bekanntermaßen biokompatibel. Er schützt das Material vor Korrosion und kann mit Abstrichen zur selektiven Absorption verwendet werden. Titan kann durch sputtern einfach auf die Implantatsoberfläche gebracht werden. Edelstahl :Titanium is known to be biocompatible due to its oxidic surface. It protects the material from corrosion and can be used with selective smears. Titanium can be easily sputtered onto the implant surface. Stainless steel:
Es ist uns gelungen einen austenitischen Edelstahl mittels sputtern aufzubringen. Er zeichnet sich durch seine Biokompatibilität, seiner Korrosionsfestigkeit und durch seine Fähigkeit zur selektiven Absorption aus.We managed to apply an austenitic stainless steel by sputtering. It is characterized by its biocompatibility, its corrosion resistance and its ability to selectively absorb.
Palladium:Palladium:
Inaktives Palladium ist gut für die selektive Absorption geeignet. Es kann wie das aktive Palladium durch sputtern, chemisches und elektrochemisches Abscheiden oder verdampfen aufgebracht werden. Es ist hinreichend biokompatibel (Werkstoff in der Dentalmedizin) und wirkt korrosionsschützend.Inactive palladium is well suited for selective absorption. Like the active palladium, it can be applied by sputtering, chemical and electrochemical deposition or vaporization. It is sufficiently biocompatible (material in dental medicine) and has a protective effect against corrosion.
Tantal:tantalum:
Tantal ist biokompatibel und wird häufig im Herzkreislaufbereich eingesetzt. Es besitzt durch seine große Kernladungszahl eine große Fähigkeit zur selektiven Absorption. Es wirkt außerdem korrosionschützend.Tantalum is biocompatible and is often used in the cardiovascular area. Due to its large atomic number, it has a great ability for selective absorption. It also has a protective effect against corrosion.
Polyterafluorethylen :Polyterafluoroethylene:
Polytetrafluorethylen ist biokompatibel, korrosionfest und kann mit Abstrichen wie Titan zur selektiven Absorption verwendet werden.Polytetrafluoroethylene is biocompatible, corrosion-resistant and can be used with smears such as titanium for selective absorption.
Polyethylen Terephthalat :Polyethylene terephthalate:
Polyethylen Terephthalat ist biokompatibel, korrosionfest und kann mit Abstrichen zur selektiven Absorption verwendet werden.Polyethylene terephthalate is biocompatible, corrosion-resistant and can be used with smears for selective absorption.
Polymethyl Metacrylat:Polymethyl methacrylate:
Polymethyl Metacrylat ist biokompatibel und korrosionfest, kann aber nicht zur selektiven Absorption verwendet werden.Polymethyl methacrylate is biocompatible and corrosion-resistant, but cannot be used for selective absorption.
Schichtdicken zur selektiven Absorption. Es sollen die niederenergetischen Röntgen- (2,70 keV) und Elektronenstrahlen (2,39 keV und 17,0 keV) zu 90% - 99% absorbiert werden. Die restlichen Photonen (20,07 keV, 20,22 keV, 22,70 keV) sollen möglichst vollständig das Coating durchdringen.Layer thicknesses for selective absorption. The low-energy X-ray (2.70 keV) and electron beams (2.39 keV and 17.0 keV) should be 90% - 99% absorbed. The remaining photons (20.07 keV, 20.22 keV, 22.70 keV) should penetrate the coating as completely as possible.
C: d= 100 - 1000 HnC: d = 100-1000 Hn
Ti: d= 10 - 100 HuTi: d = 10-100 Hu
Edelstahl: d= 1 - 10 HmStainless steel: d = 1 - 10 Hm
Pd: d= 1 - 10 HmPd: d = 1 - 10 Hm
Ta: d= 0,2 - 2 HmTa: d = 0.2-2 Hm
Au: d= 0,2 - 2 HmAu: d = 0.2 - 2 Hm
PTFE: d= 10 - 100 HmPTFE: d = 10 - 100 Hm
PET: d= 50 - 500 HmPET: d = 50 - 500 m
PMMA: d= 100 - 1000 H PMMA: d = 100-1000 H

Claims

Patentansprüche: claims:
1. Beschichtetes Implantat bei dem die Beschichtung mindestens aus einem Edelmetall und einem Metall, welches mindestens ein radioaktives Isotop enthält, besteht, wobei die Beschichtung aus mindestens zwei Schichten besteht, einer Schicht (1) aus Edelmetall und einer Schicht (2) aus dem Metall welches mindestens ein radioaktives Isotop enthält, wobei die Schichten (1, 2) elektrochemisch auf dem Implantat aufgebracht und anschließend getempert wurden.1. Coated implant in which the coating consists of at least one precious metal and a metal which contains at least one radioactive isotope, the coating consisting of at least two layers, a layer (1) of precious metal and a layer (2) of the metal which contains at least one radioactive isotope, the layers (1, 2) being applied electrochemically to the implant and then annealed.
2. Beschichtetes Implantat nach Anspruch 1, gekennzeichnet durch eine weitere Schicht (3) aus biokompatiblem Material, die vor oder nach dem Tempern auf die Schicht (2) aufgebracht wurde.2. Coated implant according to claim 1, characterized by a further layer (3) made of biocompatible material, which was applied to the layer (2) before or after the tempering.
3. Beschichtetes Implantat nach Anspruch 1, gekennzeichnet durch eine weitere Schicht (3) aus Edelmetall, die vor oder nach dem Tempern auf die Schicht (2) elektrochemisch aufgebracht wurde.3. Coated implant according to claim 1, characterized by a further layer (3) made of noble metal, which was applied electrochemically to the layer (2) before or after the tempering.
4. Beschichtetes Implantat nach einem der Ansprüche Anspruch Ibis 3, dadurch gekennzeichnet, daß das Edelmetall der Schichten (1, 3) Kupfer, Silber oder Gold ist.4. Coated implant according to one of claims claim 3, characterized in that the noble metal of the layers (1, 3) is copper, silver or gold.
5. Beschichtetes Implantat nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Metall Palladium und das radioaktive Isotop 103Pd ist. 5. Coated implant according to one of claims 1 to 4, characterized in that the metal is palladium and the radioactive isotope 103 Pd.
6. Beschichtetes Implantat nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Schicht (3) so dick ist, daß sie 90 - 99,9 % der 2,7 keV Röntgenstrahlung des radioaktiven Isotops 103Pd absorbiert.6. Coated implant according to one of claims 1 to 5, characterized in that the layer (3) is so thick that it absorbs 90-99.9% of the 2.7 keV X-rays of the radioactive isotope 103 Pd.
7. Beschichtetes Implantat nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das Tempern bei einer Temperatur zwischen 300 und 600 °C erfolgt. 7. Coated implant according to one of claims 1 to 6, characterized in that the annealing takes place at a temperature between 300 and 600 ° C.
EP01976155A 2000-09-08 2001-08-28 Coated implant Withdrawn EP1315524A2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10044559 2000-09-08
DE2000144559 DE10044559A1 (en) 2000-09-08 2000-09-08 Coated implant
PCT/EP2001/009873 WO2002020062A2 (en) 2000-09-08 2001-08-28 Coated implant

Publications (1)

Publication Number Publication Date
EP1315524A2 true EP1315524A2 (en) 2003-06-04

Family

ID=7655581

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01976155A Withdrawn EP1315524A2 (en) 2000-09-08 2001-08-28 Coated implant

Country Status (3)

Country Link
EP (1) EP1315524A2 (en)
DE (1) DE10044559A1 (en)
WO (1) WO2002020062A2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10142015C2 (en) * 2001-08-28 2003-08-28 Karlsruhe Forschzent Radioactive implant and process for its manufacture
DE10361942A1 (en) * 2003-12-24 2005-07-21 Restate Patent Ag Radioopaque marker for medical implants
CA2687031A1 (en) 2007-05-15 2008-11-20 Chameleon Biosurfaces Limited Polymer coatings on medical devices
DE102008054920A1 (en) * 2008-12-18 2010-07-01 Biotronik Vi Patent Ag Implant and method for producing a layer structure

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6174329B1 (en) * 1996-08-22 2001-01-16 Advanced Cardiovascular Systems, Inc. Protective coating for a stent with intermediate radiopaque coating
DE19724223C1 (en) * 1997-04-30 1998-12-24 Schering Ag Production of radioactive coated stent, especially at point of use
US5919126A (en) * 1997-07-07 1999-07-06 Implant Sciences Corporation Coronary stent with a radioactive, radiopaque coating
US6394945B1 (en) * 1997-12-22 2002-05-28 Mds (Canada), Inc. Radioactively coated devices
DE19916086B4 (en) * 1998-04-11 2004-11-11 Inflow Dynamics Inc. Implantable prosthesis, especially vascular prosthesis (stent)
JP2002522184A (en) * 1998-08-13 2002-07-23 アメルシャム・パブリック・リミテッド・カンパニー Apparatus and method for radiation therapy
WO2000029035A1 (en) * 1998-11-13 2000-05-25 Global Vascular Concepts, Inc. X-ray emitting surgical device
DE19906417C1 (en) * 1999-02-16 2000-06-29 Heraeus Gmbh W C Passage opening support structure, especially a medical stent, has a gold layer between a special steel substrate and a platinum surface layer to avoid platinum cracking
US6059714A (en) * 1999-03-26 2000-05-09 Implant Sciences Corporation Radioactive medical devices

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0220062A3 *

Also Published As

Publication number Publication date
WO2002020062A2 (en) 2002-03-14
DE10044559A1 (en) 2002-04-04
WO2002020062A3 (en) 2002-10-03

Similar Documents

Publication Publication Date Title
DE4315002C1 (en) Vascular implant
EP0966979B1 (en) Implantable bioresorbable support for the vascular walls, in particular coronary stent
EP2172234B1 (en) Implant and method for creating a degradation-inhibiting coating on the surface of a body of an implant
KR100826574B1 (en) Medical devices having porous layers and methods for making same
DE69736343T2 (en) Vascular and endoluminal stents
DE102010054046B4 (en) Antibacterial coating for an implant and implant.
EP1941918A2 (en) Method for manufacturing an anti-corrosive coating on an implant made from a bio-corrodible magnesium alloy and the implant resulting from the method
DE19916086A1 (en) Vascular prosthesis/stent for stenosis reversal
DE19856983A1 (en) Implantable, bioresorbable vascular wall support, in particular coronary stent
DE102008043970A1 (en) A method for producing a corrosion-inhibiting coating on an implant of a biocorrodible magnesium alloy and implant produced by the method
DE60302447T2 (en) METALLIC IMPLANTS
DE3723560C2 (en)
DE102008054920A1 (en) Implant and method for producing a layer structure
EP2198899B1 (en) Device and method for producing same
DE102006038242A1 (en) Stent with a structure made of a biocorrodible metallic material
EP1315524A2 (en) Coated implant
WO1999050855A1 (en) Medicinal, radioactive ruthenium radiation sources with high dosage rate and method for producing the same
EP2206526A2 (en) Implantat and method for producing the same
EP1284757B1 (en) System comprising a carrier substrate and a ti/p or. ai/p coating
DE10107675B4 (en) Endoprosthesis and process for its manufacture
DE3022751A1 (en) LOW OVERVOLTAGE ELECTRODE AND METHOD FOR PRODUCING THE SAME
DE10142015C2 (en) Radioactive implant and process for its manufacture
DE19855786A1 (en) Expandable stent, especially useful for preventing restenosis of coronary arteries, is implanted with carbon to improve hemocompatibility and provided with a radioactive material to inhibit restenosis
DE102005024969B4 (en) Radioactive medical implant and method of making the same
WO2001072371A1 (en) Radioactive implement and method of manufacture of same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030117

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20031016

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040427